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Abstract
Augmented Lagrangian method (ALM) has been popularly used for solving con-
strained optimization problems. Practically, subproblems for updating primal variables
in the framework of ALM usually can only be solved inexactly. The convergence and
local convergence speed of ALM have been extensively studied. However, the global
convergence rate of the inexact ALM is still open for problems with nonlinear inequal-
ity constraints. In this paper, we work on general convex programs with both equality
and inequality constraints. For these problems, we establish the global convergence
rate of the inexact ALM and estimate its iteration complexity in terms of the number of
gradient evaluations to produce a primal and/or primal-dual solution with a specified
accuracy. We first establish an ergodic convergence rate result of the inexact ALM
that uses constant penalty parameters or geometrically increasing penalty parameters.
Based on the convergence rate result, we then apply Nesterov’s optimal first-order
method on each primal subproblem and estimate the iteration complexity of the inex-
act ALM. We show that if the objective is convex, then O(ε−1) gradient evaluations
are sufficient to guarantee a primal ε-solution in terms of both primal objective and
feasibility violation. If the objective is strongly convex, the result can be improved to

O(ε− 1
2 | log ε|). To produce a primal-dual ε-solution, more gradient evaluations are

needed for convex case, and the number is O(ε− 4
3 ), while for strongly convex case,

the number is still O(ε− 1
2 | log ε|). Finally, we establish a nonergodic convergence

rate result of the inexact ALM that uses geometrically increasing penalty parameters.
This result is established only for the primal problem. We show that the nonergodic
iteration complexity result is in the same order as that for the ergodic result. Numer-
ical experiments on quadratically constrained quadratic programming are conducted
to compare the performance of the inexact ALM with different settings.
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1 Introduction

In this paper, we consider the constrained convex programming

minimize
x∈X

f0(x), s.t. Ax = b, fi (x) ≤ 0, i = 1, . . . ,m, (1.1)

where X ⊆ R
n is a closed convex set, A and b are respectively given matrix and

vector, and fi is a convex function for every i = 0, 1, . . . ,m. Any convex optimiza-
tion problem can be written in the standard form of (1.1). It appears in many areas
including statistics, machine learning, data mining, engineering, signal processing,
finance, operations research, and so on.

Note that the constraint x ∈ X can be equivalently represented by using an inequal-
ity constraint ιX (x) ≤ 0 or adding ιX (x) to the objective, where ιX is the indicator
function on X defined in (1.15) below. However, we explicitly use it for technical
reason. In addition, every affine constraint a�

j x = b j can be equivalently represented

by two inequality constraints: a�
j x − b j ≤ 0 and −a�

j x + b j ≤ 0. That way does not
change theoretical results of an algorithm but will make the problem computationally
more difficult.

One popular method for solving (1.1) is the augmented Lagrangianmethod (ALM),
which first appeared in [19,36]. ALM alternatingly updates the primal variable and the
Lagrangian multipliers. At each update, the primal variable is renewed by minimizing
the augmented Lagrangian (AL) function and themultipliers by a dual gradient ascent.
The global convergence and local convergence rate of ALM have been extensively
studied; see the books [5,6]. Several recent works (e.g., [17,27]) establish the global
convergence rate of ALM and/or its variants for affinely constrained problems. In
the framework of ALM, the primal subproblem usually can only be solved inexactly,
and thus practically inexact ALM (iALM) is often used. However, to the best of
our knowledge, the global convergence rate of iALM for problems with nonlinear
inequality constraints still remains open.1 We address this open question in this work
and also establish the iteration complexity of iALM in terms of the number of gradient
evaluations.

We will assume composite convex structure on (1.1). More specifically, we assume

f0(x) = g(x) + h(x), (1.2)

where g is a differentiable convex function with Lipschitz continuous gradient, and h
is a simple2 (possibly nondifferentiable) closed convex function. Also, fi is convex

1 Although the global convergence rate in terms of augmented dual objective can be easily shown from
existing works (e.g., see our discussion in Sect. 5), that does not indicate the convergence speed from the
perspective of the primal objective and feasibility.
2 By “simple”, we mean the proximal mapping of h is easy to evaluate, i.e., it is easy to find a solution to
minx∈X h(x) + 1

2γ ‖x − x̂‖2 for any x̂ and γ > 0.
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and differentiable with Lipschitz continuous gradient for each i = 1, . . . ,m, namely,
there are constants L0, L1, . . . , Lm such that

