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Abstract
The method of block coordinate gradient descent (BCD) has been a powerful method
for large-scale optimization. This paper considers the BCD method that successively
updates a series of blocks selected according to a Markov chain. This kind of block
selection is neither i.i.d. random nor cyclic. On the other hand, it is a natural choice
for some applications in distributed optimization andMarkov decision process, where
i.i.d. random and cyclic selections are either infeasible or very expensive. By applying
mixing-time properties of a Markov chain, we prove convergence of Markov chain
BCD for minimizing Lipschitz differentiable functions, which can be nonconvex.
When the functions are convex and strongly convex, we establish both sublinear and
linear convergence rates, respectively. We also present a method of Markov chain
inertial BCD. Finally, we discuss potential applications.
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1 Introduction

We consider the following minimization problem

minimize f (x) ≡ f (x1, x2, . . . , xN ) (1)

where f : RN �→ R is a differentiable function (possibly nonconvex) and every ∇i f
(i = 1, 2, . . . , N ) is Lipschitz with constant L > 0.

The block coordinate gradient descent (BCD) method is a popular approach that
can take the advantage of the coordinate structure in (1). The method updates one
coordinate, or a block of coordinates, at each iteration, as follows. For k = 0, 1, . . .,
choose ik ∈ [N ] := {1, 2, . . . , N } and compute

xk+1
ik

= xkik − γ∇ik f (x
k),

where γ is a step size; for remaining j ∈ [N ]\{ik}, we keep xk+1
j = xkj .

The coordinate gradient descent method was introduced in [29]. The random selec-
tion rule (i.i.d. over the iterations) appeared in [15,24]. In the same paper [15],
the method of accelerated coordinate gradient descent was proposed, and it was
later analyzed in [10] for both convex and strongly convex functions. Both [10,15]
select a coordinate i with probability proportional to the Lipschitz constant Li of
g(α) = ∇i f (x + αei ) over free x ; the rate is optimal when Li ’s are equal. An
improved random sampling method with acceleration was introduced in [1], which
further decreases the complexitywhen some Li ’s are significantly smaller than the rest.
This method was further generalized in [8] to an asynchronous parallel method, which
obtains parallel speedup to the accelerated rate. In another line of work, [6] combines
stochastic coordinate gradient descent with mirror descent stochastic approximation,
where a random data mini-batch is taken to update a randomly chosen coordinate.
This is improved in [31], where the presented method uses each randommini-batch to
update all the coordinates in a sequential fashion. Besides stochastic selection rules,
there has been work of the cyclic sampling rule. The work [30] studies its convergence
under the convex and nonconvex settings, and [2] proves sublinear and linear rates
in the convex setting. The constants in these rates are worse than standard gradient
descent though. For a family of problems, [26] obtains improved rates to match stan-
dard gradient descent (and their results also apply to the random shuffling rule). The
greedy sampling rule has also been studied in the literature but unrelated to this paper.
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Markov chain block coordinate descent 37

Let us just mention some references [11,12,16,20]. Finally, [17] explores the family
of problems with the structure that enables us to update a block coordinate at a much
lower cost than updating all blocks in batch.

This paper introduces the Markov-chain select rule. We call our method Markov-
chain block gradient coordinate descent (MC-BCD). In this method, ik is selected
according to a Markov chain; hence, unlike the above methods, our choice is neither
stochastic i.i.d. (with respect to k)nor deterministic. Specifically, there is an underlying
strongly-connected graph G = (V ,E ) with the set of vertices V := [N ] and set of
edges E ⊆ V × V . Each node i ∈ V can compute ∇i f (·) and update xi . We call
(ik)k≥0 a walk of G if every (ik, ik+1) ∈ E . If the walk (ik)k≥0 is deterministic and
visits every node at least once in every K iterations, then (ik)k≥0 is essentially cyclic; if
every ik+1 is chosen randomly from {neighbors of ik}∪{ik}, then we obtainMC-BCD,
which is the focus of this paper. To the best of our knowledge, MC-BCD is new.

1.1 Motivations

Generally speaking, one does not use MC-BCD to accelerate i.i.d. random or cyclic
BCD but for other reasons: when we are forced to take Markov chain samples because
cyclic and stochastic samples are not available; Or, although cyclic and stochastic
samples are available, it is easier or cheaper to take Markov chain samples. We briefly
present some examples below to illustrate thosemotivations. Some examples are tested
numerically in Sect. 6.

1.1.1 Markov chain dual coordinate ascent (MC-DCA)

The paper [25] proposes the stochastic dual coordinate gradient ascent (SDCA) to
solve

minimizew∈Rd

{
λ

2
‖w‖2 + 1

N

N∑
i=1

�i (w
�ai )

}
, (2)

where λ > 0 is the regularization parameter, ai is the data vector associated with i th
sample, and �i is a convex loss function. Its dual problem can be formulated as

minimizeα∈RN

{
D(α) := λ

2
‖Aα‖2 + 1

N

N∑
i=1

�∗
i (−αi )

}
, (3)

where A ∈ R
d×N with column Ai := ai

λN , and �∗
i is the conjugate of �i . By applying

stochastic BCD to (3), SDCA can reach comparable or better convergence rate than
stochastic gradient descent. We employ this idea and propose MC-DCA: in the kth
iteration, while αk+1

j = αk
j if j ∈ [N ]\{ik},

αk+1
ik

= αk
ik − γ

(
λA�

ik (Aαk) − ∇�∗
ik
(−αk

ik
)

N

)
(4)

where (ik)k≥0 is a Markov chain.
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The Markov chain must come from somewhere. Consider that the data a1, a2, . . . ,
aN are stored in a distributed fashion over a graph. Only when the graph is complete
can we efficiently sample ik i.i.d. randomly and access aik ; only when the graph has a
Hamiltonian cycle can we visit the data in a cyclic fashion without visiting any node
twice in each cycle. MC-DCA works under a much weaker assumption: as long as the
graph is connected. Specifically, let a token hold (α1, α2, . . . , αN ) and vector (Aα),
and let the token randomly walk through the nodes in the network; each node i holds
data Ai and can compute ∇�∗

i ; as the token arrives at node i , the node accesses (Aα)

and α and computes λA�
i (Aα) and∇�∗

i (−αi ), which are used to update αi and update
(Aα).

1.1.2 Future rewards in a Markov decision process

This example is a finite-state (N states) discounted Markov decision process (DMDP)
for which we can compute the transition probability from any current state i to the
next state, or quickly approximate it. We can use MC-BCD to compute the expected
future reward vector.

Let us describe theDMDP. Entering any state i , we receive an award ri and then take
an action according to a given policy π (a state-to-action mapping). After the action is
taken, the system enters a state j , j ∈ [N ], with probability Pi, j . The transition matrix
P := [Pi, j ]i, j∈[N ] depends on the action taken and thus depends on π . The reward
discount factor is γ ∈ (0, 1). Our goal is to evaluate the expected future rewards of
all states i ∈ [N ] for a fixed π . This step dominates the per-step computation of the
policy-update iteration [28], which iteratively updates π .

