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Abstract

As acquiring bigger data becomes easier in experimental brain science, com-
putational and statistical brain science must achieve similar advances to fully
capitalize on these data. Tackling these problems will benefit from a more
explicit and concerted effort to work together. Specifically, brain science
can be further democratized by harnessing the power of community-driven
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tools, which both are built by and benefit from many different people with different backgrounds
and expertise. This perspective can be applied across modalities and scales and enables collabora-
tions across previously siloed communities.
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CHALLENGES IN BIG NEURAL DATA

The ability to collect and store brain data has grown exponentially over the past few decades.
Petabytes (PBs) of anatomical, functional, and genetic data are being recorded with an ever-
growing, ever-improving set of technologies. While some data have relatively specific needs, many
large data sets, especially large imaging data sets, share a set of problems. This is true across imag-
ing modalities, scales, and species. Therefore, there is an emerging opportunity to work together
to efficiently develop the next generation of tools that are beneficial across subdisciplines and
scales of brain science. To do so, however, will require overcoming a number of challenges. Our
understanding of these challenges and opportunities can be informed by what big data means.

Computer Science Perspective

From a computer science perspective, the size of the data relative to the computer’s hardware is
key to determining whether data are big. For example, if the data are small enough to fit into a
computer’s main memory, but the calculations require more memory than the data (e.g., matrix
inversion), then they are already big in a very practical way and require new analysis. If the data
are so large that they cannot fit in the computer’s main memory, new visualization and analysis
techniques are required; and if the data are too large to fitin a single computer’s storage drives, then
new storage infrastructure is required. These scales of big data are context specific and depend on
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The big data deluge puts different pressure on different applications. At greater data sizes, more powerful
systems are needed to operate in these ever-more challenging regimes. Most neuroscience data sets
currently still reside at sizes computationally tractable on a single PC or, at worst, a single HPC node. All
these modalities, however, are seeing a steady rise in data sizes. The methods that will enable neuroscientists
to make use of these ever-richer data sets must be developed now.
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Figure 1

the particular hardware constraints (Figure 1). For example, for mobile computing devices, even
a gigabyte might be big, whereas for servers, several terabytes (TB) would not yet be considered
big. Regardless, at each scale, similar challenges must be overcome.

The main challenge is in constructing computational infrastructure that can efficiently work
with such large data. Whereas little data can be stored in standard file formats, visualized in typ-
ical desktop applications, analyzed using single file scripts, and accessed by double clicking, all
of these functionalities break down for big data. Instead, we rely on databases for storage, Web-
visualization tools, and distributed computing for analysis. Brain sciences are leveraging and mod-
ifying tools developed by other sciences and industries for some of these functionalities and de-
veloping others from scratch for our unique needs.

Statistics Perspective

From the perspective of statistics, data are big whenever the number of features (or dimensions)
exceeds the number of samples. Such data, sometimes called wide data or high-dimensional low-
sample-size data, suffer from the large p small z problem, also known as the curse of dimension-
ality. When data are big from a computational perspective, new computational tools are required,
whereas when data are big from a statistical perspective, new statistical tools are required.

The main challenge here is that the traditional bedrock of statistical theory and practice has
focused on asymptotic results that assume an effectively infinite number of samples relative to
the number of features. For wide data, such assumptions fail to sufficiently restrict the set of po-
tential answers to many quantitative questions. For example, linear regression on a single point
permits an infinite number of solutions, but only an infinitesimally small number of them will be
useful for predicting future points. Worse yet, as the number of dimensions increases, estimates
of uncertainty require an exponentially increasing number of samples (unless they have strong
prior knowledge). For these reasons, great care is required to arrive at valid and reproducible
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conclusions when leveraging wide data. Specifically, latent structures must be inferred, either ex-
plicitly or implicitly, and domain knowledge must restrict the search space to biologically sensible
answers.

Approaches

For both sets of challenges, new ideas are required to overcome them, and new software is required
to implement them. Both ideation and implementation greatly benefit from a global democratized
science where anybody with interest can actively contribute. We have found that the most effective
means for software development in this era of big data brain science is collaborative and open
development (Vogelstein et al. 2018b). For this reason, we highlight a number of tools that are
actively developed to overcome these challenges. We hope that this review will inspire others
to contribute to these toolboxes rather than develop their own, typically poorly supported and
non-sustainably developed, toolboxes. In our experience, community-developed toolboxes have a
greater chance of providing more user support and sustainable development practices.

In the history of big data science, a common thread is that community standards emerge only
after a data set of great community interest emerges (Burns et al. 2014). Two prominent exam-
ples are genetics and cosmology. When the first human genome was published, many in the field
wanted to study it. This incentivized the development of tools specifically for operating on data
in the format used for the first human genome. When other labs began generating other human
genomes, they were incentivized to use the same format, as they had access to the previously de-
veloped tools. This pattern repeated as the format became a standard. Note that the incentive
structure was internally rather than externally imposed. That is, the standard emerged because
it immediately and obviously helped the researchers. Importantly, this included not just profes-
sors (who mostly do not do the work) but also graduate students and technicians (who mostly do
the work). By aligning incentives, genetics (and also cosmology) was able to develop practices in
support of open science and community standards, which greatly accelerated the field’s collective
science. Of course, differences between fields, such as the wide variety of measurement modali-
ties, scales, and taxa, create new challenges in neuroscience not seen before. Regardless, many of
the same lessons hard learned in other domains stand to benefit how neuroscience approaches the
big-data problem and accelerate solutions.

Brain sciences, for the most part, are yet to adopt community standards. We believe this is
largely due to a lack of community-supported open data sets. Nonetheless, we are close. Here
we first discuss the various subdisciplines that are facing these challenges. For each, we reference
big data sets (Table 1) and tools (Table 2) that either already exist or could exist soon. For each
modality, several spatial scales are considered. It is our hope that by understanding the shared
challenges across scales and modalities, our community will further engage in community-led and
community-developed data sets and analysis tools (Figure 2).

BIG DATA

We partition the kinds of data acquired in brain science into physiology (dynamics), anatomy
(structure), and genetics (blueprint). The boundaries between these three areas are admittedly
fuzzy. The structure of one’s brain is dynamic over one’s life span. Moreover, gene expression
varies both spatially and temporally across an individual’s brain. Nonetheless, existing experimen-
tal methods and data sets for the most part investigate just one of the three areas. Because all three
share certain challenges, building tools to address any one of them could accelerate discovery in
the others, or better, unify the study across all three.
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Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

Table 1 List of recommended data sets

Data type | Data (source) Limitations

Physiology

Micro (ephys) International Brain Laboratory No data yet
(https://www.internationalbrainlab.cony/)

Micro (opto) Brain Observatory Not community driven
(http://observatory.brain-map.org/visualcoding)

Meso (MRI) Healthy Brain Network (http://fcon_1000.projects.nitrc.org/ Only ~1,000 samples available now
indi/cmi_healthy_brain_network/)

Macro (behavior) None NA

Anatomy

Nano (EM) TEMCA?2 Data (FAFB) (https://www.temca2data.org) Volumetric annotations not publicly

available

Micro (LM) MouseLight and Z Brain Atlas (http://mouselight.janelia. Not integrated with other related
org/; https://engertlab.fas.harvard.edu/Z- Brain/home/) data sets

Meso (sMRI & dMRI) | Healthy Brain Network (http://fcon_1000.projects.nitrc.org/ | Only ~1,000 samples available now
indi/cmi_healthy_brain_network/)

Genetics

Nano (in situ) None NA

Micro (scRNAseq) None NA

Meso (tissue) Allen Brain Map (https://portal.brain-map.org) NA

Abbreviations: dMRI, diffusion MRI; EM, electron microscopy; ephys, electrophysiology; FAFB, full adult fly brain; fMRI, functional MRI; LM, light

microscopy; NA, not applicable; opto, optical microscopy; scRNAseq, single-cell RNA sequencing; sMRI, structural MRI.

For each experimental modality, we list a potential reference data set. Reference data sets are
data sets that are (#) of great interest to a large fraction of the community, (b) expensive to acquire,
and (¢) community driven (rather than top-down, i.e.,a large fraction of the community collectively
decided that such a data set would be highly valuable rather than a single institution producing
such a data set). There are counterexamples to each of these; nonetheless, we find the above three
principles to be helpful guidelines and provide a summary table of useful references across data
types (Table 1). As this review is limited in space, we provide more complete discussions and
reference lists in the Supplemental Appendix 1.