‖∇g(x̂) − ∇g(x̃)‖ ≤ L0‖x̂ − x̃‖, ∀ x̂, x̃ ∈ dom(h) ∩ X , (1.3a)

‖∇ fi (x̂) − ∇ fi (x̃)‖ ≤ Li‖x̂ − x̃‖, ∀ x̂, x̃ ∈ dom(h) ∩ X ,∀ i = 1, . . . ,m. (1.3b)

In addition, we assume the boundedness of dom(h) ∩ X and denote its diameter as

D = maximize
x̂,x̃∈dom(h)∩X

‖x̂ − x̃‖. (1.4)

1.1 Augmented Lagrangian function

In the literature, there are several different penalty terms used in an augmented
Lagrangian (AL) function, such as the classic one [37,38], the quadratic penalty on
constraint violation [4], and the exponential penalty [41]. The work [3] gives a general
class of augmented penalty functions that satisfy certain properties. In this paper, we
use the classic one. As discussed below, it can be derived from a quadratic penalty on
an equivalent equality constrained problem.

Introducing nonnegative slack variable si ’s, one can write (1.1) to an equivalent
form:

minimize
x∈X ,s≥0

f0(x), s.t. Ax = b, fi (x) + si = 0, i = 1, . . . ,m. (1.5)

With quadratic penalty on the equality constraints, the AL function of (1.5) is

L̃β(x, s, y, z) = f0(x) + y�(Ax − b) +
m∑

i=1

zi
(
fi (x) + si

)

+ β

2
‖Ax − b‖2 + β

2

m∑

i=1

(
fi (x) + si

)2
, (1.6)

where y and z are multipliers, and β > 0 is the augmented penalty parameter. Mini-
mizing L̃β with respect to s ≥ 0 while fixing x, y and z, we have the optimal s given
by

si = max

(
0, − zi

β
− fi (x)

)
, i = 1, . . . ,m.

Plugging the above s into L̃β gives

L̃β(x, s, y, z) = f0(x) + y�(Ax − b) + β

2
‖Ax − b‖2 +

m∑

i=1

ψβ( fi (x), zi ),
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where

ψβ(u, v) =
{
uv + β

2 u
2, if βu + v ≥ 0,

− v2

2β , if βu + v < 0.
(1.7)

Let

Ψβ(x, z) =
m∑

i=1

ψβ( fi (x), zi ),

and we obtain the classic AL function of (1.1):

Lβ(x, y, z) = f0(x) + y�(Ax − b) + β

2
‖Ax − b‖2 + Ψβ(x, z). (1.8)

The AL function in (1.8) has an important advantage over that in (1.6). The former
AL function is convex about the primal variable and concave about the dual variable
while that in (1.6) may not be convex about the primal variable. [37, Theorem 3.1]
shows thatLβ given in (1.8) is convex about x and concave about z. For completeness,
we include a different and short proof here.

Lemma 1 Assume fi to be convex for each i = 0, 1, . . . ,m. Then the AL function Lβ

in (1.8) is convex about x and concave about (y, z).

Proof We only need to show the convexity-concavity of Ψβ(x, z) in x and z. It is easy
to see thatψβ(u, v) in (1.7) is nondecreasing and convex about u and concave about v.
Hence, given x, the function ψβ( fi (x), zi ) is concave about zi for each i = 1, . . . ,m,
and thus Ψβ(x, z) is concave about z. To show the convexity of Ψβ about x, we note
that the composition of a nondecreasing convex function with a convex function is
still convex; cf. [9, Eq. (3.11)]. Therefore, given z, ψβ( fi (x), zi ) is convex about x for
each i = 1, . . . ,m, and thus Ψβ(x, z) is convex about x. This completes the proof.

��

1.2 Inexact augmented Lagrangianmethod

The augmented Lagrangian method (ALM) was proposed in [19,36]. Within each
iteration, ALMfirst updates the x variable byminimizing the AL function with respect
to x while fixing y and z, and then it performs a dual gradient ascent update to y and z.
In general, it is difficult to exactly minimize the AL function about x. A more realistic
way is to solve the x-subproblem within a tolerance error, which leads to the inexact
ALM. Its pseudocode is given in Algorithm 1 below. If εk = 0, ∀k, it reduces to the
ALM.

