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Abstract: 
Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and 

nutrients as well as the survival of many animal species. One of the main uncertainties in 

predicting changes to ocean oxygen levels is the regulation of the biological respiration demand 25 

associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen 

to organic carbon consumed during respiration (i.e., the respiration quotient, 𝑟−𝑂2:𝐶) is 

consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system 

model, we first show that a 0.1 increase in the respiration quotient value leads to a 2.3% decline 

in global oxygen, a large expansion of low oxygen zones, additional denitrification of 38 Tg 30 

N/yr, and overall loss of fixed nitrogen and carbon production in the ocean. We then present 

direct chemical measurements of 𝑟−𝑂2:𝐶 using a Pacific Ocean meridional transect crossing all 

major surface biome types. The observed 𝑟−𝑂2:𝐶 has a positive correlation with temperature, and 

regional mean values differ significantly from Redfield proportions. Finally, an independent 

global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations 35 

support a positive temperature dependence of 𝑟−𝑂2:𝐶 for exported organic matter. We provide 

evidence against the common assumption of a static biological link between the respiration of 

organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that 

a changing respiration quotient will impact multiple biogeochemical cycles, and that future 

warming can lead to more intense deoxygenation than previously anticipated. 40 
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Significance Statement: 

The loss of ocean oxygen caused by climate warming is a serious environmental issue and can 

lead to major declines in animal habitats. However, current Earth System Models struggle in 45 

explaining observed trends in global ocean oxygen. Using a model, we demonstrate that marine 

oxygen concentrations depend sensitively on a rarely considered quantity known as the 

respiration quotient to prescribe the oxygen consumed per mole of organic carbon respired. 

Using a combination of direct chemical measurements across major biomes in the eastern Pacific 

Ocean plus changes in the global distribution of oxygen and carbon, we show how the respiration 50 

quotient increases systematically with temperature. The findings imply that we can experience 

more intense declines in ocean oxygen with warming.  
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Introduction:  

The oceans are currently experiencing deoxygenation and an expansion of oxygen 55 

minimum zones (1) with potentially devastating impacts on marine life (2). Warming induced 

changes in oxygen solubility as well as circulation-driven ventilation rates are considered the 

primary drivers of deoxygenation (3). However, current models are unable to reproduce observed 

shifts in ocean oxygen concentrations (4).  

One of the main uncertainties in predicting ocean oxygen levels is the regulation of the 60 

biological respiration demand (5). The respiration quotient describes the molar ratio of oxygen to 

organic carbon consumed during respiration and is thus controlled by the oxidation state of 

organic material (signified by z) (6):   

Cx(H2O)w(NH3)yHzH3PO4 + (x +  
1

4
z) O2 → xCO2 + yNH3 + H3PO4 + (w +  

1

2
z) H2O (1) 

 65 
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𝑥
 ,     (2) 

with an additional oxygen demand due to nitrification:  

y NH3 +  2y O2 → yHNO3 + yH2O,     (3) 

yielding the total respiration quotient (𝑟𝛴−𝑂2:𝐶) describing the full oxidation of particulate 

organic matter:    70 

𝑟𝛴−𝑂2:𝐶 =
(𝑥+ 

1

4
𝑧+2𝑦)

𝑥
.     (4) 

 The respiration quotient is commonly thought to be static. Alfred Redfield implicitly 

assumed that all planktonic organic carbon consisted of carbohydrates (setting z to zero) and thus 

𝑟−𝑂2:𝐶 = 1.0  and 𝑟𝛴−𝑂2:𝐶  = 1.3 (7). Carbohydrates represent a somewhat oxidized form of 

organic carbon and other macromolecules (especially lipids) are further reduced with higher 75 
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𝑟−𝑂2:𝐶. Nevertheless, theoretical estimations of phytoplankton biomass chemistry independently 

estimated the respiration quotient to be ~1.1 with limited biological variation (8, 9). Finally, a 

recent analysis using satellite derived macromolecular composition of phytoplankton and 

gridded nutrient data was unable to detect any systematic geospatial variation (10). Based on 

these considerations, ocean biogeochemical models and theories assume a constant respiration 80 

quotient although they disagree on the exact value (6).  

 There is also evidence suggesting substantial variation in the respiration quotient. First, 

the macromolecular composition of plankton differs across lineages (11) and physiological states 

(12) leading to a large predicted biological variation in the respiration quotient (SI Appendix, 

Fig. S1). Second, a limited set of full elemental analyses of particulate organic matter provides 85 

support for variation in the carbon oxidation state (13, 14). Third, end-member mixing models of 

oxygen and DIC concentrations along isopycnal surfaces suggest large variance in 

𝑟−𝑂2:𝐶  between ocean basins (15). However, this method can have large biases (16). Fourth, 

global inverse model studies find large-scale gradients in 𝑟−𝑂2:𝑃 and 𝑟𝐶:𝑃 for the regeneration of 

organic matter (17, 18). Simply dividing these two ratios suggests that 𝑟𝛴−𝑂2:𝐶 could range 90 

between 0.7 to 2.1. Such independent studies challenge the notion of a static link between the 

oxygen and carbon cycles, but the drivers, magnitude, and regional differences of the respiration 

quotient are unknown.  

Here, we report the outcome from a set of prognostic ocean biogeochemical model 

simulations, direct chemical measurements to estimate the respiration quotient from diverse 95 

biomes, and a global inverse model analysis to address the following research questions: (i) what 

are the global biogeochemical implications of a changing 𝑟−𝑂2:𝐶, (ii) what is the regional average 
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and variation in 𝑟−𝑂2:𝐶, and (iii) does the regional variation in 𝑟−𝑂2:𝐶 systematically relate to 

specific environmental conditions?  

Results: 100 

A change in the respiration quotient can have widespread impacts on ocean oxygen, 

nitrogen, and carbon cycle processes. We conducted sensitivity simulations with a prognostic 

global ocean biogeochemical model (19). The CESM model allowed for variation and dynamical 

feedbacks between the carbon, nitrogen, oxygen, and phosphorus cycles and included the 

regulation of primary production, carbon export, and an oxygen dependent water column and 105 

sediment denitrification. We specially varied 𝑟−𝑂2:𝐶 between 0.7 and 1.3 to test for potential 

biogeochemical impacts of a changing respiration quotient. After a 300 yr spin-up period using 

unique respiration quotients, we observed nearly linear relationships between 𝑟−𝑂2:𝐶 and ocean 

oxygen content, denitrification, and carbon productivity (Fig. 1). The model sensitivity analysis 

showed that increasing the respiration quotient by 0.1 will results in an average loss of 0.15*1018 110 

g oxygen (2.3%) and a major expansion of oxygen minimum zones (OMZ, (< 25 mol/kg O2) 

(Fig. 1A-C). The annual rate of denitrification and overall N balance in the ocean were very 

sensitive to the respiration quotient (Figure 1D-F). Thus, increasing the respiration quotient by 

0.1 leads to elevated denitrification of 38 Tg N (45.2%). Denitrification ranged from 3 to 277 Tg 

N/yr across our simulations but nearly shut down at 𝑟−𝑂2:𝐶 = 0.7 or rose to very high levels at 115 

𝑟−𝑂2:𝐶 = 1.3. Indirectly, through the loss of fixed N, an increase in 𝑟−𝑂2:𝐶 of 0.1 lowered net 

primary productivity and export production slightly by an average 0.86 (1.59%) and 0.13 

(1.56%) Pg C/yr, respectively (Fig 1 G-H). These carbon cycle feedbacks were particularly 

pronounced on the edge of existing the OMZs. Thus, the respiration quotient is an important 

regulator of marine biogeochemical cycles. 120 
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The changes to ocean biogeochemical cycles from a varying respiration quotient are 

comparable in magnitude to business-as-usual climate change impacts by year 2100 (SI 

Appendix, Fig. S2 and Table S1). Climate simulations performed under scenario RCP8.5 showed 

a decline in the total dissolved oxygen content of the ocean between 3.1% and 4.7% by year 

2100. We see equivalent changes in CESM simulations a change in 𝑟−𝑂2:𝐶 of ~0.2 (Fig. 1). 125 

Therefore, a shift in the respiration quotients can significantly impact ocean oxygen levels and 

biogeochemical cycles more broadly.  

To directly quantify the respiration quotient, we combined field measurements of 

particulate organic carbon (POC) and the required oxygen demand for respiration across a 

meridional transect in the Eastern Pacific Ocean. POC was estimated by combustion and the 130 

release of CO2 using an elemental analyzer. To quantify the oxygen required for complete 

respiration of POC, we modified and calibrated a method commonly used for measuring the 

particulate chemical oxygen demand (PCOD) in wastewater (20). We then estimated the 

respiration quotient (𝑟−𝑂2:𝐶) by taking the ratio of PCOD and POC across 198 stations along the 

Pacific Ocean line P18 (SI Appendix, Table S2). Sea-surface temperature steadily decreased 135 

from 29.5°C to approximately 0°C (Fig. 2A). A deep nutricline was detected in multiple regions 

marking the location of subtropical gyre conditions (Fig. 2B). Nitrate was mostly drawn down to 

detection limit in several regions, whereas residual phosphate was present throughout the Eastern 

Pacific Ocean (SI Appendix, Fig. S4). As a result, N* was low in most of the tropical and 

subtropical regions but rose with the high nutrient supply in the Southern Ocean (Fig. 2C). As 140 

such, our samples covered a broad range of environmental conditions across the eastern Pacific 

Ocean. 
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We observed distinct but highly correlated POM concentration levels across the regions. 

