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Abstract:

Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and
nutrients as well as the survival of many animal species. One of the main uncertainties in
predicting changes to ocean oxygen levels is the regulation of the biological respiration demand
associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen
to organic carbon consumed during respiration (i.e., the respiration quotient, 7_p,.c) 1s
consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system
model, we first show that a 0.1 increase in the respiration quotient value leads to a 2.3% decline
in global oxygen, a large expansion of low oxygen zones, additional denitrification of 38 Tg
N/yr, and overall loss of fixed nitrogen and carbon production in the ocean. We then present
direct chemical measurements of 7_,.. using a Pacific Ocean meridional transect crossing all
major surface biome types. The observed 7_g,.c has a positive correlation with temperature, and
regional mean values differ significantly from Redfield proportions. Finally, an independent
global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations
support a positive temperature dependence of 7_,,.. for exported organic matter. We provide
evidence against the common assumption of a static biological link between the respiration of
organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that
a changing respiration quotient will impact multiple biogeochemical cycles, and that future

warming can lead to more intense deoxygenation than previously anticipated.
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Significance Statement:

The loss of ocean oxygen caused by climate warming is a serious environmental issue and can
lead to major declines in animal habitats. However, current Earth System Models struggle in
explaining observed trends in global ocean oxygen. Using a model, we demonstrate that marine
oxygen concentrations depend sensitively on a rarely considered quantity known as the
respiration quotient to prescribe the oxygen consumed per mole of organic carbon respired.
Using a combination of direct chemical measurements across major biomes in the eastern Pacific
Ocean plus changes in the global distribution of oxygen and carbon, we show how the respiration
quotient increases systematically with temperature. The findings imply that we can experience

more intense declines in ocean oxygen with warming.
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Introduction:

The oceans are currently experiencing deoxygenation and an expansion of oxygen
minimum zones (1) with potentially devastating impacts on marine life (2). Warming induced
changes in oxygen solubility as well as circulation-driven ventilation rates are considered the
primary drivers of deoxygenation (3). However, current models are unable to reproduce observed
shifts in ocean oxygen concentrations (4).

One of the main uncertainties in predicting ocean oxygen levels is the regulation of the
biological respiration demand (5). The respiration quotient describes the molar ratio of oxygen to
organic carbon consumed during respiration and is thus controlled by the oxidation state of

organic material (signified by z) (6):

Cx(H;0)4y (NH3), H,H;PO, + (x + $2) 0, - XCO, + yNH; + H3PO, + (w + 5z) H,0 (1)

(x+ %z)

T-o2zc = — > (2)

with an additional oxygen demand due to nitrification:

y NH; + 2y O, - yHNO; + yH,O0, 3)
yielding the total respiration quotient (75_o,.c) describing the full oxidation of particulate
organic matter:

1
2742
e one = ) (4)

X
The respiration quotient is commonly thought to be static. Alfred Redfield implicitly
assumed that all planktonic organic carbon consisted of carbohydrates (setting z to zero) and thus

T_02.c = 1.0 and r5_y5.c = 1.3 (7). Carbohydrates represent a somewhat oxidized form of

organic carbon and other macromolecules (especially lipids) are further reduced with higher
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T_o2.c- Nevertheless, theoretical estimations of phytoplankton biomass chemistry independently
estimated the respiration quotient to be ~1.1 with limited biological variation (8, 9). Finally, a
recent analysis using satellite-derived macromolecular composition of phytoplankton and
gridded nutrient data was unable to detect any systematic geospatial variation (10). Based on
these considerations, ocean biogeochemical models and theories assume a constant respiration
quotient although they disagree on the exact value (6).

There is also evidence suggesting substantial variation in the respiration quotient. First,
the macromolecular composition of plankton differs across lineages (11) and physiological states
(12) leading to a large predicted biological variation in the respiration quotient (SI Appendix,
Fig. S1). Second, a limited set of full elemental analyses of particulate organic matter provides
support for variation in the carbon oxidation state (13, 14). Third, end-member mixing models of
oxygen and DIC concentrations along isopycnal surfaces suggest large variance in
T_p2.c between ocean basins (15). However, this method can have large biases (16). Fourth,
global inverse model studies find large-scale gradients in r_p,.p and 7¢.p for the regeneration of
organic matter (17, 18). Simply dividing these two ratios suggests that 75_,. could range
between 0.7 to 2.1. Such independent studies challenge the notion of a static link between the
oxygen and carbon cycles, but the drivers, magnitude, and regional differences of the respiration
quotient are unknown.

Here, we report the outcome from a set of prognostic ocean biogeochemical model
simulations, direct chemical measurements to estimate the respiration quotient from diverse
biomes, and a global inverse model analysis to address the following research questions: (i) what

are the global biogeochemical implications of a changing r_g,.¢, (i) what is the regional average
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and variation in 7_g,.c, and (iii) does the regional variation in r_,,.. systematically relate to
specific environmental conditions?
Results:

A change in the respiration quotient can have widespread impacts on ocean oxygen,
nitrogen, and carbon cycle processes. We conducted sensitivity simulations with a prognostic
global ocean biogeochemical model (19). The CESM model allowed for variation and dynamical
feedbacks between the carbon, nitrogen, oxygen, and phosphorus cycles and included the
regulation of primary production, carbon export, and an oxygen dependent water column and
sediment denitrification. We specially varied r_,.. between 0.7 and 1.3 to test for potential
biogeochemical impacts of a changing respiration quotient. After a 300 yr spin-up period using
unique respiration quotients, we observed nearly linear relationships between 7_,,.. and ocean
oxygen content, denitrification, and carbon productivity (Fig. 1). The model sensitivity analysis
showed that increasing the respiration quotient by 0.1 will results in an average loss of 0.15%10'®
g oxygen (2.3%) and a major expansion of oxygen minimum zones (OMZ, (< 25 umol/kg O2)
(Fig. 1A-C). The annual rate of denitrification and overall N balance in the ocean were very
sensitive to the respiration quotient (Figure 1D-F). Thus, increasing the respiration quotient by
0.1 leads to elevated denitrification of 38 Tg N (45.2%). Denitrification ranged from 3 to 277 Tg
N/yr across our simulations but nearly shut down at r_,.. = 0.7 or rose to very high levels at
T_o2:c = 1.3. Indirectly, through the loss of fixed N, an increase in r_gp,.c of 0.1 lowered net
primary productivity and export production slightly by an average 0.86 (1.59%) and 0.13
(1.56%) Pg Cl/yr, respectively (Fig 1 G-H). These carbon cycle feedbacks were particularly
pronounced on the edge of existing the OMZs. Thus, the respiration quotient is an important

regulator of marine biogeochemical cycles.
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The changes to ocean biogeochemical cycles from a varying respiration quotient are
comparable in magnitude to business-as-usual climate change impacts by year 2100 (SI
Appendix, Fig. S2 and Table S1). Climate simulations performed under scenario RCP8.5 showed
a decline in the total dissolved oxygen content of the ocean between 3.1% and 4.7% by year
2100. We see equivalent changes in CESM simulations a change in r_g,.. of ~0.2 (Fig. 1).
Therefore, a shift in the respiration quotients can significantly impact ocean oxygen levels and
biogeochemical cycles more broadly.