Big Dynamics

Physiological data are rapidly growing with advances in recording technologies across scales, in-
cluding electrophysiology, optophysiology (voltage and calcium imaging), and magnetophysiology
[i.e., functional MRI (fMRI)]. Current calculations even demonstrate a feasible path to simulta-
neous recording of every neuron in the brain (Marblestone et al. 2013). The particulars of each
modality have led to different tools for different scales, often without considering their applicabil-
ity to other scales (Figure 3). We believe developing shared methods would accelerate discovery
across modalities.

Microphysiology: electrophysiology and optical microscopy. On the micron scale, electrical
and optical recordings provide systems neuroscience with rich access to population-level activity
at single-neuron resolution. While electrophysiology remains the most established modality at
this scale, even major advances in electrode densities have not yet brought these data sets to the
scale of big data (Jun et al. 2017). Large-scale collaborations [e.g., the International Brain Lab
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Table 2 List of recommended code bases and limitations to address each of the data modality specific and general

challenges enumerated in the text

Step | Code (source) | Current hurdles

Physiology
Micro (ephys) Open Ephys (https://open-ephys.org/) Limited analysis
Micro (opto) CalmAn (https://github.com/flatironinstitute/CalmAn) Requires manual fine-tuning
Meso (fMRI) C-PAC (https://fcp-indi.github.io) Single institution developing
Macro (behavior) None NA
Anatomy
Nano (EM) NeuroData Cloud (https://neurodata.io/nd_cloud/) Centralized
Micro (LM) TeraSticher (https://abria.github.io/TeraStitcher/) Only does linear registration
Meso (sMRI & DiPy (https://dipy.org) No pipelines

dMRI)
Genetics
Nano (in situ) None NA
Micro (scRNAseq) None NA
Meso (Tissue) None NA
Systems
Storage CloudVolume (https://github.com/seung-lab/cloud-volume) Not yet widely adopted
Compression Brotli (https://github.com/google/brotli) Not yet widely adopted
Pipelines Docker (https://www.docker.com) Complex to set up
Visualization NeuroGlancer (https://github.com/google/neuroglancer) Lacks annotation support
Statistics
Tabular Scikit-Learn (https://scikit-learn.org/stable/) Parallel execution is weak
Images Scikit-Image (https://scikit-image.org/) Lacks sophisticated methods

Time series

StatsModels (https://www.statsmodels.org/stable/index.html) Lacks sophisticated methods

Networks

NetworkX (https://networkx.github.io) Lacks sophisticated methods

Abbreviations: C-PAC, configurable pipelines for the analysis of connectomes; CalmAn, calcium imaging analysis; dMRI, diffusion MRI; EM, electron

microscopy; ephys, electrophysiology; fMRI, functional MRI; LM, light microscopy; NA, not applicable; opto, optical microscopy; scRNAseq, single-cell
RNA sequencing; sMRI, structural MRI.
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(Int. Brain Lab. 2017)] and theorized technologies (Marblestone et al. 2013), however, promise a
future for big electrophysiology. Optical imaging, on the other hand, and calcium imaging in par-
ticular have recently crossed the big data threshold and are continuing to grow with new technolo-
gies (Beaulieu et al. 2018, Hillman et al. 2018, Song et al. 2017) and chronic recording. Recently,
both algorithmic toolboxes (Giovannucci et al. 2019, Pachitariu et al. 2017) and open data sets
(e.g., Neurofinder) have been disseminated. The most promising public data set for community
reference is the Allen Institute Mouse Brain Observatory; however, it remains to be seen if the
top-down nature of the experimental design will impair widespread adoption. Nonetheless, re-
cent activity and investment from prominent institutions and large-scale collaborations promise
community-driven pipelines and analysis in the near future.

Mesophysiology: functional MRI. There is a long history in fMRI of data availability, reference
data sets, open resources, and code. The increase in quality, scale, and diversity of data acquisition
has been paralleled by extensive algorithmic and infrastructure development as well as progress in
social and scientific norms for reproducibility and knowledge representation. A few existing open
data sets have the potential to become widely used and catalyze analytical synergy (Bycroft et al.

Charles et al.
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Big data brain science is the result of ingenious advances in recording technology and large-scale
collaborations (Jeft box). To maximally utilize the resulting data, we must determine how to convert the data
coming from these new experimental paradigms into statistical conclusions on scientific questions (right box).

2018, Mueller et al. 2005, Van Essen et al. 2013). There remain, however, challenges in the fMRI
community. Perhaps the most severe challenge is a lack of standard pipelines (Bridgeford et al.
2019, Kiar et al. 2018), which hampers reproducibility and validation and is further exacerbated
by the difficulty of harmonizing data across experiments (Yu et al. 2018). For these reasons, the
Configurable Pipeline for the Analysis of Connectomes (C-PAC) incorporates many pipelines.
While not community driven, it incorporates community-developed algorithms and is gaining in
prominence and flexibility.

Macrophysiology: behavior. Interest in quantifying animal behavior, particularly in naturalis-
tic settings, has recently grown due to its promise as a low-cost and noninvasive measurement
of structure and variability in nervous systems (Gomez-Marin et al. 2014, Krakauer et al. 2017).
Facilitated by open source assembly schematics and cheap fabrication techniques, behavioral mon-
itoring systems collecting big data sets are becoming a staple in neuroscience laboratories. Tradi-
tionally limited by subjective and laborious manual scoring, the signals in behavioral data can now
be automated and more objectively quantified due to advances in computer vision and machine
learning (Graving et al. 2019, Pereira et al. 2019). These methods enable general purpose pose
estimation (Graving et al. 2019, Mathis et al. 2018, Pereira et al. 2019), permitting the inference
of postural dynamics necessary for understanding behavior in the context of the brain.

Interpretation of large-scale movement data with respect to the brain, however, remains a
challenge (Gomez-Marin et al. 2014). Recent approaches using either unsupervised or super-
vised approaches have begun to succeed in mapping behavioral patterns to their neural substrates
(Markowitz et al. 2018, Vogelstein et al. 2014). Despite this progress, there are no behavioral data
sets poised to become reference data sets nor any community reference pipelines, presenting a
significant opportunity for development.

Big Anatomy

The study of brain anatomy actually predates that of brain physiology, as the macroscale structure
of the brain is readily measurable using relatively simple technology. Yet, the quantitative study
of physiology, at least at the cellular scale, predates computational anatomy by nearly 50 years
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(Miller et al. 2015). Perhaps this is because physiology data can be one-dimensional (a single
electrode’s time series), whereas anatomy is fundamentally three-dimensional (3D). Or perhaps
it is because signal processing exploded as a computational discipline in the 1950s with Shannon’s
communication theory, whereas the spatial statistics community remained relatively small and
focused on geostatistics. In either case, in the twenty-first century there is an abundance of big
anatomy data available across scales.

Nanoanatomy: electron microscopy. Studying brain circuitry at nanoscale resolution using
electron microscopy (EM) allows for the recovery of a complete wiring diagram of chemical
synapses and, with higher resolution, also gap junctions and intracellular organelles. This level
of detail also requires extremely large image volumes. A few large EM data sets are poised
to become community reference data sets [Eichler et al. 2017, Knott et al. 2008; MICrONS
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An example data pipeline for nanoscale anatomy. (#) A parallel chunk-processing motif used during
processing. A large volume is broken into chunks, each of which is processed and merged. This involves
shuttling data from cloud storage or other backends to a computational cluster and tracking process
completion and handling failures. The chunk regions depicted here can be anisotropic (e.g., a few wide
slices). Each task outside of ovals is handled by data system pipeline software. (b)) Representation overview for
an example serial section transmission electron microscopy pipeline, showing how the data system
implements computational tasks. (¢) Computational tasks exemplified on a small cutout of the open data set
of Kasthuri et al. 2015).

(https://www.iarpa.gov/index.php/research-programs/microns)], but only one is currently
properly supported: a data set of a full adult Drosophila brain (Zheng et al. 2018). Each of these
data sets must be painstakingly aligned and segmented (Figure 4), both tasks being active areas
of research, with no one tool being easy or automatic to use. For nonlinear registration, an elastic
tool in Fiji is most popular, though it currently does not adequately scale (Saalfeld et al. 2012).
We suspect that the EM community can benefit from advances in nonlinear registration devel-
oped by the MRI community, specifically in large deformation diffeomorphic metric mapping
(LDDMM) (A.B. Miller et al. 2018), preliminary implementations of which are available us-
ing SciPy, ITK, and PyTorch. For segmentation and identification of subcellular structures (e.g.,
synapses), the most promising approaches leverage convolutional neural networks (CNNs). None
of these tools, however, are plug-and-play yet. A further challenge for EM data is sustainability:
Somebody must fund the continued storage of these PB-sized data sets for community analysis
tools to be developed around them.