[POC] and [PCOD] were tightly correlated (r2Pearson = 0.93, p < 0.0001) (Fig. 2D, E) and showed 

parallel regional shifts. Thus, our optimized PCOD assay accurately reflects the concentration of 145 

marine particulate organic matter. [POC] and [PCOD] were both low in the gyre regions 

(1:CAMR, 2:PNEC, 3:TPEC, and 5:SPSG), slightly higher in equatorial Pacific Ocean waters 

(4:PEQD), and very high in the Southern Ocean regions (6:SST – 9:APLR) (Fig. 2D, E). 

Changes in POM concentrations followed the nine regions that arose from the combination of 

environmental conditions. 𝑟−𝑂2:𝐶 averaged 1.150.73
1.54 (minimum and maximum value) (Fig. 2F, SI 150 

Appendix, Table S3) but differed significantly between regions (pMANOVA < 6*10-5) (Fig. 3). The 

highest and lowest regional averages were found near the warm edge of the North Pacific 

Subtropical Gyre and the ice edge in the Southern Ocean, respectively. The equatorial regions 

were also slightly lower compared to the two gyres. Many regions showed limited overlap with 

the respiration quotient defined by Redfield and Anderson but instead largely grouped along a 155 

latitudinal gradient (Fig. 3). Thus, the observed respiration quotient showed regional shifts 

leading to a common divergence from past predicted values.  

We observed a significant correspondence between ocean environmental conditions and 

the respiration quotient. We tested all linear combinations of environmental factors and 𝑟−𝑂2:𝐶 

(SI Appendix, Table S4). A significant positive relationship between temperature and 𝑟−𝑂2:𝐶 160 

suggested an increase in 𝑟−𝑂2:𝐶 of ~ 0.2 between polar and tropical regions (Fig. 4A). We saw 

indications of an additional regulation of 𝑟−𝑂2:𝐶 by nutrient availability (SI Appendix, Table S4). 

A deeper nutricline led to a slightly elevated quotient in comparison to waters with the same 

temperature but higher nutrients (e.g., the equatorial region). A positive relationship between 

temperature and the respiration quotient was also observed for a small set of previously analyzed 165 
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samples from the Western North Pacific Ocean (SI Appendix, Fig. S5). Temperature emerged as 

the best predictor, but additional factors may exert a secondary control on the respiration 

quotient. 

We tested if the observed temperature dependence of 𝑟−𝑂2:𝐶 could be detected via the 

imprint on the global three-dimensional distribution of oxygen and dissolved inorganic carbon in 170 

the ocean. To achieve this, we constructed an inverse biogeochemical model constrained by the 

GLODAP.2016v2 and WOA2013 databases of hydrographic measurements of nutrients, carbon, 

and oxygen concentrations (21, 22). We relied on previous inverse-modeling efforts for the 

carbon, nitrogen, and phosphorus cycles (18, 19, 23) but with an added oxygen cycling model. 

The resulting biogeochemical model tracks the dissolved oxygen concentration as well as the 175 

oxidation and reduction of both nitrogen and carbon. Based on the direct chemical 

measurements, we introduced a linear temperature dependence of the respiration quotient but 

with unknown slope and intercept. We then estimated 𝑟−𝑂2:𝐶 = 0.9740.968
0.980 at 15°C (± 1 std) and a 

positive temperature dependence of 0.01620.0157
0.0167°C-1 through a Bayesian inversion procedure 

against the global 3-D distribution of nutrients, carbon, and oxygen concentrations (Fig. 4B). The 180 

temperature dependence of 𝑟−𝑂2:𝐶 from the inverse model is stronger and lower in colder waters. 

However, the chemical measurements and inverse hydrographic estimate both agree on the 

positive temperature relationship and the level at higher temperature (Fig. 4). We also evaluated 

a nitrate-based model for 𝑟−𝑂2:𝐶, but there was stronger support for a temperature dependence 

(see supplementary information). We allowed for independent remineralization depth profiles 185 

(Martin’s b) of POC and PCOD. bOxygen was slightly smaller than bCarbon suggesting that oxygen 

was consumed deeper in the water column compared to the release of DIC. However, the 

uncertainty in each parameter led to overlapping values, so it was unclear if the carbon and 
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oxygen remineralization profiles were truly distinct. The midpoint value of 𝑟−𝑂2:𝐶  at 15˚C was 

also sensitive to the inclusion of separate Martin’s b values for POC and PCOD. A separate 190 

inverse model with a common depth profile for POC and PCOD yielded a mean 𝑟−𝑂2:𝐶 value of 

1.12, which is in better agreement with the value measured directly in suspended particles. This 

link suggested some poorly constrained model interactions between the mean respiration 

quotient and the remineralization depth profiles. However, the positive temperature dependence 

of  𝑟−𝑂2:𝐶 was retained independently of how we parameterized remineralization depth profiles. 195 

In summary, we have convergent estimates of a regional temperature-related respiration quotient 

but uncertainty in the magnitude of change. 

Discussion 

The observed range for the respiration quotient is slightly outside the bounds of 

predictions based on cellular biochemistry (8, 9). However, the C:H:O ratio of POM in the 200 

Western Pacific Ocean corresponds to a respiration quotient ranging between 0.6 and 1.6 (13) 

and several studies have detected 40% variation in C:H (24). Platt and Irwin observed a 30% 

variation in the caloric content of fresh organic matter (25). As the carbon oxidation state and 

caloric content of organic matter are closely tied (24), one should expect a parallel range in the 

respiration quotient. Part of POM is detrital matter with molecularly uncharacterized components 205 

(26) that could lead to higher 𝑟−𝑂2:𝐶 variation than predicted purely from cellular biochemistry 

arguments. The observed values are also within the bounds from endmember mixing models (15) 

and other POM analyses (13). Thus, our detected range in 𝑟−𝑂2:𝐶 is high but falls within past 

observation of particulate organic matter. 

The observed latitudinal gradient for the respiration quotient must be linked to changes in 210 

the underlying molecular composition of surface POM and plankton. The exact nature of this 
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relationship remains to be quantified, but we expect it is driven by an increased proportion of 

lipids relative to proteins and carbohydrates. The plankton communities are distinct between the 

analyzed regions in the eastern Pacific Ocean suggesting that environmentally-driven community 

shifts at least partially contribute to the variation in the respiration quotient. The proportion of 215 

biochemical components across major phytoplankton groups follow an allometric relationship 

leading to an elevated lipid-to-carbohydrate/protein ratio in small plankton (27). We speculate 

that smaller cells have a higher contribution of the lipid-rich membrane to total carbon due to the 

elevated surface-to-volume ratio. Thus, the high abundance of small picoplankton in warm 

tropical and subtropical regions could therefore lead to a higher lipid fraction and higher 220 

respiration quotient of the organic matter. Another biological mechanism is the accumulation of 

lipids following a nitrogen starvation response in many phytoplankton (28), and we observed the 

highest respiration quotient in warm regions with a deep nutricline. Thus, we hypothesize that 

shifts in plankton biogeography and possibly physiology influence the observed changes in the 

respiration quotient. 225 

There are several noteworthy caveats to our conclusions. First, the POM oxidative state 

may change during sinking and aging leading to distinct remineralization length scales for DIC 

release and oxygen consumptions. From the inverse model, we saw weak evidence for a faster 

attenuation of DIC compared to oxygen consumption suggesting a removal of oxidized 

compounds in the upper ocean. The confidence intervals for bCarbon and bOxygen were overlapping 230 

but future vertical joint profiles of POC and PCOD could further constrain any depth dependence 

of the respiration quotient. Second, we did not measure the respiration quotient of DOM even 

though this fraction is an important component of the ocean carbon cycle (29). Currently, no 

analytic methods can perform this measurement directly, so it is unclear if 𝑟−𝑂2:𝐶 for POM and 
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DOM will display the same level and biome patterns. Third, the simulated impact of a changing 235 

respiration quotient was limited to 300 yrs, so additional feedbacks could occur at longer time-

scales. Within the time-scale most relevant to human society, the model analysis clearly 

emphasized the linear impact of the respiration quotient on ocean oxygen levels and downstream 

biogeochemical cascade. Fourth, our observed variation in the respiration quotient in suspended 