To directly quantify the respiration quotient, we combined field measurements of
particulate organic carbon (POC) and the required oxygen demand for respiration across a
meridional transect in the Eastern Pacific Ocean. POC was estimated by combustion and the
release of CO:2 using an elemental analyzer. To quantify the oxygen required for complete
respiration of POC, we modified and calibrated a method commonly used for measuring the
particulate chemical oxygen demand (PCOD) in wastewater (20). We then estimated the
respiration quotient (1_g,.c) by taking the ratio of PCOD and POC across 198 stations along the
Pacific Ocean line P18 (SI Appendix, Table S2). Sea-surface temperature steadily decreased
from 29.5°C to approximately 0°C (Fig. 2A). A deep nutricline was detected in multiple regions
marking the location of subtropical gyre conditions (Fig. 2B). Nitrate was mostly drawn down to
detection limit in several regions, whereas residual phosphate was present throughout the Eastern
Pacific Ocean (SI Appendix, Fig. S4). As a result, N* was low in most of the tropical and
subtropical regions but rose with the high nutrient supply in the Southern Ocean (Fig. 2C). As
such, our samples covered a broad range of environmental conditions across the eastern Pacific

Ocean.
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We observed distinct but highly correlated POM concentration levels across the regions.
[POC] and [PCOD] were tightly correlated (7°pearson = 0.93, p < 0.0001) (Fig. 2D, E) and showed
parallel regional shifts. Thus, our optimized PCOD assay accurately reflects the concentration of
marine particulate organic matter. [POC] and [PCOD] were both low in the gyre regions
(1:CAMR, 2:PNEC, 3:TPEC, and 5:SPSQ), slightly higher in equatorial Pacific Ocean waters
(4:PEQD), and very high in the Southern Ocean regions (6:SST — 9:APLR) (Fig. 2D, E).
Changes in POM concentrations followed the nine regions that arose from the combination of
environmental conditions. 7_g,.c averaged 1.153:5% (minimum and maximum value) (Fig. 2F, SI
Appendix, Table S3) but differed significantly between regions (pamanvova < 6*107) (Fig. 3). The
highest and lowest regional averages were found near the warm edge of the North Pacific
Subtropical Gyre and the ice edge in the Southern Ocean, respectively. The equatorial regions
were also slightly lower compared to the two gyres. Many regions showed limited overlap with
the respiration quotient defined by Redfield and Anderson but instead largely grouped along a
latitudinal gradient (Fig. 3). Thus, the observed respiration quotient showed regional shifts
leading to a common divergence from past predicted values.

We observed a significant correspondence between ocean environmental conditions and
the respiration quotient. We tested all linear combinations of environmental factors and 7_g,.¢
(SI Appendix, Table S4). A significant positive relationship between temperature and r_g,.c
suggested an increase in 1_g,.c of ~ 0.2 between polar and tropical regions (Fig. 4A). We saw
indications of an additional regulation of 7_,,.. by nutrient availability (SI Appendix, Table S4).
A deeper nutricline led to a slightly elevated quotient in comparison to waters with the same
temperature but higher nutrients (e.g., the equatorial region). A positive relationship between

temperature and the respiration quotient was also observed for a small set of previously analyzed



170

175

180

185

samples from the Western North Pacific Ocean (SI Appendix, Fig. S5). Temperature emerged as
the best predictor, but additional factors may exert a secondary control on the respiration
quotient.

We tested if the observed temperature dependence of 7_,.. could be detected via the
imprint on the global three-dimensional distribution of oxygen and dissolved inorganic carbon in
the ocean. To achieve this, we constructed an inverse biogeochemical model constrained by the
GLODAP.2016v2 and WOA2013 databases of hydrographic measurements of nutrients, carbon,
and oxygen concentrations (21, 22). We relied on previous inverse-modeling efforts for the
carbon, nitrogen, and phosphorus cycles (18, 19, 23) but with an added oxygen cycling model.
The resulting biogeochemical model tracks the dissolved oxygen concentration as well as the
oxidation and reduction of both nitrogen and carbon. Based on the direct chemical
measurements, we introduced a linear temperature dependence of the respiration quotient but

with unknown slope and intercept. We then estimated 1_g,.c = 0.9749:383 at 15°C (2 1 std) and a

positive temperature dependence of 0.01629:31€7°C! through a Bayesian inversion procedure

against the global 3-D distribution of nutrients, carbon, and oxygen concentrations (Fig. 4B). The
temperature dependence of 7_g,.. from the inverse model is stronger and lower in colder waters.
However, the chemical measurements and inverse hydrographic estimate both agree on the
positive temperature relationship and the level at higher temperature (Fig. 4). We also evaluated
a nitrate-based model for r_,., but there was stronger support for a temperature dependence
(see supplementary information). We allowed for independent remineralization depth profiles
(Martin’s b) of POC and PCOD. boxygen was slightly smaller than bcarbon suggesting that oxygen
was consumed deeper in the water column compared to the release of DIC. However, the

uncertainty in each parameter led to overlapping values, so it was unclear if the carbon and

9
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oxygen remineralization profiles were truly distinct. The midpoint value of 7_y,.c at 15°C was
also sensitive to the inclusion of separate Martin’s b values for POC and PCOD. A separate
inverse model with a common depth profile for POC and PCOD yielded a mean r_,.. value of
1.12, which is in better agreement with the value measured directly in suspended particles. This
link suggested some poorly constrained model interactions between the mean respiration
quotient and the remineralization depth profiles. However, the positive temperature dependence
of 7_p,.c was retained independently of how we parameterized remineralization depth profiles.
In summary, we have convergent estimates of a regional temperature-related respiration quotient
but uncertainty in the magnitude of change.
Discussion

The observed range for the respiration quotient is slightly outside the bounds of
predictions based on cellular biochemistry (8, 9). However, the C:H:O ratio of POM in the
Western Pacific Ocean corresponds to a respiration quotient ranging between 0.6 and 1.6 (13)
and several studies have detected 40% variation in C:H (24). Platt and Irwin observed a 30%
variation in the caloric content of fresh organic matter (25). As the carbon oxidation state and
caloric content of organic matter are closely tied (24), one should expect a parallel range in the
respiration quotient. Part of POM is detrital matter with molecularly uncharacterized components
(26) that could lead to higher r_,,.. variation than predicted purely from cellular biochemistry
arguments. The observed values are also within the bounds from endmember mixing models (15)
and other POM analyses (13). Thus, our detected range in 7_g,.c is high but falls within past
observation of particulate organic matter.

The observed latitudinal gradient for the respiration quotient must be linked to changes in

the underlying molecular composition of surface POM and plankton. The exact nature of this

10
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relationship remains to be quantified, but we expect it is driven by an increased proportion of
lipids relative to proteins and carbohydrates. The plankton communities are distinct between the
analyzed regions in the eastern Pacific Ocean suggesting that environmentally-driven community
shifts at least partially contribute to the variation in the respiration quotient. The proportion of
biochemical components across major phytoplankton groups follow an allometric relationship
leading to an elevated lipid-to-carbohydrate/protein ratio in small plankton (27). We speculate
that smaller cells have a higher contribution of the lipid-rich membrane to total carbon due to the
elevated surface-to-volume ratio. Thus, the high abundance of small picoplankton in warm
tropical and subtropical regions could therefore lead to a higher lipid fraction and higher
respiration quotient of the organic matter. Another biological mechanism is the accumulation of
lipids following a nitrogen starvation response in many phytoplankton (28), and we observed the
highest respiration quotient in warm regions with a deep nutricline. Thus, we hypothesize that
shifts in plankton biogeography and possibly physiology influence the observed changes in the
respiration quotient.

