
PRIMAL-DUAL STOCHASTIC GRADIENT METHOD FOR CONVEX
PROGRAMS WITH MANY FUNCTIONAL CONSTRAINTS∗

YANGYANG XU†

Abstract. Stochastic gradient method (SGM) has been popularly applied to solve optimization
problems with objective that is stochastic or an average of many functions. Most existing works
on SGMs assume that the underlying problem is unconstrained or has an easy-to-project constraint
set. In this paper, we consider problems that have a stochastic objective and also many functional
constraints. For such problems, it could be extremely expensive to project a point to the feasible
set, or even compute subgradient and/or function value of all constraint functions. To find solutions
of these problems, we propose a novel (adaptive) SGM based on the classical augmented Lagrangian
function. Within every iteration, it inquires a stochastic subgradient of the objective, and a subgra-
dient and the function value of one randomly sampled constraint function. Hence, the per-iteration
complexity is low. We establish its convergence rate for convex problems and also problems with
strongly convex objective. It can achieve the optimal O(1/

√
k) convergence rate for the convex case

and nearly optimal O
(
(log k)/k

)
rate for the strongly convex case. Numerical experiments on a sam-

ple approximation problem of the robust portfolio selection and quadratically constrained quadratic
programming are conducted to demonstrate its efficiency.

Keywords: stochastic gradient method (SGM), adaptive learning, augmented Lagrangian method
(ALM), functional constraint, iteration complexity

Mathematics Subject Classification: 90C06, 90C25, 90C30, 68W40.

1. Introduction. In this paper, we consider the constrained stochastic program

(1.1) min
x∈X

f0(x) ≡ Eξ[F0(x; ξ)], s.t. fj(x) ≤ 0, j = 1, . . . ,M,

where X is a convex set in Rn, ξ is a random variable, and fj is a convex function for
each j = 0, 1, . . . ,M . All nonlinear optimization problems in Rn can be formulated in
the form of (1.1). We are particularly interested in the case that M is a large number.

To find a solution of (1.1), we aim at designing a novel primal-dual stochastic
gradient method (SGM). We assume an oracle, which can return a stochastic ap-
proximation of a subgradient of f0, and also the function value and a deterministic
subgradient of each fj at any inquired point x ∈ X. Since M is big, it would be com-
putationally very expensive if at every update, we inquire the objective value and/or
subgradient of all fj ’s. Based on this observation, our algorithm, at every iteration,
will simply call the oracle to return subgradients and function values of a few sampled
constraint functions.

The algorithm is derived based on the classical augmented Lagrangian function
(c.f. [19, 20]) of an equivalent rescaled variant of (1.1), i.e.,

Lβ(x, z) = f0(x) + Ψβ(x, z).

Here, β > 0 is the penalty parameter, z is the Lagrangian multiplier or dual variable,

(1.2) Ψβ(x, z) =
1

M

M∑
j=1

ψβ
(
fj(x), zj

)
,

∗This work is partly supported by NSF grant DMS-1719549 and an IBM grant.
†xuy21@rpi.edu. Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,

New York.

1

xuy21@rpi.edu

and

(1.3) ψβ(u, v) =

{
uv + β

2u
2, if βu+ v ≥ 0,

− v2

2β , if βu+ v < 0.

Note that Ψβ is convex in x and concave in z. Given β > 0, the augmented dual
function is defined as

(1.4) dβ(z) = min
x∈X
Lβ(x, z).

At each iteration k, we first sample one constraint function fjk . Secondly we call

the oracle to obtain a stochastic subgradient gk0 of f0, and a subgradient ∇̃fjk(xk)
and the function value of fjk at xk. Let

(1.5) hk = [βfjk(xk) + zkjk]+∇̃fjk(xk).

Then gk0 +hk is a stochastic subgradient of Lβ with respect to x. Thirdly we perform
a (weighted) projected stochastic subgradient update as in (1.6) to the primal variable
x, and finally we update dual variable zjk .

Algorithm 1: Primal-dual stochastic gradient (PDSG) method for (1.1)

1 Initialization: choose x1 ∈ X, z1 = 0, and β > 0;
2 for k = 1, 2, . . . do
3 Pick jk ∈ [M] uniformly at random;

4 Call the oracle to return a stochastic subgradient gk0 of f0 and subgradient

and function value of fjk at xk;

5 Obtain hk in (1.5), choose Dk � 0, and update the primal variable x by

(1.6) xk+1 = arg min
x∈X

∥∥x− (xk −D−1
k (gk0 + hk)

)∥∥
Dk

;

Choose 0 < ρk ≤ β and update the dual variable z by

(1.7) zk+1
j =


zkj , if j 6= jk

zkj + ρk ·max

(
− z

k
j

β , fj(x
k)

)
, if j = jk

The pseudocode of the proposed method is shown in Algorithm 1, which iter-
atively performs (adaptive) stochastic subgradient update to the primal variable x
and randomized coordinate update to the dual variable z. In order to have an easy
update, Dk will be set to a diagonal matrix for each k. We will consider two different
settings of Dk in our analysis.

Setting 1. Dk = I
αk

, where αk > 0 for all k, and I is the identity matrix.

Setting 2. Dk = diag(sk) + I
αk

, where αk > 0 and sk = η
√∑k

t=1
(gt0+ht)2

γ2
t

with η > 0 and γt = max
(
1, ‖gt0 + ht‖

)
for all t. Here, a2 and

√
a denote the

componentwise square and square-root for a vector a.
Note that in Setting 2, Dk is adaptive to the primal stochastic subgradient. We

scale the subgradient for technical reasons, and it is inspired by [29]. With such a

2

setting, Algorithm 1 is an adaptive primal-dual stochastic gradient method, and it
appears to be the first one under the primal-dual setting. Although the same order
of convergence rate will be shown for both settings, the adaptive one can numerically
perform significantly better.

We remark that if the potential application has any affine equality constraint
a>x = b, we can always write it into two affine inequality constraints a>x ≤ b and
−a>x ≤ −b and thus formulate the problem in the form of (1.1), or we can use a
technique similar to that in [27] to handle the equality and inequality constraints
simultaneously. Furthermore, instead of sampling one constraint function every time,
we can sample a small set Jk of constraint functions, and let

hk = 1
|Jk|

∑
j∈Jk [βfj(x

k) + zkj]+∇̃fj(xk)

in the update (1.6) and also update zj for all j ∈ Jk. All our convergence results can
still be obtained.

1.1. Motivating examples. We give a few examples that can be written in the
form of (1.1) with a very big M , and our proposed algorithm can be applied.

Stochastic linear programming. A two-stage stochastic linear program (c.f.
[22, Sec. 2.1]) can be formulated as

(1.8) min
x

c>x + E
[
fξ(x)

]
, s.t. Ax ≤ b,

where ξ = (B,C,d,q) and fξ(x) are respectively the data and the optimal value of
the second stage linear program

min
y

q>y, s.t. Bx + Cy ≤ d.

As there are M scenarios in the second stage, i.e., ξ ∈ {ξ1, . . . , ξM} with Prob(ξ =

ξi) = pi > 0 and
∑M
i=1 pi = 1, then

E
[
fξ(x)

]
=
∑M
i=1 pifξi(x) =

∑M
i=1 pi min

{
q>i y : Bix + Ciy ≤ di

}
.

Hence, (1.8) can be written as a single large-scale linear program:

(1.9) min
x,y1,··· ,yM

c>x +

M∑
i=1

piq
>
i yi, s.t. Ax ≤ b, Bix + Ciyi ≤ di, i = 1, . . . ,M.

Clearly, (1.9) is in the form of (1.1), and if there are many scenarios, i.e., M is big, it
could be extremely expensive to access all the data at every update to the variables.

Chance constrained problems by sampling and discarding. A nonlinear
program with chance constraint is formulated as

(1.10) min
x∈X

f0(x), s.t. Prob
(
g(x; ξ) ≤ 0

)
≥ 1− τ,

where X ⊆ Rn is a convex set, ξ is an uncertain parameter on a support set Ξ, and
τ is a user-specified risk level of constraint violation. Even though g(· ; ξ) is convex
for any ξ ∈ Ξ, the chance constraint set in (1.10) may not be convex. Hence, exactly
solving (1.10) is hard in general. To numerically solve (1.10), the work [4] introduces a
sample-based approximation method, called sampling and discarding approach. This

3

method makes N independent samples of ξ, then eliminates p of them, and solves a
deterministic problem with the remaining M = N − p constraints, i.e.,

(1.11) min
x∈X

f0(x), s.t. g(x; ξi) ≤ 0,∀i = 1, . . . ,M,

where {ξ1, . . . , ξM} contains the M samples after discarding. It is shown in [4] that
under certain assumptions, for any ε ∈ (0, 1), if

(1.12)

(
p+ n− 1

p

) p+n−1∑
i=0

(
N
i

)
τ i(1− τ)N−i ≤ ε,

the solution of (1.11) is feasible for (1.10) with probability at least 1− ε.
Note that if no discarding is performed, the above method is similar to the scenario

approximation approaches in [10,14]. For high-dimensional problems, i.e., n is big, it
is required to set a significantly bigger N and also N − p to have (1.12). Therefore,
the sample-based approximation problem (1.11) will have many functional constraints
and be in the form of (1.1).

Robust optimization by sampling. Different from the chance constrained
problem (1.10), robust optimization requires the constraint g(x; ξ) ≤ 0 to be satisfied
for any ξ ∈ Ξ, i.e.,

(1.13) min
x∈X

f0(x), s.t. g(x; ξ) ≤ 0, ∀ξ ∈ Ξ.

Similar to the scenario approximation method for chance constrained problems, the
sampling approach (e.g., [3]) has also been proposed to numerically solve (1.13). Let
{ξ1, . . . , ξM} be M independently extracted samples. It is shown in [3] that for any
τ ∈ (0, 1) and any ε ∈ (0, 1), if the number of samples satisfies M ≥ n

τε − 1, then
the solution to (1.11) will be a τ -level robustly feasible solution with probability at
least 1 − ε. If n is big, and high feasibility level and high probability are required,
then M would be a very big number, and thus (1.11) has an extremely big number of
functional constraints.

1.2. Existing methods. In this subsection, we review a few existing methods
that could potentially be applied to solve (1.1) and show how our method relates to
them. Some of these methods are primal-dual type as our method, and others are
purely primal methods.

Stochastic mirror-prox method. The proposed method is closely related to
the stochastic mirror-prox method [1, 7] for saddle-point problems or more generally
for variational inequality (VI) problems. By the augmented Lagrangian function, one
can equivalently formulate (1.1) into the following saddle-point problem (c.f., [18]):

(1.14) min
x∈X

max
z
Lβ(x, z).

Assuming ∇Lβ to be Lipschitz continuous and z in a compact set Z, then we can
apply the method in [1] to the above saddle-point problem and have the update:1

(x̂k, ẑk) = ProjX×Z

((
xk − αkgkx, zk + αkg

k
z

))
,(1.15a)

(xk+1, zk+1) = ProjX×Z

((
xk − αkĝkx, zk + αkĝ

k
z

))
,(1.15b)

1Here, we use the Euclidean norm square as the proximal term, while [1] actually uses a more
general Bregman distance function.