Note that Algorithm 1 is a framework of iALM since it does not specify how to
find xk+1. For problems that have the structure given in (1.2) and (1.3), we will apply
an optimal first-order method as a subroutine to inexactly solve each subproblem.
In addition, the inequality in (1.9) generally cannot be directly verified. However,
it can be guaranteed by setting appropriate stopping conditions such as running the
subroutine to a theoretically derived maximum number of iterations or until
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Algorithm 1: Inexact augmented Lagrangian method for (1.1)

1 Initialization: choose x0, y0, z0, a positive integer K , and {βk , ρk , εk }
2 for k = 0, 1, . . . , K − 1 do
3 Find xk+1 ∈ X such that

Lβk (x
k+1, yk , zk ) ≤ min

x∈X Lβk (x, y
k , zk ) + εk . (1.9)

4 Update y and z by

yk+1 = yk + ρk (Ax
k+1 − b), (1.10)

zk+1
i = zki + ρk · max

(
− zki

βk
, fi (x

k+1)

)
, i = 1, . . . ,m. (1.11)

dist
(
0, ∂xLβk (x

k+1, yk, zk) + NX (xk+1)
)

≤ εk

D
,

where D is given in (1.4), and NX (x) is the normal cone of X at x.
It is shown in [37] that the augmented dual function3

dβ(y, z) = min
x∈X

Lβ(x, y, z) (1.12)

is continuously differentiable, and ∇dβ is Lipschitz continuous with constant 1
β
. In

addition, it turns out that the (inexact) ALM is an (inexact) augmented dual gradient
ascent [38], and thus convergence rate of the (inexact) ALM in term of dβ can be
shown from existing results about (inexact) gradient method [40]. However, directly
applying these existing results would require

∑
k≥0

√
εk < ∞. Our analysis will be

different from this line and only needs
∑

k≥0 εk < ∞. Our results will be based on
both the primal and augmented dual problems.

1.3 Main results

The main results we establish in this paper are summarized as follows. Both ergodic
and nonergodic convergence rate results are established. Here, ergodic convergence
rate is based on averaged iterates while nonergodic one is about the actual iterates.

Theorem 1 (Summary of main results) For a given ε > 0, choose a positive integer
K and numbers C1 > 0,C2 > 0. Let {(xk, yk, zk)}Kk=0 be the iterates generated from
Algorithm 1 with parameters set according to one of the follows:

(i) ρk = βk = C1
K ε

, εk = ε
2
C2
C1

, ∀k.
(ii) ρk = βk = β0σ

k,∀k for certain β0 > 0 and σ > 1 such that
∑K−1

k=0 βk = C1
ε
,

and εk = ε
2
C2
C1

, ∀k.
3 Although [37] only considers the inequality constrained case, the results derived there apply to the case
with both equality and inequality constraints.
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(iii) ρk = βk = β0σ
k,∀k for certain β0 > 0 and σ > 1 such that

∑K−1
k=0 βk = C1

ε
.

If f0 is convex, let εk = C2

2β
1
3
k

1
∑K−1

t=0 β
2
3
t

, ∀k, and if f0 is strongly convex, let

εk = C2

2β
1
2
k

1
∑K−1

t=0 β
1
2
t

, ∀k.

Then we have the following results:

(a) For each setting, the averaged point x̄K = ∑K−1
k=0

ρkxk+1
∑K−1

t=0 ρt
is a primal O(ε)-

solution (see Definition 1), where the hidden constant depends on C1,C2 and
dual solution (y∗, z∗).

(b) For the second and third settings, the actual point xK is also a primal O(ε)-
solution.

(c) For each setting, to obtain the iterates, the total number of evaluations on ∇g

and ∇ fi , i = 1, . . . ,m is O(
√
K ε−1 + K ε− 1

2 ) if f0 is convex and O(K +√
K ε− 1

2 | log ε|) if f0 is strongly convex.
(d) For the first setting, without linear equality constraint, additional tK gradient

evaluations can guarantee to produce z̄K+ such that (x̄K , z̄K+) is a primal-
dual O(ε)-solution (see Definition 2), where tK = O( 1

K ε2
) if f0 is convex and

tK = O(
√
K ε− 1

2 | log ε|) if f0 is strongly convex.
For the primal ε-solution, the formal statements and the hidden constants are shown

in Theorem 5 for the first setting, in Theorems 6 and 10 for the second setting, and in
Theorems 7 and 10 for the third setting. The formal statement for the primal-dual ε-
solution is given in Theorem 8.Wemake a few remarks here. First, the integer K could
be independent of ε. When K = 1, Algorithm 1 solves a single penalized problem and
reduces to a penalty method if y0 = 0 and z0 = 0. Although the number of gradient
evaluations is smallest in item (c) if K = 1, numericallyweobserve better performance
by choosing a larger K . Second, as K is independent of ε, the iteration complexity to

obtain a primal ε-solution is O(ε−1) for the convex case and O(ε− 1
2 | log ε|) for the

strongly convex case. The order for the convex casematcheswith the lower complexity
bound established in [35] and thus is optimal. For the strongly convex case,Ouyang and

Xu[35] gives a lower bound in the order of ε− 1
2 , and thus our result is nearly optimal.

