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Abstract—The coordinate descent (CD) method has recently
become popular for solving very large-scale problems, partly
due to its simple update, low memory requirement, and fast
convergence. In this paper, we explore the greedy CD on solving
non-negative quadratic programming (NQP). The greedy CD
generally has much more expensive per-update complexity than
its cyclic and randomized counterparts. However, on the NQP,
these three CDs have almost the same per-update cost, while
the greedy CD can have significantly faster overall convergence
speed. We also apply the proposed greedy CD as a subroutine
to solve linearly constrained NQP and the non-negative matrix
factorization. Promising numerical results on both problems are
observed on instances with synthetic data and also image data.

Index Terms—greedy coordinate descent, quadratic program-
ming, nonnegative matrix factorization

I. INTRODUCTION

The coordinate descent (CD) method is one of the most
classic iterative methods for solving optimization problems. It
dates back to 1950s [6] and is closely related to the Jacobi and
Gauss-Seidel methods for solving a linear system. Compared
to a full-update method, such as the gradient descent and
the Newton’s method, the coordinate update is simpler and
cheaper, and also the CD method has lower memory require-
ment. Partly due to this reason, the CD method and its variants
(such as coordinate gradient descent) have recently become
particularly popular for solving very large-scale problems,
under both convex and nonconvex settings (e.g., see [3], [4],
[71, [17], [22], [25], [29], [33], [35], [38]-[40]). Roughly
speaking, the CD method, at each iteration, picks one (by a
certain rule) out of possibly many coordinates and then updates
it (in a certain way) to decrease the objective value.

Early works (e.g., [6], [16], [32]) on CD chose the co-
ordinates cyclicly, or greedily such that the change to the
variable or the decrease of the objective value is maximized
[2]. Since the pioneering work [17] that introduces random
selection of the updated coordinate, many recent works focus
on randomized CD methods (e.g., [14], [15], [22], [26], [36]).
Theoretically, the randomized CD can have faster convergence
than the cyclic CD [30]. Computationally, the greedy CD is
generally more expensive than the randomized and cyclic CD,
namely, the latter two can be coordinate-friendly (CF) [21]
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while the greedy one may fail to. However, for some special-
structured problems such as the ¢; minimization, the greedy
CD is CF and can be faster than both the randomized and
cyclic CD (e.g., [12], [18], [19], [23]) in theory and practice.
In this paper, we first explore the greedy CD to the non-
negative quadratic programming (NQP). Similar to the cyclic
and randomized CD methods, we show that the greedy CD
is also CF for solving the NQP, by maintaining the full
gradient of the objective and renewing it with O(1) flops after
each coordinate-update. Numerically, we demonstrate that the
greedy CD can be significantly faster than the cyclic and
randomized counterparts. We then apply the greedy CD as
a subroutine in the framework of the augmented Lagrangian
method (ALM) for the linearly constrained NQP and in the
framework of the alternating minimization for the nonnegative
matrix factorization (NMF) [11], [20]. On both problems
with synthetic and/or real-world data, we observe promising
numerical performance of the proposed methods.
Notation. The i-th component of a vector x is denoted as x;.
X ; denotes the subvector of x of all components with indices
less than ¢ and x~; with indices greater than ¢. Given a matrix
P, we use p; for its i-th column and p;. for its i-th row. For a
twice differentiable function f on R”, V; f denotes the partial
derivative about the i-th variable and V? f for the second-order
partial derivative. [n] represents the set {1,...,n}.

II. GREEDY COORDINATE DESCENT METHOD

We first briefly introduce the greedy CD method on a
general coordinate-constrained optimization problem and then
show the details on how to apply it to the NQP.

Let f : R™ — R be a differentiable function and for each
i € [n], X; C R be a closed convex set. The greedy CD
for solving minyern { f(x) : z; € X;,Vi € [n]} iteratively
performs the update: z¥*! = 2% if i # iy, and

zf"'l = argminf(xlii,x,-,x];i), if © = iy, (1
z;€X;

where iy, is selected greedily by
ip = argmin; g, {minziexi f(x’ii, T, x’;l)} N )]

Notice that here we follow [2] and greedily choose i, based
on the objective value. In the literature, there are a few other



ways to greedily choose ¢, based on the magnitude of partial
derivatives or the change of coordinate update. We refer the
readers to the review paper [29].