For each state i0 := i , the expected future reward is given as

vi := E{it }
[ +∞∑
t=1

γ t rit | i0 = i
]
,

where the state sequence (it )t≥0 is a Markov chain induced by the transition matrix
P and rit is the reward received at time t . The corresponding Bellman equation is
vi = Ei1

[
ri + γ vi1 | i0 = i

] = ri + γ
∑

j∈[N ] Pi, jv j , the matrix form of which is

v = r + γ Pv, (5)

where v = [v1, v2, . . . , vN ]T and r = [r1, r2, . . . , rN ]T .
When N is huge, solving (5) is difficult. Often we have memory to store a few

N -vectors (also, N can be reduced by dimension reduction) but not an N × N -matrix.
Therefore, we can store the vector Pi = [Pi,1, . . . , Pi,N ]T only temporarily in each
iteration. In the casewhere the physical principles or the rule of game are given, such as
in the Tetris game, we can compute the transition probabilities Pik explicitly. Consider
another scenario where Pik can not be computed explicitly but can be approximated
by Monte-Carlo simulations. The simulation of transition at just one state ik is much
cheaper than that of all states. In both scenarios, we have access to Pik . This allows us
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Markov chain block coordinate descent 39

to apply MC-BCD to solve a dual optimization problem below to compute the future
reward vector v,

minimizev

{
1

2N
‖(IN − γ P)v − r‖2 + λ

2
‖v‖2

}
,

where λ ≥ 0 is a fixed regularization parameter. This corresponds to setting A :=
IN − γ P in (3). Note that in DMDP, one cannot transit from the current state ik to an
arbitrary j ∈ [N ]. Therefore, standard cyclic and stochastic BCD is not applicable.

Running the MC-DCA iteration (4) requires the vectors Aik = Pik and Aαk =
αk−γ Pαk .We update (Pαk) bymaintaining a sequence (wk)k≥0 as follows: initialize
α0 := 0 (zero vector) and thus w0 = Pα0 = 0; in the kth iteration, we compute
wk+1 := wk + Pik (α

k+1 − αk)ik = Pαk+1, where the equality follows since αk+1

and αk only differ over their ik th component. This update is done without accessing
the full matrix P .

As we showed above, running our algorithm to compute the expected future award
v only requires O(N ) memory. Also the algorithm iterates simultaneously while the
system samples its state trajectory. Suppose each policy π can be stored in O(N )

memory (e.g., deterministic policy) and updating π using a computed v also needs
O(N ) memory; then, we can run a policy-update iteration with O(N ) memory.

1.1.3 Risk minimization by dual coordinate ascent over a tricky distribution

LetΞ be a statistical sample space with distributionΠ , and F(·) : R → R is a proper,
closed, strongly convex function. Consider the following regularized expectation min-
imization problem

minimizew∈Rn Eξ

(
F(w�ξ)

) + λ

2
‖w‖2. (6)

Since the objective is strongly convex, its dual problem is smooth. If it is easy to
sample data from Π , (6) can be solved by SDCA, which uses i.i.d. samples. When
the distribution Π is difficult to sample directly but has a faster Markov Chain Monte
Carlo (MCMC) sampler, we can apply MC-DCA to this problem.

1.1.4 Multi-agent resource-constrained optimization

Consider the multi-agent optimization problem of N agents [4]:

minimize f (x1, x2, . . . , xN ) + β

2
‖max{Ax − b, 0}‖2, (7)

where f is the cost function, b is the resource vector, and max{Ax − b, 0} penalizes
any over usage of resources. Define a graph, in which every node is an agent and every
edge connects a pair of agents that either depend on one another in f or share at least
one resource. In other words, the objective function (7) has a graph structure in that
computing the gradient of xi requires only the information of the adjacent agents of i .

123
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MC-BCD becomes a decentralized algorithm: after an agent ik updates its decision
variable xik , it broadcasts xik to one of its neighbors, ik+1 and activates it to run next
step. In this process, i0, i1, . . . form a random walk over the graph and, therefore,
is a Markov chain. As long as the network is connected, a central coordinator is no
more necessary. However, sampling ik i.i.d. randomly requires a central coordinator
and will consume more communication since it may communicate beyond neighbors.
Also selecting ik essentially cyclically requires a tour of the graph, which relies on the
knowledge of the graph topology.

When f is differentiable with Lipschitz continuous gradient, so is the objective
function. We apply MC-BCD to (7) to obtain

xk+1
ik

= xkik − γ∇ik f (x
k) − γβA�

ik max{Axk − b, 0},

where (ik)k≥0 ⊆ [N ] is a Markov chain. We assume that agent i can access Ai and
bi and compute ∇i f . Similar to the example for computing expected future reward
above, vk := Axk − b can be updated along with the iterations so no node needs the
access to the full matrix A. Alternatively, we can use a central governor which receives
updated xk and vk from agent ik and sends the data to ik+1 for the next iteration.

1.1.5 Decentralized optimization

This example is taken from [32]. Again consider the empirical risk minimization
problem (2). We consider solving its dual problem (3) in a network by assigning each
sample ai to a node.A parallel distributed algorithmwill update for all the components,
i = 1, . . . , N , concurrently.

If the network has a central server, then each node sends its αi to the central server,
which forms Aα = ∑N

i=1 Aiαi and then broadcasts it back to the nodes.
If the network does not have a central server, then we can form Aα either running

a decentralized gossip algorithm or calling an all-reduce communication. The former
does not require the knowledge of the network topology and is an iterative method.
The latter requires the topology and takes at least O(log N ) rounds and at least O(N )

total communication, even slower when the network is sparse. An alternative approach
is to create a token that holds Aα and follows a randomwalk in the network. The token
acts like a traveling center. When the token arrives at a node ik , the node updates its αik
using the token’s Aα, and this local update leads to a sparse change to Aα; updating
Aα requires no access to α j for j �= ik . The method in [32] applies this idea to an
ADMM formulation of the decentralized consensus problem (rather than BCD in this
paper) and shows that total communication is significantly reduced.

1.2 Difficulty of the convergence proofs: biased expectation

Sampling according to aMarkov chain is neither (essential) cyclic nor i.i.d. stochastic.
No matter how large K is, it is still possible that a node is never visited during some
k + 1, . . . , k + K iterations. Unless the graph G is a complete graph (every node
is directly connected with every other node), there are nodes i, j without an edge
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Markov chain block coordinate descent 41

connecting them, i.e., (i, j) /∈ E . Hence, given ik−1 = i , it is impossible to have
ik = j . So, no matter how one selects the sampling probability p j = P(ik = j) and
step sizeγk ,wegenerally donot haveEik (γk∇ik f (x

k) | ik−1 = i) = C∇ f (xk) for any
constant C , where∇ik f (x

k) := [0, . . . , 0,∇ik f (x
k), 0, . . . , 0]T . This, unfortunately,

breaks down all the existing analyses of stochastic BCD since they all need a non-
vanishing probability for every block 1, . . . , N to be selected.

1.3 Proposedmethod and contributions

Given a graph G = (V ,E ), MC-BCD is written mathematically as

sample ik ∈ { j : (ik−1, j) ∈ E } ∼ Pik−1, j (k), (8a)

compute xk+1
ik

= xkik − γ∇ik f (x
k), (8b)

where γ is a constant stepsize, and P(k) is the transition matrix in the kth step (details
given in Sect. 2), and wemaintain xk+1

j = xkj for all j �= ik . The initial point x0 can be
chosen arbitrarily. The block i0 can be chosen either deterministically or randomly. The
following diagram illustrates the influential relations of x0 and the random variable
sequences (ik)k≥0 and (xk)k≥1:

i0 −−−−→ i1 −−−−→ i2 −−−−→ i3 −−−−→ . . .⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
x0 −−−−→ x1 −−−−→ x2 −−−−→ x3 −−−−→ x4 −−−−→ . . .