POM and inferred from the inverse model show variability that was not detected in a recent 240 

study (10). In this recent study, the respiration quotient was estimated by combining satellite-

predicted macromolecular composition of surface POM and using a simple 1-D model of 

hydrographic nutrient and oxygen measurements. This recent work may have lacked the 

sensitivity to detect regional shifts in 𝑟−𝑂2:𝐶, as the lateral transport of nutrients and oxygen tends 

to dominate over 1-D vertical transport in the ocean. Thus, our combination of a data-constrained 245 

3-D biogeochemical model (30) and direct POM measurements may be more sensitive for 

detecting a temperature dependence of 𝑟−𝑂2:𝐶.  Fifth, there is uncertainty embedded in our 

transport operator as well as in the global annual climatological description of hydrography that 

can impact the inverse model estimates. Seasonally resolved transport and biogeochemistry as 

well as expanded oxygen measurements from Biogeochemical-Argo floats will help further 250 

constrain future estimates of 𝑟−𝑂2:𝐶. Sixth, 𝑟−𝑂2:𝐶 may be related to additional parameters beyond 

temperature. For example, we saw indications of some impact of nutrient availability (although 

not as strong as temperature) as well as signs of daily variance possibly reflecting diel cycles in 

photosynthesis and cellular carbon accumulation. These sources of additional variance need to be 

addressed with expanded regional, vertical, and temporal sampling in future studies. The 255 

uncertainty estimates we have provided from our inverse model analysis are conditioned on the 

model structure. Exploring more complex relationships between 𝑟−𝑂2:𝐶 and a broader suite of 
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drivers in the lab, in situ, and by the inverse model should improve our understanding of how the 

respiration quotient is regulation. Nevertheless, our use of independent methods supports that the 

respiration quotient is not to be assumed constant but varies between biomes. 260 

The observed variation in the respiration quotient is expected to have large biological and 

biogeochemical impacts. The production of more reduced organic carbon in tropical and 

subtropical regions implies a higher caloric content and perhaps a superior food source (24). On 

the other hand, we see that an upshift in the respiration quotient can initiate a biogeochemical 

cascade leading to lower ocean oxygen levels, N loss, and declining productivity. These 265 

biogeochemical changes could have devastating impacts on marine life (2). Thus, a biological 

feedback whereby warming and stratification leads to the production of more reduced organic 

carbon can have a large future impact on marine ecosystem functioning and biogeochemistry. 

Materials and Methods 
Sample Collection: Seawater samples were collected during the GO-SHIP P18 cruise aboard 270 

R/V Ronald H. Brown from November 11, 2016 to February 3, 2017 between 32.72° N, 

117.16°W off San Diego, CA to 77.85°S, 166.67°E near Antarctica (SI Appendix, Fig. S3). 

Samples for particulate organic carbon (POC) and particulate chemical oxygen demand (PCOD) 

were taken from 198 stations using the underway system. The underway intake was located at a 

depth of 5.3 m from the sea surface. All carboys were rinsed twice with filtered seawater before 275 

sampling. Triplicate samples for POC and sextuplicate samples for PCOD were taken 

approximately 3 times daily. Water was pre-filtered with a 30 μm nylon mesh (Small Parts 

#7050-1220-000-12) to remove rare large particles from the sample. Additional samples 

(triplicate for POC and sextuplicate for PCOD) were taken by removing the 30 μm nylon mesh, 

allowing all particles to collect in order to determine the total particulate organic matter from 280 



 

14 
 

station 159 to 198. All samples were collected on pre-combusted 500°C GF/F filters (Whatman, 

GE Healthcare, Little Chalfont, Buckinghamshire, UK) for the analysis of POC and PCOD. 

Sample volume was determined on a per station basis, ranging from 3 to 8 l. All filters were then 

folded in half, sealed inside pre-combusted aluminum foil, and stored at -20°C until analysis.  

Particulate Organic Carbon (POC). Filters were dried at 55°C (24 h) and then stored in a 285 

desiccator with concentrated hydrochloric acid fumes for 24 h to remove inorganic carbonates. 

The filters were dried for 48 h at 55°C before being folded and pelletized into pre-combusted tin 

capsules (CE Elantech, Lakewood, New Jersey). Tin capsules were then analyzed on a Flash EA 

1112 NC Soil Analyzer (Thermo Scientific, Waltham, Massachusetts) measuring released CO2 

and we used an atropine (C17H23NO3) standard. 290 

Particulate Chemical Oxygen Demand (PCOD) Assay: Quantifying the Chemical Oxygen 

Demand is commonly used for wastewater and freshwater samples. The assay is based on the 

determination of residual potassium dichromate following organic matter oxidation with silver 

sulfate as catalyst under strongly acidic and high temperature (150°C) conditions (20, 31, 32). As 

dichromate does not oxidize ammonium, the assay only quantifies the oxygen demand from 295 

organic carbon. A major obstacle for using the method with seawater POM samples is the 

interference of chloride ions. As such, chloride is oxidized by dichromate and causes 

precipitation of silver chloride. Several efforts have been made to apply this method to seawater 

samples and the main solution is the addition of mercuric sulfate (33). Thus, the method has the 

potential for quantifying the oxygen demand in marine POM. 300 

Here, we modified the assay to quantify the chemical oxygen demand from POM 

collected on GF/F filters. Specifically, GF/F filters with collected POM samples were dried 

overnight at 55°C. We then added the filter and 2 ml milli-Q water to HACH COD HR+ reagent 
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vials (Product # 2415915 containing mercuric sulfate) and digested the samples at 150˚C for 2 h. 

We learned that the major obstacle for this assay was uneven precipitation of silver chloride 305 

following digestion. Thus, we modified the assay to include a subsequent precipitation step by 

adding 92.1 μL of 9.5 M NaCl (minimum amount of chloride to induce consistent precipitation) 

to each vial. Vials were immediately inverted twice and centrifuged for 30 min at 2500 rpm to 

remove any precipitate. Finally, we quantified the remaining dichromate by absorbance at 600 

nm using HACH certified phthalate-based COD standards (SI Appendix, Fig. S6A). HACH 310 

certified COD tubes have been shown to measure unbiased COD across diverse classes of 

organic compounds (34) so we only did a limited comparison with other compounds.  

To validate the modified technique, we (i) tested for any interference using standard 

additions of a HACH certified phthalate-based COD standard, (ii) established a linear 

relationship between input amounts and absorbance, (iii) compared the variance to other POM 315 

measurement techniques, and (iv) examined any compound specific biases. First, we were able to 

recover experimentally added organic carbon to seawater samples suggesting limited sample 

interference (SI Appendix, Fig. S6B). Second, we found that increasing sample volume (and 

associated amount of PCOD captured on filters) corresponded linearly to an increase in 

measured PCOD (SI Appendix, Fig. S6C). Third, we saw a high correspondence between 320 

theoretical and observed values for different substrates (SI Appendix, Fig. S6D). This has also 

been observed in more elaborate past studies supporting that the dichromate technique 

effectively oxidizes many diverse substrates (34, 35). Fourth, the coefficient of variance for 

PCOD and 𝑟−O2:C  corresponded to the coefficient of variance for POC and 𝑟𝐶:𝑃, respectively (SI 

Appendix, Fig. S6E-H). We did not fully explore the detection limit for our assay as the COD 325 

chemistry method was much more sensitive than one used for POC. Thus, our sampling strategy 
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focused on recovering enough POC. These method development and optimization steps 

suggested that our assay provided an unbiased and sensitive method to quantify PCOD.  

 𝑟−𝑂2:𝐶  was computed from the mean concentrations of PCOD and POC. The standard 

deviation for 𝑟−O2:C was calculated as a pooled sample:  330 

σr−O2:C
=  

PCOD aver

POCaver
× √((

σPCOD

POCaver
)2 + (

σPOC

POCaver
)2).   (5) 

The coefficient of variance was calculated as a pooled sample:    

cvr−O2:C =  
σr−O2:C 

r−O2:C,aver
.       (6) 

Statistical linear models were fitted using one or two predictor variables (Temperature (°C; T), 

Nutricline Depth (m; ZNO3 = 1 µM NO3), Phosphate (P), and N* (N* = [NO3] – 16*[P] + 2.9 335 

mmol/m3). To evaluate assumptions of a normal-distributed respiration quotient, we also did a 1-

way ‘multi-variate analysis of variance’ (MANOVA) test. Here, we evaluated the joint variance 

in POC and PCOD between the nine defined regions. We rejected the hypothesis that the data 

could be described in one dimension (i.e., a single mean 𝑟−𝑂2:𝐶) and instead showed significant 

regional variability. 340 

Our standard POM assay quantifies particles less than 30 µm to avoid the stochastic 

presence of rare large particles. However, large phytoplankton are an important contributor to 

POM in the Southern Ocean. To address any uncertainties with size selection, we also collected 