Microanatomy: light microscopy. At the micron scale, labeling of individual cells plays a key role
in brain science research. Unlike in EM, fluorescence probes can be designed based on genetic

www.annualreviews.org o Community-Driven Big Open Brain Science

449


https://www.iarpa.gov/index.php/research-programs/microns

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

450

and environmental input to answer very specific questions about cellular function and connectivity.
While traditional imaging methods involve slicing tissue and examining a small number of regions
of interest under a standard light microscope, new technologies are allowing larger volumes of
tissue or entire brains to be analyzed.

Like EM, several emerging data sets could become community references. The Mouse Brain
Architecture Project (Bohland et al. 2009) provides hundreds of such samples for injection-based
tractography such that, across the population, the injections cover the whole brain. The Mouse-
Light project (Winnubst et al. 2019) uses cleared tissue (Chung & Deisseroth 2013, Renier et al.
2014) in combination with a block-face serial two-photon tomography strategy to achieve the best
of both worlds, imaging a sparsely labeled set of cells at very high spatial resolution and avoiding
registration problems (Narasimhan et al. 2017, Kim et al. 2017). Finally, the Allen Institute for
Brain Science has a large portal with a wide variety of reference data sets. To date, there are no
widely adopted pipelines for analysis of these data, though there are some disparate tools. The
most widely used linear stitching tool is TeraStitcher (Bria & Iannello 2012). Like EM data, light
microscopy data could benefit from the registration tools developed for MRI, if the tools could
be scaled up.

Macroanatomy: structural and diffusion MRI. At the macroscopic scale, anatomical analysis
will generally involve segmenting the brain into well-characterized and often hierarchical re-
gions of interest and quantifying their structure and function. Reference data sets for macroscale
anatomy are the same for macroscale physiology, since experiments tend to acquire both. Similar
to fMRI, there are many widely used tools and no community standards. DiPy is emerging as a
suite of algorithms (Garyfallidis et al. 2014), and ndmg is a newly available optimized pipeline
(Kiar et al. 2018). However, choosing the optimal pipeline (Bridgeford et al. 2019) and harmoniz-
ing across data sets (Fortin et al. 2017, Mirzaalian et al. 2017) are important open problems.

Big Genetics

A third kind of big data in brain science is genomics and transcriptomics. Both fields have re-
cently exploded due to the exponential drop of DNA sequencing costs over the last two decades
and are rapidly generating multitudes of sequencing data sets of ever-increasing size. Specifically,
single-cell RNA sequencing (scRINAseq) that queries gene expression on a cell-by-cell level has
rapidly spread in brain science (Svensson et al. 2017). In contrast to Big Anatomy and Big Dynam-
ics applications, genomics and transcriptomics have wrestled with questions of big data storage,
efficient analysis, and data sharing for many years, as sequencing data sets have been widespread
and existed in the shifting domain of big data for some time. As a result, the majority of steps in
the processing of sequencing data are relatively standardized and efficient, at least from the end
user perspective.

Nanoscale: in situ transcriptomics. In addition to Illumina-based single-cell transcriptomics, a
rapidly evolving set of in situ transcriptomic techniques (Chen et al. 2015, Lee et al. 2014, Lein
et al. 2017, Wang et al. 2018) is appearing on the big data landscape of brain science. These
methods probe gene expression levels with subcellular resolution inside tissue sections, provid-
ing spatial information lost in traditional single-cell sequencing. Any experiment probing even a
small fraction of a brain can generate several TB of raw data, and data volumes will only increase.
These images must be registered across sequencing cycles, and messenger RNA signals need to
be detected, segmented, and finally decoded to produce a table of gene identity and position in
the imaged area. In contrast to the relatively established pipelines for Illumina sequencing data,
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however, the challenges of how to best handle big data challenges, including sharing, process-
ing, and archiving, in in situ transcriptomics are unresolved and will require new, unified analysis
pipelines.

Microscale: single-cell RNA sequencing. In contrast to standardized preprocessing of sequenc-
ing data sets, work is currently underway to improve the analysis of the count matrix from
scRNAseq. While from a big data perspective the count matrix of a scRINAseq experiment is
relatively small, the ever-increasing number of cells profiled—already exceeding 10° and soon 10°
cells—poses analysis challenges. These challenges are very similar to other big matrix challenges,
including normalization procedures (Hafemeister & Satija 2019), matrix completion (Andrews &
Hemberg 2019, Huang et al. 2018, van Dijk et al. 2018), dimensionality reduction, clustering, and
data integration across experiments (Stuart et al. 2019, Welch et al. 2019). Many of these analyses
are bundled in R or Python suites [e.g., Seurat (Stuart et al. 2019) and Scanpy (Wolf et al. 2018)],
or as stand-alone packages. In addition, an HDF5-based, single-cell-specific data format (Loom)
allows efficient access to the count matrix such that it need not be held in memory and is beginning
to be integrated in analysis suites.

Mesoscale: tissue-specific gene expression profiles. In genomics, as we coarsen the spatial
scale, the data get increasingly smaller. Once we move beyond single-cell data to tissue-level data,
the data are no longer particularly big, and the tools are fairly standard from the genomics and
transcriptomics communities, so we refer the reader to standard treatments from those fields.

BIG DATA SYSTEMS

To support big data storage, visualization, and analysis requires extensive software developments
and modifications. Many independent efforts have begun to support the analysis of big data, in-
cluding at least 40 projects known to the authors. However, only a few have adopted best practices
for developing tools that are widely adopted with long-term use and support. The key, in our expe-
rience, to developing such tools is doing so in an open and collaborative environment (Vogelstein
etal. 2018b). As more people use the resource, the developers get more feedback for improvement,
so they are not left relying on their gut judgments for how to improve. Moreover, when the code is
open source, well documented (including developer documentation), and purposefully designed,
other developers can easily contribute. Maintaining an active user and developer community is
more of a soft skill that is often underappreciated in hard sciences. Nonetheless, if our commu-
nity is to fully capitalize on big data, we will need to support, both intellectually and financially,
individuals to build communities around tools.

Storage

Small data can be stored on a single hard drive or on a single workstation with multiple hard drives.
Because hard drives only come in fixed sizes and workstations only have a limited number of hard
drive bays, when data are larger than the maximum storage capacity from the maximum number of
hard drives, researchers must consider other options. Our experience with the growth of the Open
Connectome Project is a case in point (Burns et al. 2014). Originally, we began storing a 10-TB
data set (Bock et al. 2011) on our local cluster. As other researchers began contributing additional
data, our lab’s resources were overwhelmed, and we moved to using our institutional resources
(which are available in many wealthy institutions). Even though the Institute for Data Intensive
Engineering and Sciences had a multi-PB data center, the Open Connectome Project eventually
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required computing ill adapted to institutional resources. Specifically, we required elastic, on-
demand, scale up and scale down computing. These computing features were important, as the
MouseLight project could generate 40-TB data sets every two weeks (Economo et al. 2016), and
the ingest process of writing data to our infrastructure was too slow. This, in combination with the
upcoming MICrONS (https://www.iarpa.gov/index.php/research-programs/microns) data
set destined to be multiple PBs in size, catalyzed us to port our infrastructure to the com-
mercial cloud. Specifically, in collaboration with the Applied Physics Laboratory, we developed
the NeuroData Cloud (NDCloud), a centralized cloud infrastructure (Lillaney et al. 2018).
NDCloud currently stores data in NeuroGlancer precomputed file format (https://github.com/
google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed), which both
compresses the data and makes visualization fast and easy. CloudVolume (https://github.com/
seung-lab/cloud-volume) enables fast and parallel data access (Silversmith 2018). This infras-
tructure hosts the current Open Connectome Project, available from Amazon Web Services reg-
istry as OpenNeuro (https://registry.opendata.aws/openneuro/), which serves approximately
50 TB of open access data, spanning data from 30 labs, several species, and multiple modalities
(Vogelstein et al. 2018b).

"This system is an evolution from previous systems in that it is now fundamentally decentralized,
and data can be stored remotely and in a distributed fashion, without requiring a single gatekeeper
as in our previous designs. This transition mirrors a similar conversion in other sectors, such as
media sharing, which adopted a peer-to-peer (or P2P) strategy. Now, anybody who would like to
host data can, and the Open Connectome Project simply serves as an archival site.