To our best knowledge, (8) did not appear before and, as explained above, is not
a special case of existing BCD analyses. When the Markov chain (ik)k≥0 has a finite
mixing time and problem (1) has a lower bounded objective, we show that using
γ ∈ (0, 2/L) ensures E‖∇ f (xk)‖ → 0. The concept of mixing time is reviewed in
the next section. In addition, when f is convex and coercive, we show that E f (xk) →
min f at the rate of O(1/k) with a hidden constant related to the mixing time. Note
that running the algorithm itself requires no knowledge about the mixing time of the
chain. Furthermore, when f is (restricted) strongly convex, then the rate is improved to
be linear, unsurprisingly. Although we do not develop any Nesterov-kind acceleration
in this paper, a heavy-ball-kind inertial MC-BCD is presented and analyzed because
the additional work is quite small. When the computation ∇ik f (x

k) is noisy, as long
as the noise is square summable (which is weaker than being summable), MC-BCD
still converges.

1.4 Possible future work

We mention some future improvements of MC-BCD, which will require significantly
more work to achieve. First, it is possible to accelerate MC-BCD using both Nesterov-
kind momentum and optimizing the transition probability. Second, it is important to
parallelize MC-BCD, for example, to allow multiple random walks to simultaneously
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42 T. Sun et al.

update different blocks [7,22], even in an asynchronous fashion like [13,19,27]. Third,
it is interesting to develop a primal–dual type MC-BCD, which would apply to a
model-free DMDP along a single trajectory. Yet another line of work applies block
coordinate update to linear and nonlinear fixed-point problems [5,17,18] because it can
solve optimization problems in imaging and conic programming, which are equipped
with nonsmooth, nonseparable objectives, and constraints.

2 Preliminaries

2.1 Markov chain

We recall some definitions and properties of the Markov chain that we use in this
paper.

Definition 1 (finite-state (time-homogeneous) Markov chain) A stochastic process
X1, X2, . . . in a finite state space [N ] := {1, 2, . . . , N } is called Markov chain with
transition matrices (P(k))k≥0 if, for k ∈ N, i, j ∈ [N ], and i0, i1, . . . , ik−1 ∈ [N ], we
have

P(Xk+1 = j | X0 = i0, X1 = i1, . . . , Xk = i) = P(Xk+1 = j | Xk = i) = Pi, j (k).

The chain is time-homogeneous if P(k) ≡ P for some constant matrix P .

Let the probability distribution of Xk be denoted as the row vector πk =
(πk

1 , πk
2 , . . . , πk

N ), that is, P(Xk = j) = πk
j . Each πk satisfies

∑N
i=1 πk

i = 1. Obvi-

ously, it holds πk+1 = πk P(k). When the Markov chain is time-homogeneous, we
have πk = πk−1P and πk = πk−1P = · · · = π0Pk , for k ∈ N, where Pk is the kth
power of P .

Definition 2 A time-homogeneous Markov chain is irreducible if, for any i, j ∈ [N ],
there exists k such that (Pk)i, j > 0. State i ∈ [N ] is said to have a period d if Pk

i,i = 0
whenever k is not a multiple of d and d is the greatest such integer. If d = 1, then
we say state i is aperiodic. If every state is aperiodic, the Markov chain is said to be
aperiodic.

Any time-homogeneous, irreducible, and aperiodic Markov chain has a stationary
distribution π∗ = limk πk = [π∗

1 , π∗
2 , . . . , π∗

N ] with ∑N
i=1 π∗

i = 1 and mini {π∗
i } >

0, and π∗ = π∗P . This is a sufficient but not necessary condition to have such π∗. If
the Markov fails to be time-homogeneous,1 it may still have a stationary distribution
under additional assumptions.

In this paper, we make the following assumption, which always holds for time-
homogeneous, irreducible, and aperiodicMarkov chain andmay hold formore general
Markov chains.

1 The time-homogeneous, irreducible, and aperiodic Markov chain is widely used; however, in practical
problems, the Markov chain may not satisfy the time-homogeneous assumption. For example, in a mobile,
if the network connectivity structure is changing all the time, then the set of the neighbors of an agent is
time-varying [9].

123
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Assumption 1 The Markov chain (Xk)k≥0 has the transition matrices (P(k))k≥0 and
the stationary distribution π∗. Define

Φ(m, n) := P(m)P(m + 1) · · · P(m + n), m, n ≥ 0, Π∗ :=

⎡
⎢⎢⎢⎣

π∗
π∗
...

π∗

⎤
⎥⎥⎥⎦ ∈ R

N×N ,

that is, every row of Π∗ is π∗. For each ε > 0, there exists τε ≥ 1 such that spectral
norm

‖Φ(m, n) − Π∗‖2 < ε, for all m ≥ 0, n ≥ τε − 1.

Here, τ is called amixing time, which specifies how long aMarkov chain evolves close
to its stationary distribution. The literature has a thorough investigation of various kinds
of mixing times [3]. Previous mixing time focuses on bounding the difference between
πk and the stationary distribution π∗. Our version is just easier to use in the analysis.

For a time-homogeneous, irreducible, and aperiodic Markov chain with the transi-
tion matrix P , Φ(m, n) = Pn+1. It is easy to have τε as (1 + 3 ln N

2 ln 1
λ2(P)

) · log 1
λ2(P)

( 1
ε
),

where λ2(P) denotes the second largest eigenvalue of P (positive and smaller than
1) [14]. Besides the time-homogeneous, irreducible, and aperiodic Markov chain,
some other non-time-homogeneous chains can also have a geometrically-convergent
Φ(m, n). An example is presented in [21].

2.2 Notation and constants

The following notation is used throughout this paper:

Δk := xk+1 − xk . (9)

In MC-BCD iteration, only the block Δk
ik
of Δk is nonzero; other blocks are zero. Let

π∗
min be the minimal stationary distribution, i.e.,

π∗
min := min

1≤i≤N
{π∗

i }.

For any closed proper function f , argmin f denotes the set {x ∈ R
N | f (x) = min f },

and ‖ ·‖ denotes the �2 norm. Through the proofs, we use the following sigma algebra

χk := σ(x1, x2, . . . , xk, i0, i1, . . . , ik−1).

Let Assumption 1 hold. In our proofs, we let τ be the
π∗
min
2 -mixing time, i.e.,

‖Φ(m, n) − Π∗‖2 ≤ π∗
min

2
, whenever n ≥ τ − 1. (10)

123



44 T. Sun et al.

With direct calculations,

π∗
min

2
≤ [Φ(m, n)]i, j , for any i, j ∈ {1, 2, . . . , N }, n ≥ τ − 1. (11)

If the Markov chain promises a geometric rate, then we have

τ = O

(
ln

2

π∗
min

)
.

It is worth mentioning that, for a complete graph where all nodes are connected to
each other, we have a Markov chain with τ = 1, and our MC-BCD will reduce to
random BCD [15].