4

where (gkx,g
k
z) and (ĝkx, ĝ

k
z) are stochastic approximation of ∇Lβ at (xk, zk) and

(x̂k, ẑk). The above update performs two stochastic gradient (SG) projections. To
have convergence, it seems to be required for VI problems. However, for saddle-point
problems, [13] shows that one SG projection is sufficient for convergence guarantee,
namely, simply set (x̂k, ẑk) = (xk, zk) and then obtain (xk+1, zk+1) by (1.15b).

The methods in [1] and [13] both require the dual variable to be in a compact
set for convergence guarantee. Generally, it is difficult to estimate a valid bound on
the dual variable, especially for a stochastic program. In addition, at each iteration,
they use the same step size for both primal and dual variable update, which seems
to be required in their analysis. On the contrary, we will not assume boundedness
of z but instead we can prove the boundedness of the sequence {zk} in expectation.
Furthermore, we allow to use different step sizes, and this is crucial for the convergence
analysis of our adaptive method.

The SGM for saddle-point problems is also studied in [15]. However, it requires
strong convexity for both primal and dual variables. For bilinear convex-concave
saddle-point problems, the authors of [5] give an optimal primal-dual SGM. With-
out assuming boundedness on either primal or dual variables, they show an O(1/

√
k)

convergence rate in terms of a perturbed primal-dual gap, c.f. [5, Corollary 3.4]. Ap-
plying their method, i.e., [5, Algorithm 3], to an affinely constrained convex problem,
one can show that if the primal variable and the output dual iterate are bounded,
then the convergence rate is O(1/

√
k) in terms of both primal-dual objective gap and

feasibility violation.
Cooperative stochastic approximation. The problem (1.1) can also be equiv-

alently formulated as a stochastic program with a single finite-sum constraint:

(1.16) min
x∈X

f0(x), s.t.
1

M

M∑
j=1

[fj(x)]+ ≤ 0,

and we can apply the cooperative stochastic approximation (CSA) method in [8] to
find an approximate solution. At each iteration k, CSA first samples one constraint
function fjk and check its value at the iterate xk. If fjk(xk) ≥ ηk, set gk = ∇̃fjk(xk),

and otherwise, set gk to an unbiased estimate of ∇̃f0(xk), where ηk > 0 is a parameter
to control constraint violation. Then it updates the iterate by

(1.17) xk+1 = ProjX(xk − αkgk),

where αk is a step size.
For convex problems, CSA is shown to enjoy O(1/

√
k) convergence rate in terms

of both objective and feasibility. The order can be improved to O(1/k) if both the
objective and constraint functions in (1.16) are strongly convex. We will show that
the proposed algorithm can enjoy the same order of convergence rate for convex
problems. To have an improved rate of O

(
(log k)/k

)
, we need strong convexity of

the objective function but only convexity on the constraint functions. However, we
need an additional assumption on the existence of a primal-dual solution. Hence,
our method can have better convergence rate than CSA for solving a problem with
a strongly convex objective but only convex constraint functions, such as finding the
projection onto the intersection of many polyhedral sets [16,23].

Stochastic subgradient with random constraint projection. Let X0 = X
and

(1.18) Xj = {x ∈ Rn : fj(x) ≤ 0}, j = 1, . . . ,M.

5

Then (1.1) can be written to

(1.19) min
x
f0(x), s.t. x ∈ X = ∩Mj=0Xj .

On solving the above problem, we can apply the method in [24, 25] and iteratively
perform the update:

(1.20) xk+1 = ProjXjk

(
xk − αkgk0

)
,

where jk is randomly chosen from {0, 1, . . . ,M}, ProjXj denotes the projection onto

Xj , and gk0 is a stochastic approximation of a subgradient of f0 at xk. Various
sampling schemes on jk are studied in [24]. Under the linear regularity assumption
on the set collection {Xj}Mj=0, a sublinear convergence result is established. If f0 is

convex, the rate is O(1/
√
k) in terms of objective error |f0(xk)−f∗0 | and O

(
(log k)/k

)
in terms of constraint violation [dist(xk,X)]2. In [25], the rate of constraint violation is
improved to O(1/k). Furthermore, if f0 is strongly convex, [25] shows the convergence
rate O((log k)/k) in terms of objective error and O(1/k2) of constraint violation. To
have efficient computation in the update (1.20), Xj is required to be a simple set for
each j = 0, 1, . . . ,M . Hence, if ProjXj ’s are difficult to evaluate, such as the logistic
loss function induced constraint set in the Neyman-pearson classification problem [17],
the method in [24, 25] will be inefficient. By contrast, our update in (1.6) can be
computed efficiently as long as X is simple.

Stochastic proximal-proximal gradient method. Let r(x) = ιX(x) and
gj(x) = ιXj (x), where ιX denotes the indicator function on X, and Xj ’s are defined
in (1.18). Then (1.1) is equivalent to

(1.21) min
x
r(x) +

1

M

M∑
j=1

(f0(x) + gj(x)) .

When f0 is differentiable, the stochastic proximal-proximal gradient (S-PPG) method
[21] can be applied to find a solution of (1.21). It starts from (x0, z0

1, . . . , z
0
M) and

iteratively performs the update:

(1.22)

xk+ 1
2 = ProjX

(
1
M

∑M
j=1 zkj

)
,

xk+1 = ProjXjk

(
2xk+ 1

2 − zkjk − α∇f0(xk+ 1
2

)
,

zk+1
j =

{
zkj + xk+1 − xk+ 1

2 , if j = jk

zkj , if j 6= jk

where jk is chosen from {1, . . . ,M} uniformly at random. Since ProjXjk
needs be

evaluated, S-PPG has the same issue as the update in (1.20). However, it could
be more suitable in a distributed system, for which communication cost is a main
concern.

Stochastic subgradient with single projection. Let h(x) = max1≤j≤M fj(x).
Then (1.1) is equivalent to

(1.23) min
x∈X

f0(x), s.t. h(x) ≤ 0.

For solving the above problem, we can apply the method in [11], which, at every
iteration, inquires a stochastic subgradient of f0 and also a subgradient of h. Although

6

the method in [11] only needs to perform a single projection to the feasible set at
the last step, computing the subgradient of h would generally require evaluating the
function value of all fj ’s, and thus it is inefficient for the big-M case. This issue is
partly addressed in [6], which only checks a batch of randomly sampled constraint
functions at every iteration. However, depending on the underlying problem and
required accuracy, the batch size could be as large as M .

Deterministic primal-dual first-order method. Other related methods are
the deterministic primal-dual first-order algorithms in the author’s previous works
[27, 28]. Although [27, 28] also use the classic augmented Lagrangian function, their
algorithm design and targeted applications are fundamentally different from those in
this paper. The methods in [27, 28] assume differentiability of fj ’s, and they require
exact gradient of f0 and use all fj , j = 1, . . . ,M to update x and z. Hence, if
the exact gradient of f0 is not available or very expensive to compute, or if M is
extremely big, the deterministic methods are either inapplicable or inefficient. In
addition, the update to x and z in Algorithm 1 is Jacobi-type while [27, 28] and all
existing works about deterministic augmented Lagrangian method update the primal
and dual variables in a Gauss-Seidel manner. Furthermore, due to the stochasticity,
the analysis of this paper is fundamentally different and more complicated than that
in [27, 28]. Similarly, the deterministic first-order methods in [9, 30, 31] are also very
expensive or do not apply for the stochastic program with many constraints.

Besides the above reviewed methods, in the literature there are also other methods
that can be applied to (1.1) such as the penalty method with stochastic approximation
[8]. Exhausting all the existing methods is impossible. We refer the interested readers
to the papers above and the references therein.

1.3. Contributions. The main contributions are listed below.

• We propose a novel (adaptive) primal-dual SGM for solving stochastic programs
with many functional constraints. The method is derived based on the classical aug-
mented Lagrangian function. Through a stochastic oracle, it alternatingly performs
stochastic subgradient update to the primal variable and randomized coordinate up-
date to the dual variable. At each iteration, it only needs to sample one out of many
constraint functions and thus has low per-iteration complexity.

• We establish convergence rate results of the proposed method for convex problems
and also problems with strongly convex objective. Different from existing analysis
of primal-dual SGM for saddle-point problems, we do not assume the boundedness
of the dual variable z, but instead we prove the boundedness of the dual iterate
in expectation. For convex problems, we show that the algorithm can achieve
the optimal O(1/

√
k) convergence rate, and for problems with strongly convex

objective, we show that it can achieve O
(
(log k)/k

)
convergence rate, where k is

the number of subgradient inquiries. All convergence rate results are in terms of
primal and/or dual objective value and also primal constraint violation. For the
strongly convex case, the log k factor can be removed if the dual iterate sequence is
assumed to be bounded; see Remark 3.4. To the best of our knowledge, no existing
work has established O(1/k) convergence rate result for a primal-dual SGM by
assuming strong convexity only on the primal objective function, even if the dual
variable is restricted in a bounded set. The CSA method in [8] is a primal SGM,
and it has O(1/k) convergence rate if both the objective and constraint functions
are strongly convex.

• We show the practical performance of the proposed algorithm by testing it on
solving a sample approximation problem of the robust portfolio selection and convex

7

quadratically constrained quadratic programs. The numerical results demonstrate
that the proposed primal-dual SGM can be significantly better than the stochastic
mirror-prox algorithm in [1] and the CSA method in [8].

We emphasize that in comparison to the existing methods mentioned in section 1.2,
the novelty of our results lies in both algorithm design and convergence rate analysis.
The incorporation of the adaptiveness technique is novel in the primal-dual setting.
With adaptiveness, the proposed algorithm can have significantly better numerical
performance. In addition, to achieve O

(
(log k)/k

)
convergence rate, we only require

strong convexity on the objective function but not on the constraint functions.

1.4. Notation and outline. We use bold lower-case letters x, z, . . . for vectors
and xi, zi, . . . for their i-th components. The bold number 0 and 1 denote the all-
zero and all-one vectors, respectively. [M] is short for the set {1, 2, . . . ,M}, [a]+ =
max(0, a) and [a]− = max(0,−a) respectively denote the positive and negative parts
of a real number a. Given a symmetric positive semidefinite matrix D, ‖x‖D is defined

as
√

x>Dx. We use ‖x‖ to denote the Euclidean norm of a vector x. For two vectors
x and y of the same size, x� y denotes their componentwise product. For a convex
function f , we denote by ∇̃f(x) a subgradient of f at x, and the set of all subgradients
of f at x is called the subdifferential of f , denoted by ∂f(x). For a closed convex
set X, ProjX denotes the projection operator onto X. We let Hk contain the history
of Algorithm 1 until (xk, zk), i.e., Hk =

{
x1, z1,x2, z2 . . . ,xk, zk

}
. E[ζ] denotes the

expectation of a random variable ζ, and E[ζ | ξ] is for the expectation of ζ conditional
on ξ. In addition, we denote

(1.24) Φ(x̄; x, z) = f0(x̄)− f0(x) + 1
M

∑M
j=1 zjfj(x̄).