There are several noteworthy caveats to our conclusions. First, the POM oxidative state
may change during sinking and aging leading to distinct remineralization length scales for DIC
release and oxygen consumptions. From the inverse model, we saw weak evidence for a faster
attenuation of DIC compared to oxygen consumption suggesting a removal of oxidized
compounds in the upper ocean. The confidence intervals for bcarbon and boxygen Were overlapping
but future vertical joint profiles of POC and PCOD could further constrain any depth dependence
of the respiration quotient. Second, we did not measure the respiration quotient of DOM even
though this fraction is an important component of the ocean carbon cycle (29). Currently, no

analytic methods can perform this measurement directly, so it is unclear if 7_g,.. for POM and
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DOM will display the same level and biome patterns. Third, the simulated impact of a changing
respiration quotient was limited to 300 yrs, so additional feedbacks could occur at longer time-
scales. Within the time-scale most relevant to human society, the model analysis clearly
emphasized the linear impact of the respiration quotient on ocean oxygen levels and downstream
biogeochemical cascade. Fourth, our observed variation in the respiration quotient in suspended
POM and inferred from the inverse model show variability that was not detected in a recent
study (10). In this recent study, the respiration quotient was estimated by combining satellite-
predicted macromolecular composition of surface POM and using a simple 1-D model of
hydrographic nutrient and oxygen measurements. This recent work may have lacked the
sensitivity to detect regional shifts in r_,.c, as the lateral transport of nutrients and oxygen tends
to dominate over 1-D vertical transport in the ocean. Thus, our combination of a data-constrained
3-D biogeochemical model (30) and direct POM measurements may be more sensitive for
detecting a temperature dependence of 7_g,... Fifth, there is uncertainty embedded in our
transport operator as well as in the global annual climatological description of hydrography that
can impact the inverse model estimates. Seasonally resolved transport and biogeochemistry as
well as expanded oxygen measurements from Biogeochemical-Argo floats will help further
constrain future estimates of 1_g,.c. Sixth, r_y,.. may be related to additional parameters beyond
temperature. For example, we saw indications of some impact of nutrient availability (although
not as strong as temperature) as well as signs of daily variance possibly reflecting diel cycles in
photosynthesis and cellular carbon accumulation. These sources of additional variance need to be
addressed with expanded regional, vertical, and temporal sampling in future studies. The
uncertainty estimates we have provided from our inverse model analysis are conditioned on the

model structure. Exploring more complex relationships between 7_g,.. and a broader suite of
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drivers in the lab, in situ, and by the inverse model should improve our understanding of how the
respiration quotient is regulation. Nevertheless, our use of independent methods supports that the
respiration quotient is not to be assumed constant but varies between biomes.

The observed variation in the respiration quotient is expected to have large biological and
biogeochemical impacts. The production of more reduced organic carbon in tropical and
subtropical regions implies a higher caloric content and perhaps a superior food source (24). On
the other hand, we see that an upshift in the respiration quotient can initiate a biogeochemical
cascade leading to lower ocean oxygen levels, N loss, and declining productivity. These
biogeochemical changes could have devastating impacts on marine life (2). Thus, a biological
feedback whereby warming and stratification leads to the production of more reduced organic
carbon can have a large future impact on marine ecosystem functioning and biogeochemistry.
Materials and Methods
Sample Collection: Seawater samples were collected during the GO-SHIP P18 cruise aboard
R/V Ronald H. Brown from November 11, 2016 to February 3, 2017 between 32.72° N,
117.16°W off San Diego, CA to 77.85°S, 166.67°E near Antarctica (SI Appendix, Fig. S3).
Samples for particulate organic carbon (POC) and particulate chemical oxygen demand (PCOD)
were taken from 198 stations using the underway system. The underway intake was located at a
depth of 5.3 m from the sea surface. All carboys were rinsed twice with filtered seawater before
sampling. Triplicate samples for POC and sextuplicate samples for PCOD were taken
approximately 3 times daily. Water was pre-filtered with a 30 um nylon mesh (Small Parts
#7050-1220-000-12) to remove rare large particles from the sample. Additional samples
(triplicate for POC and sextuplicate for PCOD) were taken by removing the 30 um nylon mesh,

allowing all particles to collect in order to determine the total particulate organic matter from
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station 159 to 198. All samples were collected on pre-combusted 500°C GF/F filters (Whatman,
GE Healthcare, Little Chalfont, Buckinghamshire, UK) for the analysis of POC and PCOD.
Sample volume was determined on a per station basis, ranging from 3 to 8 1. All filters were then
folded in half, sealed inside pre-combusted aluminum foil, and stored at -20°C until analysis.
Particulate Organic Carbon (POC). Filters were dried at 55°C (24 h) and then stored in a
desiccator with concentrated hydrochloric acid fumes for 24 h to remove inorganic carbonates.
The filters were dried for 48 h at 55°C before being folded and pelletized into pre-combusted tin
capsules (CE Elantech, Lakewood, New Jersey). Tin capsules were then analyzed on a Flash EA
1112 NC Soil Analyzer (Thermo Scientific, Waltham, Massachusetts) measuring released CO2
and we used an atropine (C17H23NO3) standard.
Particulate Chemical Oxygen Demand (PCOD) Assay: Quantifying the Chemical Oxygen
Demand is commonly used for wastewater and freshwater samples. The assay is based on the
determination of residual potassium dichromate following organic matter oxidation with silver
sulfate as catalyst under strongly acidic and high temperature (150°C) conditions (20, 31, 32). As
dichromate does not oxidize ammonium, the assay only quantifies the oxygen demand from
organic carbon. A major obstacle for using the method with seawater POM samples is the
interference of chloride ions. As such, chloride is oxidized by dichromate and causes
precipitation of silver chloride. Several efforts have been made to apply this method to seawater
samples and the main solution is the addition of mercuric sulfate (33). Thus, the method has the
potential for quantifying the oxygen demand in marine POM.

Here, we modified the assay to quantify the chemical oxygen demand from POM
collected on GF/F filters. Specifically, GF/F filters with collected POM samples were dried

overnight at 55°C. We then added the filter and 2 ml milli-Q water to HACH COD HR+ reagent
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vials (Product # 2415915 containing mercuric sulfate) and digested the samples at 150°C for 2 h.
We learned that the major obstacle for this assay was uneven precipitation of silver chloride
following digestion. Thus, we modified the assay to include a subsequent precipitation step by
adding 92.1 puL of 9.5 M NaCl (minimum amount of chloride to induce consistent precipitation)
to each vial. Vials were immediately inverted twice and centrifuged for 30 min at 2500 rpm to
remove any precipitate. Finally, we quantified the remaining dichromate by absorbance at 600
nm using HACH certified phthalate-based COD standards (SI Appendix, Fig. S6A). HACH
certified COD tubes have been shown to measure unbiased COD across diverse classes of
organic compounds (34) so we only did a limited comparison with other compounds.