3 Markov chain block coordinate gradient descent

In this section, we study the convergence properties of the MC-BCD for problem (1).
The discussion covers both convex and nonconvex cases. We show that the MC-BCD
can converge if the stepsize γ is taken as the same as that in traditional BCD. For
convex problems, sublinear convergence rate is established, and for strongly convex
cases, linear convergence is shown.

Our analysis is conducted to an inexact version of theMC-BCD, which allows error
in computing partial gradients:

xk+1
j =

{
xkj − γ

(∇ j f (xk) + εk
)
, if j = ik

xkj , if j �= ik,
(12)

where ik is sampled in the same way as in (8a), and εk denotes the error in the kth
iteration. If εk vanishes, the above updates reduce to the MC-BCD in (8).

3.1 Convergence analysis

The results in this section applies to both convex and nonconvex cases, and they rely
on the following assumption.

Assumption 2 The set of minimizers of function f is nonempty, and ∇i f is Lipschitz
continuous about xi with constant L > 0 for each i = 1, 2, . . . , N , namely,

‖∇i f (x) − ∇i f (x + αei )‖ ≤ L‖α‖, ∀x ∈ R
N ,∀α ∈ R, (13)

where ei denotes the i th standard basis vector inRN . In addition,∇ f is also Lipschitz
continuous about x with constant Lr , namely,

‖∇ f (x) − ∇ f (x + s)‖ ≤ Lr‖s‖, ∀x ∈ R
N ,∀s ∈ R

N . (14)

We call κ = Lr
L the condition number.
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Markov chain block coordinate descent 45

When (13) holds for each i , we have

f (x + dei ) ≤ f (x) + 〈∇i f (x), d〉 + L

2
‖d‖2. (15)

Lemma 1 below is very standard. It bounds the square summation of Δk by initial
objective error and iteration errors. Lemmas 2 and 3 are new; they study the bounds
on ‖∇ik f (x

k−τ+1)‖2 because the sampling bias prevents us from directly bounding
‖∇ik f (x

k)‖2. The bounds in these three lemmas are combined in Theorem 1 to get
the convergence rates of ‖∇ f (xk)‖.
Lemma 1 Under Assumption 2, let (xk)k≥0 be generated by the inexact MC-BCD (12)
with any constant stepsize 0 < γ < 2

L . Then for any k,

k∑
t=0

‖Δt‖2 ≤ 4γ

2 − Lγ
· ( f (x0) − min f

) + 4γ 2

(2 − Lγ )2

k∑
t=0

‖εt‖2. (16)

Proof Recalling the definition of Δk in (9) and noting xk+1
j = xkj for all j �= ik , we

have:

〈Δk,∇ f (xk)〉 =
〈
xk+1
ik

− xkik ,∇ik f (x
k)
〉
= − 1

γ
‖Δk‖2 +

〈
εk, xkik − xk+1

ik

〉
, (17)

where we have used the update rule in (12) to obtain the second equality. By (15)
and (17), it holds that

f (xk+1) ≤ f (xk) + 〈Δk,∇ f (xk)〉 + L

2
‖Δk‖2

= f (xk) +
( L
2

− 1

γ

)
‖Δk‖2 + 〈εk, xkik − xk+1

ik
〉 (18)

a)≤ f (xk) +
( L
4

− 1

2γ

)
‖Δk‖2 + γ ‖εk‖2

2 − Lγ
, (19)

where a) is from theYoung’s inequality 〈εk, xkik −xk+1
ik

〉 ≤ γ
2−Lγ

‖εk‖2+ 2−Lγ
4γ ‖Δk‖2.

Summing (19), rearranging terms, and noting f (xk) ≥ min f ,∀k, we obtain the
desired result and complete the proof. ��

Also, we can bound partial gradient by the iterate change Δk and error term εk as
follows.

Lemma 2 Assume (14). Let (xk)k≥0 be generated by the inexact MC-BCD (12). Then
for k ≥ τ, it holds

‖∇ik f (x
k−τ+1)‖2 ≤ 2L2

r · (τ − 1) ·
k−1∑

d=k−τ+1

‖Δd‖2 + 4

γ 2 ‖Δk‖2 + 4‖εk‖2. (20)

123



46 T. Sun et al.

Proof By the update rule in (12) and the definition of Δk , we have −∇ik f (x
k) =

Δk
ik

γ
+ εk . Applying the triangle inequality to the above inequality yields

‖∇ik f (x
k−τ+1)‖2 ≤ 2‖∇ik f (x

k−τ+1) − ∇ik f (x
k)‖2 + 2

∥∥∥∥∥
Δk

ik

γ
+ εk

∥∥∥∥∥
2

≤ 2‖∇ik f (x
k−τ+1) − ∇ik f (x

k)‖2 + 4

γ 2 ‖Δk‖2 + 4‖εk‖2.
(21)

Note ‖∇ik f (x
k−τ+1)−∇ik f (x

k)‖2 ≤ ‖∇ f (xk−τ+1)−∇ f (xk)‖2. Hence, it follows
from the triangle inequality and the Lipschitz continuity of ∇ f in (14) that

‖∇ik f (x
k−τ+1)‖2 ≤ 2‖∇ f (xk−τ+1) − ∇ f (xk)‖2 + 4

γ 2 ‖Δk‖2 + 4‖εk‖2

≤ 2 · (τ − 1) ·
k−1∑

d=k−τ+1

‖∇ f (xd+1) − ∇ f (xd )‖2 + 4

γ 2 ‖Δk‖2 + 4‖εk‖2

≤ 2L2
r · (τ − 1) ·

k−1∑
d=k−τ+1

‖Δd‖2 + 4

γ 2 ‖Δk‖2 + 4‖εk‖2,

which gives the desired result. ��
Remark 1 If εk = 0, ∀k, then starting from (21) and by the same arguments, we can
have

‖∇ik f (x
k−τ+1)‖2 ≤ 2L2

r · (τ − 1) ·
k−1∑

d=k−τ+1

‖Δd‖2 + 2

γ 2 ‖Δk‖2.

Furthermore, we can lower bound full gradient by conditional partial gradient.

Lemma 3 Let (10) hold. Then it holds

E
(‖∇ik f (x

k−τ+1)‖2 | χk−τ+1)≥π∗
min

2
‖∇ f (xk−τ+1)‖2. (22)

Proof Taking conditional expectation, we have

E
(‖∇ik f (x

k−τ+1)‖2 | χk−τ+1) =
N∑
j=1

‖∇ j f (x
k−τ+1)‖2 · P(ik = j | χk−τ+1).

By the Markov property, it holds P(ik = j | χk−τ+1) = P(ik = j | ik−τ) =
[Φ(k − τ, τ − 1)]ik−τ, j . Then the desired result is obtained from (11) and the fact∑N

i=1 ‖∇i f (·)‖2 = ‖∇ f (·)‖2. ��
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Theorem 1 Let Assumptions 1 and 2 hold and (xk)k≥0 be generated by the inexact
MC-BCD (12) with any constant stepsize 0 < γ < 2

L . We have the following results:

1. Square summable noise: If the noise sequence satisfy
∑∞

k=0 ‖εk‖2 = E < +∞.
Then,

lim
k→∞E‖∇ f (xk)‖ = 0, (23)

and

E

[
min
1≤t≤k

‖∇ f (xt )‖2
]

≤ 2

(k + 1)π∗
min

[
C1(τ) · ( f (x0) − min f

) + (
C2(τ) + 4

)
E
]
.