Third, in item (d), we set K = O(ε− 2
3 ) if f0 is convex and K independent of ε if f0 is

strongly convex. Therefore, to have a primal-dual ε-solution, the iteration complexity

is O(ε− 4
3 ) for the convex case and O(ε− 1

2 | log ε|) for the strongly convex case.

1.4 Literature review

In this section, we review related works. Our review focuses on convex optimiza-
tion, but note that ALM has also been popularly applied to nonconvex optimization
problems; see [5–7] and the references therein.

Affinely constrained convex problems Several recent works have established the
convergence rate of ALM and its inexact version for affinely constrained convex
problems:
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minimize
x∈X

f0(x), s.t. Ax = b. (1.13)

Assuming exact solution to every x-subproblem, He and Yuan [17] first shows O(1/k)
convergence of ALM for smooth problems in terms of dual objective and then accel-
erates the rate to O(1/k2) by applying Nesterov’s extrapolation technique to the
multiplier update. The results are extended to nonsmooth problems in Kang et al. [21]
that uses similar technique. By adapting parameters, Xu [42] establishes O(1/k2)
convergence of a linearized ALM in terms of primal objective and feasibility viola-
tion. The linearized ALM allows linearization to smooth part in the objective but still
assumes exact solvability of x-subproblems.

When the objective is strongly convex,Kang et al. [20] provesO(1/k2) convergence
of iALM with extrapolation technique applied to the multiplier update. It requires
summable error and subproblems to be solved more and more accurately. However,
it does not give an estimate on the total number of gradient evaluations on solving all
subproblems to the required accuracies.

For smooth linearly constrained convex problems, Lan and Monteiro [22] ana-
lyzes the iteration complexity of the iALM. It applies Nesterov’s optimal first-order

method to every x-subproblem and shows that O(ε− 7
4 ) gradient evaluations are

required to reach a primal-dual ε-solution (x̄, ȳ) in the sense that ‖Ax̄ − b‖ ≤ ε

and ∇ f0(x̄) + A�ȳ ∈ −NX (x̄) + Bε, where Bε denotes an ε-ball centered at origin.
In addition, Lan and Monteiro [22] modifies the iALM by solving a perturbed prob-

lem. The modified iALM requires O(ε−1| log ε| 34 ) gradient evaluations to produce a
primal-dual ε-solution. Motivated by the model predictive control, Nedelcu et al. [29]
also analyzes the iteration complexity of inexact dual gradient methods (iDGM) that
are essentially iALMs. While the iteration complexity in Lan and Monteiro [22] is
estimated based on the best iterate, and that in Nedelcu et al. [29] is ergodic, the recent
work [25] establishes non-ergodic convergence of iALM.

Another line of existing works on iALM assume two or multiple block structure
on the problem and simply perform one cycle of Gauss-Seidel update to the block
variables or update one randomly selected block. Global sublinear convergence of
these methods has also been established. Exhausting all such works is impossible and
out of scope of this paper. We refer interested readers to [8,10–12,18,34,44,46] and
the references therein.

General convex problems As there are nonlinear inequality constraints, the local
convergence rate of iALM has been extensively studied (e.g., [4,37,39]). However, at
the time of our first submission, we did not find any work in the literature showing its
global convergence rate.Many existingworks on nonlinearly constrained convex prob-
lems employ Lagrangian function instead of the augmented one and establish global
convergence rate through dual subgradient approach (e.g., [28,30,31]). For general
convex problems, these methods enjoy O(1/

√
k) convergence, and for strongly con-

vex case, the rate can be improved to O(1/k). To achieve a primal-dual ε-solution,

compared to our results, their iteration complexity is O(ε− 2
3 ) times worse for the

convex problems and O(ε− 1
2 ) worse for the strongly convex problems. Assuming

Lipschitz continuity of fi for every i ∈ [m], [48] proposes a new primal-dual type
algorithm for nonlinearly constrained convex programs. Every iteration, it minimizes
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a proximal Lagrangian function and updates the multiplier in a novel way. With suf-
ficiently large proximal parameter that depends on the Lipschitz constants of fi ’s,
the algorithm converges in O(1/k) ergodic rate. The follow-up paper [47] focuses on
smooth constrained convex problems and proposes a linearized variant of the algo-
rithm in [48]. Assuming compactness of the set X , it also establishes O(1/k) ergodic
convergence of the linearized method. Since our first submission, a few works have
been done on first-order methods for solving nonlinear functional constrained prob-
lems. For example, [26] analyzes the iteration complexity of first-order iALM and
a modified version for convex conic programming, and [16] proposed a first-order
primal-dual method for general convex-concave saddle-point problems.