POM with no size fractionation between 54° S and 69° S (SI Appendix, Fig. S7A). We found that 

total [POC] or [PCOD] were only significantly different from the <30 µm fraction at a few 345 

stations. Furthermore, 𝑟−𝑂2:𝐶 was not statistically different between the total and below <30 µm 

fractions. This suggested that capping the POM sample at a particle size of 30 µm did not affect 

the outcome of our analysis (SI Appendix, Fig. S7C).   
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Prognostic CESM Simulations: A modified version of Community Earth System Model 

(CESM) was used for our 300-year simulations, which included a prescribed 𝑟−𝑂2:𝐶  ranging 350 

between 0.7 and 1.3 across model experiments. Only a fixed 𝑟−𝑂2:𝐶 value varied between these 

simulations. Climate forcings on the oceans followed a repeated cycling of the NCEP-NCAR 

Reanalysis datasets for the years 1980-2009. Three hundred years is sufficient to spin up the 

upper ocean and thermocline depth nutrients and oxygen. Model output was averaged over the 

last 20 simulation years for analysis to remove short-term variability. The model includes three 355 

phytoplankton functional groups (small, large, and diazotrophic phytoplankton) and multiple 

potentially growth-limiting nutrients (N, P, Fe, Si). The model has been used in CESM climate 

simulations (36, 37). The ecosystem-biogeochemistry model code is a preliminary version of the 

CESM V2.1 code set, run within the coarse-resolution CESM V1.2.2 ocean circulation model 

(19). Water column denitrification is initiated in the model when oxygen levels fall below 7 μM, 360 

with only denitrification and no oxic remineralization below 5 μM (36). Additional 

documentation and model source code for CESM2.0 are available online (www2.cesm.ucar.edu).  

Analysis of CMIP5 Model Output: We obtained output from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) models from the Earth System Grid Federation (38). 

We calculated the changes in ocean oxygen content and rates of denitrification between the 365 

simulated 1990s and 2090s for available biogeochemical models following the historical and 

Representative Concentration Pathway 8.5 (RCP8.5). This is the high-end, business as usual, 

emissions scenario with strong global warming over the 21st century.    

Inverse Hydrographic Model Analysis: See the supplementary information for a detailed 

description of the inverse model analysis. 370 
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Data availability: The hydrography (https://cchdo.ucsd.edu/cruise/33RO20161119) and POM 

data (https://www.bco-dmo.org/project/764270) are freely available. 

https://cchdo.ucsd.edu/cruise/33RO20161119
https://www.bco-dmo.org/project/764270
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 385 

Figure legends 

Figure 1. Impact of a changing respiration quotient on ocean biogeochemical processes. A. 
Change in OMZ (O2 ≤25 μM) extent and intensification when 𝑟−𝑂2:𝐶  shifts from 1 to 0.7. B. 
Change in OMZ extent and intensification when 𝑟−𝑂2:𝐶  shifts from 1 to 1.3. C. Total oxygen 
levels and OMZ volume ([O2] <25μM) as a function of the respiration quotient. D. Change in 390 
denitrification zones and intensity when 𝑟−𝑂2:𝐶  shifts from 1 to 0.7. E. Change in denitrification 
zones and intensity when 𝑟−𝑂2:𝐶  shifts from 1 to 1.3. F. Annual denitrification rates and global 
ocean N balance as a function of the respiration quotient. G. Change in ocean net primary 
production when 𝑟−𝑂2:𝐶  shifts from 1 to 0.7. H. Change in ocean net primary production when 
𝑟−𝑂2:𝐶  shifts from 1 to 1.3. I. Annual net primary production and carbon export (at 100 m) as a 395 
function of the respiration quotient. 
 
Fig 2. Environmental conditions, POM concentrations and the respiration quotient across 
the eastern Pacific Ocean. A. Sea-surface temperature, B. Nutricline depth (depth at which 
nitrate is 1 μM), C. Surface N* (N* = NO-3Station – 16*PO4-3Station), D. Surface particulate organic 400 
carbon (POC), E. Surface particulate chemical oxygen demand (PCOD), and F. Surface 
respiration quotient. Averaged data are marked as black dots. In panels A-E, the red line 
represents a 4-station moving average. In panels D-F, the grey shaded regions represent the 
standard deviation of the replicates. In panel F, the red line represents an 8-station moving 
average. In all panels, the colored background represents the nine regions (1:CAMR- Central 405 
American Coast, 2: PNEC- North Pacific Equatorial Counter Current, 3:TPEQ- Transitional 
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Pacific Equatorial Divergence, 4: PEQD- Pacific Equatorial Divergence, 5:SPSG- South Pacific 
Gyre, 6:SST- Southern Subtropical Convergence, 7:SANT- Sub Antarctic water ring, 8: ANTA- 
Antarctic, 9: APLR- Austral Polar).  
 410 
Figure 3. Regional differences in the respiration quotient. A. Clustering of group means after 
a multivariate joint POC and PCOD analysis of variance (1-way MANOVA). B. Regionally 
observed respiration quotients and comparisons to Redfield (𝑟−𝑂2:𝐶 = 1) and Anderson (𝑟−𝑂2:𝐶 = 
1.1) theoretically predicted values.  
 415 
Figure 4. Relationship between temperature and the respiration quotient. A. Observed 
temperature dependence for surface POM 𝑟−O2:C  = 1.0465 + (0.0055383/℃) SST (Table S4) and 
the relationship inferred from the inversion of hydrographic data (Table S6). B. The logarithmic 
marginal posterior probability density for the temperature dependence (m) and intercept (b) in 
the relationship 𝑟−O2:C = 𝑚(𝑆𝑆𝑇 − 15℃) + 𝑏 estimated from the inversion of the hydrographic 420 
data. 
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Supplementary Information Text 
 

Inverse Biogeochemical Model Methods: 

Our biogeochemistry model predicts the concentrations of oxygen, dissolved inorganic carbon, 

and dissolved organic carbon ([O!], [DIC], and [DOC]), as a function of 𝑟!!":!, which in turn is 

parameterized in terms of either surface temperature or surface nitrate concentration, via a slope, 

m, and intercept, b:  

𝑟!!":! =  𝑚𝑧+𝑏,       (S1) 

with 

MODEL A:  𝑧 =  𝑧!  ≡  
!!"! !!!"

∆!!"
,                                                      (S2)  

or  
MODEL B:  𝑧 =  𝑧!  ≡  

!!"! !!!"
∆!!"

 ,                                          (S3)  

where 𝑆𝑆𝑇 is the sea surface temperature and 𝑆𝑆𝑁 is the sea surface nitrate concentration 

obtained from the 2013 World Ocean Atlas [Ref. S1]. The means 𝜇!!" and 𝜇!!" are computed 

using an area weighted average of the SST and SSN variables after interpolation onto the global 

2° x 2° grid. For the scale parameters we use  

∆!!"  = max 𝑆𝑆𝑇 −min 𝑆𝑆𝑇,                                                        (S4)  

and 

∆!!" = max 𝑆𝑆𝑁 −min 𝑆𝑆𝑁,                                                      (S5)  

so that  

!
!"

min  𝑟!!":! −max  𝑟!!":! = 1,                 (S6) 

for both model A and model B. In Table S5, we list the values of the quantitates used to 

standardize the 𝑆𝑆𝑇 and 𝑆𝑆𝑁 variables and compare the range of 𝑆𝑆𝑇 and 𝑆𝑆𝑁 to their 

respective standard deviations.  
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 The biogeochemical model is also dependent on four additional parameters 

(𝑏!,𝑏!,𝜅!", and 𝜎 described later) and associated uncertainty. An important advantage of the 

Bayesian inversion procedure is that it allows us to marginalize out the parameters that are 

not of direct of interest, namely 𝑏!,𝑏!,𝜅!", and 𝜎 and thus take into account their uncertainty 

in the posterior uncertainty for 𝑟!!":!. Another important advantage of the Bayesian procedure is 

the ability to compute the probability of model A relative to B and thus decide if the spatial 

variability of 𝑟!!":! is better parameterized as a function 𝑆𝑆𝑇 or 𝑆𝑆𝑁. Both model A and model B 

share the same number of parameters making the Bayesian model selection process particularly 

transparent and easy to interpret.  

The nitrogen-cycle model of Wang et al. (2019): The formulation of our biogeochemical model 

builds on the nitrogen-cycle model of Ref. S2. This model uses the data-constrained circulation 

model of Ref. S3 coupled to a nitrogen and phosphorus cycling model to predict the global 

distribution of organic nitrogen production, benthic denitrification and water column denitrification. 

The circulation model has a horizontal resolution of 2° × 2° with 24 layers ranging in thickness 

from 36 m near the surface to 633.5 m near the bottom. In total, the model has 𝑛!"# = 191,169 

wet grid boxes. From this model we extract the following variables: 

• 𝑃!"#$: the rate of organic nitrogen production. 

• 𝐷!": the rate of water column fixed N loss due to denitrification and annamox. 

• 𝐷!"#: the rate of benthic fixed N loss due to denitrification and annamox. 

• 1 − 𝑅: the fraction of organic nitrogen production associated with external N inputs, 

including microbial N!fixation, riverine input and atmospheric deposition.   