In general, to choose i by (2), we need to solve n one-
dimensional minimization problem, and thus the per-update
complexity of the greedy CD can be as high as n times of that
of a cyclic or randomized CD. Similar to [12] that considers
the LASSO, we show that the greedy CD on the NQP can have
similar per-update cost as the cyclic and randomized CD.

A. Greedy CD on the NQP

Now we derive the details on how to apply the aforemen-
tioned greedy CD on the following NQP:

ming>o F(x) = %XTPX +d'x. 3)

Here, P € R"*™ is a given symmetric positive semidefinite
(PSD) matrix, and d € R" is given. To have well-defined
coordinate updates, we assume P;; > 0, Vi € [n]. The work
[31] has studied a greedy block CD on unconstrained QPs,
and it requires the matrix P to be positive definite. Hence, our
setting is more general, and more importantly, our algorithm
can be used as a subroutine to solve a larger class of problems
such as the linear equality-constrained NQP and the NMF,
discussed in sections III and IV, respectively. We emphasize
that our discussion on the greedy CD may be extended to other
applications with separable non-smooth regularizers.

Suppose that the value of the k-th iterate is x*. We define
G (z;) = F(x%,,z;,x%,). Since F is a quadratic function,
by the Taylor expansion, it holds

G (2;) = F(x*) + Vi F(xF) (2 — al) + Bt (2 — 2k)%. (@)

Let 2% be the minimizer of ng) (x;) over z; > 0. Then

% = max (0, xf—%}j‘lﬁ))ﬁie [n], (5)
and thus the best coordinate by the rule in (2) is
—2)%}. ()

i, = argmin {V,F(x*) (2 — 2F) + Lt (2}

i€[n]

Notice that the most expensive part in (5) lies in computing
V. F(x*), which takes O(n) flops. Hence, to obtain the best
i and thus a new iterate x**1, it costs O(n?). Therefore,
performing n coordinate updates will cost O(n?), which is
order of magnitude larger than the per-update cost O(n?) by
the gradient descent method. However, this naive implemen-
tation does not exploit the coordinate update, i.e., any two
consecutive iterates differ at most at one coordinate. Using this
fact, we show below that the greedy CD method on solving (3)
can be CF [21] by maintaining a full gradient, i.e., n coordinate
updates cost similarly as a gradient descent update.

Let g¥ = VF(x*). Provided that g* is stored in the
memory, we only need O(1) flops to have #¥ defined in (5),
and thus to obtain the best iy, it costs O(n). Furthermore,
notice that VF(x) = Px + d. Hence,

VF(Xk+1) = VF(xk)+P(xk+1—xk) = gk—&—(fcfk —xfk)pik.

Therefore, to renew g, it takes an additional O(n) flops. This
way, we need O(n) flops to update the iterate and maintain full
gradient from (x*, g*) to (x**1,gF*1), and thus completing
n greedy coordinate updates costs O(n?), which is similar to
the cost of a gradient descent update.

B. Stopping Condition

A point x* > 0 is an optimal solution to (3) if and only if
0 € VF(x*) + N} (x*), where N (x) = {g € R" : gja; <
0,Vi € [n]} denotes the normal cone of the non-negative
orthant at x > 0. Therefore, x* should satisfy the following
conditions for each i € [n]: V,;F(x*) = 0 if 7 > 0, and
V,F(x*)>0if z; =0. Let I[§ ={i € [n] : zf =0}, IF =
{i € [n]: 2¥ > 0}, and

- 2 2
O = \/Zie[{; [mm(QviF(X’“))] + Zielﬂ‘r‘ [Vz‘F(Xk)] :
)
Then if 0 is smaller than a pre-specified error tolerance, we
can stop the algorithm.

C. Pseudocode of the greedy CD

Summarizing the above discussions, we have the pseu-
docode for solving the NQP (3) in Algorithm 1.

