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Abstract
Results are presented from a modeling study of the clarinet in which the air flow through the instrument is
calculated using the Navier-Stokes equations. The reed is modeled as an Euler-Bernoulli beam with damping
whose motion is driven by the pressure in the mouthpiece. Damping of the reed due to its contact with the
lip is studied and shown to be crucial to achieve oscillations in which the reed vibrates at the lowest resonant
frequency of the instrument, producing sound at that frequency. This finding is consistent with previous studies
in which a clarinet is excited with an artificial blowing machine.
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1 INTRODUCTION
Modeling of musical instruments has yielded many important insights into a variety of different instruments
including string instruments (pianos, guitars, and violins), percussion instruments (drums and cymbals), and
wind instruments (recorders, trumpets, and clarinets). Physics based modeling strives to apply the fundamental
equations of mechanics to understand the vibrations of the instrument and the resulting sound production. This
is perhaps most challenging for wind instruments, since these instruments require the application of the Navier-
Stokes equations, a set of nonlinear partial differential equations that are notoriously difficult to deal with even
numerically. However, available high performance parallel computers are now able to obtain solutions of the
Navier-Stokes equations for the air flow through and around wind instruments for fairly realistic instrument
geometries. In recent work our group has reported results for the recorder, flute, and trumpet [1,2,3,4]. In this
paper we report new results for the clarinet.

2 THE MODEL
Our clarinet model consists of two main components, one that computes a solution of the compressible Navier-
Stokes equations for the air velocity and pressure as functions of time, and a second component that calculates
the motion of the reed as it is driven by the pressure at its surface as derived from the Navier-Stokes solution.
The Navier-Stokes equations are solved using a direct numerical simulation with a predictor-corrector algorithm
as described in Ref. 1, while the reed motion is described using the beam model studied by Avanzini and
van Walstein [5] including damping internal to the reed and from contact with the lips. Both are explicit,
finite-difference-time-domain algorithms; in the future we plan to implement an implicit algorithm for the reed
calculation, which should improve the accuracy of that part of the model. The Navier-Stokes calculation uses
a nonuniform Cartesian grid with a spacial grid size of 0.1 mm near the reed and in the direction of the reed
vibration. The reed moves continuously through this fixed grid according to the immersed boundary method [6],
so the resolution for the reed motion is not limited by the Navier-Stokes grid. Other details of the calculation
are given in Refs. 1 and 3. The time step for the calculations shown below was 2×10−7 s and the total number
of grid points was ∼ 1×107.
The model geometry was a simplified version of a real clarinet, to reduce the required computational time. The
resonator was a tube with a square cross-section (5× 5 mm) and approximately 7.0 cm long. The reed was
9 mm long with a width of 0.3 mm. The Young’s modulus was 150 N/m2 and density of 150 kg/m3; both of
these are not typical of a real reed, but were chosen to give a resonant frequency and compliance that would
yield reasonable oscillations for the chosen resonator dimensions. The fundamental frequency of the instrument
was approximately 1.1 kHz, consistent with a closed-open tube.
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Figure 1. (a) Left: Position of the reed tip as a function of time. yreed = 0 corresponds to an undisplaced reed
tip. (b) Right: Sound pressure outside the instrument as a function of time. The air speed in the mouthpiece
was 5 m/s and the dimensionless lip-reed damping was R = 450 (to be compared with other results below).

Our results are broadly consistent with recent studies of the clarinet using the lattice Boltzmann method to treat
the Navier-Stokes equations [7-9], although that work employed a two dimensional model.

3 BASIC REED MOTION AND SOUND PRODUCTION
Figure 1 shows typical results in the parameter regime that produces a steady reed oscillation and an approxi-
mately pure tone. Figure 1(a) shows the position of the reed tip as a function of time while Fig. 1(b) gives the
sound pressure outside the instrument; this is the sound that would be heard by a listener. In this calculation
and in others shown below, the blowing velocity in the mouthpiece was increased linearly from zero to a final
value at t = 5 ms and then held constant.
After an initial transient period the reed motion reaches a steady oscillation amplitude at about t = 10 ms while
the sound pressure does not reach steady state until somewhat later, about 30 ms in this example. The lengths
of these transient periods depend on how hard the instrument is blown, with larger blowing speeds/pressures
giving somewhat shorter transient times.
Figure 2 shows the sound pressure from Fig. 1(b) on an expanded scale. The waveform is approximately
sinusoidal at the fundamental frequency of the instrument (about 1100 Hz) although some small contributions
from higher frequencies are also evident.

4 EFFECTS OF REED DAMPING
There are several sources of damping that are commonly discussed when describing the dynamics of the reed
(see, e.g., [5]). These are damping internal to the reed itself, damping due to contact with the player’s lips,
and what is sometimes termed "fluid" damping to account for energy loss to the surrounding air. In our model
energy loss to the air is accounted for through the interaction of the reed and air, so that effect is included in a
rigorous way. We have included damping internal to the reed using a value of the damping parameter suggested
in Ref. 5. The lip damping is included in our model using the functional form described in Ref. 5. Since the
dimensions of our model instrument and reed are smaller than those of a real clarinet and given the uncertainties
in modeling real lips, we have treated this damping as an adjustable parameter we denote as R. A number of
experiments with blowing machines (e.g., [10,11]) have reported that if the lip damping is zero or too small,
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Figure 2. Sound pressure results from Fig. 1(b) on an expanded scale.

the sound produced is a “squeak” rather than a realistic musical tone. Our initial results also suggest that the
location of the lip damping, i.e., the place along the reed where the lip contacts the reed, has a noticeable effect
on the behavior. For all of the results in this paper the lip contacts about a third of the reed with the center
of the contact region about half way along the reed. Here we illustrate the effect of lip damping by repeating
the simulation from Figs. 1 and 2 but with different values of the lip damping R strength, and the results are
given in Fig. 3. There we show results for the both reed oscillation and the sound pressure. All parameters,
including the blowing pressure, were the same as in Figs. 1 and 2, only the damping parameter R was varied.
We found that with R = 0 (no lip damping) there was no reed oscillation at all (and hence no sound) after a
short (less than a few milliseconds) transient period. When R was increased, that is, by increasing the damping
to a value about half the value in Figs. 1 and 2, a good reed oscillation was found with the expected behavior
of the sound waveform.

5 CONCLUSIONS AND FUTURE WORK
This paper describes first results for a “toy” model of the clarinet in which the Navier-Stokes equations are
used to compute the air velocity and sound pressure, and the Euler-Bernoulli beam equation is used to describe
the dynamics of the reed. Our model of the clarinet differs from a real instrument in several ways; e.g., the
dimensions are smaller than those of a real clarinet and the values of several parameters associated with the
reed required a corresponding adjustment. Even so, our results indicate that a simulation of a fairly realistic
clarinet in three dimensions is now feasible.
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Figure 3. Effect of reed damping. (a) Left: Position of the reed tip as a function of time. (b) Right: Sound
pressure as a function of time. Black curves: R = 450; Red curves: R = 250; Blue curves: R = 0. There was
no oscillation with R = 0.
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