The rest of the paper is outlined as follows. In section 2, we give the technical
assumptions required in our analysis, and in section 3, we analyze the algorithm with
nonadaptive setting and show its convergence rate results. The convergence rate
result of the algorithm with adaptive setting is given in section 4. Numerical results
are provided in section 5, and finally section 6 concludes the paper.

2. Technical assumptions. Throughout our analysis, we make the following
assumptions.

Assumption 1. There exists a primal-dual solution (x∗, z∗) satisfying the Karush-
Kuhn-Tucker (KKT) conditions:

0 ∈ ∂f0(x∗) +NX(x∗) + 1
M

∑M
j=1 z

∗
j ∂fj(x

∗),(2.1a)

x∗ ∈ X, fj(x∗) ≤ 0,∀j ∈ [M],(2.1b)

z∗j ≥ 0, z∗j fj(x
∗) = 0,∀j ∈ [M],(2.1c)

where NX(x) denotes the normal cone of X at x.

Assumption 2. The SG approximation gk0 is unbiased and bounded, i.e., there
is a constant σ > 0 such that

E
[
gk0
∣∣Hk] ∈ ∂f0(xk), E

[
‖gk0‖2

∣∣Hk] ≤ σ2, ∀k.

In addition, there exist constants F and G such that

|fj(x)| ≤ F, ‖∇̃fj(x)‖ ≤ G, ∀ ∇̃fj(x) ∈ ∂fj(x), ∀j ∈ [M], ∀x ∈ X.
8

Assumption 3. For each j = 0, 1, . . . ,M , fj is a closed convex function on X.
In addition, f0 is µ-strongly convex, i.e.,

(2.2) f0(y) ≥ f0(x) + 〈∇̃f0(x),y − x〉+
µ

2
‖y − x‖2,∀x,y ∈ X.

Assumption 1 is satisfied if a certain constraint qualification holds such as the
Slater’s condition [2]. In Assumption 2, the unbiasedness and boundedness assump-
tion on gk0 is standard in the literature of SGM, and the boundedness of each fj and

∇̃fj is satisfied if X is bounded. In Assumption 3, if µ = 0, then f0 is simply a convex
function.

As the KKT conditions in (2.1) hold, there are ∇̃fj(x∗), ∀j ∈ [M] such that

− 1
M

∑M
j=1 z

∗
j ∇̃fj(x∗) ∈ ∂f0(x∗) +NX(x∗).

Hence, from the convexity of f0 and X, it follows that

(2.3) f0(x) ≥ f0(x∗)−
〈

1
M

∑M
j=1 z

∗
j ∇̃fj(x∗),x− x∗

〉
, ∀x ∈ X.

Since z∗j ≥ 0 and fj is convex for each j ∈ [M], we have

z∗j
(
fj(x)− fj(x∗)

)
≥ 〈z∗j ∇̃fj(x∗),x− x∗〉.

The above inequality together with (2.3) and the fact z∗j fj(x
∗) = 0, ∀j ∈ [M] implies

(2.4) Φ(x; x∗, z∗) = f0(x)− f0(x∗) + 1
M

∑M
j=1 z

∗
j fj(x) ≥ 0, ∀x ∈ X.

Furthermore, note that for any β > 0, it holds [βfj(x
∗) + z∗j]+ = z∗j , ∀j ∈ [M],

and thus (2.1a) exactly means 0 ∈ ∂xLβ(x∗, z∗) + NX(x∗). Hence, x∗ is a solution
of minx∈X Lβ(x, z∗), which indicates dβ(z∗) = Lβ(x∗, z∗). From the definitions of Ψβ

and ψβ in (1.2) and (1.3), and also (2.1b) and (2.1c), it is straightforward to have
Ψβ(x∗, z∗) = 0. Therefore,

(2.5) dβ(z∗) = f0(x∗),

i.e., the strong duality holds, and x∗ and z∗ are primal and dual optimal solutions.

3. Convergence analysis of the nonadaptive method. For ease of under-
standing, we first analyze the convergence of Algorithm 1 with the nonadaptive Setting
1. Under Assumptions 1 through 3, we show that for convex problems, our method
can achieve the optimal convergence rate O(1/

√
k), and for problems with strongly

convex objective, it can achieve a near-optimal rate O((log k)/k), where k is the num-
ber of iterations. While existing analysis [1, 12] for saddle-point problems assumes
the boundedness of the dual variable, we do not require such an assumption. Instead
we can bound all zk in expectation by choosing appropriate parameters. In addition,
we do not find any existing work that has shown O((log k)/k) rate for a primal-dual
SGM by assuming strong convexity on the primal objective.

9

3.1. Preliminary results. We first establish a few preliminary results. The
lemma below can be directly verified from the definition of Ψβ .

Lemma 3.1. Let β > 0. Then for any x ∈ X such that fj(x) ≤ 0, ∀j ∈ [M] and
any z ≥ 0, it holds Ψβ(x, z) ≤ 0.

The next lemma is important to establish the convergence rate of our algorithm.
Similar ones in a deterministic form have appeared in [27,28].

Lemma 3.2. Let x̄ ∈ X and z̄ ≥ 0 be random vectors, and let ε1 ≥ 0 and ε2 ≥ 0
be scalars. If for any x ∈ X and z ≥ 0 that may depend on (x̄, z̄), it holds

(3.1) E
[
f0(x̄) + 1

M

∑M
j=1 zjfj(x̄)

]
≤ E

[
f0(x) + Ψβ(x, z̄)

]
+ ε1 + ε2E‖z‖2,

then for any (x∗, z∗) satisfying (2.1),

E
∣∣f0(x̄)− f0(x∗)

∣∣ ≤ 2ε1 + 9ε2‖z∗‖2,(3.2)

E
[

1
M

∑M
j=1[fj(x̄)]+

]
≤ ε1 + ε2‖1 + z∗‖2,(3.3)

E
[
dβ(z∗)− dβ(z̄)

]
≤ 3

2

(
ε1 + 3ε2‖z∗‖2

)
.(3.4)

Proof. Let x = x∗ in (3.1) and recall the definition of Φ in (1.24). Then by Lemma
3.1, we have

(3.5) E
[
Φ(x̄; x∗, z)

]
≤ ε1 + ε2E‖z‖2.

Since −z∗j fj(x̄) ≥ −z∗j [fj(x̄)]+, we have from (2.4) that

(3.6) f0(x̄)− f0(x∗) ≥ − 1
M

∑M
j=1 z

∗
j [fj(x̄)]+.

We obtain the inequality in (3.3), by substituting the above inequality into (3.5) with
z given by zj = 1 + z∗j if fj(x̄) > 0 and zj = 0 otherwise for any j ∈ [M].

Letting zj = 3z∗j if fj(x̄) > 0 and zj = 0 otherwise for each j ∈ [M] in (3.5) and
adding (3.6) together gives

(3.7) E
[

1
M

∑M
j=1 z

∗
j [fj(x̄)]+

]
≤ ε1

2
+

9ε2

2
‖z∗‖2.

Hence, by the above inequality and (3.6), we obtain E
[
f0(x̄) − f0(x∗)

]
− ≤

ε1
2 +

9ε2
2 ‖z

∗‖2. In addition, from (3.5) with z = 0, it follows E[f0(x̄)− f0(x∗)] ≤ ε1. Since
|a| = a+ 2[a]− for any real number a, we have

E
∣∣f0(x̄)− f0(x∗)

∣∣ = E[f0(x̄)− f0(x∗)] + 2E
[
f0(x̄)− f0(x∗)

]
− ≤ 2ε1 + 9ε2‖z∗‖2,

which gives (3.2).
Furthermore, in (3.1), let z = 0 and take x ∈ arg minx∈X f0(x) + Ψβ(x, z̄). We

have Ef0(x̄) ≤ Edβ(z̄) + ε1, which together with (3.6), (3.7), and (2.5) gives the
inequality in (3.4). �

Remark 3.1. From the proof of Lemma 3.2, we see that if (3.5) holds for any
z ≥ 0, then the inequalities in (3.2) and (3.3) hold.

The following two lemmas will be used to establish an important inequality for
running one iteration of Algorithm 1. Their proofs are given in the appendix.

10

Lemma 3.3. For any deterministic or stochastic z ≥ 0, it holds

−Ψβ(xk, zk) + 1
M

∑M
j=1 zjfj(x

k) + 1
2ρk

E
[
‖zk+1 − z‖2

∣∣Hk]
≤ 1

2ρk
‖zk − z‖2− 1

2ρk

(
β
ρk
− 1
)
E
[
‖zk+1 − zk‖2

∣∣Hk](3.8)

+E
[〈

zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)
〉 ∣∣Hk].

Lemma 3.4. Under Assumption 2, for any x ∈ X and any z, it holds

(3.9) 1
M

∑M
j=1 ‖∇̃xψβ(fj(x), zj)‖2 ≤ 2β2F 2G2 + 2G2

M ‖z‖
2.

By the previous three lemmas, we establish an important result for running one
iteration of Algorithm 1 and then use it to show the convergence rate results.

Theorem 3.5 (fundamental result). Under Assumptions 2 and 3, and assuming
Dk � I

αk
, ∀ k for a positive number sequence {αk}k≥1, let (x, z) be any deterministic

or stochastic vector such that x ∈ X and z ≥ 0. Then

E
[
f0(xk) + 1

M

∑M
j=1 zjfj(x

k)
]

+
1

2
E‖xk+1 − x‖2Dk

+
1

2ρk
E‖zk+1 − z‖2

≤ E
[
f0(x) + Ψβ(x, zk)

]
+

1

2
E‖xk − x‖2Dk−µI +

1

2ρk
E‖zk − z‖2(3.10)

+ αk

(
σ2 + 2β2F 2G2 + 2G2

M E‖zk‖2
)
− 1

2ρk

(
β
ρk
− 1
)
E‖zk+1 − zk‖2

−E
[〈

xk − x,gk0 − ∇̃f0(xk)
〉]
− E

[〈
xk − x,hk − ∇̃xΨβ(xk, zk)

〉]
+E

[〈
zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)

〉]
,

where ∇̃f0(xk) = E[gk0 |Hk] and ∇̃xΨβ(xk, zk) = E[hk |Hk].
Proof. From the update (1.6), it follows that for any x ∈ X,

(3.11)
〈
xk+1 − x,gk0 + hk + Dk(xk+1 − xk)

〉
≤ 0.

Next we estimate a lower bound about the left hand side of the above inequality.
First, We write

〈
xk+1 − x,gk0

〉
=
〈
xk+1 − xk,gk0

〉
+
〈
xk − x,gk0

〉
. By the Young’s

inequality, it holds

(3.12)
〈
xk+1 − xk,gk0

〉
≥ − 1

4αk
‖xk+1 − xk‖2 − αk‖gk0‖2.