These variables are then used to drive the carbon and oxygen cycling model as explained below. 

The governing equations for [O!]: The governing equation for the concentration of dissolved 

oxygen in the ocean is given by  
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!
!"
+ 𝐓 [O!] = 𝑃!! −  𝐿!! +  𝐊!! [O!]!"# − [O!] ,                                               (S7) 

Where 𝐓 is the advection-diffusion transport operator defined such that 

𝐓𝑐 ≡ ∇ ∙ 𝒖𝑐 − 𝜿∇𝑐 ,                                               (S8) 

subject to no-flux boundary conditions at the basin boundaries and the sea surface. With this 

definition, 𝒖 is the residual mean circulation and κ  is the eddy-diffusion tensor. 𝐊𝐎𝟐 is the air-sea 

gas-exchange operator and [O!]!!" is the saturation concentration of a surface water parcel in 

equilibrium with the atmosphere. We use the OCMIP-2 air-sea gas exchange formulation	

(http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/). 𝑃!! and 𝐿!! are the biological 

production and loss of oxygen due to photosynthesis and respiration, respectively. If we assume 

that the ocean is in a climatological steady state, the three-dimensional oxygen distribution is 

given by 

O! !"# = 𝐓 +  𝐊𝐎𝟐
!!(𝑃!! −  𝐿!! +  𝐊𝐎𝟐 O! !"#).   (S9) 

The production of photosynthetic O!: We will use the stoichiometric ratios 𝑥, 𝑦, and 𝑧 defined from 

the chemical formula for the respiration of organic matter 

C!(H!O)!(NH!)!H!H!PO! + 𝑥 + !
!
𝑧 O! → 𝑥CO! + 𝑦NH! +  H!PO! + 𝑤 + !

!
𝑧 H!O,     (S10) 

and the oxidation of ammonia to nitrate 

𝑦NH! + 2𝑦O!  → 𝑦HNO! + 𝑦H!O.      (S11) 

In other words, 𝑥 and 𝑦 are, respectively, the relative number of moles carbon dioxide and 

ammonia produced by the respiration of organic matter, and 𝑧 represents an anomaly in the 

number of H atoms that get oxidized into H!O per mole of organic C.  

Using these ratios, the rate of photosynthetic O! production can be expressed in terms of 

the rate of organic-nitrogen production (𝑃!"#$) and the fraction 1 − 𝑅  of this production that is 
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associated with external inputs of N, both of which we already have from the N-cycle model of 

Ref. S2,  

𝑃!! =  
𝑥 +  14 𝑧 + 2𝑦

𝑥
∙
𝑥
𝑦
∙ 𝑃!"#$ −  

5
4
1 − 𝑅 ∙ 𝑃!"#$ 

=  
!! !!!

!
∙ !

!
∙ 𝑃!"#$ + 2𝑃!"#$ −  

!
!
1 − 𝑅 ∙ 𝑃!"#$             (S12) 

=  𝑟!!":! ∙ 𝑟!:! ∙ 𝑃!"#$ + 2(1 − 𝑅 + 𝑅)𝑃!"#$ −  
5
4
1 − 𝑅 ∙ 𝑃!"#$ 

=  𝑃!"# + 2𝑅𝑃!"#$ −  
3
4
1 − 𝑅 ∙ 𝑃!"#$ 

where 

𝑟!!":!  ≡ 1 +  
1
4
𝑧
𝑥
, 

   𝑟!:!  ≡
!
!
 ,  and           (S13) 

𝑃!"# ≡ 𝑟!!":! 𝑟!:! ∙ 𝑃!"#$. 

𝑃!"#  is the production rate of chemical oxygen demand associated with the oxidative state of the 

organic  C alone. The chemical oxygen demand associated with the oxidative state of the organic 

N is tracked separately. In other words, 𝑃!"# is almost equivalent to the rate of organic carbon 

production except that COD unlike C!"#, keeps track of the oxidative state of the carbon in such a 

way that by definition the respiration of one mole of COD consumes exactly one mole of O!.  

The loss of O! due to respiration: To compute the loss of O! associated with the respiration of 

organic matter we consider the following two reactions 

DOD +  O!  → CO!,           (S14) 

DOD +  2 O!  → NO!!        
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where the DOD is the dissolved phase of the chemical oxygen demand tracer and DON is the 

dissolved phase of the organic nitrogen tracer. Where the oxygen concentration is low either in 

the water column or in benthic sediments, NO!! rather than O! is the dominant oxidant for the 

consumption of DOD:  

DOD +  !
!
NO!!  → CO!.             (S15) 

The rate of oxygen utilization associated with the loss of DOD must therefore decrease by 5/4 

times the rate of water-column and benthic denitrification. Thus, the net rate of oxygen utilization 

associated with the respiration of organic matter is given by  

𝐿!! =  𝜅!" DOD + 2𝜅!" DON −  !
!
𝐷!" + 𝐷!"# ,       (S16) 

Where 𝐷!" and 𝐷!"# are the water-column and benthic denitrification rates, which are available 

from the N-cycle model of Ref. S2.  

The governing equation for the oxygen demand tracers: We treat the concentrations of DOC, 

DON, and DOD as independent dissolved tracers and the concentrations of POC, PON, and POD 

as independent sinking-particulate-matter tracers. This simplification is required in order to avoid 

having to carry a full spectrum of organic compounds that are presently uncharacterized with 

unknown production rates and with unknown carbon and nitrogen oxidative states.  

 For the inverse model, we define the stoichiometric ratio, 𝑟!!":!, for the exported organic 

matter based on the location of production rather than on the location of respiration. This 

distinction is important because, we do not have to assume that DOC, DON, and DOD are 

produced or respired at the same rate everywhere in the ocean. We thus track the oxidative 

demand for carbon and nitrogen separately. The model can therefore allow the C:N and −O!: C 

stoichiometric ratios to vary independently as a function of surface location where the organic 

matter is produced.  
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The movement of the CODtracers: The production of COD is routed into two pools: DOD and 

POD. DOD is a dissolved phase that is transported by fluid motion and is respired at a constant 

rate 𝜅!" . POD is a sinking particulate phase that is transported downwards by gravitational 

settling and solubilized into DOD at a constant rate 𝜅!. Their governing equations are  

!
!"
+ 𝐓 DOD = 𝜎𝑃!"# +  𝜅! POD −  𝜅!" DOD ,                                             (S17) 

!
!"
+ 𝐅!"! POD = (1 − 𝜎)𝑃!"# −  𝜅! POD ,                              

where 𝐅!"#  is the flux-divergence operator for sinking particulate organic matter, i.e. 

             𝐅!"#c =
!
!"

𝑤!
!"
!"

.                                                         (S18) 

The sinking speed 𝑤! is chosen to produce a power-law flux-attenuation profile with exponent bo. 

A fraction 𝜎 of the COD production is directly allocated to the dissolved phase with the remaining 

fraction, 1 − 𝜎, is allocated to the sinking particulate phase.  

 As previously noted in equation S13 the production of COD is taken to be proportional to 

the rate of organic carbon production with a proportionality constant modeled as either a linear 

function of sea surface temperature (𝑆𝑆𝑇) or of the surface nitrate concentration (𝑆𝑆𝑁), 

𝑟!!":! =  𝑚𝑧+𝑏,       (S19) 

where 𝑧 can be either 𝑧! or 𝑧! as defined in equations S2 and S3 and where 𝑚 and 𝑏 are 

adjustable parameters to be estimated form the data as part of the inversion process. Thus, the 

steady-state COD  distribution is given by the solution to the following linear system of equations  

𝐓 +  𝜅!"𝐈 −𝜅!"𝐈
𝟎 𝐅!"# +  𝜅!𝐈

[DOD]
[POD] = 𝜎𝐈

(1 − 𝜎)𝐈 𝑃!"# ,      (S20) 

with  

𝑃!"# =  𝑟!:! [𝐝𝐢𝐚𝐠 𝑃!"#$ ] 𝑧 𝟏
𝑚
𝑏  .        (S21) 
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The governing equations for organic carbon: The governing equations for organic carbon are 

given by  

!
!"
+ 𝐓 DOC =  𝜎𝑟!:!𝑃!"#$ +  𝜅! POC − 𝜅!" DOC  ,                            (S22) 

!
!"
+ 𝐅!"# POC = (1 − 𝜎)𝑟!:!𝑃!"#$ −  𝜅! POC .                            

The sinking particulate flux divergence operator, 𝑭!"# is constructed to produce a power-law flux 

attenuation profile with exponent 𝑏!. By separating the remineralization depth profiles of carbon 

and oxygen (𝑏!and 𝑏!), we account for the possibility that the oxidative state of exported organic 

matter changes as a function of depth and a depth dependent 𝑟!!":!. The steady-state organic 

carbon distribution is given by the solution to the following linear system of equations 

𝐓 +  𝜅!"𝐈 −𝜅!𝐈
𝟎 𝐅!"# +  𝜅!𝐈

[DOC]
[POC] = 𝑟!:!