Pipelines

When neuroimaging data fit in memory, they can be simply processed and visualized using scripts
or interactive analysis tools like Jupyter notebooks. Better code and algorithms can stretch the
capability of single core analysis; however, as the data volume increases and faster execution times
are sought, parallel processing such as Apache spark (Zaharia et al. 2016), Apache Beam (https://
beam.apache.org/), and Dask (Rocklin 2015) and improved hardware (RAM, persistent storage,
parallel CPUs, GPUs, or networking) can meet the increased demands.

To illustrate the potential issues, we discuss the implications of processing a petascale image,
as per our experience processing most of a cubic millimeter of EM images. Before any image
processing, the images are aligned and stitched into a 3D volume. TeraStitcher is capable of linear
stitching and aligning light-sheet data, but it cannot address large, nonlinear deformations (Bria &
Tannello 2012, Bria et al. 2019); LDDMM algorithms are instead desired (M.I. Miller et al. 2018).
Then, data must be organized in a fashion that is amenable to efficient access and visualization.
This is accomplished by splitting the image into a regular grid, saving each grid location as a
separate file (called chunks), and recursively downsampling and compressing each file for storage.
Other software packages have likewise been developed to organize and manage large scientific
databases, e.g., DataJoint (Yatsenko et al. 2015).

Compression remains a complicated, unsolved problem. We would like a compression algo-
rithm to have low compression ratios, high compression and decompression speeds, and native
browser support (so browsers can open the compressed images directly, rather than decompress-
ing first). JPEG 2000, while popular, lacks widespread browser support. We instead recommend
brotli, a new general, lossless compression from Google with widespread browser support and
better compression ratios but worse compression speeds (we do not currently use it for the Open
Connectome Project because it is not yet compatible with NeuroGlancer, our visualization engine
of choice).
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To run workloads within a framework with appropriate execution guarantees, we recommend
using containers run using a framework such as Docker or Singularity. These containers are a
lightweight alternative to machine images that can be executed by a virtual operating system.
Containerization forces the author to document the exact steps needed to create a functioning
execution environment and generates a file that can be downloaded and run on various platforms.
Once generated, containers are usually shared via online repositories. There are many container
orchestration engines to choose from, which allow you to run containerized programs on your
cluster and set resource limits (Bernstein 2014). Containerizing each step, even with container
orchestration, is insufficient. Probably the largest bottleneck to widespread adoption of contain-
ers in brain science is that the overhead can be substantial, especially if it includes instructions
for deployment. Several emerging approaches aim to mitigate these issues, including Boutiques
and CodeOcean, which facilitate executing containers across different distributed environments,
and Gigantum, which automatically builds docker containers. These approaches, while promising,
remain unproven.

Visualization

Small, two-dimensional (2D) data are trivially visualized with local computer applications, (e.g.,
OSX’s Preview). Even before data get large, if they are 3D+, other software is required. Two
of the most popular and widely supported 3D image visualization and annotation software tools
are I'TK-SNAP (Yushkevich et al. 2016) and Fiji (Schindelin et al. 2012). Both have a wealth of
brain imaging-related plug-ins, although ITK-SNAP is largely geared at the macroscale (MRI),
whereas Fiji is more geared to the nano- and microscales (EM and light microscopy). For example,
BigDataViewer is a browser designed for multiview light-sheet microscopy that integrates with
Fiji. When the data are too large to fit locally, other tools are required.

Of the many available 3D image viewers, such as NeuroGlancer, CATMAID, DVID, and
Knossos, we currently recommend NeuroGlancer due to its more diverse community of contrib-
utors that includes industry, academia, and nonprofits. Moreover, NeuroGlancer enables sharing
direct views via a URL so that collaborators can visualize precisely the same image.

NeuroGlancer has support for multichannel data and off-axis viewing. Yet NeuroGlancer also
has several shortcomings, most of which are shared by the other web-based visualization tools.
First, NeuroGlancer lacks support for manual volumetric labeling and error correcting. This step
is crucial for any image processing, and therefore NeuroGlancer is not yet a one-stop shop for vi-
sualizing big image data. Second, NeuroGlancer stores all the image metadata in the URL because
it is stateless. But, as visualizations get complicated, URLSs can get quite long, sometimes hundreds
or thousands of characters. For this reason, we developed a prototype service that converts long
URL:s into short ones. Third, although NeuroGlancer supports visualizing overlaid annotations,
it natively does not provide annotation metadata. We have a deployment of NeuroGlancer that
includes labels for the Allen Reference Atlas 3.0 labels, but it is not yet generalized to other par-
cellations, images, or species. As more groups adopt NeuroGlancer, we hope they will contribute
such expansions.

Other, smaller kinds of data have their own limitations. For example, meshes enable the dis-
play of objects that span a large spatial distance and allow for more natural modes of interaction to
understand how they lie in space. They represent 3D surface geometries as a network of vertices
represented by three floating point numbers and a set of faces or edges. These structures are typi-
cally much lighter than dense voxel representations at sufficient surface area to volume ratios. Dis-
playing meshes in 3D with a lighting model and reasonable frame rates typically requires GPUs.
While meshes can be displayed across great spatial extents, they cannot in general be calculated

www.annualreviews.org o Community-Driven Big Open Brain Science

453



Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

454

in a single process, as the amount of voxel data required to contain the object is very large. There
are techniques for reducing the data requirement, such as using lower resolution mip levels and
packed binary representations of single objects, but to efficiently compute millions of objects, it is
necessary to treat all labels in a bounding box at once. Open source libraries containing meshing
algorithms are available, such as Zmesh (Zlateski & Silversmith 2019), which performs marching
cubes (Lorensen & Cline 1987) on all labels in one pass with on-demand mesh simplification.

Mesh simplification is required to reduce the size of the mesh, which after marching cubes has
a vertex located at every surface voxel of an object. Mesh-based extraction is also under develop-
ment, e.g., based on mesh contraction (Au etal. 2008) and TEASAR-like approaches in MeshParty
(Dorkenwald et al. 2020). Mesh-based approaches have the benefit of complete context and are es-
pecially suited for skeletonizing selected labels. While there are many techniques for simplifying,
smoothing, and tuning meshes, Mcell is widely used in brain science for dynamics simulations,
which require extremely detailed meshes.

BIG STATISTICS

Beyond the storage and management of big data is the litany of challenges in scientifically valid
analyses. Even the most basic of operations, e.g., principal components analysis or linear regres-
sion, presents complications for standard single-core and in-memory numerical libraries when the
data cannot fit in memory. This extreme regime has necessitated new classes of methods (Bzdok
etal. 2019; D. Zheng et al. 2015; Mhembere et al. 2017a,b, 2019a,b; Wang et al. 2016; Zheng et al.
2016, 2018). The broader statistical issue is that brain data sets can have extremely small sam-
ple sizes with extremely large numbers of dimensions. To take the most extreme example, IARPA’s
MICrONS project (https://www.iarpa.gov/index.php/research-programs/microns) will yield
one mouse and has already amassed 2 PB in EM images alone. It is thus imperative that brain sci-
ences remain at the forefront of statistical inference for wide data. We highlight here four types
of high-dimensional data common in big brain science: unstructured feature matrices, multivari-
ate time series, images, and networks. Each setting requires different developments; however, all
benefit from the ability to learn latent structures from data. To do so effectively requires designing
methods that use state-of-the-art knowledge of both brain science and data science. Collabora-
tions between experts in those fields, as well as interdisciplinary training of young researchers, will
therefore catalyze progress.

Big Unstructured Data

Unstructured data contain features with no known relationships with one another. For example,
RNAseq experiments can generate up to 10,000 features, each corresponding to the measured
quantity of RNA in a biological sample. As there is no natural ordering of gene products, these
data are unstructured. Unstructured data has perhaps the longest and richest history in data sci-
ence, with its modern revolution due to Ronald A. Fisher’s books on statistical methods and exper-
imental design in the 1920s and 1930s (Fienberg 1992). Twenty-first century statistics has focused
more on solving the large p small # problem with the spread of sparse modeling (Tibshirani 1996)
and manifold learning (Lee & Verleysen 2007, Roweis & Saul 2000, Tenenbaum et al. 2000).
More recently, theory has been catching up to explain how, when, and why such approaches work
(Vershynin 2018, Wainwright 2019). These non-asymptotic theoretical results are often based on
concentration inequalities, where guarantees can be provided even with finite data, in contrast
to classical statistical theory. Complementary developments focus on algorithmic improvements,
e.g., recursive least squares (Haykin 1996), batch-based updating via stochastic gradient descent
(Xu & Yin 2015), and optimization (Cevher et al. 2014, Slavakis et al. 2014, Wahlberg et al. 2012).
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Although many tools and programming languages are available for these kinds of operations,
the neuroscience community is converging on using Python, specifically the NumPy and SciPy
packages (Virtanen et al. 2020). Nonetheless, Python still has severe limitations that hinder even
more widespread use. First, it is more difficult to install and configure than MATLAB or R. While
cloud notebook environments such as binder and Gigantum are mitigating this issue, it remains
problematic. Second, many statisticians and signal processing researchers still develop tools in
R and MATLAB, respectively, so Python often lags in state-of-the-art tools. The community
can combat this by shifting development to Python and working with the standard packages to
ensure standardization and accessibility, as we have done with recent work on hypothesis test-
ing (Vogelstein et al. 2019), dimensionality reduction (Vogelstein et al. 2018a), and classification
(Tomita et al. 2020).