Also, we write〈
xk − x,gk0

〉
=
〈
xk − x, ∇̃f0(xk)

〉
+
〈
xk − x,gk0 − ∇̃f0(xk)

〉
,

where ∇̃f0(xk) = E[gk0 |Hk] ∈ ∂f0(xk). Hence, from (3.12) and (2.2), it follows that

〈
xk+1 − x,gk0

〉
≥ − 1

4αk
‖xk+1 − xk‖2 − αk‖gk0‖2 + f0(xk)− f0(x) +

µ

2
‖xk − x‖2

+
〈
xk − x,gk0 − ∇̃f0(xk)

〉
.

11

Taking conditional expectation, we have from the above inequality and Assumption
2 that

E
[〈

xk+1 − x,gk0
〉 ∣∣Hk]

≥ − 1

4αk
E
[
‖xk+1 − xk‖2

∣∣Hk]− αkσ2 + E
[
f0(xk)− f0(x) +

µ

2
‖xk − x‖2

∣∣Hk]

+E
[〈

xk − x,gk0 − ∇̃f0(xk)
〉 ∣∣Hk].(3.13)

Similar to (3.13), we have

E
[〈

xk+1 − x,hk
〉 ∣∣Hk](3.14)

≥ − E
[

1

4αk
‖xk+1 − xk‖2 + αk‖hk‖2

∣∣Hk]+ E
[
Ψβ(xk, zk)−Ψβ(x, zk)

∣∣Hk]
+E

[〈
xk − x,hk − ∇̃xΨβ(xk, zk)

〉 ∣∣Hk],
where ∇̃xΨβ(xk, zk) = E[hk |Hk]. Since jk is chosen from [M] uniformly at random,
by (1.5), (3.9) and the Young’s inequality, we have

−αkE
[
‖hk‖2

∣∣Hk] = − αk
M

M∑
j=1

∥∥∇̃xψβ
(
fj(x

k), zkj
)∥∥2

≥ − αk
(

2β2F 2G2 +
2G2

M
‖zk‖2

)
.(3.15)

In addition,

〈
xk+1 − x,Dk(xk+1 − xk)

〉
=

1

2

[
‖xk+1 − x‖2Dk

− ‖xk − x‖2Dk
+ ‖xk+1 − xk‖2Dk

]
.

(3.16)

Taking expectation on both sides of (3.13) through (3.16), summing them up,
substituting into (3.11), and noting Dk � I

αk
gives

E
[
f0(xk)− f0(x) + Ψβ(xk, zk)−Ψβ(x, zk)

]
+

1

2
E‖xk+1 − x‖2Dk

≤ 1

2
E‖xk − x‖2Dk−µI + αk

(
σ2 + 2β2F 2G2 +

2G2

M
E‖zk‖2

)
(3.17)

−E
[〈

xk − x,gk0 − ∇̃f0(xk)
〉]
− E

[〈
xk − x,hk − ∇̃xΨβ(xk, zk)

〉]
.

Taking expectation on both sides of (3.8), adding it to (3.17), and rearranging terms
yield the desired result. �

By Theorem 3.5, we can bound the growth of E‖zk‖2 as below. Its proof is given
in the appendix.

Proposition 3.6. Under Assumptions 1 through 3, and assuming Dk � I
αk
, ∀ k

for a positive number sequence {αk}k≥1, let
{

(xk, zk)
}

be the sequence generated from
Algorithm 1 with parameters satisfying

(3.18) ρkDk � ρk+1(Dk+1 − µI), ∀k ≥ 1,

12

then for any t ≥ 1, it holds that

E‖zt+1‖2(3.19)

≤ 2ρ1‖x1 − x∗‖2D1−µI + 4‖z∗‖2 +

t∑
k=1

4αkρk

(
σ2 + 2β2F 2G2 +

2G2

M
E‖zk‖2

)
,

where (x∗, z∗) is any point satisfying the KKT conditions in (2.1).

3.2. Convergence rate for convex problems. In this subsection, we establish
the convergence rate of Algorithm 1 for convex problems, i.e., µ = 0. Different from
existing analysis for saddle-point problems, we do not assume the boundedness of the
dual variable z but instead we can bound zk in expectation.

Using Proposition 3.6, we specify the parameters and bound E‖zk‖2. The proofs
of both propositions below are given in the appendix.

Proposition 3.7 (pre-determined maximum number of iterations). Under As-
sumptions 1 through 3, given a positive integer K, set

(3.20) Dk =

√
K

α
I, ρk =

ρ√
K
, β ≥ ρ, ∀1 ≤ k ≤ K,

where α, ρ and β are positive scalars satisfying αρ < M
8G2 . Then for any 1 ≤ k ≤ K+1,

it holds that

(3.21) E‖zk‖2 ≤ C1

1− 8αρG2

M

where

(3.22) C1 =
2ρ

α
‖x1 − x∗‖2 + 4‖z∗‖2 + 4αρ

(
σ2 + 2β2F 2G2

)
.

If the maximum number of iterations is not pre-determined, we set parameters
adaptive to iteration numbers and can still bound E‖zk‖2.

Proposition 3.8 (varying maximum number of iterations). Under Assumptions
1 through 3, let

{
(xk, zk)

}
be the sequence generated from Algorithm 1 with parameters

set to

(3.23) Dk =

√
k + 1 log(k + 1)

α
I, ρk =

ρ√
k + 1 log(k + 1)

, β ≥ ρ, ∀k ≥ 1,

where α, ρ and β are positive scalars satisfying αρ < M
20G2 . Then for any k ≥ 1, it

holds that

(3.24) E‖zk‖2 ≤ C2

1− 20αρG2

M

,

where

(3.25) C2 =
2ρ

α
‖x1 − x∗‖2 + 4‖z∗‖2 + 10αρ

(
σ2 + 2β2F 2G2

)
.

13

To show the convergence rate results, we need the following lemma to handle the
last three expectation terms in (3.10). Its proof is given in the appendix and follows
the proof of [13, Lemma 3.1].

Lemma 3.9. For any deterministic or stochastic vector (x, z) with x ∈ X and
z ≥ 0, it holds for any positive number sequence {αk} that

−
∑K
k=1 αkE

〈
xk − x,gk0 − ∇̃f0(xk)

〉
≤ 1

2E‖x
1 − x‖2 + σ2

2

∑K
k=1 α

2
k,(3.26)

−
∑K
k=1 αkE

〈
xk − x,hk −∇xΨβ(xk, zk)

〉
≤ 1

2E‖x
1 − x‖2

+
∑K
k=1 α

2
k

(
β2F 2G2 + G2

M E‖zk‖2
)
,

(3.27)

∑K
k=1 αkE

〈
zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)

〉
≤ 1

2E‖z
1 − z‖2 + F 2

2

∑K
k=1 α

2
k.

(3.28)

Using Theorem 3.5 and also the boundedness of E‖zk‖2, we are now ready to
show the convergence rate results for the case µ = 0. First, we establish a result with
constant step sizes, and the order is O(1/

√
k), where k is the iteration number.

Theorem 3.10 (Convergence rate for convex case with constant step sizes).
Under Assumptions 1 through 3, let {(xk, zk)} be the sequence generated from Algo-
rithm 1. Given any positive integer K, set the parameters according to (3.20), let

x̄K = 1
K

∑K
k=1 xk and z̄K = 1

K

∑K
k=1 zk, and define

(3.29) φ1(x) =
3

2α
‖x1 − x‖2 + α

(
3

2
σ2 + 3β2F 2G2 +

3G2

M

C1

1− 8αρG2

M

+
F 2

2

)
,

where C1 is defined in (3.22). Then

E
∣∣f0(x̄K)− f0(x∗)

∣∣ ≤ 1√
K

(
2φ1(x∗) +

9(α+ ρ)

2αρ
‖z∗‖2

)
,(3.30a)

E

 1

M

M∑
j=1

[fj(x̄
K)]+

 ≤ 1√
K

(
φ1(x∗) +

α+ ρ

2αρ
‖1 + z∗‖2

)
.(3.30b)

In addition, if X is bounded, then

(3.30c) E
[
dβ(z∗)− dβ(z̄K)

]
≤ 3

2
√
K

(
max
x∈X

φ1(x) +
3(α+ ρ)

2αρ
‖z∗‖2

)
.

Proof. When the parameters are set according to (3.20), we have (3.21). Hence,
multiplying αk = α√

K
to (3.10), summing it up from k = 1 through K, using (3.26)

through (3.28), and noting z1 = 0 give

α√
K

K∑
k=1

E

f0(xk) +
1

M

M∑
j=1

zjfj(x
k)

 ≤ α√
K

K∑
k=1

E
[
f0(x) + Ψβ(x, zk)

]
+

3

2
E‖x1 − x‖2 +

(
α

2ρ
+

1

2

)
E‖z‖2 + α2

(
3

2
σ2 + 3β2F 2G2 +

3G2

M

C1

1− 8αρG2

M

+
F 2

2

)
.

14

Since z ≥ 0, by the convexity of fj ’s and also concavity of Ψβ about z, we have from
the above inequality and the definition of φ1 in (3.29) that

E

f0(x̄K) +
1

M

M∑
j=1

zjfj(x̄
K)

 ≤ E
[
f0(x) + Ψβ(x, z̄K)

]
+

1√
K

E
[
φ1(x) +

α+ ρ

2αρ
‖z‖2

]
.

(3.31)

Let x = x∗ in the above inequality. Then by Lemma 3.1 and the definition of Φ in
(1.24), we have

E
[
Φ(x̄K ; x∗, z)

]
≤ φ1(x∗)√

K
+

1√
K

α+ ρ

2αρ
E‖z‖2, ∀z ≥ 0.

Hence, (3.30a) and (3.30b) follow from the proof of Lemma 3.2 and Remark 3.1.
Furthermore, as X is bounded, the inequality (3.31) implies

E

f0(x̄K) +
1

M

M∑
j=1

zjfj(x̄
K)


≤ E

[
f0(x) + Ψβ(x, z̄K)

]
+

1√
K

[
max
x∈X

φ1(x) +
α+ ρ

2αρ
E‖z‖2

]
.

Therefore, we obtain (3.30c) from Lemma 3.2 and complete the proof. �

Below we make a few remarks about the results in Theorem 3.10. Similar remarks
also apply to Theorems 3.11 and 3.14 established later.

Remark 3.2. From the proof of Theorem 3.10, we see that the setting of ρk is
for bounding E‖zk‖2. If the dual variable z is bounded, then ρk can be taken as large
as the augmented penalty parameter β.

Remark 3.3. By the Markov’s inequality Prob(ξ ≥ ε) ≤ E[ξ]
ε for a nonnegative

random variable ξ, one can easily have a high-probability result from Theorem 3.10.
One drawback of the result is that in (3.30b), the bound is on the average of all

inequality constraint violation. Let γ =
E[maxj∈[M][fj(x̄

K)]+]
E[1
M

∑M
j=1[fj(x̄K)]+]

. Then (3.30b) implies

E
[
maxj∈[M][fj(x̄

K)]+
]
≤ γ√

K

(
φ1(x∗) + ‖1+z∗‖2

2ρ

)
. If γ = O(1), then the maximum

violation of the inequality constraint is similar to the avarage violation. However, in
the worse case, γ could be as large as M .