(24)

2. Non-square-summable noise: If ‖εk‖2 ≤ S, ∀k ≥ 0 for some positive number
S > 0, then

E

[
min
1≤t≤k

‖∇ f (xt )‖2
]

≤ 2

(k + 1)π∗
min

C1(τ) · ( f (x0) − min f
)

+ 2

π∗
min

(
C2(τ)(k + τ)

k + 1
+ 4

)
S. (25)

The constants used above are

C1(τ) := 4γ

2 − Lγ

(
2L2

r (τ − 1)2 + 4

γ 2

)
,

C2(τ) := 4γ 2

(2 − Lγ )2

(
2L2

r (τ − 1)2 + 4

γ 2

)
. (26)

Proof In the case of square summable noise, we have εk → 0 as k → ∞. In addition, it
follows from (16) that

∑∞
k=0 ‖Δk‖2 < +∞ and thusΔk → 0 as k → ∞. Hence, (20)

implies

lim
k→∞ ‖∇ik f (x

k−τ+1)‖2 = 0. (27)

Taking expectation on (27) and using the Lebesgue dominated convergence theorem,
we have

lim
k→∞E‖∇ik f (x

k−τ+1)‖2 = 0.

Hence from (22), it follows that

lim
k→∞E‖∇ f (xk)‖2 = lim

k→∞E‖∇ f (xk−τ+1)‖2 ≤ 2

π∗
min

lim
k→∞E‖∇ik f (x

k−τ+1)‖2 = 0,
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and thus (23) holds by the Jensen’s inequality (E‖∇ f (xk)‖)2 ≤ E‖∇ f (xk)‖2.
Note

∑k
t=τ−1

∑t−1
d=t−τ+1 ‖Δd‖2 ≤ (τ−1)

∑k−1
d=0 ‖Δd‖2 for any k ≥ τ. Therefore,

summing both sides of (20) yields

k∑
t=τ−1

‖∇it f (x
t−τ+1)‖2 ≤ 2L2

r (τ − 1)2
k−1∑
d=0

‖Δd‖2 + 4

γ 2

k∑
t=τ−1

‖Δt‖2 + 4
k∑

t=τ−1

‖εt‖2

≤
(
2L2

r (τ − 1)2 + 4

γ 2

) k∑
t=0

‖Δt‖2 + 4
k∑

t=τ−1

‖εt‖2. (28)

The inequality in (28) together with (16) and the assumption on εk gives

∞∑
t=τ−1

‖∇it f (x
t−τ+1)‖2 ≤ C1(τ) · ( f (x0) − min f

) + (
C2(τ) + 4

)
E , (29)

where C1(τ) and C2(τ) are defined in (26). In addition, we have

(k + 1) · E
[
min
0≤t≤k

‖∇ f (xt )‖2
]

≤
k∑

t=0

E‖∇ f (xt )‖2 =
k+τ−1∑
t=τ−1

E‖∇ f (xt−τ+1)‖2

≤ 2

π∗
min

k+τ−1∑
t=τ−1

E‖∇it f (x
t−τ+1)‖2, (30)

where the last inequality follows from (22). Now the result in (24) is obtained from
the above inequality together with that in (29).

In the case of ‖εk‖2 ≤ S, ∀k ≥ 0, we have from (16) and (28) that

k∑
t=τ−1

‖∇it f (x
t−τ+1)‖2 ≤

(
2L2

r (τ − 1)2 + 4

γ 2

)(
4γ

2 − Lγ
· ( f (x0)

−min f
) + 4γ 2(k + 1)S

(2 − Lγ )2

)
+ 4(k − τ + 2)S.

In the above inequality, setting k to k + τ − 1 and using (30) give the result in (25). ��
Although MC-BCD has sample bias, we can still use a constant stepsize. In fact,

Theorem 1 indicates the stepsize can be as large as traditional BCD. The assumption
on the noise sequence isweaker than the commonly used assumption

∑
k ‖εk‖ < +∞.

When the noise sequence is non-diminishing, we have a final error that approximately
matches the noise level. This is useful in an application in Sect. 5, where computing
∇ik f may involve certain sampling that becomes too expensive to require asymptoti-
cally vanishing noise.

3.2 Convergence rates for convexminimization

When f is convex, we can estimate the rates of expected objective error. We let
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Ft := E f (xt ·τ) − min f and x = Projargmin f (x).

First, we present an important technical lemma, which will be used to derive both
sublinear and linear convergence results.

Lemma 4 Let (xk)k≥0 be generated by MC-BCD (8b) with 0 < γ < 2
L . When f is

convex, we have

F2
t ≤ Cτ · (Ft − Ft+1) · E‖xt ·τ − xt ·τ‖2, (31)

where the constant is

Cτ :=
max

{
4L2

r · (τ − 1), 4
γ 2

}
(
1
γ

− L
2

)
· π∗

min

. (32)

Proof Since εk = 0, ∀k, taking expectations of both sides of (20) and using (22) yield

E‖∇ f (xk−τ+1)‖2 ≤
max

{
4L2

r · (τ − 1), 4
γ 2

}
π∗
min

·
k∑

d=k−τ+1

E‖Δd‖2. (33)

For each d, we have from (18) with εk = 0 that

E‖Δd‖2 ≤ E f (xd) − E f (xd+1)

1
γ

− L
2

. (34)

Substituting (34) into (33) and recalling the definition of Cτ in (32) give

E‖∇ f (xk−τ+1)‖2 ≤ Cτ

[
E f (xk−τ+1) − E f (xk+1)

]
. (35)

For any integer t , letting k = (t + 1) · τ − 1 in (35), we have

E‖∇ f (xt ·τ)‖2 ≤ Cτ

[
Ft − Ft+1

]
. (36)

On the other hand, it follows from convexity of f that

Ft = E f (xt ·τ) − min f ≤ E

〈
∇ f (xt ·τ), xt ·τ − xt ·τ

〉
. (37)

Now square both sides of (37) and apply the Cauchy–Schwarz inequality to have

F2
t ≤ E‖∇ f (xt ·τ)‖2 · E‖xt ·τ − xt ·τ‖2. (38)

Substituting (36) into (38) yields (31), and we complete the proof. ��
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3.2.1 Sublinear convergence rate

A well-known result in convergence analysis is that a nonnegative sequence (ak)k≥0
that obeying ak+1 ≤ ak and ak+1 ≤ ak − ηa2k , for some η > 0 and all k ≥ 0 satisfies

ak ≤ a0
a0ηk + 1

. (39)

It can be proved by observing 1
ak+1

− 1
ak

≥ η.

Theorem 2 Under Assumptions 1 and 2, let (xk)k≥0 be generated by MC-BCD (8b)
with 0 < γ < 2

L . Assume that f is convex and the level setX0 = {x ∈ R
N : f (x) ≤

f (x0)} is bounded with diameter R = maxx,y∈X0 ‖x − y‖. Then we have

E f (xk) − min f ≤ F0CτR2

F0� k
τ� + CτR2

,

where Cτ is the constant defined in (32), and τ is the
π∗
min
2 -mixing time defined

in (10). ��
Proof From (18) with εk = 0, ∀k and 0 < γ < 2

L , it follows that f (x
k) is monotoni-

cally nonincreasing about k, and thus xk ∈ X0 for all k. Therefore, ‖xt ·τ − xt ·τ‖2 ≤
R2, ∀t . Substituting this inequality into (31) gives F2

t ≤ CτR2 · (Ft − Ft+1), or

equivalently Ft+1 ≤ Ft − F2
t

CτR2 . From (39) we obtain

Ft ≤ F0
F0t

CτR2 + 1
, ∀t ≥ 0.