1.5 Notation

For simplicity, throughout the paper, we focus on a finite-dimensional Euclidean space,
but our analysis can be directly extended to a general Hilbert space.

We use italic letters a, c, B, L, . . . , for scalars, bold lower-case letters x, y, z, . . .
for vectors, and bold upper-case lettersA,B, . . . for matrices. zi denotes the i-th entry
of a vector z. We use 0 to denote a vector or matrix of all zeros, and its size is clear
from the context. [m] denotes the set {1, 2, . . . ,m} for any positive integerm. Given a
real number a, we let [a]+ = max(0, a) and �a� be the smallest integer that is no less
than a. For a vector a, [a]+ takes the positive part of a in a component-wise manner.
‖a‖ denotes the Euclidean norm of a vector a and ‖A‖ the spectral norm of a matrixA.

We denote � as the vector consisting of Li , i ∈ [m], where Li is the Lipschitz
constant of ∇ fi in (1.3b). Also we let f be the vector function with fi as the i-th
component scalar function. That is

� = [L1, . . . , Lm], f(x) = [ f1(x), . . . , fm(x)]. (1.14)

Given a convex function f , ∇̃ f (x) represents one subgradient of f at x, namely,

f (x̂) ≥ f (x) + 〈∇̃ f (x), x̂ − x〉, ∀ x̂,

and ∂ f (x) denotes its subdifferential, i.e., the set of all subgradients. When f is
differentiable, we simply write its subgradient as ∇ f (x). For a convex set X , we use
ιX as its indicator function, i.e.,

ιX (x) =
{
0, if x ∈ X ,

+∞, if x /∈ X ,
(1.15)

and NX (x) = ∂ιX (x) as its normal cone at x ∈ X .

1.6 Outline

The rest of the paper is organized as follows. In Sect. 2, we give a few preparatory
results and review Nesterov’s optimal first-order method for solving a composite con-
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vex program. An ergodic convergence rate result of iALM is given in Sect. 3, and a
nonergodic convergence rate result is shown in Sect. 4. Iteration complexity results in
terms of the number of gradient evaluations are established for both ergodic and non-
ergodic cases. Comparison to several existing works is given in Sect. 5, and numerical
results are provided in Sect. 6. Finally Sect. 7 concludes the paper.

2 Preliminary results and Nesterov’s optimal first-order method

In this section, we give a few preliminary results and also review Nesterov’s optimal
first-order method for composite convex programs.

2.1 "-Solutions and basic facts

Given an ε > 0, the primal ε-solution of (1.1) is defined as follows.

Definition 1 (primal ε-solution) Let f ∗
0 be the optimal value of (1.1). Given ε ≥ 0, a

point x ∈ X is called a primal ε-solution to (1.1) if

| f0(x) − f ∗
0 | ≤ ε, and ‖Ax − b‖ + ∥∥[f(x)]+

∥∥ ≤ ε.

The above definition is not new. For linearly constrained problems, Lin et al. [24]
adopts a similar definition, and for general nonlinearly constrained problems, Rock-
afellar, Yu and Neely [39,48] also use the objective distance and feasibility violation
to measure the solution quality.

A point (x, y, z) satisfies the Karush-Kuhn-Tucker (KKT) conditions for (1.1) if

0 ∈ ∂ f0(x) + NX (x) + A�y +
m∑

i=1

zi∇ fi (x), (2.1a)

Ax = b, x ∈ X , (2.1b)

zi ≥ 0, fi (x) ≤ 0, zi fi (x) = 0,∀i ∈ [m]. (2.1c)

From the convexity of fi ’s, if (x∗, y∗, z∗) satisfies the conditions in (2.1), then [43]

f0(x) − f0(x∗) + 〈y∗,Ax − b〉 +
m∑

i=1

z∗i fi (x) ≥ 0, ∀ x ∈ X . (2.2)

For any primal feasible point x of (1.1) and any (y, z) with z ≥ 0, one can easily
show the weak duality inequality d0(y, z) ≤ f0(x), where

d0(y, z) = min
x∈X

f0(x) + 〈y,Ax − b〉 +
m∑

i=1

zi fi (x)
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is the Lagrangian dual function. As a KKT point (x∗, y∗, z∗) exists, we have
d0(y∗, z∗) = f0(x∗), i.e., the strong duality holds. In this case, we define the primal-
dual ε-solution of (1.1) as follows.