One may argue that since the averaged constraint violation is used as a measure in
the convergence rate result, it could be more natural to work on the equivalent problem
(1.16), for which only one dual variable is needed instead of the many more M dual
variables required in Algorithm 1. We point out two potential issues to pursue this
direction. First, the augmented Lagrangian function of (1.16) has a term that is a

composition of ψβ given in (1.3) with the finite-sum 1
M

∑M
j=1[fj(x)]+. For a stochastic

program with such a nested structure, the convergence rate of SGM is much worse [26]
due to the difficulty of obtaining an unbiased SG. Second, the Slater’s condition can
never hold for (1.16). Hence, although one dual variable is needed, the existence of
a KKT point is not guaranteed even if the Slater’s condition holds for the original
problem (1.1), and this would affect the convergence analysis. Also, we point out that
the use of M dual variables does not cause an issue of memory or computational

15

cost. Compared to the data involved in the M constraint functions, the size of M dual
variables is smaller.

With varying step sizes, we can also show a sublinear convergence rate result of
Algorithm 1 as follows. The order is worse with an additional logarithmic term.

Theorem 3.11 (Convergence rate for convex case with varying step sizes). Under
Assumptions 1 through 3, let {(xk, zk)} be the sequence generated from Algorithm 1.
Set parameters according to (3.23). For any integer K ≥ 1, let αk = α√

k+1 log(k+1)
for

1 ≤ k ≤ K, x̄K = 1∑K
k=1 αk

∑K
k=1 αkx

k and z̄K = 1∑K
k=1 αk

∑K
k=1 αkz

k, and define

(3.32) φ2(x) =
3

2α
‖x1 − x‖2 + 2.5α

(
3

2
σ2 + 3β2F 2G2 +

3G2

M

C2

1− 20αρG2

M

+
F 2

2

)
,

with C2 defined in (3.25). Then

E
∣∣f0(x̄K+1)− f0(x∗)

∣∣ ≤ log(K + 1)

2(
√
K + 2−

√
2)

(
2φ2(x∗) +

9(α+ ρ)

2αρ
‖z∗‖2

)
,(3.33a)

E

 1

M

M∑
j=1

[fj(x̄
K+1)]+

 ≤ log(K + 1)

2(
√
K + 2−

√
2)

(
φ2(x∗) +

α+ ρ

2αρ
‖1 + z∗‖2

)
.(3.33b)

In addition, if X is bounded, then

(3.33c) E
[
dβ(z∗)− dβ(z̄K)

]
≤ 3 log(K + 1)

4(
√
K + 2−

√
2)

(
max
x∈X

φ2(x) +
3(α+ ρ)

2αρ
‖z∗‖2

)
.

Proof. When the parameters are set according to (3.23), we have (3.24). Hence,
multiplying αk to both sides of (3.10), summing it over k, and using (3.26) through
(3.28), we have

K∑
k=1

αkE

f0(xk) +
1

M

M∑
j=1

zjfj(x
k)

 ≤ K∑
k=1

αkE
[
f0(x) + Ψβ(x, zk)

]
+

3

2
E‖x1 − x‖2

+

(
α

2ρ
+

1

2

)
E‖z‖2 +

K∑
k=1

α2
k

(
3

2
σ2 + 3β2F 2G2 +

3G2

M

C2

1− 20αρG2

M

+
F 2

2

)
.(3.34)

Note

K∑
k=1

αk =

K∑
k=1

α√
k + 1 log(k + 1)

≥ α

log(K + 1)

∫ K+1

1

1√
x+ 1

dx =
2α(
√
K + 2−

√
2)

log(K + 1)
.

Hence, dividing both sides of (3.34) by
∑K
k=1 αk, we have from the convexity of fj ’s

and the concavity of Ψβ about z, and also using
∑K
k=1 α

2
k ≤ 2.5α2 from (A.3) and

the definition of φ2 in (3.32) that

E
[
f0(x̄K) + 1

M

∑M
j=1 zjfj(x̄

K)
]

≤ E
[
f0(x) + Ψβ(x, z̄K)

]
+ log(K+1)

2(
√
K+2−

√
2)
E
[
φ2(x) + α+ρ

2αρ ‖z‖
2
]
.

Now following the same arguments as those below (3.31) in the proof of Theorem
3.10, we obtain the desired results and complete the proof. �

16

3.3. Convergence rate for strongly convex problems. In this subsection,
we analyze the convergence rate of Algorithm 1 for strongly convex problems, i.e.,
µ > 0 in (2.2). Similar to the convex case, we first bound E‖zk‖2 by choosing
appropriate parameters. The proof is shown in the appendix.

Proposition 3.12. Under Assumptions 1 through 3 with µ > 0, for any given
positive integer K, let {(xk, zk)} be the sequence generated from Algorithm 1 with
parameters set to

(3.35) Dk =
k + 1

α
I, ρk =

ρ

log(K + 1)
, β ≥ 2ρ

log 2
, ∀1 ≤ k ≤ K,

where α ≥ 1
µ and αρ < M

8G2 . Then for any 1 ≤ k ≤ K + 1,

(3.36) E‖zk‖2 ≤ C3

1− 8αρG2

M

,

where

(3.37) C3 =
2ρ

log(K + 1)

(
2

α
− µ

)
‖x1 − x∗‖2 + 4‖z∗‖2 + 4αρ(σ2 + 2β2F 2G2).

Similar to Lemma 3.9, we have the following result bounding the expectation
terms in (3.10). The proof is also given in the appendix.

Lemma 3.13. Under the assumptions of Proposition 3.12, for any deterministic
or stochastic vector z ≥ 0, we have

K∑
k=1

E
[〈

zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)
〉]

≤ log(K + 1)

2ρ
E

[
‖z1 − z‖2 +

K∑
k=1

‖zk+1 − zk‖2
]
.(3.38)

Using (3.10) and (3.36), we establish the convergence rate result of Algorithm 1
for the case of µ > 0 as follows.

Theorem 3.14 (convergence rate for strongly convex case). Under the assump-
tions of Proposition 3.12, we have

(3.39) E‖xK+1 − x∗‖2 ≤ 2α

K + 1

(
φ3(x∗) +

log(K + 1)

ρ
‖z∗‖2

)
,

where
(3.40)

φ3(x) =

(
1

α
− µ

2

)
‖x1 − x‖2 + α log(K + 1)

(
σ2 + 2β2F 2G2 +

2G2

M

C3

1− 8αρG2

M

)
,

with C3 defined in (3.37). In addition, let x̄K =
∑K
k=1 xk

K and z̄K =
∑K
k=1 zk

K . Then

E
∣∣f0(x̄K)− f0(x∗)

∣∣ ≤ 1

K

(
2φ3(x∗) +

9 log(K + 1)

ρ
‖z∗‖2

)
,(3.41a)

E

 1

M

M∑
j=1

[fj(x̄
K)]+

 ≤ 1

K

(
φ3(x∗) +

log(K + 1)

ρ
‖1 + z∗‖2

)
.(3.41b)

17

Proof. Let αk = α
k+1 , ∀ k ≥ 1. Since α ≥ 1

µ , it holds k+1
α ≥ k+2

α − µ, i.e., 1
αk
≥

1
αk+1

− µ. Hence, summing up (3.10) with x = x∗ from k = 1 through K, using

Lemma 3.13, and noting z1 = 0 and the choice of ρk yield

K∑
k=1

E

[
f0(xk) +

1

M

M∑
j=1

zjfj(x
k)

]
+

1

2αK
E‖xK+1 − x∗‖2 +

1

2ρK
E‖zK+1 − z‖2

≤
K∑
k=1

E
[
f0(x∗) + Ψβ(x∗, zk)

]
+

(
1

2α1
− µ

2

)
‖x1 − x∗‖2 +

1

ρ1
E‖z‖2

+

K∑
k=1

αk

(
σ2 + 2β2F 2G2 +

2G2

M
E‖zk‖2

)
−

K∑
k=1

1

2ρk

(
β

ρk
− 2

)
E‖zk+1 − zk‖2

≤ Kf0(x∗) + E
[
φ3(x∗) +

1

ρ1
‖z‖2

]
,(3.42)

where in the first inequality, we have used the fact E
〈
xk − x∗,gk0 − ∇̃f0(xk)

〉
= 0

and E
〈
xk − x∗,hk −∇xΨβ(xk, zk)

〉
= 0, and in the second inequality, we have used

(3.36) and (A.6), Lemma 3.1, the setting β ≥ 2ρk, ∀ k, and also the definition of φ3

in (3.40). Let z = z∗ in the above inequality. Then by (2.4), we have that

1

2αK
E‖xK+1 − x∗‖2 ≤ φ3(x∗) +

1

ρ1
‖z∗‖2,

which clearly implies (3.39) by the parameters given in (3.35) and also αK = α
K+1 .

Furthermore, dropping the terms about ‖xK+1 − x∗‖2 and ‖zK+1 − z‖2 on the
left hand side of (3.42), and using the convexity of fj ’s, we have for any z ≥ 0 that

E
[
f0(x̄K)− f0(x∗) + 1

M

∑M
j=1 zjfj(x̄

K)
]
≤ 1

KE
[
φ3(x∗) + 1

ρ1
‖z‖2

]
.

Now using Lemma 3.2 and Remark 3.1, we obtain the desired results. �

Remark 3.4. The order of the established rate is worse than the optimal one ob-
tained for a primal SGM by a log(K+1) factor. That term appears essentially because
of the setting of ρk to bound the dual iterate. If we assume {zk} to be bounded, then
we can set ρk = β

2 and remove the logarithmic term. Furthermore, if the maximum
number K of iteration is not given, we can set

Dk =
k + 1

α
I, ρk =

ρ

log(k + 1)
, β ≥ 2ρ

log 2
, ∀k,

with α ≥ 1
µ . These parameters satisfy the conditions in Proposition 3.6, and thus we

can still have a sublinear convergence result through first bounding E‖zk‖2. However,
there will be an additional log(K + 1) term in the obtained result, i.e., O

(
[log(K +

1)]2/(K + 1)
)

for any positive integer K. The result can be shown by following the
proofs of Proposition 3.12 and Theorem 3.14. We leave it to the interested readers.

4. Convergence analysis of the adaptive method. In this section, we ana-
lyze Algorithm 1 with the adaptive Setting 2 for Dk’s. For simplicity and also due to
the page limitation, we only consider the convex case with pre-determined maximum
number of iterations. For the convex case with varying maximum number of iterations
and the strongly convex case, we can have similar results as those in section 3.

18

Similar to the analysis in the previous section, we first bound E‖zk‖2 as follows.
Its proof is given in the appendix.

Proposition 4.1. Assume that X is bounded and also Assumptions 1 through 3
hold. Given a positive integer K, let α > 0 and ρ > 0 such that αρ < M

8G2 , and let

(4.1) αk =
α√
K
, ρk =

ρ√
K
, β ≥ ρ, ∀1 ≤ k ≤ K.