Big Images

Statistical theory for images is much more complex and difficult than for unstructured data. This
is in part because representing an image requires an index for both where and what the feature is
(i.e., magnitude). But the where and what are difficult to jointly model. Moreover, brain images
can have very long dependence structures, requiring huge amounts of labeled data to effectively
estimate. One of the most promising theories for images, the stochastic grammar of images (Zhu
2006), was promoted by David Mumford but never quite took off, likely due to its complexity and
ineffectiveness. One realm of image analysis that has gained widespread use is the analysis of shape
(Younes 2019), perhaps because shape effectively ignores magnitudes and only considers relative
locations.

Instead of leveraging theory, in image analysis, engineering rules. The leading image analysis
tools are CNNs (Goodfellow et al. 2016), despite scant theoretical understanding of their effec-
tiveness (Zhang et al. 2018). More interpretable approaches, e.g., decision forests, may return and
even overtake CNNs for image processing by virtue of them incorporating convolution and lo-
cality operators (Criminisi et al. 2012, Perry et al. 2019), but these are very preliminary ideas. Nu-
merous articles have been published debunking various theories for why such methods work (Ba
& Caruana 2014), and subsets of those authors publish papers debunking the debunking (Urban
etal. 2017).

Nonetheless, many packages are widely available and supported for image analysis. Scikit-
Image is one of the leading packages for basic image analysis (van der Walt et al. 2014), although
it is yet to incorporate many standard techniques in brain imaging, such as nonlinear image reg-
istration (Kutten et al. 2016, 2017). For more sophisticated image analysis, various deep learning
frameworks are available (e.g., TensorFlow and PyTorch). While TensorFlow holds more clout in
industry, PyTorch has seen greater adoption in the academic community, particularly within the
computer vision discipline (He 2019). The large-scale adoption of these open source frameworks
thus holds promise that solutions to common image analysis tasks (e.g., object detection or seg-
mentation) will become increasingly accessible to researchers hoping to apply new approaches to
brain imaging data.

Big Time
Physiology data are fundamentally multivariate time series. In contrast to unstructured and image
data, there is significantly less development for time series data. This is despite the fact that signal

processing has been to a large extent focused on analysis of dynamics (Kay 1993). A key counterex-
ample highlights the severe limitations faced with big time series data. There is no “scikit-time”
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for time series. Rather, perhaps the most widely used Python time series toolbox is Prophet. De-
veloped by Facebook, it is explicitly designed to incorporate seasonal trends (e.g., holiday effects)
and is therefore not appropriate for brain signals. Neural network frameworks support time se-
ries analysis, such as Long Short-Term Memory and other recurrent neural networks (RINNs)
(Goodfellow et al. 2016), but like CNN, it is not clear how or when RNNs work. A few recent
theoretical works extended Kalman filters, the workhorse of much linear and nonlinear time series
modeling, to big data regimes (Chen et al. 2017, Zipunnikov et al. 2011). Efficient implementa-
tions of these tools, however, are not yet available. Brain science has pushed latent process models
(Smith & Brown 2003, Pakman et al. 2018, Sharma et al. 2018), but like the Kalman models, open
source and community-developed packages for these tools do not exist. Many of the classical tools
for time series analyses are incorporated into statsmodels, a Python package that includes many
regression techniques and basic time series techniques. The need for time series packages yields
an opportunity for the community to create, either anew or by expanding the current statsmodels,
the toolbox that will fill that void.

Big Networks

A convenient representation of many of the data sets described above is a network or graph. A
graph is composed of a set of nodes and a set of edges between those nodes, where the edges
represent some relationship between objects. With this representation we can ask, for example,
what models best describe the network? How do the fit models vary across a population? How
does the model relate to data sets in other modalities?

Graph representations can stem from many experimental modalities. EM circuit reconstruc-
tion has generated network representations, for example, in Caenorbabditis elegans (White et al.
1986), Ciona intestinalis (Ryan et al. 2016), larval and adult Drosophila (Eichler et al. 2017), zebrafish
(Hildebrand et al. 2017), and mouse (Bock et al. 2011, Helmstaedter et al. 2013), with efforts un-
derway to add zebra finch, nonhuman primates, octopus, and even humans. Connectomes can also
be estimated via gene sequencing.

As graphs are much more concise descriptions of a brain than images (they can be stored as
simple edge lists or adjacency matrices), storage is much more efficient. For the largest nanoscale
connectomics, the final network should have approximately 100,000 nodes and one billion
synapses [e.g., MICrONS (https://www.iarpa.gov/index.php/research-programs/microns)].
Even then, the network representation should fit easily in memory. The current issue is instead
computational. Even for moderately sized networks, intuitive understanding of patterns in the
graph is difficult. This makes visualization and dimensionality reduction (e.g., via eigendecompo-
sitions of the adjacency matrix) essential.

Specific graph analyses rely on the details of the node and edges in the graph. One model class
assumes that each node in the graph is associated with a low-dimensional unobserved vector, or
latent position (Athreya etal. 2017, Hoff 2007). The probability of two nodes connecting is a func-
tion of their latent positions. Under the random dot product graph (RDPG) model, this function
is the inner product of the nodes’ positions (Sussman et al. 2011). Adjacency spectral embedding
and omnibus embedding can estimate these latent positions from a single observed graph or a
population of graphs, respectively (Fishkind et al. 2013, Levin et al. 2017). A further extension
of the RDPG model assumes that the latent positions are distributed on a latent manifold, anal-
ogous to experimentally observed neural trajectory manifolds (Arroyo et al. 2019). RDPG and
similar models provide a probability distribution, permitting inference on the modeled connec-
tome. The standard tool in Python for analysis of networks, NetworkX (Hagberg et al. 2008), lacks
many modern advances in statistical analysis of individual and populations of graphs. Graspy is an
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emerging tool that incorporates many developments in statistical learning from networks (Chung
et al. 2019) but has not yet enjoyed widespread adoption.

DISCUSSION

Brain science is obtaining larger, more detailed data than ever before, and the pace of progress is
only increasing. We have outlined here many of the challenges and current approaches to leverag-
ing these rich data sets. While much progress has been made, there remain many open problems.
The novelty and universality of many of these challenges creates a sequence of opportunities to
unify the brain science community and best enable open sharing of data, methodologies, statistical
analyses, and results.

One of the biggest missed opportunities in designing data infrastructure is connecting solutions
for different data modalities. These solutions are often aimed at a current task facing a single group
with a specific set of tools and scientific goals. Sharing good solutions with other domains that need
or will need such advances is thus stymied.

The emerging challenge of simultaneous analysis of multiple data types, e.g., behavior and cell-
ular recordings or fMRI and calcium imaging (Lake et al. 2018, Ma et al. 2016), is related. One
interesting contrast between anatomical and functional data is the inertia of established methodol-
ogy in the latter that has leveraged decades of small-data brain science. This creates a bias toward
focusing on particular scientific questions rather than starting anew.

Paramount to progress is investment. Currently, pipelines are built and maintained by well-
endowed institutions or large groups of labs collaborating under the new large-scale funding
mechanisms. Access to these resources must be more widespread to permit new technologies and
their benefits to have maximum impact. Endeavors to make standardized resources more accessible
(e.g., the Allen Institute) are important and should be considered when creating new infrastruc-
ture. Unused time on these big-data systems is lost time that could have been used in the service
of science.

An important aspect of operating at scale not discussed here is privacy. Certain applications,
especially those with medical relevance such as genetics and MRI, necessitate infrastructure and
statistics that are privacy preserving. Moreover, there are computational and statistical benefits to
differential privacy-based algorithms that are often based on randomized statistics. Future designs
and implementations should keep these considerations in mind, as they are often difficult to build
post hoc.