To validate the modified technique, we (i) tested for any interference using standard
additions of a HACH certified phthalate-based COD standard, (ii) established a linear
relationship between input amounts and absorbance, (iii) compared the variance to other POM
measurement techniques, and (iv) examined any compound specific biases. First, we were able to
recover experimentally added organic carbon to seawater samples suggesting limited sample
interference (SI Appendix, Fig. S6B). Second, we found that increasing sample volume (and
associated amount of PCOD captured on filters) corresponded linearly to an increase in
measured PCOD (SI Appendix, Fig. S6C). Third, we saw a high correspondence between
theoretical and observed values for different substrates (SI Appendix, Fig. S6D). This has also
been observed in more elaborate past studies supporting that the dichromate technique
effectively oxidizes many diverse substrates (34, 35). Fourth, the coefficient of variance for
PCOD and r_q,.c corresponded to the coefficient of variance for POC and r¢.p, respectively (SI
Appendix, Fig. S6E-H). We did not fully explore the detection limit for our assay as the COD

chemistry method was much more sensitive than one used for POC. Thus, our sampling strategy
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focused on recovering enough POC. These method development and optimization steps
suggested that our assay provided an unbiased and sensitive method to quantify PCOD.
T_p2.c Was computed from the mean concentrations of PCOD and POC. The standard

deviation for r_g,.c Was calculated as a pooled sample:

__ PCOD 4yer OPCOD 2 OPOC 2
Or 02 = POCaye x v (Goco? T Goc,,.0)- ©)

The coefficient of variance was calculated as a pooled sample:

Or—02:
CVr_gzg = — 22—, (6)
’ r_o2:Ccaver

Statistical linear models were fitted using one or two predictor variables (Temperature (°C; T),
Nutricline Depth (m; Zno3 = 1 uM NO3), Phosphate (P), and N* (N* = [NO3] — 16*[P] + 2.9
mmol/m?). To evaluate assumptions of a normal-distributed respiration quotient, we also did a 1-
way ‘multi-variate analysis of variance’ (MANOVA) test. Here, we evaluated the joint variance
in POC and PCOD between the nine defined regions. We rejected the hypothesis that the data
could be described in one dimension (i.e., a single mean r_,..) and instead showed significant
regional variability.

Our standard POM assay quantifies particles less than 30 um to avoid the stochastic
presence of rare large particles. However, large phytoplankton are an important contributor to
POM in the Southern Ocean. To address any uncertainties with size selection, we also collected
POM with no size fractionation between 54° S and 69° S (SI Appendix, Fig. S7TA). We found that
total [POC] or [PCOD] were only significantly different from the <30 um fraction at a few
stations. Furthermore, 7_,,.. was not statistically different between the total and below <30 um
fractions. This suggested that capping the POM sample at a particle size of 30 um did not affect

the outcome of our analysis (SI Appendix, Fig. S7C).
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Prognostic CESM Simulations: A modified version of Community Earth System Model
(CESM) was used for our 300-year simulations, which included a prescribed r_g,.. ranging
between 0.7 and 1.3 across model experiments. Only a fixed r_g,.. value varied between these
simulations. Climate forcings on the oceans followed a repeated cycling of the NCEP-NCAR
Reanalysis datasets for the years 1980-2009. Three hundred years is sufficient to spin up the
upper ocean and thermocline depth nutrients and oxygen. Model output was averaged over the
last 20 simulation years for analysis to remove short-term variability. The model includes three
phytoplankton functional groups (small, large, and diazotrophic phytoplankton) and multiple
potentially growth-limiting nutrients (N, P, Fe, Si). The model has been used in CESM climate
simulations (36, 37). The ecosystem-biogeochemistry model code is a preliminary version of the
CESM V2.1 code set, run within the coarse-resolution CESM V1.2.2 ocean circulation model
(19). Water column denitrification is initiated in the model when oxygen levels fall below 7 uM,
with only denitrification and no oxic remineralization below 5 uM (36). Additional
documentation and model source code for CESM2.0 are available online (www2.cesm.ucar.edu).
Analysis of CMIP5 Model Output: We obtained output from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) models from the Earth System Grid Federation (38).
We calculated the changes in ocean oxygen content and rates of denitrification between the
simulated 1990s and 2090s for available biogeochemical models following the historical and
Representative Concentration Pathway 8.5 (RCP8.5). This is the high-end, business as usual,
emissions scenario with strong global warming over the 21 century.

Inverse Hydrographic Model Analysis: See the supplementary information for a detailed

description of the inverse model analysis.



Data availability: The hydrography (https://cchdo.ucsd.edu/cruise/33R0O20161119) and POM

data (https://www.bco-dmo.org/project/764270) are freely available.
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Figure legends

Figure 1. Impact of a changing respiration quotient on ocean biogeochemical processes. A.
Change in OMZ (02<25 uM) extent and intensification when r_,.. shifts from 1 to 0.7. B.
Change in OMZ extent and intensification when 7_g,.. shifts from 1 to 1.3. C. Total oxygen
levels and OMZ volume ([O2] <25uM) as a function of the respiration quotient. D. Change in
denitrification zones and intensity when 7_g,.. shifts from 1 to 0.7. E. Change in denitrification
zones and intensity when 7_g,.. shifts from 1 to 1.3. F. Annual denitrification rates and global
ocean N balance as a function of the respiration quotient. G. Change in ocean net primary
production when r_g,.. shifts from 1 to 0.7. H. Change in ocean net primary production when
T_p2.¢ shifts from 1 to 1.3. I. Annual net primary production and carbon export (at 100 m) as a
function of the respiration quotient.

Fig 2. Environmental conditions, POM concentrations and the respiration quotient across
the eastern Pacific Ocean. A. Sea-surface temperature, B. Nutricline depth (depth at which
nitrate is 1 pM), C. Surface N* (N* = NOstation — 16¥PO4sation), D. Surface particulate organic
carbon (POC), E. Surface particulate chemical oxygen demand (PCOD), and F. Surface
respiration quotient. Averaged data are marked as black dots. In panels A-E, the red line
represents a 4-station moving average. In panels D-F, the grey shaded regions represent the
standard deviation of the replicates. In panel F, the red line represents an 8-station moving
average. In all panels, the colored background represents the nine regions (1:CAMR- Central
American Coast, 2: PNEC- North Pacific Equatorial Counter Current, 3:TPEQ- Transitional
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Pacific Equatorial Divergence, 4: PEQD- Pacific Equatorial Divergence, 5:SPSG- South Pacific
Gyre, 6:SST- Southern Subtropical Convergence, 7:SANT- Sub Antarctic water ring, 8: ANTA-
Antarctic, 9: APLR- Austral Polar).

Figure 3. Regional differences in the respiration quotient. A. Clustering of group means after
a multivariate joint POC and PCOD analysis of variance (1-way MANOVA). B. Regionally
observed respiration quotients and comparisons to Redfield (1_p,.c = 1) and Anderson (r_p,.c =
1.1) theoretically predicted values.

Figure 4. Relationship between temperature and the respiration quotient. A. Observed
temperature dependence for surface POM r_q,.c = 1.0465 + (0.0055383/°C) SST (Table S4) and
the relationship inferred from the inversion of hydrographic data (Table S6). B. The logarithmic
marginal posterior probability density for the temperature dependence (m) and intercept (b) in

the relationship r_g,.c = m(SST — 15°C) + b estimated from the inversion of the hydrographic
data.
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Supplementary Information Text

Inverse Biogeochemical Model Methods:

Our biogeochemistry model predicts the concentrations of oxygen, dissolved inorganic carbon,
and dissolved organic carbon ([0,], [DIC], and [DOC]), as a function of r_g,.c, which in turn is
parameterized in terms of either surface temperature or surface nitrate concentration, via a slope,

m, and intercept, b:

T_o2.c = W_'_b’ (81)
with
MODELA: z= z, = ”TA‘ﬂ (S2)
SST
or
MODEL B: z= z, = ”’Z‘ﬂ (S3)
SSN

where SST is the sea surface temperature and SSN is the sea surface nitrate concentration
obtained from the 2013 World Ocean Atlas [Ref. S1]. The means uggr and uggy are computed
using an area weighted average of the SST and SSN variables after interpolation onto the global

2° x 2° grid. For the scale parameters we use

Ager = max SST — min SST, (S4)
and

Agey = max SSN — min SSN, (S5)
so that

d ;.