Algorithm 1: Greedy CD for (3): GCD(P,d, ¢,x")

1 Input: a PSD matrix P € R"*", d € R", initial point x° >0,
and an error tolerance € > 0.

2 Overhead: let k = 0, g° = VF(x") and set 6y by (7).

3 while 6, > € do

4 Compute z¥ for all i € [n] by (5);

5 Find i) € [n] by the rule in (6);

6 Let "1 = ¥ for ¢ # iy and 2F*?

7

8

A = &F for i = ix;
Update gFt! = g* + (a:l:1 — xfk)pik;
Increase k < k + 1 and compute d; by (7).

9 Output x"

D. Convergence result

The greedy CD that chooses coordinates based on the
objective decrease has been analyzed in [2]. We apply the
results there to obtain the convergence of Algorithm 1.

Theorem 1. Let {x*} be the sequence from Algorithm 1. Sup-
pose that the lower level set Lo = {x >0: F(x) < F(x°)}
is compact. Then F(x*) — F* as k — oo, where F* is the
optimal objective value of (3).

Proof. Since F(x*) is decreasing with respect to k and L is
compact, the sequence {x*} has a finite cluster point X, and
F(x*) — F(x) as k — oo. Now notice that the minimizer
of ng) in (4) is unique for each 7 since P;; > 0. Hence, it
follows from [2, Theorem 3.1] that X must be a stationary
point of (3) and thus an optimal solution because P is PSD.
Therefore, F'(x) = F*, and this completes the proof. O

Remark 1. It is not difficult to show that F(x"+1) —

F(xF) < =L ||x**1 — x*||2. In addition, by [34, Theorem

18], the quadratic function F' satisfies the so-called global



error bound. Hence, it is possible to show a globally linear
convergence result of Algorithm 1. Due to the page limitation,
we do not extend the detailed discussion here, but instead we
will explore it in an extended version of the paper.

E. Comparison to the cyclic and randomized CD methods

We compare the greedy CD to its cyclic and random-
ized counterparts and also the accelerated projected gradient
method FISTA [1]. Two random NQP instances were gen-
erated. For the first one, we set n = 5,000 and generated
a symmetric PSD matrix P and the vector d by the nor-
mal distribution. For the second one, we set n = 1,000,
P = 011 + 09E and d = —10e, where I denotes the
identity matrix, and E and e are all-ones matrix and vector.
The P in the second instance was used to construct a difficult
unconstrained QP for the cyclic CD in [10], [30]. Figure 1
plots the objective error produced by the three different CD
methods and FISTA. From the plots, we clearly see that the
greedy CD performs significantly better than the other two
CDs and FISTA on both instances.
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Fig. 1. Comparison of three different CDs and FISTA on two NQP instances.
Left: dimension n = 5,000 and P generated by normal distribution; Right:
n =1,000 and P = 0.11 + 0.9E.
III. LINEAR EQUALITY-CONSTRAINED NON-NEGATIVE
QUADRATIC PROGRAMMING

In this section, we apply Algorithm 1 as a subroutine in
the inexact ALM framework to solve the NQP with linear
constraints. More specifically, we consider the problem

min>o F(x) = %XTQX +c'x, st. Ax=b, (8)

where Q € R™*™ is a PSD matrix, and A € R"*"™, The ALM
[24], [27] is perhaps the most popular method for solving
nonlinear functional constrained problems. Applied to (8), it
iteratively performs the updates:

xFH = argmin, » o Lg, (x,y%) (9a)
Y =yh + Br(AxM —b). (9b)

Here, y € R™ is the Lagrange multiplier, and
Ls(x,y) = F(x) +y (Ax—b) + Z|Ax —b|>  (10)

is the AL function with a penalty parameter 3 > 0.

A. inexact ALM with greedy CD

In the ALM update, the y-update is easy. However, the x-
subproblem (9a) in general requires an iterative solver. On
solving (8), we can rewrite the AL function as

Lp(x,y) = 3x (Q+ BATA)x + (c+ ATy — BATD) 'x,

which is a quadratic function. Hence, (9a) is an NQP, and
we propose to apply the greedy CD derived previously to
solve it. The pseudocode of the proposed method is shown
in Algorithm 2.