One very promising area of advance is the ever-growing number of open reference data nec-
essary to catalyze standardization and to broaden the pool of researchers with access to the data,
which is needed to develop new infrastructure and statistical tools. Public data sets, through Col-
laborative Research in Computational Neuroscience, the Allen Institute, and others, are providing
just those opportunities.

A related major opportunity in the short term is in the standardization of data files. Such stan-
dards can provide efficient storage by compressing the data in a way that is natural for brain
data, create an open environment by providing universal data access data tools, and permit faster
processing by allowing pipeline developers the freedom to optimize for a constant file structure.
Earlier attempts [e.g., Neurodata Without Borders (Teeters et al. 2015)] have yet to take hold,
which may be partially due to the constant evolution of data acquisition as well as competition
from accessible standard image formats. Universality and flexibility to new imaging modalities are
key in designing such a standard. Image standards have leveraged known natural image statistics
to achieve this: No matter the camera, png will compress in a reasonable way. The statistics of
brain data, rather than of the data modality, will similarly be key to successful standards.
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1. Neuroscience is obtaining larger and more detailed recordings than ever before.
2. We have an opportunity to capitalize on cross-scale and cross-modality developments.

3. More investment in generalizable computational tools and reference data will accelerate
discovery.

4. We need to use and build upon community-developed software, which can be widely ac-
cessed and based on the needs of researchers. If existing tools/data sets are not sufficient,
we must add to them and build on them rather than starting something new.

DISCLOSURE STATEMENT
J.'T.V.and R.B. are on the board of Gigantum.

AUTHOR CONTRIBUTIONS

A.S.C. was the lead and primary author, substantially contributing to all aspects of writing, or-
ganizing, and revising the material. J. T.V. devised the original organization, invited all the other
coauthors, wrote much of the text, and edited the text. T.D.P. contributed the text in the sec-
tion titled Macrophysiology: Behavior and graphics to the physiology pipeline (Figure 3). S.S.G.
contributed the text in the section titled Mesophysiology: Functional MRI and reviewed and com-
mented on drafts of the manuscript. B.D.P. contributed the text in the section titled Big Networks.
B.F. contributed text in the section titled Big Data Systems and reviewed and commented on drafts
of the manuscript. W.S. contributed text to the sections titled Pipelines and Visualization. J.C.
contributed textin the section titled Big Networks. J.M.K. contributed the text in the section titled
Big Genetics. N.T. contributed the text in the section titled Nanoanatomy: Electron Microscopy
as well as Figure 4. D.'T. contributed to the organization of the section titled Big Anatomy and
the text in the sections titled Microanatomy: Light Microscopy and Macroanatomy: Structural
and Diffusion MRIL

ACKNOWLEDGMENTS

J. T:V. would like to acknowledge generous support from the National Science Foundation (NSF)
under NSF award EEC-1707298. T.D.P. would like to acknowledge support from the NSF
Graduate Research Fellowships Program under NSF award number DGE-1148900 and the
Princeton Porter Ogden Jacobus Fellowship. W.S. and N.'T. would like to acknowledge support by
the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior
Business Center (Dol/IBC) contract number D16PC0005, the National Institutes of Health
(NIH)/National Institute of Mental Health (U0O1MH114824, U01MH117072, RFIMH117815),
NIH/National Institute of Neurological Disorders and Stroke (U19NS104648, ROINS104926),
NIH/National Eye Institute (ROIEY027036), and ARO (W91INF-12-1-0594). S.S.G. was
partially supported by and related to the intent of NIH awards R24MH117295, RO1EB020740,
P41EB019936, RF1IMH12002101, and ROIMH109682. The US Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either

Charles et al.



Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

expressed or implied, of IARPA, Dol/IBC, or the US Government. The authors are grateful for
assistance from Google, Amazon, and Intel.

LITERATURE CITED

Andrews TS, Hemberg M. 2019. False signals induced by single-cell imputation. F1000Res. 7:1740

Arroyo J, Athreya A, Cape J, Chen G, Priebe CE, Vogelstein JT. 2019. Inference for multiple heterogeneous
networks with a common invariant subspace. arXiv:1906.10026 [stat. ME]

Athreya A, Fishkind DE, Tang M, Priebe CE, Park Y, et al. 2017. Statistical inference on random dot product
graphs: a survey. 7. Mach. Learn. Res. 18(226):1-92

Au OK-C, Tai C-L, Chu H-K, Cohen-Or D, Lee T-Y. 2008. Skeleton extraction by mesh contraction. ACM
Trans. Graph. 27(3):1-10

Ba ], Caruana R. 2014. Do deep nets really need to be deep? In Advances in Neural Information Processing Systems
27, ed. Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger, pp. 2654-62. San Diego,
CA: NeurIPS

Beaulieu DR, Davison IG, Bifano TG, Mertz ]J. 2018. Simultaneous multiplane imaging with reverberation
multiphoton microscopy. arXiv:1812.05162 [physics.optics]

Bernstein D. 2014. Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput. 1(3):81—
84

Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, et al. 2011. Network anatomy and in vivo physi-
ology of visual cortical neurons. Nature 471(7337):177-82

Bohland JW, Wu C, Barbas H, Bokil H, Bota M, et al. 2009. A proposal for a coordinated effort for the
determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale.
PLOS Comput. Biol. 5(3):e1000334

Bria A, Bernaschi M, Guarrasi M, Iannello G. 2019. Exploiting multi-level parallelism for stitching very large
microscopy images. Front. Neuroinform. 13:41

Bria A, Tannello G. 2012. TeraStitcher—A tool for fast automatic 3D-stitching of teravoxel-sized microscopy
images. BMC Bioinform. 13:316

Bridgeford EW, Wang S, Yang Z, Wang Z, Xu T, et al. 2019. Optimal experimental design for big data:
applications in brain imaging. bioRxiv 802629. https://doi.org/10.1101/802629

Burns R, Vogelstein J T, Szalay AS. 2014. From cosmos to connectomes: the evolution of data-intensive science.
Neuron 83(6):1249-52

Bycroft C, Freeman C, Petkova D, Band G, Elliott L'T, et al. 2018. The UK Biobank resource with deep
phenotyping and genomic data. Nature 562(7726):203-9

Bzdok D, Nichols TE, Smith SM. 2019. Towards algorithmic analytics for large-scale datasets. Naz. Mach.
Intell. 1(7):296-306

Cevher V, Becker S, Schmidt M. 2014. Convex optimization for big data: scalable, randomized, and parallel
algorithms for big data analytics. IEEE Signal Process. Mag. 31(5):32-43

Chen L, Vogelstein J T, Lyzinski V, Priebe CE. 2015. A joint graph inference case study: the C. elegans chemical
and electrical connectomes. arXiv:1507.08376 [stat.AP]

Chen S, Liu K, Yang Y, Xu Y, Lee S, et al. 2017. An M-estimator for reduced-rank system identification.
FPattern Recognit. Lett. 86:76-81

Chung J, Pedigo BD, Bridgeford EW, Varjavand BK, Helm HS, Vogelstein JT. 2019. GraSPy: graph statistics
in Python. 7. Machine Learn. Res. 20(158):1-7

Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system. Naz. Methods 10(6):508-13

Criminisi A, Shotton J, Konukoglu E. 2012. Decision forests: a unified framework for classification, regression,
density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis.
7(2-3):81-227

Dorkenwald S, Schneider-Mizell C, Collman F. 2020. sdorkenw/MeshParty: v1.9.0 (Version v1.9.0). Software.
http://doi.org/10.5281/zenodo.3710398

Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, et al. 2016. A platform for brain-wide imaging
and reconstruction of individual neurons. eLife 5:e10566

www.annualreviews.org o Community-Driven Big Open Brain Science

459


https://doi.org/10.1101/802629
http://doi.org/10.5281/zenodo.3710398

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

460

Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, et al. 2017. The complete connectome of a learning and
memory centre in an insect brain. Nature 548(7666):175-82

Fienberg SE. 1992. A brief history of statistics in three and one-half chapters: a review essay. Stat. Sci. 7(2):208—
25

Fishkind DE, Lyzinski V, Pao H, Chen L, Priebe CE. 2013. Vertex nomination schemes for membership
prediction. Ann. App. Stat. 9(3):1510-32

Fortin J-P, Parker D, Tung¢ B, Watanabe T, Elliott MA, et al. 2017. Harmonization of multi-site diffusion
tensor imaging data. Neurolmage 161:149-70

Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, et al. 2014. Dipy, a library for the analysis
of diffusion MRI data. Front. Neuroinform. 8:8

Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, et al. 2019. CalmAn an open source tool for scalable
calcium imaging data analysis. eLife 8:e38173

Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. 2014. Big behavioral data: psychology, ethology
and the foundations of neuroscience. Nat. Neurosci. 17(11):1455-62

Goodfellow I, Benigo Y, Courville A. 2016. Deep Learning. Cambridge, MA: MIT press

Graving JM, Chae D, Naik H, Li L, Koger B, et al. 2019. DeepPoseKit, a software toolkit for fast and robust
animal pose estimation using deep learning. eLife 8:47994

Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq data using
regularized negative binomial regression. Genome Biol. 20(1):296

Hagberg A, Schult D, Swart P. 2008. Exploring network structure, dynamics, and function using NetworkX.
In Proceedings of the Tth Python in Science Conference, ed. G Varoquaux, T Vaught, ] Millman, pp. 11-15.
Pasadena, CA: SciPy

Haykin S. 1996. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall. 3rd ed.