𝜎𝐈
(1 − 𝜎)𝐈 𝑃!"#$.      (S23) 

The governing equation for inorganic carbon: The governing equation for inorganic carbon (𝐷𝐼𝐶) 

is given by: 

𝑑
𝑑𝑡
+ 𝐓 DIC = −𝑟!:!𝑃!"#$ −  𝑟!"#:!"#$𝑟!:!𝑃!"#$ +  𝜅!"# PIC +  𝜅!" DOC   

+𝐊!"!([CO!]!"# − [CO!]!"#$),       (S24) 

!
!"
+ 𝐅!"# PIC =  𝑟!"#:!"#$𝑟!:!𝑃!"#$ −  𝜅!"# PIC ,                             

where 𝐊!"! is the air-sea gas exchange operator, [CO!]!"# =  𝛼!𝑝CO!,!"#𝑃/𝑃! is the concentration 

of CO! in surface waters, [CO!]!"# is the surface aqueous CO! concentration, which is computed 

from DIC  using CO2SYS [Ref. S4, S5]. The alkalinity, temperature, salinity, silicic acid, and 

phosphate concentrations needed to evaluate the equilibrium constants are obtained from 

observations interpolated to the model grid. We use the OCMIP-2 air-sea gas exchange 

formulation (http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/). 
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Anthropogenic carbon: Because 𝑝CO!,!"# has been increasing rapidly in response to 

anthropogenic perturbations to the carbon cycle we need to account for the additional carbon in 

the ocean that is not in steady state. We assume that the marine DIC concentration can be 

decomposed into an anthropogenic part, DIC!"#, and a natural part that is assumed to be in a 

climatological steady state. We compute the natural DIC concentration by solving the following 

steady state system using Newton’s method 

𝐓[DIC]!"# =  −𝑟!:!𝑃!"#$ −  𝑟!"#:!"#$ ± 𝑟!:!𝑃!!"# +  𝜅!"#[PIC]!"# +  𝜅!! DOC  

+𝐊!"! ([CO!]!"# − [CO!]!"#$),     (S25) 

𝐅!"#[PIC]!"# =  𝑟!"#:!"#$𝑟!:!𝑃!!"# −  𝜅!"#[PIC]!"#,                            

in which [CO!]!"# corresponds to the saturation concentration assuming a preindustrial (𝑡 =

 1765) atmospheric CO2 partial pressure of 278 ppm. We then compute DIC!"# from  

DIC!"#  ≡ DIC 2013 −DIC!"#,          (S26) 

with DIC(2013) obtained by solving the transient problem from 𝑡 =  1765 to 𝑡 =  2013 subject to 

the initial condition DIC(1765)  =  DIC!"#and PIC(1765)  =  PIC!"# and with [CO!]!"#(𝑡) prescribed 

using the observed atmospheric 𝑝CO! history. We then add back a fixed DIC!"# to the DIC!"#, 

which is an implicit function of the model parameters, to get the total DIC concentration. The 

difference between the total DIC and the observed DIC is then used to construct the likelihood 

function. 

 

The data: The [O!] and [DIC] measurements used to constrain the model are form the GLODAPv2 

database (Ref. S6) and the [DOC] measurements are from Ref. S7. After bin-averaging the 

hydrographic bottle measurements to the model grid we have 𝑛!" =  84,207, 𝑛!"# =  66,964, and 

𝑛!"# =  13,148 independent data points. We combine these data into an 𝑛!"#×1 vector  

d!"# =  
[O!]!"#
[DIC]!"#
[DOC]!"#

          (S27) 
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with n!"# =  𝑛!" +  𝑛!"# +  𝑛!"#. 

The probability model: To estimate 𝑟!!":! we assign a multivariate normal probability model to 

𝐝!"#. We take the mean of this probability model to be given by the solution of our forward 

biogeochemical model. The probability of 𝐝!"# is thus conditioned on m, b, and the 4 additional 

nuisance parameters, 𝑏!, 𝑏!, 𝜅!", and 𝜎, through their influence on the solution of the 

biogeochemical model. Denoting the vector of model parameters by 𝛽, the probability of 𝐝!"# 

given  (a.k.a. the likelihood function) is given by 

prob 𝐝!"# 𝛽,𝛼 = ( !
!!
)
!!"#
! det (𝐖)

!
! exp −𝛼ℒ 𝛽 ,                    (S28) 

where 

ℒ 𝛽  ≡  !
!
𝐝!"# − 𝐝 𝛽

!
𝐖 𝐝!"# − 𝐝 𝛽 .       (S29) 

with 

𝜇 𝛽 = 𝐇
[O!]
[DIC]
[DOC]

,            (S30) 

is the solution to the forward biogeochemical model evaluated at the grid-boxes with 

observations. The block-diagonal matrix,  

𝐇 =  
𝐇′𝐎𝟐 𝟎 𝟎
𝟎 𝐇′𝐃𝐈𝐂 𝟎
𝟎 𝟎 𝐇′𝐃𝐎𝐂

,         (S31) 

selects those grid-boxes for which observations are available in the database, i.e. 𝐇!", 𝐇!"#, and 

𝐇!"# are 𝑛!" ×  𝑛!"#,  𝑛!"# ×  𝑛!"#, and 𝑛!"# ×  𝑛!"# matrices that extract only the grid-boxes 

that have at least one observation of [O!], [DIC], and [DOC] respectively. The primes are used to 

denote the matrix transpose operation. We assume that the bin-averaged observations are 

independent so that the precision matrix in the multivariate normal model is given by a diagonal 

matrix,  

α𝐖 =  α𝐇 =  

𝐕
σ!"!

𝟎 𝟎

𝟎 𝐕
𝜎!"#!

𝟎

𝟎 𝟎 𝐕
𝜎!"#!

 𝐇′.        (S32) 
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The parameter  that scale the precision matrix is an unknown parameter that needs to be 

estimated as part of the Bayesian inversion. The parameters 𝜎!"! , 𝜎!"#! , and 𝜎!"#!   are the spatial 

variances of the tracer observations computed as follows 

          𝜎!"! =  ([!!]!"#! !!")
! 𝐇!"𝐕 𝐇!!"([!!]!"#! !!" )
𝟏!𝐇!"𝐕𝐇!!"𝟏

,  

𝜎!"#! =  ( DIC]obs− 𝜇DIC
′𝐇DIC𝐕 𝐇′DIC ([DIC]obs− 𝜇DIC)

1′𝐇!"# 𝐕𝐇′DIC𝟏
,        (S33) 

𝜎!"#! =  ([!"#]!"#! !!"#)!𝐇!"#𝐕𝐇
!
!"#([!"#]!"#! !!"#)

𝟏!𝐇!"#𝐕𝐇!!"#𝟏
,  

with 

𝜇!! =  
𝟏!𝐇!!𝐕𝐇

!
!"[!!]!"#

𝟏!𝐇!"𝐕𝐇!!"𝟏
,  

𝜇!"# =  
𝟏!𝐇!"#𝐕𝐇!!![!"#]!"#

𝟏!𝐇!"#𝐕𝐇!!"#𝟏
,        (S34) 

𝜇!"# =  
𝟏!𝐇!"#𝐕𝐇!!"#[!"#]!"#

𝟏!𝐇!"#𝐕𝐇!!"#𝟏
.  

 

In the above expressions, 𝐕 is the diagonal matrix formed from a vector whose elements are the 

fraction of the total ocean volume in each of the circulation model’s grid-boxes, the bold 𝟏’s are 

appropriately-sized column vectors of ones.  

 

2. Parameter estimation: 

As formulated, the model predicts the three-dimensional distributions of DIC, DOC, and [O!] using 

6 adjustable parameters 𝑚, 𝑏, σ, κdC, 𝑏!, and 𝑏!. We fix the C:N ratio to 𝑟!:! =  106/16.  

 To estimate the adjustable parameters we assign a flat prior probability to 

𝛽 = 𝑚 𝑏 log 𝜎 log 𝜅!" log 𝑏! log 𝑏! !.        (S35) 

and then use Laplace’s method to obtain a normal approximation to the posterior, i.e. 

prob β, α 𝒅!"# ≈ | det Σ |!! ! exp − !
!
𝛽 − 𝛽

!
Σ!! 𝛽 − 𝛽 ,      (S36) 

where the posterior parameter covariance matrix is given by 

Σ = [𝛼∇!∇!ℒ 𝛽 |!!!]!!,              (S37) 

with 
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𝛽 =  
argmin
𝛽  ℒ 𝛽 .          (S38) 

The parameter 𝛼 that scales the posterior parameter precision matrix is chosen to be the value 

that maximizes the posterior probability distribution, i.e.  

𝛼 =  !!"#
!ℒ(!)

.         (S39) 

The posterior parameter estimates: The optimal model parameters along with their posterior error 

bars for the model in which 𝑟!!":! is parameterized in terms of SST are  

𝛽! =  

𝑚
𝑏

log 𝜅!"
log 𝜎
log 𝑏!
log 𝑏!