Suppose that {(xk, zk)} is generated from Algorithm 1 with Dk set according to Setting
2 and all other parameters specified in (4.1). Then for any x ∈ X, we have

(4.2)
1

2

K∑
k=1

(
‖xk − x‖2Dk

− ‖xk+1 − x‖2Dk

)
≤
√
K

2α
‖x1 − x‖2 +

ηB2
√
nK

2
.

In addition, for any 1 ≤ k ≤ K + 1, it holds that

(4.3) E‖zk‖2 ≤ C4

1− 8αρG2

M

.

Here B = maxx1,x2∈X ‖x1 − x2‖∞, and

(4.4) C4 =
2ρ

α
‖x1 − x∗‖2 + 2ρηB2

√
n+ 4‖z∗‖2 + 4αρ

(
σ2 + 2β2F 2G2

)
.

By the above proposition, we have the convergence rate estimate of Algorithm 1
with the adaptive Setting 2 about Dk’s.

Theorem 4.2. Under Assumptions 1 through 3, let {(xk, zk)} be generated from
Algorithm 1 with Dk set according to Setting 2. Given any positive integer K, set
the parameters according to (4.1), let x̄K = 1

K

∑K
k=1 xk and z̄K = 1

K

∑K
k=1 zk, and

define

(4.5) φ4(x) = 3
2α‖x

1 − x‖2 + ηB2√n
2 + α

(
3
2σ

2 + 3β2F 2G2 + 3G2

M
C4

1− 8αρG2

M

+ F 2

2

)
,

where C4 is defined in (4.4). If X is bounded, then

E
∣∣f0(x̄K)− f0(x∗)

∣∣ ≤ 1√
K

(
2φ4(x∗) + 9(α+ρ)

2αρ ‖z
∗‖2
)
,(4.6a)

E
[

1
M

∑M
j=1[fj(x̄

K)]+

]
≤ 1√

K

(
φ4(x∗) + α+ρ

2αρ ‖1 + z∗‖2
)
.(4.6b)

E
[
dβ(z∗)− dβ(z̄K)

]
≤ 3

2
√
K

(
maxx∈X φ4(x) + 3(α+ρ)

2αρ ‖z
∗‖2
)
.(4.6c)

Proof. Multiply αk = α√
K

to (3.10), sum it up from k = 1 through K, use (3.26)

through (3.28) and also (4.2), and note z1 = 0. Then we have from (4.3) that

α√
K

K∑
k=1

E

[
f0(xk) +

1

M

M∑
j=1

zjfj(x
k)

]
≤ α√

K

K∑
k=1

E
[
f0(x∗) + Ψβ(x, zk)

]
+
αηB2√n

2

+
3

2
E‖x1 − x‖2 +

(
α

2ρ
+

1

2

)
E‖z‖2 + α2

(
3

2
σ2 + 3β2F 2G2 +

3G2

M

C4

1− 8αρG2

M

+
F 2

2

)
.

19

Now the desired results can be obtained by following the same arguments as those
in the proof of Theorem 3.10. �

Remark 4.1. From the proofs of Proposition 4.1 and Theorem 4.2, we see that
the inequality (4.2) is important to bound E‖zk‖2 and to have the convergence rate
results. In addition, while proving (4.2), we use the bound ‖sk‖ = O(

√
k). Since we

scale the SGs in Setting 2, we automatically have such a bound. Without the scaling
process, we may not have it unless we assume the dual variable to be bounded.

5. Numerical experiments. In this section, we test the proposed method
(named PDSG) on solving a sample approximation problem of the robust portfolio se-
lection (RPS) and also three quadratically constrained quadratic programs (QCQP).
We compare to the stochastic mirror-prox method in [7] and the CSA method in [8].
The RPS test is performed in MATLAB 2016a installed on a Macbook Pro with 8
gigabyte memory, while the QCQP test is in MATLAB 2018a installed on a Dell
workstation with 32 gigabyte memory.

5.1. Sample approximation of robust portfolio selection. Suppose that
one investor has a unit of capital to invest on n assets. Assume the return rate of the
i-th asset follows a uniform distribution on [µi−σi, µi+σi] for each i ∈ [n]. The RPS
aims to maximize the expected return subject to a minimum return c for all possible
return rate, i.e.,

(5.1) max
x∈X

µ>x, s.t.

n∑
i=1

ξixi ≥ c, ∀ξi ∈ [µi − σi, µi + σi],∀i ∈ [n],

where X = {x : x ≥ 0,
∑n
i=1 xi = 1

}
. It is easy to see that the above robust constraint

is equivalent to
∑n
i=1(µi−σi)xi ≥ c, and thus (5.1) can be equivalently formulated as a

linear program with only two linear constraints and also the nonnegativity constraint.

Now suppose that the distribution of the return rate ξ is unknown but its samples
are available. Let {ξ1, . . . , ξM} be M samples of ξ and µ̄ be the empirical mean. Then
we can solve a sample approximation of (5.1), i.e.,

(5.2) max
x∈X

µ̄>x, s.t. ξ>j x ≥ c,∀j ∈ [M].

The sample approximation problem is still a linear program, and one can apply any
linear program solver. We use the proposed method in this test simply to see if it can
numerically perform well. We set n = 10 and M = 104. All entries of µ̄ are generated
independently following the uniform distribution on [1, 2]. For each j ∈ [M], we
set ξj = µ̄ + ζj with ζj generated by uniform distribution on [−0.5, 0.5]n. Then

we let c = 0.9 minj∈[M],x∈X ξ>j x to ensure that (5.2) has a strict feasible solution.
The parameters of our algorithm are set according to (3.20) with K = 106, and
α = ρ = β = 1. The initial point is randomly generated. Figure 1 shows the distance
of objective value to the optimal value, the averaged constraint violation, and also
the maximum constraint violation, where the optimal objective value is obtained
by MATLAB’s built-in function linprog. The feasibility curves only show the first
5,000 iterations, after which the points remain feasible. We also test the mirror-prox
method [7] and the CSA method [8] and find that they perform almost the same as
our method on this simple example.

20

0 5 10
number of iteration 105

10-4

10-3

10-2

10-1

100

ob
je

ct
iv

e
di

st
an

ce
 to

 o
pt

im
al

ity

0 2000 4000
number of iteration

10-8

10-6

10-4

10-2

av
er

ag
e

fe
as

ib
ili

ty
 r

es
id

ua
l

0 2000 4000
number of iteration

10-4

10-3

10-2

10-1

100

m
ax

 fe
as

ib
ili

ty
 r

es
id

ua
l

Fig. 1. Results given by Algorithm 1 with nonadaptive setting on solving an instance of the
sample approximation (5.2) of the robust portfolio selection. Left: the distance of objective value
at averaged point to optimal value |f0(x̄k) − f0(x∗)|; Middle: the average constraint violation

at averaged point 1
M

∑M
j=1[fj(x̄

k)]+; Right: the maximum constraint violation at averaged point

maxj∈[M][fj(x̄
k)]+.

5.2. Quadratically constrained quadratic program. In this subsection, we
test the proposed method on a finite-sum structured quadratic program with many
quadratic constraints, i.e.,

(5.3) min
x∈X

1

2N

N∑
i=1

‖Hix− ci‖2, s.t.
1

2
x>Qjx + a>j x ≤ bj , j = 1, . . . ,M.

Here X = [−10, 10]n; for each i ∈ [N], Hi ∈ Rp×n and ci are randomly generated
with components independently following standard Gaussian distribution; the entries
of every aj also follow standard Gaussian distribution; Qj ’s are randomly generated
symmetric positive semidefinite matrices; each bj is generated according to uniform
distribution on [0.1, 1.1]. Note that for the generated data, the Slater’s condition
holds, and thus there must exist a KKT point for (5.3). Let ξ be a random variable
with uniform distribution on [N]. Then the objective of (5.3) can be written to
Eξ 1

2‖Hξx− cξ‖2, and thus (5.3) is in the form of (1.1).
In the experiment, we test on three QCQP instances of different size. For all

of them, we set N = M = 104 in (5.3), and the dimension (n, p) is set to (10, 5),
(200, 150), and (400, 350) respectively for the three instances. We test the proposed
algorithm with both nonadaptive and adaptive settings. For the nonadaptive one, we
set algorithm parameters according to (3.20) with K = 50, 000, α = ρ =

√
10, and

β = 1, and it is named as PDSG-nonadp. For the adaptive method, i.e., Dk given
according to Setting 2, we set η = 1√

10
and the other parameters according to (4.1)

with K = 50, 000, α = 10, ρ =
√

10, and β = 1, and we name it as PDSG-adp.
The stochastic mirror-prox method [7] with update given in (1.15) is applied on the
equivalent saddle-point problem (1.14). Although the mirror-prox method requires
a compact Z, we simply set Z = RM , and the method still works well in this test.
We use the same penalty parameter β = 1 and the same step size αk as for our
nonadaptive method. Also we apply the CSA method [8] with update given in (1.17).
The same step size αk is used, and ηk is set to 1/

√
K for all k. For all the tested

methods, at each iteration, we sample 10 component functions in the objective and
also 10 constraint functions to obtain an unbiased SG, i.e., mini-batch of size 10 is
applied. Projecting onto the set {x : 1

2x>Qx + a>x ≤ b} does not generally admit
an analytic solution and requires an iterative method. Hence, the methods in [21,24]

21

with updates (1.20) and (1.22) could be inefficient on solving the QCQP problem and
are not compared.

Figure 2 shows the results for each method on the three QCQP instances, includ-
ing the objective error, average constraint violation, and also maximum constraint
violation with respect to epoch, where the “optimal” solution is computed by running
PDSG-adp to 1,000 epochs for the smallest instance and 500 epochs for another two.
Table 1 shows the running time (in second) of each method. Since all the tested
methods have almost the same per-iteration complexity, their total running times are
almost the same. The very long time for the largest instance is because the data
size in this instance almost reaches the limit of machine memory. From the results,
we see that the proposed algorithm performs significantly better than the stochastic
mirror-prox and CSA methods. In addition, the adaptive PDSG is significantly bet-
ter than the nonadaptive one. Note that we scale the SGs in the adaptive PDSG.
Hence, with the parameters we set, the two PDSGs use roughly the same step size in
this experiment. Therefore, the better performance of the adaptive method is mainly
attributed to its different setting of Dk.