Since f (xk) is nonincreasing about k, it follws that

E f (xk) − min f ≤ F� k
τ � ≤ F0

F0� k
τ �

CτR2 + 1
= F0CτR2

F0� k
τ� + CτR2

,

which completes the proof. ��
Remark 2 We consider a standard stepsize γ = 1

L and compare random BCD
and MC-BCD. In [Theorem 1, [15]], it is shown that random BCD has the rate
E f (xk) − min f = O( N ·R2·L

k ). We stress that, with our notation, ∇ f is (N · L)-
Lipschitz continuous in the worst case. When our Markov chain uses a complete
graph, we can have a uniform stationary distribution and τ = 1. In this case, MC-BCD
reduces to random BCD, and our complexity of MC-BCD is also E f (xk) −min f =
O( N ·R2·L

k ). In this sense, we have generalized random BCD with a matching com-
plexity. If the Markov chain promises a geometric mixing rate, i.e., τ = O(ln N ), then
our convergence rate result becomes E f (xk) − min f = O( N ·ln2 N ·R2·L

k ). While in
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cyclic BCD, we have f (xk) −min f = O( N
2·R2·L
k ) from [2, Corollary 3.8].2 That is,

in terms of worst-case guarantee, MC-BCD performs slightly worse than i.i.d. random
BCD but better than cyclic BCD. ��

3.2.2 Linear convergence rate

To have linear convergence, we consider the restricted ν-strongly convex function:

f (x) − min f ≥ ν‖x − x‖2, for all x ∈ R
N , x = Projargmin f (x). (40)

Theorem 3 Under Assumptions 1 and 2, let (xk)k≥0 be generated by MC-BCD (8b)
with 0 < γ < 2

L . If f satisfies condition (40), then

E f (xk) − min f ≤ F0

(
1 − ν

Cτ

)� k
τ �

.

Proof Immediately from (40), we have the bound

E‖xt ·τ − xt ·τ‖2 ≤ E f (xt ·τ) − min f

ν
= Ft

ν
.

Substituting the above inequality into (31) yields F2
t ≤ Cτ

ν
· (Ft − Ft+1) · Ft , or

equivalently Ft+1 ≤ (1 − ν
Cτ

)Ft . Hence,

Ft ≤ F0

(
1 − ν

Cτ

)t

, ∀t ≥ 0.

Again from monotonicity of f (xk) about k, it follows that

E f (xk) − min f ≤ F� k
τ � ≤ F0

(
1 − ν

Cτ

)� k
τ �

,

which completes the proof. ��

Remark 3 If we consider the stepsize γ = 1
L and assume the Markov chain

enjoys a uniform stationary distribution, then we get the rate E( f (xk) − min f ) =
O

((
1 − ν

N ·max{8κL·(τ−1),8L}
)� k

τ �)
.

2 The authors in [2, Corollary 3.8] present this results in the perspective of epochs, while here we present
the rate in the perspective of iterations. Thus, their result is multiplied by N for comparison.
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4 Extension to nonsmooth problems

All results established in previous sections assume the smoothness of the objective
function. In this section, we add separable, possibly nonsmooth functions to the objec-
tive:

minimize F(x) ≡ f (x1, x2, . . . , xN ) +
N∑
i=1

gi (xi ). (41)

Here, f : RN �→ R is a differentiable function, ∇i f is Lipschitz continuous for each
i = 1, 2, . . . , N , and gi : R �→ R is a closed proper function. Note that we do not
assume convexity on either f or gi ’s. Toward finding a solution to (41), we propose
the inexact Markov chain proximal block coordinate descent (iMC-PBCD).

Given a graph G = (V ,E ), the iMC-PBCD iteratively performs:

sample ik ∈ { j : (ik−1, j) ∈ E } ∼ Pik−1, j (k),

compute xk+1
j =

{
Proxγ g j

(
xkj − γ

(∇ j f (xk) + εk
))

, if j = ik,

xkj , if j �= ik .
(42)

In the above update, γ is a step size, εk denotes the error in evaluating the partial
gradient, and Proxψ(y) is the proximal mapping of a closed function ψ at y, defined
as

Proxψ(y) ∈ argmin
x

{
ψ(x) + 1

2
‖x − y‖2

}
.

To characterize the property of a solution, we employ the notion of subdifferen-
tial [23, Definition 8.3].

Definition 3 (Subdifferential) Let J : R
N → (−∞,+∞] be a proper and lower

semicontinuous function.

1. For any x ∈ dom(J ), the Fréchet subdifferential of J at x , denoted as ∂̂ J (x), is
the set of all vectors u ∈ R

N that satisfies

lim
y �=x

inf
y→x

J (y) − J (x) − 〈u, y − x〉
‖y − x‖ ≥ 0.

If x /∈ dom(J ), then ∂̂ J (x) = ∅.
2. The limiting subdifferential, or simply the subdifferential, of J at x ∈ dom(J ),

denoted as ∂ J (x), is defined as

∂ J (x) := {u ∈ R
N : ∃ (xk)k≥0 and uk ∈ ∂̂ J (xk) such that J (xk)

→ J (x) and uk → u as k → ∞}.
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The first-order optimality condition for x to be a solution of (41) is

0 ∈ ∂F(x).

Any such point is called a critical point of F .
The proofs below are quite different from previous ones because we cannot bound

the gradientwith ‖Δk‖ anymore, i.e., the core relation (20) fails to hold. Consequently,
the convergence result in this section is new. Also, we cannot specify the convergence
rates yet.

Lemma 5 Under Assumption 2, let (xk)k≥0 be generated by iMC-PBCD (42) with
0 < γ < 1

L . If
∑∞

k=0 ‖εk‖2 < ∞, then

lim
k→∞ Δk = 0, (43)

where Δk is defined in (9).

Proof By the definition of the proximalmapping, the update in (42) can be equivalently
written as

xk+1
ik

∈ argmin
xik

{〈
xik − xkik ,

(∇ik f (x
k) + εk

)〉 + 1

2γ
‖xik − xkik‖2 + gik (xik )

}
. (44)

Therefore,

〈
xk+1
ik

− xkik ,∇ik f (x
k) + εk

〉
+ 1

2γ
‖xk+1

ik
− xkik‖2 + gik (x

k+1
ik

) ≤ gik (x
k
ik ). (45)

By the Young’s inequality and the definition of Δk in (9), it holds that

〈
xk+1
ik

− xkik , ε
k
〉
≤ 1

4

(
1

γ
− L

)
‖Δk‖2 + ‖εk‖2

1
γ

− L
.

In addition, it follows from (15) that

f (xk+1) ≤ f (xk) + 〈
Δk,∇ f (xk)

〉 + L

2
‖Δk‖2.