Algorithm 2: inexact ALM with greedy CD for (8)

1 Input: a PSD matrix Q € R™*", c € R”, A € R™*",
b € R™, and € > 0.
2 Initialization: x° € R,y = 0, and o > 0; set k = 0.
3 while a stopping condition not satisfied do
4 LetP=Q+8kATAandd=c+ ATy — A "b.
Choose € < € and let x**! = GCD(P, d, e, x*).
Obtain y*** by (9b).
Choose Br+1 > Bk, and increase k < k + 1.

N S »n

Notice that each x* ! satisfies dist(0, Vi Lg, (x" ™1, y*) +
N4 (x*1)) < e4. Hence, by the update of y*T, it holds

dist (0, VE(x"T) + ATyt 4 N, (xMT)) < gy,

namely, the dual residual is always no larger than e. Since
e < &, the output (x**1 y*+1) violates the KKT conditions
at most € in terms of both primal and dual feasibility, if we
stop the algorithm once |[Ax*T! —b| < e.

B. Convergence result

We can apply the results in [13], [27], [37] to obtain the
convergence of Algorithm 2 based on the actual iterate.

Theorem 2. Suppose that for each i € [n], Q;; > 0 or a; # 0.
Let {x"*}1>0 be the sequence from Algorithm 2. If ¢, — 0 and
Br — 00, then |F(x*)— F*| — 0 and ||Ax* —b|| — 0, where
F* denotes the optimal objective value of (8).

IV. NON-NEGATIVE MATRIX FACTORIZATION

In this section, we consider the non-negative matrix fac-
torization (NMF). It aims to factorize a given non-negative
matrix M € R"*" into two low-rank non-negative matrices
X and Y such that M ~ XY ". The factor matrix X plays
a role of basis while Y contains the coefficient. Due to the
non-negativity, NMF can be used to learn local features of an
objective [11] and has better interpretability than the principal
component analysis (PCA). Measuring the approximation error
by the Frobenius norm, one can model the NMF as

minx vy 3| XY T -M|%, s.t. X e R, Y € RY*", (11)
where M € R"" is given, and r is a user-specified rank.

A. Alternating minimization with greedy CD

The objective of (11) is non-convex jointly with respect to
X and Y. However, it is convex with respect to one of X and
Y while the other is fixed. For this reason, one natural way
to solve (11) is the alternating minimization (AltMin), which
iteratively performs the update

Xk+1 = arg miny s %HX(Y’“)—r - M|%,

Y+t = arg miny > %H(X’““)YT — M]3

(12a)
(12b)



Both subproblems are in the form of mingecgr«» 1||AZ —
BJ||%, which is equivalent to solving p independent NQPs

miHZiGR"’ %HAZZ - biH27 i€ [p]

Hence, we can apply the greedy CD derived in section II
to solve the X-subproblem and Y -subproblem in (12), by
breaking them respectively into m and n independent NQPs.
The pseudocode is shown in Algorithm 3. In Lines 4 and
8, we rescale those two factor matrices such that they have
balanced norms. This way, neither of them will blow up or
diminish, and the resulting NQP subproblems are relatively
well-conditioned. Numerically, we observe that the rescaling
technique can significantly speed up the convergence.

Notice that it is straightforward to extend our method to
the non-negative tensor decomposition [28]. Due to the page
limitation, we do not give the details here but leave it to an
extended version of this paper.

Algorithm 3: AltMin with greedy CD for (11)

1 Input: M € R}"™", and rank r.

2 Initialization: X° € R7"" and Y°
3 for k=0,1,... do

Rescale X]C and Y* to ||x¥|| = ||lyF|l,Vi € [r].

Let P=(Y*)"Y*and D = —(Y*)"M "

Choose €, > 0.

Compute x*' = GCD(P, d;, ek, x%), for i € [m).
Rescale X* and Y* to x5 = |y, Vi € [r].
Let P = (X*™)TX*" and D = —(xk+1)

10 Compute y*™ = GCD(P, d;, e, y%), for i € [n ]

X
€ R

e X N s

B. Convergence result

The convergence of the AltMin has been well-studied; see
[5] for example. Although we rescale the two factor matrices
and inexactly solve each subproblem, it is not difficult to
adapt the existing analysis and obtain the convergence of
Algorithm 3 as follows.