=  

1.6184 ± 0.0339  × 10!!(°C)!!
0.7312 ± 0.0048 
−17.3403 ± 0.0033
−1.5178 ± 0.0200
0.1267 ± 0.0033
0.0231 ± 0.0018

.       (S40) 

The positive slope, m implies that the oxygen demand for the respiration of organic matter 

produced in warmer waters is higher than the oxygen demand for the respiration of organic 

matter produced in colder waters. 

 For the model in which 𝑟!!":! is parameterized in terms of 𝑆𝑆𝑁 the optimal parameter 

values are 

𝛽! =  

𝑚
𝑏

log 𝜅!"
log 𝜎
log 𝑏!
log 𝑏!

=  

−6.949 ± 0.477  × 10!!(mmol/m!)!!
1.0114 ± 0.0043 
−17.3465 ± 0.0033
−1.8336 ± 0.0315
0.1675 ± 0.0030
0.0515 ± 0.0019

.      (S41) 

 

In this case we find a negative slope, 𝑚, implying that oxygen demand for the respiration of 

organic matter produced in low-nutrient environments is higher than when produced in high-

nutrient environment. Given the negative correlation between 𝑆𝑆𝑇 and surface nutrient 

concentrations, the signs of the slope are consistent.  

 The most probably parameter values (not log transformed) and their 95% probability 

intervals are given in Tables S6. For both models, the exponent for the POC flux attenuation 

profile is approximately 10% larger than the exponent for POD. This suggests that the amount of 

oxygen needed to respire a mole of organic carbon tends to increase with depth and an overall 
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decrease in organic carbon oxidation state. However, the probability intervals for these exponents 

largely overlap indicating that the hydrographic data combined with our inverse model does not 

provide enough information to robustly identify any depth variation in 𝑟!!":!. 

 The residual misfits for the temperature-dependent and nitrate-dependent 𝑟!!":! models 

differ by less than 1%, with the 𝑆𝑆𝑇 model producing the smaller residual error,  

ℒ!(!!)
ℒ!(!!)

= 0.9930.         (S42) 

The number of observations used to constrain the model is large, 𝑛!"# =  164,319 resulting in a 

significant difference and a larger posterior probability for model A compared to model B. If we 

assign an equal prior probability to model A and B as well as the same flat prior probability 

density for the parameters for both models and use Laplace’s approximation to marginalize out β, 

the posterior odds in favor of model A compared to model B [e.g. Ref. S8], simplifies to  

𝑝𝑟𝑜𝑏 (model A|𝑑!"#)
𝑝𝑟𝑜𝑏 (model B|𝑑!"#)

 ≈  
𝑝𝑟𝑜𝑏 𝑑!"# 𝛽!,𝛼!,model A )
𝑝𝑟𝑜𝑏 𝑑!"# 𝛽! ,𝛼! , model B)

 ×  
det Σ!
det Σ!

 

= ℒ! !!
ℒ! !!

! !!"#!!
!

 ×
!"#[∇!∇!ℒ! ! |!!!!

]

!"#[∇!∇!ℒ! ! |!!!!
]

!! !
 ,           (S43) 

≈  10!"#.  

This astronomically large preference for model A depends crucially on the assumption that all 

𝑛!"# residuals are independent, which is unlikely to be the case. But even if we assume that only 

one out of every 100 data point provides an independent degree of freedom, the odds in favor of 

model A compared to model B would still be greater than 10!: 1.  

 It is useful to compare the correlation matrix for the posterior probability distribution of the 

parameters (Table S7). The magnitude of correlation between 𝑚 and the other parameters is 

generally larger for model A. This makes the temperature-dependent model (model A) a bit more 

fragile in the sense that a change in the value of 𝑚 will necessitate a recalibration of the other 

model parameters to avoid a large degradation model fit quality. The smaller parameter 

correlations in model B implies a model that is somewhat less inter-dependent. However, 

because each model has only 6 adjustable parameters, the penalty against model A in the 
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expression for the posterior odds given in (S43) is less than a factor of 10. This factor is 

insignificant compared to the penalty against model B due to its poorer fit to the observations.  

Globally Integrated oxygen consumption and carbon respiration rates: The volume integrated 

oxygen consumption and carbon respiration rates for the models A and B are given in Table S8. 

Figure S8 plots the carbon production partitioned according to the value of 𝑟!!":! used to 

determine the chemical oxygen demand of the exported organic carbon to the COD tracer for 

each model. The carbon-export weighted mean 𝑟!!":! for model A is 0.9491 and for model B is 

0.9577.   
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Fig. S1. Predicted distribution of the respiration quotient across microalgae species. A. The total 
respiration quotient (𝑟𝛴−𝑂2:𝐶) and B. The respiration quotient (𝑟−𝑂2:𝐶). The predictions are based 
on the biochemical composition of 1562 phytoplankton cultures (Ref. S9).  
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Fig. S2. Comparison of changes to oxygen levels via changes to the respiration quotient or 
climate change. Changes in global marine oxygen levels by a changing respiration quotient (in 
grey) after 300 yrs and 2100 under the climate change scenario RCP8.5 (in black). The climate 
model outputs are from CMIP5. 
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Fig. S3. P18 GO-SHIP Cruise track locations from San Diego, CA (32.72° N, 117.16°W) to 
Antarctica (77.85°S, 166.67°E). Background phosphate concentrations are from the GLODAPv2 
database (Ref. S6).   
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Fig. S4. Observed nitrate (a) and phosphate (b) concentrations across the P18 cruise track. 
Colored background represents each ocean biome region.  
  



 
 

19 
 

 

 
 
Fig. S5. Relationship between temperature and the respiration quotient derived from a CHNOPS 
elemental analysis of marine POM from the Western North Pacific Ocean (Ref. S10). The line 
represents a linear fitted model of temperature and 𝑟−𝑂2:𝐶 (𝑟−𝑂2:𝐶 = 0.19 + (0.036/℃)*SST; p-value 
= 0.05). 
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Fig. S6. Optimization and evaluation of a method for quantifying the oxygen demand of marine 
POM. A: PCOD standard curve using a Hach-certified phthalate standard curve. B: Recovery of 
the PCOD after experimentally adding organic material to a seawater sample.  C: Relationship 
between sample volume and measured PCOD. D: Testing Two Organic Compounds (Methionine 
(Met), Glutamic acid (Glu)), averaged on their expected values using phthalate standard. 
Coefficient of variance in E: [POC], F: [PCOD], G: rC:P, and H: The respiration quotient.  
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Fig. S7. Comparison of PCOD concentrations in different size fractions. A. Particulate organic 
carbon in samples <30 µm and with no size-fractionation. B: Particulate chemical oxygen demand 
in samples <30 µm and with no size-fractionation. C: The respiration quotient for <30 µm and 
total samples as well as for two regions with significant POM concentration differences (R1 and 
R2). 
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Fig. S8. Carbon production partitioned according to the 𝑟!!!:!  value used to determine the 
chemical oxygen demand of the exported organic carbon (Model A: 𝑟!!!:! ~ SST, Model B: 𝑟!!!:! 
~ [Nitrate]) . 
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Table S1. 
Model change in oxygen levels. 
ESM Model Ocean 

module 
Depth 
layers 

O2 
(Pg) 

Resolution Reference 

CESM1-BGC BEC 60 -289 1.125˚/0.27˚-0.53˚ S11 
GFDL-ESM2G TOPAZ2 63 -281 0.3–1˚ S12 
GFDL-ESM2M TOPAZ2 50 -312 0.3–1˚ S12 
HadGEM2-ES Diat-HadOCC 40 -303 0.3–1˚ S13 
IPSL-CM5A-
LR 

PISCES 31 -322 0.5–2˚ S14 

IPSL-CM5A-
MR 

PISCES 31 -254 0.5–2˚ S14 

MPI-ESM-LR HAMOCC5.2 40 -249 1.5˚ S15 
MPI-ESM-MR HAMOCC5.2 40 -229 0.4˚ S15 
NorESM1-ME HAMOCC5.1 53 -206 1.125˚ S16 
CESM1-BGC  
𝚫𝐫!𝐎𝟐:𝐂= -0.2 

BEC 60 382 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝐫!𝐎𝟐:𝐂= -0.1 

BEC 60 186 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝐫!𝐎𝟐:𝐂= 0 

BEC 60 0 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝐫!𝐎𝟐:𝐂= 0.1 

BEC 60 -177 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝐫!𝐎𝟐:𝐂= 0.2 

BEC 60 -308 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝐫!𝐎𝟐:𝐂= 0.3 

BEC 60 -493 1.125˚/0.27˚-0.53˚ This study 
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Table S2. 
Regional environmental characteristics. Observed environmental conditions in each defined 
biome [mean (minimum – maximum)]. 
Region Stations Temperature Nutricline N* 