Adding the above two inequalities into (45) and recalling the definition of Δk in (9)
give

f (xk+1) + gik (x
k+1
ik

) + 1

2γ
‖Δk‖2 ≤ f (xk) + gik (x

k
ik )

+ 1

4

(
1

γ
− L

)
‖Δk‖2 + ‖εk‖2

1
γ

− L
+ L

2
‖Δk‖2.
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Rearranging terms of the above inequality and noting g j (x
k+1
j ) = g j (xkj ) for all

j �= ik , we have

F(xk+1) +
(

1

4γ
− L

4

)
‖Δk‖2 ≤ F(xk) + ‖εk‖2

1
γ

− L
,

or equivalently

1

4

(
1

γ
− L

)
‖Δk‖2 ≤ F(xk) − F(xk+1) + ‖εk‖2

1
γ

− L
.

Summing up the above inequality over k, using the conditions 0 < γ < 1
L and∑∞

k=0 ‖εk‖2 < ∞, and also noting F is lower bounded yield
∑∞

k=0 ‖Δk‖2 < ∞,
which implies (43) and completes the proof. ��
Theorem 4 Under Assumptions 1 and 2, let (xk)k≥0 be generated by iMC-PBCD (42)
with 0 < γ < 1

L . If
∑∞

k=0 ‖εk‖2 < ∞, then any cluster point of (xk)k≥0 is a critical
point of F almost surely.

Proof By the first optimality condition of (44), it holds

−Δk
ik

γ
− ∇ik f (x

k) − εk ∈ ∂gik (x
k+1
ik

),

or equivalently

−Δk
ik

γ
+ ∇ik f (x

k+1) − ∇ik f (x
k) − εk ∈ ∇ik f (x

k+1) + ∂gik (x
k+1
ik

) = ∂ik F(xk+1).

(46)

From (43) and also the Lipschitz continuity of ∇i f , we have from (46) that

lim
k→∞ dist

(
0, ∂ik F(xk+1)

)
≤ lim

k→∞

∥∥∥∥∥−
Δk

ik

γ
+ ∇ik f (x

k+1) − ∇ik f (x
k) − εk

∥∥∥∥∥ = 0.

Let x̄ be a cluster point of (xk)k≥0 and thus there is a subsequence (xk)k∈K → x̄ .
If necessary, take a sub-subsequence out of K , so without loss of generality, we can
assume |k1 − k2| ≥ τ for any k1, k2 ∈ K . We go to prove the following claim:

For any j ∈ [N ], there are infinite k ∈ K such that ik = j, a.s. (47)

If the above claim is not true, then for some j ∈ [N ], with nontrivial probability,
there are only finite k ∈ K such that ik = j . Dropping these finitely many k’s inK ,
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we obtain a new subsequence ˆK = {k1, k2, . . .} and ik �= j for any k ∈ ˆK . By the
Markov property, it holds that for any m ≥ 1,

P(ik1 �= j, ik2 �= j, ik3 �= j, . . . , ikm �= j)

= P(ik1 �= j)P(ik2 �= j | ik1 �= j)P(ik3 �= j | ik2 �= j) . . .P(ikm �= j | ikm−1 �= j).
(48)

For any kt−1, kt ∈ ˆK , since kt − kt−1 ≥ τ, then we have from (11) that P(ikt = j |
ikt−1 �= j) ≥ π∗

min
2 . Hence

P(ikt �= j | ikt−1 �= j) = 1 − P(ikt = j | ikt−1 �= j) ≤ 1 − π∗
min

2
,

and thus it follows from (48) that

P(ik1 �= j, ik2 �= j, ik3 �= j, . . . , ikm �= j) ≤
(
1 − π∗

min

2

)m−1

.

Letting m → ∞, we conclude that

P
(
K only contains finitely many k such that ik = j

) = 0,

and thus the claim in (47) is true.
Now for any j ∈ [N ], taking k ∈ K such that ik = j and letting k → ∞, we

have from the fact (xk+1)k∈K → x̄ because of (43) and also the outer-continuity of
subdifferential that

dist(0, ∂ j F(x̄)) = lim
k∈K ,ik= j

dist(0, ∂ik F(xk+1)) = 0, a.s.

Therefore, we complete the proof. ��

5 Empirical Markov chain dual coordinate ascent

In this section, we consider a special case of the risk minimization problem in form
of (6). As we mentioned in section 1.1, if it is easy to get i.i.d. samples from the
distribution Π of the sample space, then we can easily apply SDCA to (6). However,
there are some cases where the distribution Π is not explicitly given and the samples
are generated by a simulator, such as an MCMC sampler. Assume that the samples
generated by the simulator form a Markov chain with stationary distribution Π . Gen-
erating i.i.d. samples may take very long time in this case, instead we want to make
use of all the samples on a sample trajectory, which are not i.i.d. distributed.
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Assume that the sample space Ξ is finite. Let pξ ∈ (0, 1) denote the probability
mass of ξ ∈ Ξ . Then, problem (6) can be presented as

minimizew∈Rn

∑
ξ∈Ξ

pξ F(w�ξ) + λ

2
‖w‖2.

The objective function involves unknown parameters (pξ )ξ∈Ξ . One way to solve this
problem is to do the following two steps: first run the simulator for long enough
time to get an estimation of (pξ )ξ∈Ξ (e.g. use frequency), denoted by ( p̄ξ )ξ∈Ξ ; then
minimize (6) with ( p̄ξ )ξ∈Ξ by SDCA. The SDCA iteration in this case would be:

vk = vk−1 +
αk

ξ k
ξ k

λ
−

αk−1
ξ k

ξ k

λ
,

αk+1
ξ k

= αk
ξ k

− γ
(
(ξ k)�vk − ∇F∗(−αk

ξ k

p̄ξ k

))
,

where ξ k is uniformly randomly chosen from Π , F∗ is the conjugate function of F ,
α := (αξ )ξ∈Ξ are dual variables, and γ is the stepsize.

Compared with SDCA, the advantage of MC-DCA is to do sampling and mini-
mization simultaneously. However, it still needs to estimate (pξ )ξ∈Ξ . To address this
issue, we introduce a practical way that approximates pξ by keeping a count cξ (k),
the times that sample ξ is chosen between iterations 1 and k. We estimate pξ by the
sample frequency cξ (k)/k. We call it empirical MC-DCA. The empirical MC-DCA
iteration is almost the same as SDCA iteration except that (ξ k)k≥0 ⊆ Ξ is a Markov
chain and p̄ξ k = cξ (k)/k.

We provide the theoretical performance of the empirical MC-DCA under a lower
boundedness assumption on the frequency and geometric convergence of the Markov
chain sampling.

Assumption 3 There exists a universal constant δ > 0 such that for any ξ ∈ Ξ and
k ∈ N, cξ /k ≥ δ > 0. In addition, there exists 0 < λ < 1 such that, for any integer
l ∈ N, |P(ξ k+l = ξ |ξ l = ξ) − pξ | = O(λk).

The time-homogeneous, irreducible, and aperiodicMarkovChain can satisfyAssump-
tion 3.

Corollary 1 Let αk := (αk
ξ )ξ∈Ξ be generated by the empirical MC-DCA and

Assumption 3 hold. Then for the dual function given in (3), by denoting A :=
sup1≤i≤k,ξ∈Ξ {‖αk

ξ ‖2}, it holds that

E
[
min
1≤i≤k

‖∇D(αi )‖2] = O

(
A · ln2 k

k

)
,
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Proof Obviously, the empirical MC-DCA can be regarded as the inexact MC-BCD to
minimize D(α) with the noise

ek = ∇F∗(−αk
ξ k

pξ

)
− ∇F∗( −αk

ξ k

cξ (k)/k

)
.