He H. 2019. The state of machine learning frameworks in 2019. The Gradient, Oct. 10. https://thegradient.
pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-
industry/

Helmstaedter MN, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction
of the inner plexiform layer in the mouse retina. Narure 500(7461):168-74

Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM, et al. 2017. Whole-brain serial-section elec-
tron microscopy in larval zebrafish. Nature 545(7654):345-49

Hillman EM, Voleti V, Patel K, Li W, Yu H, et al. 2018. High-speed 3D imaging of cellular activity in the
brain using axially-extended beams and light sheets. Curr: Opin. Neurobiol. 50:190-200

Hoff PD. 2007. Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in
Newral Information Processing Systems 20, ed. JC Platt, D Koller, Y Singer, ST Roweis. San Diego, CA:
NeurIPS

Huang M, Wang ], Torre E, Dueck H, Shaffer S, et al. 2018. SAVER: gene expression recovery for single-cell
RNA sequencing. Nat. Methods 15(7):539-42

Int. Brain Lab. 2017. An international laboratory for systems and computational neuroscience. Newuron
96(6):1213-18

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, et al. 2017. Fully integrated silicon probes for high-
density recording of neural activity. Nature 551(7679):232-36

Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, et al. 2015. Saturated reconstruction of a
volume of neocortex. Cell 162(3):648-61

Kay SM. 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Upper Saddle River,
NJ: Prentice Hall. 1st ed.

Kiar G, Bridgeford EW, Gray Roncal WR, Consort. Reliab. Reprod. (CoRR), Chandrashekhar V, et al. 2018.
A high-throughput pipeline identifies robust connectomes but troublesome variability. bioRxiv 188706.
https://doi.org/10.1101/188706

Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, et al. 2017. Brain-wide maps reveal stereotyped cell-
type-based cortical architecture and subcortical sexual dimorphism. Ce// 171(2):456-469.e22

Knott G, Marchman H, Wall D, Lich B. 2008. Serial section scanning electron microscopy of adult brain
tissue using focused ion beam milling. 7. Neurosci. 28(12):2959-64

Charles et al.


https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://doi.org/10.1101/188706

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

Krakauer JW, Ghazanfar AA, Gomez-Marin A, Maclver MA, Poeppel D. 2017. Neuroscience needs behavior:
correcting a reductionist bias. Neuron 93(3):480-90

Kutten KS, Charon N, Miller MI, Ratnanather J T, Matelsky J, et al. 2017. A large deformation diffeomorphic
approach to registration of CLARITY images via mutual information. In Medical Image Computing and
Computer Assisted Intervention—MICCAI 2017, ed. M Descoteaux, L Maier-Hein, A Franz, P Jannin, DL
Collins, S Duchesne, pp. 275-82. Cham, Switz.: Springer

Kutten KS, Vogelstein JT, Charon N, Ye L, Deisseroth K, Miller MI. 2016. Deformably registering and an-
notating whole CLARITY brains to an atlas via masked LDDMM. In Optics, Photonics and Digital Tech-
nologies for Imaging Applications IV, ed. P Schelkens, T' Ebrahimi, G Cristébal, F Truchetet, P Saarikko.
Bellingham, WA: SPIE

Lake EMR, Ge X, Shen X, Herman P, Hyder F, et al. 2018. Spanning spatiotemporal scales with simultaneous
mesoscopic Ca’t imaging and functional MRI: neuroimaging spanning spatiotemporal scales. bioRxiv
464305. https://doi.org/10.1101/464305

Lee JA, Verleysen M. 2007. Nonlinear Dimensionality Reduction. New York: Springer

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, et al. 2014. Highly multiplexed subcellular RNA
sequencing in situ. Science 343(6177):1360-63

Lein E, Borm LE, Linnarsson S. 2017. The promise of spatial transcriptomics for neuroscience in the era of
molecular cell typing. Science 358(6359):64-69

Levin K, Athreya A, Tang M, Lyzinski V, Park Y, Priebe CE. 2017. A central limit theorem for an omnibus em-
bedding of multiple random graphs and implications for multiscale network inference. arXiv:1705.09355
[stat. ME]

Lillaney K, Kleissas D, Eusman A, Perlman E, Gray Roncal W, et al. 2018. Building NDStore through hier-
archical storage management and microservice processing. In 2018 IEEE 14th International Conference on
e-Science (e-Science), pp. 223-233. Los Alamitos, CA: IEEE

Lorensen WE, Cline HE. 1987. Marching cubes: a high resolution 3D surface construction algorithm. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163—69. New
York: ACM

Ma'Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, et al. 2016. Wide-field optical mapping of neural
activity and brain haemodynamics: considerations and novel approaches. Philos. Trans. R. Soc. Lond. B Biol.
Sei. 371(1705):20150360

Marblestone A, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, et al. 2013. Physical principles for scalable
neural recording. Front. Comput. Neurosci. 7:137

Markowitz JE, Gillis WF, Beron CC, Neufeld SQ, Robertson K, et al. 2018. The striatum organizes 3D
behavior via moment-to-moment action selection. Ce// 174(1):44-58.e17

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, et al. 2018. DeepLabCut: markerless pose estimation
of user-defined body parts with deep learning. Nat. Neurosci. 21(9):1281-89

Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R. 2017a. knor: a NUMA-optimized in-memory,
distributed and semi-external-memory k-means library. arXiv:1606.08905 [cs.DC]

Mhembere D, Zheng D, Priebe CE, Vogelstein J T, Burns R. 2017b. knor: a NUMA-optimized in-memory,
distributed and semi-external-memory k-means library. In Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing, pp. 67-78. New York: Assoc. Comput.
Mach.

Mhembere D, Zheng D, Priebe CE, Vogelstein J T, Burns R. 2019a. clusterNOR: a NUMA-optimized clus-
tering framework. arXiv:1902.09527 [cs.DC]

Mhembere D, Zheng D, Priebe CE, Vogelstein J T, Burns R. 2019b. Graphyti: a semi-external memory graph
library for FlashGraph. arXiv:1907.03335 [cs.DC]

Miller AB, Sheridan MA, Hanson JL, McLaughlin KA, Bates JE, et al. 2018. Dimensions of deprivation and
threat, psychopathology, and potential mediators: a multi-year longitudinal analysis. 7. Abnorm. Psychol.
160-70

Miller MI, Arguillére S, Tward DJ, Younes L. 2018. Computational anatomy and diffeomorphometry: a dy-
namical systems model of neuroanatomy in the soft condensed matter continuum. Wiley Interdiscip. Rev.
Syst. Biol. Med. 10(6):e1425

www.annualreviews.org o Community-Driven Big Open Brain Science

461


https://doi.org/10.1101/464305

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

462

Miller MI, Trouvé A, Younes L. 2015. Hamiltonian systems and optimal control in computational anatomy:
100 years since D’Arcy Thompson. Annu. Rev. Biomed. Eng. 17:447-509

Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, et al. 2017. Multi-site harmonization of diffusion
MRI data in a registration framework. Brain Imaging Behav. 12(1):284-95

Mueller SG, Weiner MW, Thal L], Petersen RC, Jack C, et al. 2005. The Alzheimer’s disease neuroimaging
initiative. Neuroimaging Clin. N. Am. 15(4):869-77

Narasimhan A, Venkataraju KU, Mizrachi J, Albeanu DF, Osten P. 2017. Oblique light-sheet tomography:
fast and high resolution volumetric imaging of mouse brains. bioRxiv 132423. https://doi.org/10.1101/
132423

Pachitariu M, Stringer C, Dipoppa M, Schréder S, Rossi LF, et al. 2017. Suite2p: beyond 10,000 neurons with
standard two-photon microscopy. bioRxiv 061507. https://doi.org/10.1101/061507