—[min 7_g; ¢ —max 7_g,.c] = 1, (S6)

for both model A and model B. In Table S5, we list the values of the quantitates used to
standardize the SST and SSN variables and compare the range of SST and SSN to their

respective standard deviations.



The biogeochemical model is also dependent on four additional parameters
(be, bo, k4, and o described later) and associated uncertainty. An important advantage of the
Bayesian inversion procedure is that it allows us to marginalize out the parameters that are
not of direct of interest, namely b, by, k,;c, and o and thus take into account their uncertainty
in the posterior uncertainty for r_g,.c. Another important advantage of the Bayesian procedure is
the ability to compute the probability of model A relative to B and thus decide if the spatial
variability of r_g,.c is better parameterized as a function SST or SSN. Both model A and model B
share the same number of parameters making the Bayesian model selection process particularly

transparent and easy to interpret.

The nitrogen-cycle model of Wang et al. (2019): The formulation of our biogeochemical model

builds on the nitrogen-cycle model of Ref. S2. This model uses the data-constrained circulation
model of Ref. S3 coupled to a nitrogen and phosphorus cycling model to predict the global
distribution of organic nitrogen production, benthic denitrification and water column denitrification.
The circulation model has a horizontal resolution of 2° x 2° with 24 layers ranging in thickness
from 36 m near the surface to 633.5 m near the bottom. In total, the model has n,,,; = 191,169

wet grid boxes. From this model we extract the following variables:

*  Pyorg the rate of organic nitrogen production.

* D,.: the rate of water column fixed N loss due to denitrification and annamox.

* D4 the rate of benthic fixed N loss due to denitrification and annamox.

* 1—R: the fraction of organic nitrogen production associated with external N inputs,

including microbial N,fixation, riverine input and atmospheric deposition.
These variables are then used to drive the carbon and oxygen cycling model as explained below.

The governing equations for [0,]: The governing equation for the concentration of dissolved

oxygen in the ocean is given by



da
[£+7] 10, = Poz = Loz + Ko([02]sar = [02]), (s7)
Where T is the advection-diffusion transport operator defined such that
Tc = V- [uc — kVc], (S8)

subject to no-flux boundary conditions at the basin boundaries and the sea surface. With this
definition, u is the residual mean circulation and « is the eddy-diffusion tensor. K, is the air-sea
gas-exchange operator and [0,],; is the saturation concentration of a surface water parcel in
equilibrium with the atmosphere. We use the OCMIP-2 air-sea gas exchange formulation

(http://ocmip5.ipsl.jussieu.frfOCMIP/phase2/simulations/). P,, and L,, are the biological

production and loss of oxygen due to photosynthesis and respiration, respectively. If we assume
that the ocean is in a climatological steady state, the three-dimensional oxygen distribution is

given by

[02)imoa = [T + Kozl ™ (Poz — Loz + Koz[0:]sar)- (S9)

The production of photosynthetic 0,: We will use the stoichiometric ratios x, y, and z defined from

the chemical formula for the respiration of organic matter
C2(H;0),, (NHy), H,H;PO, + (x +22) 0, - XCO, + yNH; + H3PO, + (w +22)H,0,  (S10)
and the oxidation of ammonia to nitrate
yNH; + 2y0, — yHNO; + yH,O0. (S11)

In other words, x and y are, respectively, the relative number of moles carbon dioxide and
ammonia produced by the respiration of organic matter, and z represents an anomaly in the

number of H atoms that get oxidized into H,0 per mole of organic C.

Using these ratios, the rate of photosynthetic O, production can be expressed in terms of

the rate of organic-nitrogen production (Py,,,) and the fraction (1 — R) of this production that is



associated with external inputs of N, both of which we already have from the N-cycle model of

Ref. S2,
1
x + Zz+2y x 5
Popo=|——— |- 'PNorg__(l_R)'PNorg
x y 4
x+%z x 5
= " '(;)'PNorg'l'ZPNorg_Z(l_R)'PNorg
5
= T_o2:c"TeN " Prvorg + 21-R+ R)PNorg - Z(l —R)- Prorg
3
= Peop + 2RPNorg - Z(l - R) 'PNorg
where

_ 1z
T_ozc =1+ I
TeN E%, and

Peop = T_o2cTen PNorg-

(S12)

(S13)

P.op is the production rate of chemical oxygen demand associated with the oxidative state of the

organic C alone. The chemical oxygen demand associated with the oxidative state of the organic

N is tracked separately. In other words, P, is almost equivalent to the rate of organic carbon

production except that COD unlike C,,,, keeps track of the oxidative state of the carbon in such a

way that by definition the respiration of one mole of COD consumes exactly one mole of 0,.

The loss of 0, due to respiration: To compute the loss of 0, associated with the respiration of

organic matter we consider the following two reactions

DOD + 0, — CO,,

DOD + 20, — NOj

(S14)



where the DOD is the dissolved phase of the chemical oxygen demand tracer and DON is the
dissolved phase of the organic nitrogen tracer. Where the oxygen concentration is low either in
the water column or in benthic sediments, NO3 rather than 0, is the dominant oxidant for the

consumption of DOD:
DOD + 2NO3 — CO,. (S15)

The rate of oxygen utilization associated with the loss of DOD must therefore decrease by 5/4
times the rate of water-column and benthic denitrification. Thus, the net rate of oxygen utilization

associated with the respiration of organic matter is given by
5
Loz = Kqc[DOD] + 2Kqy[DON] — = (Dyyc + Dsea), (816)

Where D,,. and D, are the water-column and benthic denitrification rates, which are available

from the N-cycle model of Ref. S2.

The governing equation for the oxygen demand tracers: We treat the concentrations of DOC,

DON, and DOD as independent dissolved tracers and the concentrations of POC, PON, and POD
as independent sinking-particulate-matter tracers. This simplification is required in order to avoid
having to carry a full spectrum of organic compounds that are presently uncharacterized with

unknown production rates and with unknown carbon and nitrogen oxidative states.

For the inverse model, we define the stoichiometric ratio, r_g,.c, for the exported organic
matter based on the location of production rather than on the location of respiration. This
distinction is important because, we do not have to assume that DOC, DON, and DOD are
produced or respired at the same rate everywhere in the ocean. We thus track the oxidative
demand for carbon and nitrogen separately. The model can therefore allow the C:N and —0,:C
stoichiometric ratios to vary independently as a function of surface location where the organic

matter is produced.



The movement of the CODtracers: The production of COD is routed into two pools: DOD and

POD. DOD is a dissolved phase that is transported by fluid motion and is respired at a constant
rate k,;.. POD is a sinking particulate phase that is transported downwards by gravitational

settling and solubilized into DOD at a constant rate k. Their governing equations are
|5+ T [DOD] = 0Pop + 1, [POD] — Kqc[DOD, (S17)
[% + FPOD] [POD] = (1 — 0)Pcop — Kkp[POD],

where Fp(, is the flux-divergence operator for sinking particulate organic matter, i.e.

FropC = o= (ws 52). (S18)

The sinking speed wy is chosen to produce a power-law flux-attenuation profile with exponent b,
A fraction o of the COD production is directly allocated to the dissolved phase with the remaining

fraction, 1 — g, is allocated to the sinking particulate phase.