Theorem 3. Let {(X*,Y")}y>¢ be the sequence generated
from Algorithm 3 with €, — 0. Then any finite limit point of
the sequence is a stationary point of (11).

V. NUMERICAL EXPERIMENTS

In this section, we test Algorithm 2 on Gaussian random-
generated instances of (8) and compare it to the MATLAB
built-in solver quadprog. Also, we test Algorithm 3 on
three instances of the NMF (11), two with synthetic data
and another with face image data. For the tests on (8), we
generated three different-sized instances. In Algorithm 2, we
set e, = 1073, V k, for the subroutine GCD, and the algorithm
was stopped once |Ax* — b|| < ¢ with ¢ = 1072 or
10~3. For the tests on (11) with synthetic data, we obtain
M =LRT, where L € R and R € R*" were respec-
tively generated by MATLAB’s code max (0, randn (m, r) )
and max (0, randn (n, r) ). One dataset was generated with
m = n = 1,000, = 50 and the other with m = n =
5,000, = 100. For the other test on (11), we used the CBCL

TABLE I
RESULTS BY ALGORITHM 2 ON THREE DIFFERENT-SIZED INSTANCES OF
(8) AND THE SPEED COMPARISON WITH MATLAB FUNCTION quadprog.
HERE, TOL. IS THE € IN ALGORITHM 2 OBJ. RELERR IS COMPUTED BY
[FGo)—F bl ; TIME1 IS THE RUNNING TIME

= F=7 i RES. RELERR IS BY IA i bH
(SEC.) BY THE PROPOSED METHOD; TIME2 IS BY quadprog.
[ problem size [[ tol. obj. relerr  res. relerr  timel || time2 |
m = 200 0.01 2.758e-05  5.192e-04 0.42 0.32
n = 1000 0.001 1.118e-06  2.811e-05 0.76
m = 1000 0.01 3.714e-06  1.138e-04 16.68 2492
n = 5000 0.001  2.257e-07  8.074e-06 30.85
m = 2000 0.01 4.361e-07  2.021e-05 71.90 21741
n = 10000 0.001  3.795e-07 1.419e-05 133.07

face image data [8], which consists of 6,977 images of size
19 x 19. We picked the first 2,000 images and vectorized
each image into a vector. This way, we formed a non-negative
M e R361x2000 and we set r = 30. In Algorithm 3, we
set £, = 1073, Vk, for the subroutine GCD on the test with
synthetic data and ¢, = 0.1, Vk, on the face image data.
Different tolerances were adopted here because the image data
does not admit an exact factorization.
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objective
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0 10 20 30 40 50 0 500 1000 0 5 10
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Fig. 2. Comparison of the proposed method (Algorithm 2) with and without
the rescaling to the BlockPivot method in [9] and the accelerated AlItPG in
[38]. Left: synthetic data with m = n = 1,000, r = 50; Middle: synthetic
data with m = n = 5,000, r = 100; Right: CBCL face image data set

The results for the tests on (8) are shown in Table I.
From the results, we see that our method can yield medium-
accurate solutions. For the middle-sized instance, our method
can be faster than MATLAB’s solver when ¢ = 10~2, and
for the large-sized instance, our method is faster under both
settings of ¢ = 1072 and 10~3. This implies that for solving
large-scale linear-constrained NQP, the proposed method can
outperform MATLAB’s solver if a medium-accurate solution
is required. The results for the tests on (11) are plotted in
Figure 2, where we compared Algorithm 3 with the BlockPivot
method in [9] and the accelerated AltPG method in [38]. The
BlockPivot is also an AltMin, but different from our greedy
CD, it uses an active-set-type method as a subroutine to exactly
solve each subproblem. The accelerated AltPG performs block
proximal gradient update to X and Y alternatingly, and it uses
extrapolation technique for acceleration. From the results, we
see that the proposed method performs significantly better than
BlockPivot, which seems to be trapped at a local solution for
the two synthetic cases. Compared to the accelerated AltPG,
the proposed method can be faster in the beginning to obtain a
medium accuracy. In addition, the proposed method converges
faster with the rescaling than that without the rescaling on the
instances with large-sized synthetic data and the face image
data. That could be because the subproblems may be bad-
conditioned if rescaling is not applied.
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