We have presented the convergence result of the inexact MC-BCD in Theorem 1.
Thus, our work turns to bounding ek . With Assumption 3,

‖ek‖2 = O
(
A · ‖cξ (k) − k · pξ‖2

k2

)
.

We now estimate the upper bound of E‖cξ (k) − k · pξ‖2. Denote 1ξ (·) as the variable
valued as 1 when · = ξ and 0 when · being others. Then, cξ (k) can be represented as

cξ (k) =
k∑

i=1

1ξ (ξ
i ).

Direct calculation then gives

E‖cξ (k) − k · pξ‖2 = E‖
k∑

i=1

1ξ (ξ
i ) − k · pξ‖2 =

k∑
i=1

E12ξ (ξ
i )

︸ ︷︷ ︸
a)

−2kpξ

k∑
i=1

E1ξ (ξ
i )

︸ ︷︷ ︸
b)

+ 2
∑
i< j

E
(
1ξ (ξ

i )1ξ (ξ
j )
)

︸ ︷︷ ︸
c)

+k2 p2ξ . (49)

With Assumption 3, we have

a) = kpξ + O

(
k∑

i=1

λi

)
= kpξ + O

(
1

1 − λ

)
. (50)

Similarly, we can derive

b) = −2k2 p2ξ + O

(
k

1 − λ

)
.

Now,we focus onbounding c). Thedifficulty is the dependenceof the variables.Denote
the σ -algebra χk generated by ξ0, ξ1, . . . , ξ k , i.e., χk := σ(ξ0, ξ1, . . . , ξ k). Thus, we
first derive the conditional expectation and then use the property E(E(· | χ i )) = E(·).
Noting that i < j , we have

E
(
1ξ (ξ

i )1ξ (ξ
j ) | χ i ) = P(ξ j = ξ | ξ i = ξ) · E(1ξ (ξ

i ) | χ i ).
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Taking expectations on both sides, we are then led to

E
(
1ξ (ξ i )1ξ (ξ j )

) = P(ξ j = ξ | ξ i = ξ) · E(1ξ (ξ i )
) = P(ξ j = ξ | ξ i = ξ) · P(ξ i = ξ).

With the facts thatP(ξ j = ξ | ξ i = ξ) = pξ +O(λ j−i ) andP(ξ i = ξ) = pξ +O(λi ),

E
(
1ξ (ξ

i )1ξ (ξ
j )
) = p2ξ + O(max{λi , λ j−i }).

Obviously, it holds

∑
i< j≤k

max{λi , λ j−i } =
� k
2 �∑

t=1

ctλ
t . (51)

Now, we investigate what ct exactly is. For any 1 ≤ t ≤ � k
2�, λt only appears in the

cases (I) i = t and j − i ≥ t or (II) j − i = t and i ≥ t . Thus, we can get

ct ≤ �(I) + �(II) = k − 2t + 1 + k − 2t + 1 = 2k − 4t + 2.

Thus, we derive

∑
i< j≤k

max{λi , λ j−i } ≤
� k
2 �∑

t=1

(2k − 4t)λt = O

(
k

1 − λ

)
. (52)

With (51) and (52), we then get

c) = (k2 − k)pξ + O

(
k

1 − λ

)
.

Substituting the bounds of (a), (b) and (c) to (49), we get

E‖cξ (k) − k · pξ‖2 = O

(
k

1 − λ

)
.

Thus, the expectation of noise is bounded as

E‖ek‖2 = O

(
A

k(1 − λ)

)
.

By a slight modification of the proof of inexact MC-BCD, we then prove the result. ��
We also use a numerical experiment to verify the convergence of empirical MC-

DCA and comparison with SDCA. We created a 40-state Markov chain with non-
uniform stationary distribution. We randomly generated x ∈ R

20, ξi ∈ R
20, i =

1, . . . , 40, and set bi = ξ�
i x , where i is a state of the Markov chain. We also set

123



Markov chain block coordinate descent 59

100 101 102 103 104 105

k

10-5

100

105

du
al

ity
 g

ap

Empirical MC-DCA
SDCA

Fig. 1 Duality gap after k samples and k iterations of the algorithms. EmpiricalMC-DCA runs each iteration
along with sampling. SDCA obtains all samples first and then runs k iterations with ( p̄ξ )ξ∈Ξ estimated
from the k samples

Fi (x) = x − bi and λ = 0.1. We compare duality gap of empirical MC-DCA and
SDCA when doing the same number of samples and iterations. The MC-DCA runs
each iteration along with sampling, while SDCA does sampling first and then does
minimization with ( p̄ξ )ξ∈Ξ estimated from the samples. Figure 1 shows that empirical
MC-DCA can reach the same convergence rate as SDCA. However, empirical MC-
DCA can minimize along sampling and does not need to store the sample space in
memory. It can reach any accuracy as long as the sampling process continues.However,
SDCA requires the knowledge of the sample space at each iteration. To improve the
accuracy, it must resume the sampling process to re-estimate (pξ )ξ∈Ξ .

6 Conclusion

In summary, we propose a new class of BCD method that can be implemented by
visiting a random sequence of nodes in a network. As long as the network is connected,
themethod can runwithout the knowledge of its topology and other global parameters.
Besides networks, our method can be also used for certainMarkov decision processes.
It can also run along with MCMC samples for empirical risk minimization when the
underlying distribution cannot be sampled directly. The convergence of our method
is proved for both convex and nonconvex objective functions with constant stepsize.
Inexact subproblems are allowed. When the objective is convex and strongly convex,
sublinear and linear convergence rates are proved, respectively.
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22. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization.Math. Program.
156(1–2), 433–484 (2016)

23. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
24. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1-regularized loss minimization. J. Mach.

Learn. Res. 12(Jun), 1865–1892 (2011)
25. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss mini-

mization. J. Mach. Learn. Res. 14(Feb), 567–599 (2013)
26. Sun, R., Hong,M.: Improved iteration complexity bounds of cyclic block coordinate descent for convex

problems. In: Advances in Neural Information Processing Systems, pp. 1306–1314 (2015)
27. Sun, T., Hannah, R., Yin, W.: Asynchronous coordinate descent under more realistic assumptions. In:

Advances in Neural Information Processing Systems, pp. 6183–6191 (2017)
28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
29. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separableminimization.Math.

Program. 117(1–2), 387–423 (2009)

123



Markov chain block coordinate descent 61

30. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAMJ. Imaging Sci. 6(3), 1758–1789
(2013)

31. Xu, Y., Yin, W.: Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J.
Optim. 25(3), 1686–1716 (2015)

32. Yin, W., Mao, X., Yuan, K., Gu, Y., Sayed, A.H.: A communication-efficient random-walk algorithm
for decentralized optimization. arXiv preprint arXiv:1804.06568 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1804.06568

	Markov chain block coordinate descent
	Abstract
	1 Introduction
	2 Preliminaries
	3 Markov chain block coordinate gradient descent
	4 Extension to nonsmooth problems
	5 Empirical Markov chain dual coordinate ascent
	6 Conclusion
	References