As previously noted in equation S13 the production of COD is taken to be proportional to
the rate of organic carbon production with a proportionality constant modeled as either a linear

function of sea surface temperature (SST) or of the surface nitrate concentration (SSN),
r_o2:.c = TTIZ+b, (819)

where z can be either z, or zg as defined in equations S2 and S3 and where m and b are
adjustable parameters to be estimated form the data as part of the inversion process. Thus, the

steady-state [COD] distribution is given by the solution to the following linear system of equations

T+ Kyl —K4cl [DOD] ol
0 “ Fpop iCKpl] [[POD]] - [(1 - o-)[] Pcop, (S20)
with
Peop = e [diag (Pyorg)llz 1] [TZ] ) (S21)



The governing equations for organic carbon: The governing equations for organic carbon are

given by

£+ T|[DOC) = 07enPyorg + Kp[POC] — ke [DOC], (522)
[% + FPOC] [POC] = (1 — 0)1c.nProrg — Kp[POC].

The sinking particulate flux divergence operator, Fp, is constructed to produce a power-law flux
attenuation profile with exponent b.. By separating the remineralization depth profiles of carbon
and oxygen (b.and b,), we account for the possibility that the oxidative state of exported organic
matter changes as a function of depth and a depth dependent r_,,.c. The steady-state organic

carbon distribution is given by the solution to the following linear system of equations

0 Fpoc + ;cpl] [[POC] = Ten [(1 — o)1 Prorg: (S23)

The governing equation for inorganic carbon: The governing equation for inorganic carbon (DIC)

is given by:
d
[E + T] [DIC] = —7c.nProrg — Teic:corgTe:nProrg T Kpic[PIC] + K4c[DOC]

+KCOZ([C02]sat - [Coz]surf), (324)
d
[E + FPIC] [PIC] = rPIC:Corng:NPNorg — Kpic [PIC],

where K, is the air-sea gas exchange operator, [CO;]syc = acpCO,emP /Py is the concentration
of CO, in surface waters, [CO,].,: is the surface aqueous CO, concentration, which is computed
from [DIC] using CO2SYS [Ref. S4, S5]. The alkalinity, temperature, salinity, silicic acid, and
phosphate concentrations needed to evaluate the equilibrium constants are obtained from
observations interpolated to the model grid. We use the OCMIP-2 air-sea gas exchange

formulation (http://ocmip5.ipsl.jussieu.frfOCMIP/phase2/simulations/).




Anthropogenic carbon: Because pCO,,, has been increasing rapidly in response to
anthropogenic perturbations to the carbon cycle we need to account for the additional carbon in
the ocean that is not in steady state. We assume that the marine DIC concentration can be
decomposed into an anthropogenic part, DIC,,;, and a natural part that is assumed to be in a
climatological steady state. We compute the natural DIC concentration by solving the following

steady state system using Newton’s method

T[DIC]nat = —TcnPnorg — Teic:corg £ TenProrg T Kpic[PICInat + Kac[DOC]

+KCOZ ([Coz]sat - [Coz]surf)' (825)
Fpic[PIC]pat = rPIC:Corng:NPNorg — Kpic[PIClpae

in which [CO,]s, corresponds to the saturation concentration assuming a preindustrial (t =

1765) atmospheric CO, partial pressure of 278 ppm. We then compute DIC,,; from
DIC,, = DIC(2013) — DIC,4, (S26)

with DIC(2013) obtained by solving the transient problem from t = 1765 tot = 2013 subject to
the initial condition DIC(1765) = DIC,,;and PIC(1765) = PIC,,; and with [CO,]s,:(t) prescribed
using the observed atmospheric pCO, history. We then add back a fixed DIC,,, to the DIC,,,
which is an implicit function of the model parameters, to get the total DIC concentration. The
difference between the total DIC and the observed DIC is then used to construct the likelihood

function.

The data: The [0,] and [DIC] measurements used to constrain the model are form the GLODAPv2
database (Ref. S6) and the [DOC] measurements are from Ref. S7. After bin-averaging the
hydrographic bottle measurements to the model grid we have ng, = 84,207, np;c = 66,964, and

npoc = 13,148 independent data points. We combine these data into an n,,x1 vector

[02] obs
dops = | [DIC]obs (S27)
[DOC] obs



with Ngps = N2 + Npic + Npoc-

The probability model: To estimate r_g,.c we assign a multivariate normal probability model to

d,,s. We take the mean of this probability model to be given by the solution of our forward
biogeochemical model. The probability of d ;¢ is thus conditioned on m, b, and the 4 additional
nuisance parameters, b., b,, k,c, and o, through their influence on the solution of the
biogeochemical model. Denoting the vector of model parameters by £, the probability of d,

given [] (a.k.a. the likelihood function) is given by

prob(dons 6, @) = () 2 det (W: exp(-aL(8)}, (528)
where
L(B) = 3(dobs — d(B)) W(dops — d(B)). (S29)
with
[0,]
u(p) =H | [pIC] | (S30)
[DOC]

is the solution to the forward biogeochemical model evaluated at the grid-boxes with
observations. The block-diagonal matrix,
H'o, 0 0
H = 0 H,DIC 0 5 (831)
0 0 H'poc
selects those grid-boxes for which observations are available in the database, i.e. Hy,, Hpc, and
Hpgc are ng, X Npeds Moic X Mmod» @Nd Npge X Nmeq Matrices that extract only the grid-boxes
that have at least one observation of [0,], [DIC], and [DOC] respectively. The primes are used to

denote the matrix transpose operation. We assume that the bin-averaged observations are

independent so that the precision matrix in the multivariate normal model is given by a diagonal

matrix,
%
/062 0 0
aW = oqH=| O V/GSIC 0 |H. (S32)
0 o V
/‘Tgoc

10



The parameter []that scale the precision matrix is an unknown parameter that needs to be
estimated as part of the Bayesian inversion. The parameters o3,, o5;c, and oo are the spatial
variances of the tracer observations computed as follows

([02]obs— #02)" Ho2V H 02([02]obs— Ho2)
1'Hp,VH g1

2 _
O0o2 =

)

o2 — ([DIC] = Hpic) HpicV H pic ([DIC] 0 — Kpye)
bic 1 Hpjc VH pcl

. (S33)

o2 = ([DOClobs— #poc)HpocVH poc([DOClobs— #poC)
poc 1'HpocVH'pocl ’

with

1'Ho,VH' 02[02]0bs

Koz = T {iHg, Vi o1

1

1'HpicVH' 0, [DIC]obs
1'HpicVH'picl

(S34)

HUpic =

1"HpocVH'poc[DOC]obs
1'HpocVH'pocl

HUpoc =

In the above expressions, V is the diagonal matrix formed from a vector whose elements are the
fraction of the total ocean volume in each of the circulation model’s grid-boxes, the bold 1's are

appropriately-sized column vectors of ones.

2. Parameter estimation:
As formulated, the model predicts the three-dimensional distributions of DIC, DOC, and [0,] using
6 adjustable parameters m, b, o, Kqc, b, and b,. We fix the C: N ratio to rc,y = 106/16.
To estimate the adjustable parameters we assign a flat prior probability to

p=[m b logo logky logb., logh,]. (S35)
and then use Laplace’s method to obtain a normal approximation to the posterior, i.e.

prob(B, aldps) ~ | detx |z exp {~3 (8 — B)'=7(8 - B)}, (S36)
where the posterior parameter covariance matrix is given by

% = [@VVeL(B)lppl ™ (837)

with

11



argmin

B = B L(B). (S38)

The parameter & that scales the posterior parameter precision matrix is chosen to be the value
that maximizes the posterior probability distribution, i.e.