0 10 20 30 40 50
number of epochs

10-6

10-4

10-2

100

102

ob
je

ct
iv

e
di

st
an

ce
 to

 o
pt

im
al

ity PDSG-nonadp
PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-10

10-5

100

105

av
er

ag
e

fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp

PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-4

10-2

100

102

m
ax

 fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp

PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-6

10-4

10-2

100

102

ob
je

ct
iv

e
di

st
an

ce
 to

 o
pt

im
al

ity PDSG-nonadp
PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-6

10-4

10-2

100

102

av
er

ag
e

fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp

PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-2

10-1

100

101

102

m
ax

 fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp
PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-4

10-2

100

102

ob
je

ct
iv

e
di

st
an

ce
 to

 o
pt

im
al

ity PDSG-nonadp
PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-10

10-5

100

105

av
er

ag
e

fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp

PDSG-adp
CSA
mirror-prox

0 10 20 30 40 50
number of epochs

10-4

10-2

100

102

m
ax

 fe
as

ib
ili

ty
 r

es
id

ua
l PDSG-nonadp

PDSG-adp
CSA
mirror-prox

Fig. 2. Results given by Algorithm 1 with both nonadaptive and adaptive settings (named
PDSG-nonadp and PDSG-adp), the stochastic mirror-prox method in [7], and the CSA method in [8]
on solving three instances of the quadratically constrained quadratic programming (5.3), each in-
stance with N = M = 10, 000. Left: the distance of objective value at averaged point to optimal value
|f0(x̄k) − f0(x∗)|; Middle: the average constraint violation at averaged point 1

M

∑M
j=1[fj(x̄

k)]+;

Right: the maximum constraint violation at averaged point maxj∈[M][fj(x̄
k)]+. First row: dimen-

sion n = 10, p = 5; Second row: dimension n = 200, p = 150; Last row: dimension n = 400, p = 350.
Missing parts of the feasibility curves indicate that feasible solutions are obtained. In the second and
third rows, the solutions by PDSG-adp remain feasible after the first epoch.

22

Table 1
Running time (in second) for each compared method on three instances tested in Figure 2.

Note that the very long time for the third row is because the data size almost reaches the limit of
the machine memory.

Dimension
Method

PDSG-nonadp PDSG-adp CSA mirror-prox

n = 10, p = 5 20.20 20.69 20.56 20.32

n = 200, p = 150 248.94 239.56 250.01 244.82

n = 400, p = 350 20129.59 20044.41 20118.03 20161.85

6. Conclusions. We have proposed a primal-dual (adaptive) stochastic gradi-
ent method for stochastic programming with many functional constraints. Every
iteration, the method only needs a stochastic subgradient of the objective, and a sub-
gradient and the function value of one randomly sampled constraint function. Under
standard assumptions, we have established its convergence rate for both convex and
strongly convex problems. The order of rate is optimal for the convex case and nearly
optimal for the strongly convex case. Numerical experiments on a sample approxima-
tion problem of the robust portfolio selection and quadratically constrained quadratic
programming demonstrate its nice practical performance.

Acknowledgements. The author would like to thank the three anonymous ref-
erees and the associate editor for their constructive comments and suggestions, which
greatly improve the paper. In particular, he very much appreciates the careful check-
ing from one referee, who pointed out one technical mistake in the first submission.
The author also would like to thank Professor Wotao Yin for his valuable discussions.

Appendix A. Proofs of Propositions.

A.1. Proof of Proposition 3.6. Let (x, z) = (x∗, z∗) in (3.10). Then the last
three expectation terms vanish. Since ρk ≤ β, we have by the definition of Φ in (1.24) and
Lemma 3.1 that

E
[
Φ(xk;x∗, z∗)

]
+ 1

2
E‖xk+1 − x∗‖2Dk + 1

2ρk
E‖zk+1 − z∗‖2

≤ 1
2
E‖xk − x∗‖2Dk−µI + 1

2ρk
E‖zk − z∗‖2 + αk

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
.

Multiplying 2ρk to both sides of the above inequality gives

2ρkE
[
Φ(xk;x∗, z∗)

]
+ ρkE‖xk+1 − x∗‖2Dk + E‖zk+1 − z∗‖2

≤ ρkE‖xk − x∗‖2Dk−µI + E‖zk − z∗‖2 + 2αkρk

(
σ2 + 2β2F 2G2 +

2G2

M
E‖zk‖2

)
.

Summing the above inequality from k = 1 through t, we have by z1 = 0, noting Φ(xk;x∗, z∗) ≥
0, ∀k from (2.4), and using the condition in (3.18) that

E‖zt+1 − z∗‖2 ≤ ρ1‖x1 − x∗‖2D1−µI + ‖z∗‖2 +
∑t
k=1 2αkρk

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
.

From the Young’s inequality, it follows that ‖zt+1‖2 ≤ 2‖zt+1−z∗‖2+2‖z∗‖2, which together
with the above inequality gives the desired result.

A.2. Proof of Proposition 3.7. Let αk = α√
K
,∀1 ≤ k ≤ K. It is easy to see

that the parameters given in (3.20) satisfy the conditions in Proposition 3.6. Hence, for any

23

t ≤ K, it follows from (3.19) that

E‖zt+1‖2 ≤ 2ρ

α
‖x1 − x∗‖2 + 4‖z∗‖2 + 4αρ

(
σ2 + 2β2F 2G2)+

8αρG2

MK

t∑
k=1

E‖zk‖2.(A.1)

Now we show the result in (3.21) by induction. Since z1 = 0, (3.21) holds trivially for k = 1.
Assume it holds for k ≤ t. Then from (A.1), it follows that

E‖zt+1‖2 ≤ C1 +
8αρG2

MK

t∑
k=1

C1

1− 8αρG2

M

≤ C1

1− 8αρG2

M

,

which completes the proof.

A.3. Proof of Proposition 3.8. Let αk = α√
k+1 log(k+1)

, ∀k ≥ 1. It is easy to see

that the parameters given in (3.23) satisfy the conditions in Proposition 3.6. Hence, plugging
the specified parameters into (3.19) gives

E‖zt+1‖2 ≤ 2ρ
α
‖x1 − x∗‖2 + 4‖z∗‖2

+
∑t
k=1

4αρ
(k+1)(log(k+1))2

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
.(A.2)

By

∞∑
k=1

1

(k + 1)(log(k + 1))2
≤ 1

2(log 2)2
+

∫ ∞
1

1

(x+ 1)(log(x+ 1))2
dx

=
1

2(log 2)2
+

1

log 2
≤ 2.5,(A.3)

we have from (A.2) that

E‖zt+1‖2 ≤ 2ρ

α
‖x1 − x∗‖2 + 4‖z∗‖2 + 10αρ

(
σ2 + 2β2F 2G2)

+

t∑
k=1

8αρ

(k + 1)(log(k + 1))2
G2

M
E‖zk‖2.(A.4)

Now we show the result in (3.24) by induction. When k = 1, it obviously holds. Assume the
result holds for k ≤ t. Then from (A.4), it follows that

E‖zt+1‖2 ≤ C2 +

t∑
k=1

8αρ

(k + 1)(log(k + 1))2
G2

M

C2

1− 20αρG2

M

≤ C2 +
20αρG2

M

C2

1− 20αρG2

M

=
C2

1− 20αρG2

M

,

where the second inequality uses (A.3). This completes the proof.

A.4. Proof of Proposition 3.12. Let αk = α
k+1

, ∀ k ≥ 1. If α ≥ 1
µ

, then k+1
α
≥

k+2
α
− µ, i.e., 1

αk
≥ 1

αk+1
− µ. Hence, the parameters given in (3.35) satisfy the condition in

Proposition 3.6, thus (3.19) holds and, with the specified parameters, becomes

E‖zt+1‖2 ≤ 2ρ
log(K+1)

(
2
α
− µ

)
‖x1 − x∗‖2 + 4‖z∗‖2(A.5)

+
∑t
k=1

4αρ
(k+1) log(K+1)

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
.

Note that for any t ≤ K,

(A.6)
∑t
k=1

1
k+1
≤
∫ t+1

1
1
x
dx = log(t+ 1) ≤ log(K + 1).

24

Hence, (A.5) implies

E‖zt+1‖2 ≤ C3 +

t∑
k=1

4αρ

(k + 1) log(K + 1)

2G2

M
E‖zk‖2.(A.7)

Now we show (3.36) by induction. When k = 1, it obviously holds since z1 = 0. Assume
(3.36) holds for any k ≤ t ≤ K. Then, from (A.6) and (A.7), it follows that

E‖zt+1‖2 ≤ C3 +
8αρG2

M

C3

1− 8αρG2

M

=
C3

1− 8αρG2

M

,

which completes the proof.

A.5. Proof of Proposition 4.1. We first prove (4.2). Since Dk = diag(sk) + I
αk

and αk = α√
K
, ∀k, we have for any 1 ≤ t ≤ K that∑t

k=1

(
‖xk − x‖2Dk − ‖x

k+1 − x‖2Dk
)

≤ ‖x1 − x‖2D1
+
∑t−1
k=1

〈
xk+1 − x, (sk+1 − sk)� (xk+1 − x)

〉
≤ 1

α1
‖x1 − x‖2 +B2‖s1‖1 +B2∑t−1

k=1 ‖s
k+1 − sk‖1

= 1
α1
‖x1 − x‖2 +B2‖st‖1,(A.8)

where B = maxx1,x2∈X ‖x1 − x2‖∞, and we have used the fact ski ≥ 0 and sk+1
i ≥ ski for all

i and k to have the last equality. By the Cauchy-Schwarz inequality 〈st,1〉 ≤ ‖1‖ · ‖st‖ =√
n‖st‖ and also noting ‖st‖ ≤ η

√
t due to the scaling in Setting 2, we have from (A.8) that

(A.9)
∑t
k=1

(
‖xk − x‖2Dk − ‖x

k+1 − x‖2Dk
)
≤ 1

α1
‖x1 − x‖2 + ηB2

√
nt.

Hence, (4.2) holds.
Now let (x, z) = (x∗, z∗) in (3.10) and sum it up from k = 1 through t ≤ K. Note that

the last three expectation terms in (3.10) vanish when (x, z) = (x∗, z∗). Then by (2.4) and
Lemma 3.1, and also since β ≥ ρk = ρ√

K
, ∀k, we have

1
2

∑t
k=1 E‖x

k+1 − x∗‖2Dk +
√
K

2ρ
E‖zt+1 − z∗‖2

≤ 1
2

∑t
k=1 E‖x

k − x∗‖2Dk +
√
K

2ρ
‖z1 − z∗‖2 +

∑t
k=1 αk

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
,

which together with (A.9) by letting x = x∗ implies

√
K

2ρ
E‖zt+1 − z∗‖2 ≤ 1

2α1
‖x1 − x∗‖2 +

ηB2
√
nt

2
+

√
K

2ρ
‖z1 − z∗‖2

+
∑t
k=1 αk

(
σ2 + 2β2F 2G2 + 2G2

M
E‖zk‖2

)
.

Since αk = α√
K
, ∀k and z1 = 0, multiplying 2ρ√

K
to the above inequality and noting t ≤ K

gives

E‖zt+1 − z∗‖2 ≤ ρ

α
‖x1 − x∗‖2 + ρηB2√n+ ‖z∗‖2

+ 2αρ
(
σ2 + 2β2F 2G2 + 2G2

MK

∑t
k=1 E‖z

k‖2
)
.

Hence, by the Young’s inequality ‖zt+1‖2 ≤ 2‖zt+1− z∗‖2 + 2‖z∗‖2, we have from the above
inequality that

E‖zt+1‖2 ≤ 2ρ

α
‖x1 − x∗‖2 + 2ρηB2√n+ 4‖z∗‖2

+ 4αρ
(
σ2 + 2β2F 2G2 + 2G2

MK

∑t
k=1 E‖z

k‖2
)
.

Then following the same arguments as those in the end of the proof of Proposition 3.7, we
can show the results in (4.3).