1: CAMR 1 - 13 28.4 (26.5 -29.5) 54.3 (1.9 - 92.4) -1.66 (-3.5 – 0.50) 
2: PNEC 14 - 26 28.5 (27.8 - 29.6) 40.9 (32.1 - 52.2) 0.44 (-0.30 – 1.14) 
3: TPEQ 27 - 37 26.4 (25.9 - 27.7) 54.0 (32.1 - 67.2) 0.18 (-0.80 – 0.82) 
4: PEQD 38 - 82 24.0 (21.6 - 25.7) 2.7 (1.9 - 32.1) -1.16 (-3.39 – 0.27) 
5: SPSG 83 - 121 23.4 (20.3 - 25.3) 164.3 (1.9 - 223.1) -0.93 (-.3.50 – 0.82) 
6: SSTC 122 - 144 14.8 (11.5 - 19.8) 1.9 -1.33 (-3.02 – -0.16) 
7: SANT 145 - 170 8.6 (6.2 - 10.9) 1.9 0.30 (-1.15 – 1.41) 
8: ANTA 171 - 187 3.6 (2.0 - 5.9) 1.9 2.00 (0.81 – 4.13) 
9: APLR 188 - 198 0.7 (0 - 1.7) 1.9 1.91 (1.50 – 3.02) 
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Table S3. 
The respiration quotient across regions. 
Region Average Range Standard Error n 
1: CAMR 1.26 1.10 – 1.48 0.036 13 
2: PNEC 1.19 1.08 – 1.35 0.022 13 
3: TPEQ 1.20 1.10 – 1.38 0.029 11 
4: PEQD 1.15 0.98 - 1.43 0.011 45 
5: SPSG 1.18 0.73 – 1.54 0.026 39 
6: SSTC 1.14 0.75 – 1.54 0.027 23 
7: SANT 1.13 0.99 – 1.33 0.017 26 
8: ANTA 1.05 0.89 – 1.32 0.028 17 
9: APLR 0.99 0.79 – 1.18 0.042 11 
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Table S4. 
Statistical r-O2:C models. SE represents the coefficient of variation.  

 Intercept SE Temperature SE Nutricline SE Phosphate SE N* SE 
r-O2:C(T, ZNO3, P, N*) 1.10 8.3e-2 3.8e-3 2.6e-3 1.1e-4 1.7e-4 -3.4e-1 5.1e-2 1.8e-3 7.5e-3 
r-O2:C(T, ZNO3, P) 1.10 5.9e-2 3.7e-3* 1.8e-4 1.1e-4 1.6e-4 -3.2e-2 3.6e-2   
r-O2:C(T, ZNO3, N*) 1.04 2.2e-2 5.3e-3* 1.3e-3 1.7e-4 1.4e-4   2.4e-3 7.5e-3 
r-O2:C(T, P, N*) 1.13 7.1e-2 3.2e-3 2.4e-3   -5.1e-2 4.2e-2 1.8e-3 7.5e-3 
r-O2:C(ZNO3, P, N*) 1.22 2.5e-2   2.6e-5 1.6e-4 -9.9e-2* 2.5e-2 -2.5e-3 7.0e-3 
r-O2:C(T, ZNO3) 1.05 1.9e-2 5.0e-3* 1.0e-3 1.8e-4 1.4e-4     
r-O2:C(T, P) 1.12 5.3e-2 3.4e-3* 1.7e-3   -4.5e-2 3.2e-2   
r-O2:C(T, N*) 1.04 2.2e-2 5.9e-3* 1.1e-3     3.2e-3 7.5e-3 
r-O2:C(ZNO3, P) 1.21 2.1e-2   5.1e-5 1.6e-4 -9.4e-2* 2.1e-2   
r-O2:C(ZNO3, N*) 1.13 4.1e-2   4.0e-4* 1.4e-4   -1.6e-2* 6.4e-3 
r-O2:C(P, N*) 1.22 1.8e-2     -1.0e-1* 2.0e-1 -2.3e-3 6.9e-3 
r-O2:C(T) 1.05 1.9e-2 5.5e-3* 9.3e-4       
r-O2:C(ZNO3) 1.13 1.0e-2   4.7e-4* 1.3e-4     
r-O2:C(P) 1.22 1.5e-2     -9.8e-1* 1.7e-2   
r-O2:C(N*) 1.14 9.2e-3       -1.9e-2* 6.4e-3 

 
*p<0.05 
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Table S5. 
Values of the quantities used to standardize the sea surface temperature (SST) and the sea 
surface nitrate concentration (SSN). The means and standard-deviations use an area weighting 
based on the grid-boxes of our model.  
 SST (°C) SSN (mmol/m3) 
µ  18.1 5.37 
std 9.78 15.2 
MAX - MIN 31.5 48.6 
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Table S6. 
Summary of the marginalized posterior distributions for the model with r!!":! = 𝑚𝑆𝑆𝑇 + 𝑏 and 
with r!!":! = 𝑚𝑆𝑆𝑁 + 𝑏. The most probable value of each parameter is given along with their 
approximate 95% probability interval.  

 𝐫!𝐎𝟐:𝐂 = 𝒎𝑺𝑺𝑻 + 𝒃 

Parameter Most probable value 95% probability interval 
m 0.0162 (°C)-1 (0.0155, 0.0168) (°C)-1 
b 0.7310 (0.7213, 0.7406) 
𝜿𝒅𝑪!𝟏  393.0 days (391.6, 394.2) days  
𝝈  0.2192 (0.2149, 0.2237) 
𝒃𝑪  1.1360 (1.1312, 1.1387) 
𝒃𝑶  1.0234 (1.0215, 1.1370) 

 𝐫!𝐎𝟐:𝐂 = 𝒎𝑺𝑺𝑵 + 𝒃 

Parameter Most probable value 95% probability interval 
m -0.006949 (mmol/m3)-1 (-0.007903, -0.005995) (mmol/m3)-1 
b 1.0114 (1.0028, 1.0199) 
𝜿𝒅𝑪!𝟏  395.3 days (394.1, 396.6) days  
𝝈  0.1397 (0.1359, 0.14419) 
𝒃𝑪  1.1979 (1.19427, 1.2016) 
𝒃𝑶  1.0529 (1.0509, 1.2002) 
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Table S7. 
Correlation comparison of the posterior probability distribution of the parameters for modal A ( 
r!!":! = 𝑚𝑆𝑆𝑇 + 𝑏) and model B (r!!":! = 𝑚𝑆𝑆𝑁 + 𝑏).  
Model A:       

 𝑚 𝑏 log 𝜅!" log 𝜎 log 𝑏! log 𝑏! 

𝒎 1 0.4135 0.1315 0.5192 −0.4952 −0.4200 

𝒃 0.4135 1 0.4243 0.8592 −0.8304 0.1385 

𝐥𝐨𝐠𝜿𝒅𝑪 0.1315 0.4243 1 0.3943 −0.4241 −0.3373 

𝐥𝐨𝐠𝝈 0.5192 0.8592 0.3943 1 −0.9612 0.3373 

𝐥𝐨𝐠𝒃𝑪 −0.4952 −0.8304 −0.4241 −0.9612 1 0.3373 

𝐥𝐨𝐠𝒃𝑶 −0.4200 0.1385 −0.0521 −0.3558 0.3373 1 

Model B:       

 𝒎 𝒃 𝐥𝐨𝐠𝜿𝒅𝑪 𝐥𝐨𝐠𝝈 𝐥𝐨𝐠𝒃𝑪 𝐥𝐨𝐠𝒃𝑶 

𝒎 1 −0.1641 −0.0444 −0.1799 −0.1701 0.4858 

𝒃 −0.1641 1 0.4358 0.8352 −0.8026 0.2053 

𝐥𝐨𝐠𝜿𝒅𝑪 −0.0444 0.4358 1 0.4099 −0.4385 −0.0421 

𝐥𝐨𝐠𝝈 −0.1799 0.8352 0.4099 1 −0.9545 −0.2789 

𝐥𝐨𝐠𝒃𝑪 0.1701 −0.8026 −0.4385 −0.9545 1 0.2631 

𝐥𝐨𝐠𝒃𝑶 0.4858 0.2053 −0.0421 −0.2789 0.2631 1 
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Table S8. 
Globally integrated budgets of carbon respiration rate, oxygen consumption rate and nitrate 
consumption rate.  
Model A 
Organic carbon respiration rate:  1.078 x 1015 mole/year 
Oxygen consumption rate 
  due to the oxidization of DOC: 
  due to the oxidation of DON:  
Nitrate consumption rate:   

 
1.084 x 1015 mole/year 
3.0928 x 1014 mole/year 
1.350402 x 1013 mole/year 

  
Model B 
Organic carbon respiration rate:  1.100 x 1015 mole/year 
Oxygen consumption rate 
  due to the oxidization of DOC: 
  due to the oxidation of DON:  
Nitrate consumption rate:   

 
1.084 x 1015 mole/year 
3.0928 x 1014 mole/year 
1.350402 x 1013 mole/year 
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