~ _ Nobs
&= rox (S39)

The posterior parameter estimates: The optimal model parameters along with their posterior error

bars for the model in which r_g,.c is parameterized in terms of SST are

’g (1.6184 + 0.0339) x 1072(°C) 1
o 0.7312 + 0.0048
= 08 Kac —17.3403 + 0.0033
Ba loga —1.5178 + 0.0200 (S40)
log b 0.1267 +0.0033
10 b, | 0.0231 +0.0018

The positive slope, m implies that the oxygen demand for the respiration of organic matter
produced in warmer waters is higher than the oxygen demand for the respiration of organic
matter produced in colder waters.

For the model in which r_g,.c is parameterized in terms of SSN the optimal parameter

values are
T (—6.949 + 0.477) x 10~*(mmol/m3)~*
e 1.0114 +0.0043
= _ |98 fac —17.3465 +0.0033
Fa=1rogo |= —1.8336 +0.0315 ' (541)
log b 0.1675 +0.0030
108D, | 0.0515 +0.0019

In this case we find a negative slope, m, implying that oxygen demand for the respiration of
organic matter produced in low-nutrient environments is higher than when produced in high-
nutrient environment. Given the negative correlation between SST and surface nutrient
concentrations, the signs of the slope are consistent.

The most probably parameter values (not log transformed) and their 95% probability
intervals are given in Tables S6. For both models, the exponent for the POC flux attenuation
profile is approximately 10% larger than the exponent for POD. This suggests that the amount of

oxygen needed to respire a mole of organic carbon tends to increase with depth and an overall

12



decrease in organic carbon oxidation state. However, the probability intervals for these exponents
largely overlap indicating that the hydrographic data combined with our inverse model does not
provide enough information to robustly identify any depth variation in r_g,.c.

The residual misfits for the temperature-dependent and nitrate-dependent r_g,.. models

differ by less than 1%, with the SST model producing the smaller residual error,

LaBw) _
Tt = 0:9930. (842)

The number of observations used to constrain the model is large, n,,, = 164,319 resulting in a
significant difference and a larger posterior probability for model A compared to model B. If we
assign an equal prior probability to model A and B as well as the same flat prior probability
density for the parameters for both models and use Laplace’s approximation to marginalize out j,

the posterior odds in favor of model A compared to model B [e.g. Ref. S8], simplifies to

prob (model Ald,;s) prob (d,us|Ba, @y, model A)  \/detX,
~ — X
prob (model Bld,ps)  prob (dyps|Bs, @5, model B) . /detZ,

_1/2
, (S43)

det[VgVpLa(B)lg-g7]
det[VBVB[,B (B)lﬁzﬁ/\B]

_ (LA@))_(%,,;_@ [
L5(Bs)
~ 10250,
This astronomically large preference for model A depends crucially on the assumption that all
n,ps residuals are independent, which is unlikely to be the case. But even if we assume that only
one out of every 100 data point provides an independent degree of freedom, the odds in favor of
model A compared to model B would still be greater than 102: 1.

It is useful to compare the correlation matrix for the posterior probability distribution of the
parameters (Table S7). The magnitude of correlation between m and the other parameters is
generally larger for model A. This makes the temperature-dependent model (model A) a bit more
fragile in the sense that a change in the value of m will necessitate a recalibration of the other
model parameters to avoid a large degradation model fit quality. The smaller parameter
correlations in model B implies a model that is somewhat less inter-dependent. However,

because each model has only 6 adjustable parameters, the penalty against model A in the

13



expression for the posterior odds given in (S43) is less than a factor of 10. This factor is
insignificant compared to the penalty against model B due to its poorer fit to the observations.

Globally Integrated oxygen consumption and carbon respiration rates: The volume integrated

oxygen consumption and carbon respiration rates for the models A and B are given in Table S8.

Figure S8 plots the carbon production partitioned according to the value of r_g,.c used to
determine the chemical oxygen demand of the exported organic carbon to the COD tracer for
each model. The carbon-export weighted mean r_g,.c for model A is 0.9491 and for model B is

0.9577.
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Fig. S1. Predicted distribution of the respiration quotient across microalgae species. A. The total

respiration quotient (r;_,,.c) and B. The respiration quotient (r_,,.c). The predictions are based
on the biochemical composition of 1562 phytoplankton cultures (Ref. S9).
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Fig. S2. Comparison of changes to oxygen levels via changes to the respiration quotient or
climate change. Changes in global marine oxygen levels by a changing respiration quotient (in
grey) after 300 yrs and 2100 under the climate change scenario RCP8.5 (in black). The climate
model outputs are from CMIP5.
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Fig. S3. P18 GO-SHIP Cruise track locations from San Diego, CA (32.72° N, 117.16°W) to
Antarctica (77.85°S, 166.67°E). Background phosphate concentrations are from the GLODAPv2
database (Ref. S6).
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Fig. S5. Relationship between temperature and the respiration quotient derived from a CHNOPS
elemental analysis of marine POM from the Western North Pacific Ocean (Ref. S10). The line

represents a linear fitted model of temperature and r_,.. (r_g,.c = 0.19 + (0.036/°C)*SST; p-value
= 0.05).
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Fig. S6. Optimization and evaluation of a method for quantifying the oxygen demand of marine
POM. A: PCOD standard curve using a Hach-certified phthalate standard curve. B: Recovery of
the PCOD after experimentally adding organic material to a seawater sample. C: Relationship
between sample volume and measured PCOD. D: Testing Two Organic Compounds (Methionine
(Met), Glutamic acid (Glu)), averaged on their expected values using phthalate standard.
Coefficient of variance in E: [POC], F: [PCOD], G: r¢.p, and H: The respiration quotient.
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Fig. S7. Comparison of PCOD concentrations in different size fractions. A. Particulate organic
carbon in samples <30 ym and with no size-fractionation. B: Particulate chemical oxygen demand
in samples <30 um and with no size-fractionation. C: The respiration quotient for <30 um and
total samples as well as for two regions with significant POM concentration differences (R1 and
R2).
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Fig. S$8. Carbon production partitioned according to the r_,,.. value used to determine the
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Table S1.

Model change in oxygen levels.

ESM Model Ocean Depth (0 )} Resolution Reference
module layers (Pg)

CESM1-BGC BEC 60 -289 1.125°/0.27°-0.53° S11

GFDL-ESM2G TOPAZ2 63 -281 0.3-1° S12

GFDL-ESM2M TOPAZ2 50 -312 0.3-1° S12

HadGEM2-ES Diat-HadOCC 40 -303 0.3-1° S13

IPSL-CM5A- PISCES 31 -322 0.5-2° S14

LR

IPSL-CM5A- PISCES 31 -254 0.5-2° S14

MR

MPI-ESM-LR HAMOCCS5.2 40 -249 1.5° S15

MPI-ESM-MR HAMOCCS5.2 40 -229 0.4° S15

NorESM1-ME HAMOCCS5.1 53 -206 1.125° S16

CESM1-BGC BEC 60 382 1.125°/0.27°-0.53" This study

Ar_g,.c=-0.2

CESM1-BGC BEC 60 186 1.125°/0.27°-0.53° This study

Ar_g,.c=-0.1

CESM1-BGC BEC 60 0 1.125°/0.27°-0.53" This study

Ar_oy=0

CESM1-BGC BEC 60 -177 1.125°/0.27°-0.53° This study

Ar_g,.c= 0.1

CESM1-BGC BEC 60 -308 1.125°/0.27°-0.53" This study

Ar_g,.c= 0.2

CESM1-BGC BEC 60 -493 1.125°/0.27°-0.53° This study

Ar_g,.c= 0.3
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Table S2.