Appendix B. Proofs of a few lemmas.

25

B.1. Proof of Lemma 3.3. Note ∇zjψβ(fj(x), zj) = max
(
− zj
β
, fj(x)

)
. Then the

update of z can be written in the compact form

(B.1) zk+1 = zk +Mρkejk �∇zΨ(xk, zk),

where � denotes componentwise product. Hence,

1
ρk
〈zk − z, zk+1 − zk〉 =

〈
zk − z,∇zΨ(xk, zk)

〉
(B.2)

+
〈
zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)

〉
.

Let
Jk+ =

{
j ∈ [M] : βfj(x

k) + zkj ≥ 0
}
, Jk− = [M]\Jk+.

Note that for z ≥ 0 and any j ∈ Jk−, it holds zj
(
fj(x

k) +
zkj
β

)
≤ 0. Then from the definition

of Ψβ in (1.2), one can directly verify that

−Ψβ(xk, zk) + 1
M

∑M
j=1 zjfj(x

k) +
〈
zk − z,∇zΨ(xk, zk)

〉
= − 1

M

∑
j∈Jk+

β
2

[
fj(x

k)
]2 − 1

M

∑
j∈Jk−

[
(zkj)

2

2β
− zj

(
fj(x

k) +
zkj
β

)]
≤ − 1

M

∑
j∈Jk+

β
2

[
fj(x

k)
]2 − 1

M

∑
j∈Jk−

(zkj)
2

2β
.(B.3)

In addition, note

− 1
M

∑
j∈Jk+

β
2

[
fj(x

k)
]2 − 1

M

∑
j∈Jk−

(zkj)
2

2β
= − β

2ρ2
k
E
[
‖zk+1 − zk‖2

∣∣Hk] .
Hence, we have the desired result by adding (B.2) to (B.3) and using

〈zk − z, zk+1 − zk〉 = 1
2

[
‖zk+1 − z‖2 − ‖zk − z‖2 − ‖zk+1 − zk‖2

]
.

B.2. Proof of Lemma 3.4. For any j ∈ [M], we have for some ∇̃fj(x) ∈ ∂fj(x)
that

∇̃xψβ(fj(x), zj) = [βfj(x) + zj]+∇̃fj(x).

From Assumption 2, note that ‖∇̃fj(x)‖ ≤ G and [βfj(x) + zj]
2
+ ≤ 2β2F 2 + 2(zj)

2. Hence,

‖∇̃xψβ(fj(x), zj)‖2 ≤ [βfj(x) + zj]
2
+‖∇̃fj(x)‖2 ≤ 2G2(β2F 2 + (zj)

2),

which implies the desired result.

B.3. Proof of Lemma 3.9. First note that E
[
gk0 − ∇̃f0(xk)

∣∣Hk] = 0. Hence, if
x is deterministic, the result in (3.26) trivially holds, and similarly if (x, z) is deterministic,
then the results in (3.27) and (3.28) hold. Next, we prove the results for the stochastic case.

Let x̃1 = x1 and x̃k+1 = x̃k +αk(gk0 − ∇̃f0(xk)) for 1 ≤ k ≤ K. Then E
[
〈xk − x̃k,gk0 −

∇̃f0(xk)〉
∣∣Hk] = 0. Hence,

(B.4) −
∑K
k=1 αkE

〈
xk − x,gk0 − ∇̃f0(xk)

〉
= −

∑K
k=1 αkE

〈
x̃k − x,gk0 − ∇̃f0(xk)

〉
.

In addition, by the definition of {x̃k}, we have

−
∑K
k=1 αk〈x̃

k − x,gk0 − ∇̃f0(xk)〉 =
∑K
k=1〈x̃

k − x, x̃k − x̃k+1〉

= 1
2

[
‖x̃1 − x‖2 − ‖x̃K+1 − x‖2 +

∑K
k=1 ‖x̃

k − x̃k+1‖2
]

≤ 1
2

[
‖x1 − x‖2 +

∑K
k=1 α

2
k‖gk0 − ∇̃f0(xk)‖2

]
,

where we have used the fact x̃1 = x1. Substituting the above inequality into (B.4) gives

(B.5) −
∑K
k=1 αkE

[
〈xk−x,gk0−∇̃f0(xk)〉

]
≤ 1

2
E
[
‖x1 − x‖2 +

∑K
k=1 α

2
k‖gk0 − ∇̃f0(xk)‖2

]
.

26

By Assumption 2 and the fact E‖ξ − Eξ‖2 ≤ E‖ξ‖2 for any random vector ξ, we have
E‖gk0 − ∇̃f0(xk)‖2 ≤ σ2, and thus (B.5) implies (3.26).

By essentially the same arguments, we can show (3.27) by noting E‖hk‖2 ≤ 2β2F 2G2 +
2G2

M
E‖zk‖2 from (3.15), and also we can show (3.28) by noting from Assumption 2 that

E‖Mejk �∇zΨ(xk, zk)‖2 = E
∣∣∣max

(
− zjk

β
, fjk (xk)

)∣∣∣2 ≤ F 2.

B.4. Proof of Lemma 3.13. Denote ∆k
z = Mejk � ∇zΨ(xk, zk) − ∇zΨ(xk, zk).

Let z̃1 = z1 and z̃k+1 = z̃k − ρk∆k
z for all k ≥ 1. Then E〈zk − z̃k,∆k

z〉 = 0 for any k. Note
ρk = ρ

log(K+1)
, ∀ k. Hence,∑K

k=1 E
〈
zk − z,Mejk �∇zΨ(xk, zk)−∇zΨ(xk, zk)

〉
= log(K+1)

ρ

∑K
k=1 E

〈
z̃k − z, ρk∆k

z

〉
= log(K+1)

ρ

∑K
k=1 E

〈
z̃k − z, z̃k − z̃k+1

〉
= log(K+1)

2ρ
E
[
‖z̃1 − z‖2 − ‖z̃K+1 − z‖2 +

∑K
k=1 ‖z̃

k − z̃k+1‖2
]

= log(K+1)
2ρ

E
[
‖z1 − z‖2 − ‖z̃K+1 − z‖2 +

∑K
k=1 ρ

2
k‖∆k

z‖2
]
,

where we have used z̃1 = z1. Since E‖∆k
z‖2 ≤ E‖Mejk �∇zΨ(xk, zk)‖2 = 1

ρ2
k
E‖zk+1−zk‖2,

we have (3.38) from the above inequality.

REFERENCES

[1] M. Baes, M. Brgisser, and A. Nemirovski. A randomized mirror-prox method for solving struc-
tured large-scale matrix saddle-point problems. SIAM Journal on Optimization, 23(2):934–
962, 2013. 4, 5, 8, 9

[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and algorithms.
John Wiley & Sons, 2013. 9

[3] G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions and confi-
dence levels. Mathematical Programming, 102(1):25–46, 2005. 4

[4] M. C. Campi and S. Garatti. A sampling-and-discarding approach to chance-constrained op-
timization: feasibility and optimality. Journal of Optimization Theory and Applications,
148(2):257–280, 2011. 3, 4

[5] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point
problems. SIAM Journal on Optimization, 24(4):1779–1814, 2014. 5

[6] A. Cotter, M. Gupta, and J. Pfeifer. A light touch for heavily constrained SGD. In Conference
on Learning Theory, pages 729–771, 2016. 7

[7] A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011. 4, 20, 21, 22

[8] G. Lan and Z. Zhou. Algorithms for stochastic optimization with function or expectation
constraints. Computational Optimization and Applications (online first), 2020. 5, 7, 8, 20,
21, 22

[9] Q. Lin, S. Nadarajah, and N. Soheili. A level-set method for convex optimization with a feasible
solution path. SIAM Journal on Optimization, 28(4):3290–3311, 2018. 7

[10] J. Luedtke and S. Ahmed. A sample approximation approach for optimization with probabilistic
constraints. SIAM Journal on Optimization, 19(2):674–699, 2008. 4

[11] M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi. Stochastic gradient descent with only one
projection. In Advances in Neural Information Processing Systems, pages 494–502, 2012.
6, 7

[12] A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. Journal of opti-
mization theory and applications, 142(1):205–228, 2009. 9

[13] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009. 5, 14

27

[14] A. Nemirovski and A. Shapiro. Scenario approximations of chance constraints. In Probabilistic
and randomized methods for design under uncertainty, pages 3–47. Springer, 2006. 4

[15] B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point problems.
In Advances in Neural Information Processing Systems, pages 1416–1424, 2016. 5

[16] C. J. Pang. Set intersection problems: Supporting hyperplanes and quadratic programming.
Mathematical Programming, 149(1-2):329–359, 2015. 5

[17] P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints.
Journal of Machine Learning Research, 12(Oct):2831–2855, 2011. 6

[18] R. T. Rockafellar. A dual approach to solving nonlinear programming problems by uncon-
strained optimization. Mathematical programming, 5(1):354–373, 1973. 4

[19] R. T. Rockafellar. The multiplier method of hestenes and powell applied to convex programming.
Journal of Optimization Theory and applications, 12(6):555–562, 1973. 1

[20] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in
convex programming. Mathematics of operations research, 1(2):97–116, 1976. 1

[21] E. K. Ryu and W. Yin. Proximal-proximal-gradient method. Journal of Computational Math-
ematics, 37(6):778–812, 2019. 6, 21

[22] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling
and theory. SIAM, 2009. 3

[23] M. Stošić, J. Xavier, and M. Dodig. Projection on the intersection of convex sets. Linear
Algebra and its Applications, 509:191–205, 2016. 5

[24] M. Wang and D. P. Bertsekas. Stochastic first-order methods with random constraint projection.
SIAM Journal on Optimization, 26(1):681–717, 2016. 6, 21

[25] M. Wang, Y. Chen, J. Liu, and Y. Gu. Random multi-constraint projection: Stochastic gradient
methods for convex optimization with many constraints. arXiv preprint arXiv:1511.03760,
2015. 6

[26] M. Wang, E. X. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions. Mathematical Programming, 161(1-
2):419–449, 2017. 15

[27] Y. Xu. First-order methods for constrained convex programming based on linearized augmented
Lagrangian function. arXiv preprint arXiv:1711.08020, 2017. 3, 7, 10

[28] Y. Xu. Iteration complexity of inexact augmented Lagrangian methods for constrained convex
programming. Mathematical Programming, Series A (online first), 2020. 7, 10

[29] A. W. Yu, L. Huang, Q. Lin, R. Salakhutdinov, and J. Carbonell. Block-normalized gra-
dient method: An empirical study for training deep neural network. arXiv preprint
arXiv:1707.04822, 2017. 2

[30] H. Yu and M. J. Neely. A primal-dual type algorithm with the O(1/t) convergence rate for
large scale constrained convex programs. In Decision and Control (CDC), 2016 IEEE 55th
Conference on, pages 1900–1905. IEEE, 2016. 7

[31] H. Yu and M. J. Neely. A primal-dual parallel method with O(1/ε) convergence for constrained
composite convex programs. arXiv preprint arXiv:1708.00322, 2017. 7

28