Pakman A, Wang Y, Mitelut C, Lee JH, Paninski L. 2018. Discrete neural processes. arXiv:1901.00409
[stat. ML]

Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS, et al. 2019. Fast animal pose estimation using
deep neural networks. Naz. Methods 16(1):117-25

Perry R, Tomita TM, Patsolic J, Falk B, Vogelstein JT. 2019. Manifold forests: closing the gap on neural
networks. arXiv:1909.11799 [cs.LG]

Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. 2014. iDISCO: a simple, rapid method to
immunolabel large tissue samples for volume imaging. Cel/ 159(4)896-910

Rocklin M. 2015. Dask: parallel computation with blocked algorithms and task scheduling. In Proceedings of
the 14th Python in Science Conference, pp. 126-32. Austin, TX: SciPy

Roweis ST, Saul LK. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science
290(5500):2323-26

Ryan K, Lu Z, Meinertzhagen IA. 2016. The CNS connectome of a tadpole larva of Ciona intestinalis (L.)
highlights sidedness in the brain of a chordate sibling. eLife 5:¢16962

Saalfeld S, Fetter R, Cardona A, Tomancak P. 2012. Elastic volume reconstruction from series of ultra-thin
microscopy sections. Nat. Methods 9(7):717-20

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. 2012. Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9(7):676-82

Sharma A, Johnson R, Engert F, Linderman S. 2018. Point process latent variable models of larval zebrafish
behavior. In Advances in Neural Information Processing Systems 31, ed. S Bengio, H Wallach, H Larochelle,
K Grauman, N Cesa-Bianchi, R Garnett, pp. 10942-53. San Diego, CA: NeurIPS

Silversmith W. 2018. CloudVolume: client for reading and writing to Neuroglancer precomputed volumes on
cloud services. GitHub. https://github.com/seung-lab/cloud-volume

Slavakis K, Giannakis GB, Mateos G. 2014. Modeling and optimization for big data analytics:(statistical) learn-
ing tools for our era of data deluge. IEEE Signal Process. Mag. 31(5):18-31

Smith AC, Brown EN. 2003. Estimating a state-space model from point process observations. Neural Comput.
15(5):965-91

Song A, Charles AS, Koay SA, Gauthier JL, Thiberge SY, et al. 2017. Volumetric two-photon imaging of
neurons using stereoscopy (vVIWINS). Nat. Methods 14(4):420-26

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, et al. 2019. Comprehensive integration of single-
cell data. Cell 177(7):1888-902.e21

Sussman DL, Tang M, Fishkind DE, Priebe CE. 2011. A consistent adjacency spectral embedding for stochas-
tic blockmodel graphs. 7. Am. Stat. Assoc. 107(499):1119-28

Svensson V, Natarajan KN, Ly LH, Miragaia R], Labalette C, et al. 2017. Power analysis of single-cell RNA-
sequencing experiments. Nat. Methods 14(4):381-87

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, et al. 2015. Neurodata without borders: creating a
common data format for neurophysiology. Neuron 88(4):629-34

Tenenbaum JB, de Silva V, Langford JC. 2000. A global geometric framework for nonlinear dimensionality
reduction. Science 290(5500):2319-23

Tibshirani R. 1996. Regression shrinkage and selection via the lasso. 7. R. Stat. Soc. Ser: B Stat. Methodol.
58(1):267-88

Charles et al.


https://doi.org/10.1101/132423
https://doi.org/10.1101/061507
https://github.com/seung-lab/cloud-volume

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

Tomita TM, Browne J, Shen C, Chung J, Patsolic JL, et al. 2020. Sparse projection oblique randomer forests.
7 Mach. Learn. Res. In press

Urban G, Geras K]J, Ebrahimi Kahou S, Aslan O, Wang S, et al. 2017. Do deep convolutional nets really need
to be deep and convolutional? arXiv:1603.05691 [stat. ML]

van der Walt S, Schonberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, et al. 2014. scikit-image: image
processing in Python. Peer7 2:¢453

van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, et al. 2018. Recovering gene interactions from single-cell
data using data diffusion. Cel/ 174(3):716-29.e27

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, et al. 2013. The WU-Minn Human Connec-
tome Project: an overview. Neurolmage 80:62—79

Vershynin R. 2018. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge,
UK: Cambridge Univ. Press. 1st ed.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, et al. 2020. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods 17:261-72

Vogelstein JT, Bridgeford E, Tang M, Zheng D, Burns R, Maggioni M. 2018a. Geometric dimensionality
reduction for subsequent classification. arXiv:1709.01233 [stat. ML]

Vogelstein J T, Bridgeford EW, Wang Q, Priebe CE, Maggiono M, et al. 2019. Discovering and deciphering
relationships across disparate data modalities. eLife 8:e41690

Vogelstein J T, Park Y, Ohyama T, Kerr RA, Truman JW, et al. 2014. Discovery of brainwide neural-behavioral
maps via multiscale unsupervised structure learning. Science 344(6182):386-92

Vogelstein JT, Perlman E, Falk B, Baden A, Gray Roncal W, et al. 2018b. A community-developed open-
source computational ecosystem for big neuro data. Naz. Methods 15(11):846-47

Wahlberg B, Boyd S, Annergren M, Wang Y. 2012. An ADMM algorithm for a class of total variation regu-
larized estimation problems. IFAC Proc. Vol. 45(16):83-88

Wainwright M]. 2019. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge, UK: Cambridge
Univ. Press. Ist ed.

Wang C, Chen M-H, Schifano E, Wu J, Yan J. 2016. Statistical methods and computing for big data. Stat.
Interface 9(4):399-414

Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, et al. 2018. Three-dimensional intact-tissue
sequencing of single-cell transcriptional states. Science 361(6400):eaat5691

Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. 2019. Single-cell multi-omic in-
tegration compares and contrasts features of brain cell identity. Ce// 177(7):1873-87.e17

White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode
Cuaenorbabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314(1165):1-340

Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, et al. 2019. Reconstruction of 1,000 projection neurons
reveals new cell types and organization of long-range connectivity in the mouse brain. Ce// 179(1):268—
81.e13

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome
Biol. 19(1):15

XuY, Yin W.2015. Block stochastic gradient iteration for convex and nonconvex optimization. SIAM 7. Optim.
25(3):1686-716

Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, et al. 2015. DataJoint: managing big scientific data using
MATLAB or Python. bioRxiv 031658. https://doi.org/10.1101/031658

Younes L. 2019. Shapes and Diffeomorphisms. New York: Springer. 2nd ed.

Yu M, Linn KA, Cook PA, Phillips ML, McInnis M, et al. 2018. Statistical harmonization corrects site effects
in functional connectivity measurements from multi-site fMRI data. Humz. Brain Mapp. 39(11):4213-27

Yushkevich PA, Yang G, Gerig G. 2016. ITK-SNAP: an interactive tool for semi-automatic segmentation of
multi-modality biomedical images. In Proceedings of the 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 3342-45. Los Alamitos, CA: IEEE

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. 2016. Apache spark: a unified engine for
big data processing. Cormem. ACM 59(11):56-65

Zhang D, Yin J, Zhu X, Zhang C. 2018. Network representation learning: a survey. arXiv:1801.05852 [cs.SI]

www.annualreviews.org o Community-Driven Big Open Brain Science

463


https://doi.org/10.1101/031658

Annu. Rev. Neurosci. 2020.43:441-464. Downloaded from www.annualreviews.org

Access provided by Johns Hopkins University on 09/02/20. For personal use only.

464

Zheng D, Mhembere D, Vogelstein J T, Priebe CE, Burns R. 2016. FlashMatrix: parallel, scalable data analysis
with generalized matrix operations using commodity SSDs. arXiv:1604.06414v1 [cs.DC]

Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe CE, Szalay AS. 2015. FlashGraph: processing billion-
node graphs on an array of commodity SSDs. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies, pp. 45-58. Santa Clara, CA: FAST

Zheng Z, Lauritzen ]S, Perlman E, Robinson CG, Nichols M, et al. 2018. A complete electron microscopy
volume of the brain of adult Drosophila melanogaster. Cell 174(3):730-43.e22

Zhu M. 2006. Discriminant analysis with common principal components. Biometrika 93(4):1018-24

Zipunnikov V, Caffo B, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu C. 2011. Multilevel functional
principal component analysis for high-dimensional data. 7. Comput. Graph. Stat. 20(4):852-73

Zlateski A, Silversmith W. 2019. Zmesh. GitHub. https://github.com/seung-lab/zmesh

Charles et al.


https://github.com/seung-lab/zmesh