Regional environmental characteristics. Observed environmental conditions in each defined
biome [mean (minimum — maximum)].

Region Stations Temperature Nutricline N

1: CAMR 1-13 28.4 (26.5 -29.5) 54.3 (1.9-924) -1.66 (-3.5—0.50)
2: PNEC 14 - 26 28.5 (27.8 - 29.6) | 40.9 (32.1 -52.2) 0.44 (-0.30 — 1.14)
3: TPEQ 27 - 37 26.4 (25.9-27.7) | 54.0 (32.1 -67.2) 0.18 (-0.80 — 0.82)
4: PEQD 38 - 82 24.0(21.6-25.7) | 2.7(1.9-32.1) -1.16 (-3.39 — 0.27)
5: SPSG 83 - 121 23.4 (20.3-25.3) | 164.3(1.9-223.1) | -0.93 (-.3.50 —0.82)
6: SSTC 122 - 144 148 (11.5-19.8) | 1.9 -1.33 (-3.02 — -0.16)
7: SANT 145 - 170 8.6 (6.2-10.9) 1.9 0.30 (-1.15-1.41)
8: ANTA 171 - 187 3.6 (2.0-5.9) 1.9 2.00 (0.81 —4.13)
9: APLR 188 - 198 0.7 (0-1.7) 1.9 1.91 (1.50 — 3.02)
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Table S3.

The respiration quotient across regions.

Region Average Range Standard Error n

1: CAMR 1.26 1.10-1.48 0.036 13
2: PNEC 1.19 1.08 —1.35 0.022 13
3: TPEQ 1.20 1.10-1.38 0.029 11
4: PEQD 1.15 0.98-1.43 0.011 45
5: SPSG 1.18 0.73—-1.54 0.026 39
6: SSTC 1.14 0.75-1.54 0.027 23
7: SANT 1.13 0.99 - 1.33 0.017 26
8: ANTA 1.05 0.89 — 1.32 0.028 17
9: APLR 0.99 0.79-1.18 0.042 11
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Table S4.
Statistical r-o,.c models. SE represents the coefficient of variation.

Intercept SE Temperature | SE Nutricline SE Phosphate | SE N* SE
r-o2:c(T, Znos, P, N*¥) 1.10 8.3e-2 | 3.8e-3 2.6e-3 | 1.1e4 1.7e-4 | -3.4e-1 5.1e-2 | 1.8e-3 7.5e
r-o2:c(T, Znos, P) 1.10 5.9e-2 | 3.7e-3* 1.8e-4 | 1.1e-4 1.6e-4 | -3.2e-2 3.6e-2
r-o2:c(T, Znos, N¥) 1.04 2.2e-2 | 5.3e-3* 1.3e-3 | 1.7e-4 1.4e-4 2.4e-3 7.5e
r-o2.c(T, P, N*) 1.13 7.1e-2 | 3.2e-3 2.4e-3 -5.1e-2 4.2e-2 | 1.8e-3 7.5e
r-o2:c(Znos, P, N*¥) 1.22 2.5e-2 2.6e-5 1.6e-4 | -9.9e-2* 2.5e-2 | -2.5e-3 7.0e
r-02:c(T, Znos) 1.05 1.9e-2 | 5.0e-3* 1.0e-3 | 1.8e-4 1.4e-4
r-o2.c(T, P) 1.12 5.3e-2 | 3.4e-3* 1.7e-3 -4.5e-2 3.2e-2
r-o2.c(T, N*) 1.04 2.2e-2 | 5.9e-3* 1.1e-3 3.2e-3 7 5e
r-o2:c(Znos, P) 1.21 2.1e-2 5.1e-5 1.6e-4 | -9.4e-2* 2.1e-2
r-o2:c(Znos, N*) 1.13 4.1e-2 4.0e-4* 1.4e-4 -1.6e-2* | 6.4e
r-o2.c(P, N*) 1.22 1.8e-2 -1.0e-1* 2.0e-1 -2.3e-3 6.9¢e
r-o2:c(T) 1.05 1.9e-2 | 5.5e-3* 9.3e-4
I'-oz;c(ZNos) 1.13 1.0e-2 4.7e-4* 1.3e-4
r-o2:.c(P) 1.22 1.5e-2 -9.8e-1* 1.7e-2
r-oz.c(N*) 1.14 9.2e-3 -1.9e-2* | 6.4e

*p<0.05
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Table S5.

Values of the quantities used to standardize the sea surface temperature (SST) and the sea

surface nitrate concentration (SSN). The means and standard-deviations use an area weighting
based on the grid-boxes of our model.

SST(°C) SSN (mmol/m°)
0 18.1 5.37
std 9.78 15.2
MAX - MIN 31.5 48.6
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Table S6.

Summary of the marginalized posterior distributions for the model with r_g,.c = mSST + b and
with r_g,.c = mSSN + b. The most probable value of each parameter is given along with their
approximate 95% probability interval.

I‘_OZ:C = mSST + b

Parameter Most probable value 95% probability interval
m 0.0162 (°C)" (0.0155, 0.0168) (°C)
b 0.7310 (0.7213, 0.7406)
Kot 393.0 days (391.6, 394.2) days
o 0.2192 (0.2149, 0.2237)
b, 1.1360 (1.1312, 1.1387)
b, 1.0234 (1.0215, 1.1370)
I_g2.c =mMSSN + b
Parameter Most probable value 95% probability interval
m -0.006949 (mmol/m®)” (-0.007903, -0.005995) (mmol/m®)"’
b 1.0114 (1.0028, 1.0199)
Kot 395.3 days (394.1, 396.6) days
o 0.1397 (0.1359, 0.14419)
b, 1.1979 (1.19427, 1.2016)
b, 1.0529 (1.0509, 1.2002)
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Table S7.

Correlation comparison of the posterior probability distribution of the parameters for modal A (
I'_g,.c = mSST 4+ b) and model B (r_g,.c = mSSN + b).

Model A:

m 1 0.4135 0.1315 0.5192 —0.4952 —0.4200

log K4¢ 0.1315 0.4243 1 0.3943 —0.4241 —-0.3373

log b, —0.4952 —0.8304 —0.4241 —0.9612 1 0.3373

Model B:

m 1 —0.1641 —0.0444 —-0.1799 —-0.1701 0.4858

log x4 —0.0444 0.4358 1 0.4099 —0.4385 —0.0421

log b, 0.1701 —0.8026 —0.4385 —0.9545 1 0.2631

[\ |

9



Table S8.

Globally integrated budgets of carbon respiration rate, oxygen consumption rate and nitrate

consumption rate.

Model A

Organic carbon respiration rate:

1.078 x 10"° mole/year

Oxygen consumption rate

due to the oxidization of DOC:

due to the oxidation of DON:
Nitrate consumption rate:

1.084 x 10" mole/year
3.0928 x 10" mole/year
1.350402 x 10" mole/year

Model B

Organic carbon respiration rate:

1.100 x 10™ mole/year

Oxygen consumption rate
due to the oxidization of DOC:
due to the oxidation of DON:
Nitrate consumption rate:

1.084 x 10" molelyear
3.0928 x 10" mole/year
1.350402 x 10" mole/year
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