Definition 2 (primal-dual ε-solution) Given ε ≥ 0, a point (x, y, z) with x ∈ X and
z ≥ 0 is called a primal-dual ε-solution to (1.1) if x is a primal ε-solution and in
addition f ∗

0 ≤ d0(y, z) + ε, where f ∗
0 is the optimal value of (1.1).

The result below will be used to establish convergence rate results of Algorithm 1.

Lemma 2 Assume (x∗, y∗, z∗) satisfies the KKT conditions in (2.1). Let x̄ be a point
such that for any y and any z ≥ 0,

f0(x̄) − f0(x∗) + y�(Ax̄ − b) +
m∑

i=1

zi fi (x̄) ≤ α + c1‖y‖2 + c2‖z‖2, (2.3)

where α and c1, c2 are nonnegative constants independent of y and z. Then

−
(
α + 4c1‖y∗‖2 + 4c2‖z∗‖2

)
≤ f0(x̄) − f0(x∗) ≤ α, (2.4)

‖Ax̄ − b‖ + ∥∥[f(x̄)]+
∥∥ ≤ α + c1

(
1 + ‖y∗‖)2 + c2

(
1 + ‖z∗‖)2. (2.5)

Proof Letting y = 0 and z = 0 in (2.3) gives the second inequality in (2.4). For any
nonnegative γy and γz , we let

y = γy
Ax̄ − b

‖Ax̄ − b‖ , z = γz
[f(x̄)]+∥∥[f(x̄)]+

∥∥

and have from (2.3) by using the convention 0
0 = 0 that

f0(x̄) − f0(x∗) + γy‖Ax̄ − b‖ + γz
∥∥[f(x̄)]+

∥∥ ≤ α + c1γ
2
y + c2γ

2
z . (2.6)

Noting

− 〈y∗,Ax̄ − b〉 ≥ −‖y∗‖ · ‖Ax̄ − b‖, −
m∑

i=1

z∗i fi (x̄) ≥ −‖z∗‖ · ∥∥[f(x̄)]+
∥∥, (2.7)

we have from (2.2) and (2.6) that

(γy − ‖y∗‖)‖Ax̄ − b‖ + (γz − ‖z∗‖)‖[f(x̄)]+
∥∥ ≤ α + c1γ

2
y + c2γ

2
z

In the above inequality, letting γy = 1 + ‖y∗‖ and γz = 1 + ‖z∗‖ gives (2.5), and
letting γy = 2‖y∗‖ and γz = 2‖z∗‖ gives the first inequality in (2.4) by (2.2) and
(2.7). ��
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2.2 Nesterov’s optimal first-order method

In this subsection, we review Nesterov’s optimal first-order method for composite
convex programs. The method will be used to approximately solve x-subproblems in
Algorithm 1. It aims at finding a solution of the following problem

minimize
x

φ(x) + ψ(x). (2.8)

Here, φ is Lφ-smooth, i.e., ∇φ is Lipschitz continuous with constant Lφ , and φ

is also strongly convex with modulus μ ≥ 0. In addition, ψ is a simple (possibly
nondifferentiable) closed convex function. Algorithm 2 summarizes themethod. Here,
for simplicity, we assume Lφ andμ are known. The method does not require the value
of Lφ but can estimate a local Lipschitz constant by backtracking. In addition, it only
requires a lower estimate of μ; see [33] for example.

Algorithm 2: Nesterov’s optimal first-order method for (2.8)

1 Initialization: choose x̂0 = x0, α0 ∈ (0, 1], and let q = μ
Lφ

;

2 for k = 0, 1, . . . , do
3 Let

xk+1 = argmin
x

〈∇φ(x̂k ), x〉 + Lφ

2
‖x − x̂k‖2 + ψ(x).

4 Set

αk+1 =
q − α2k +

√
(q − α2k )2 + 4α2k
2

,

and

x̂k+1 = xk+1 + αk (1 − αk )

α2k + αk+1
(xk+1 − xk ).

The theorem below gives the convergence rate of Algorithm 2 for both convex (i.e.,
μ = 0) and strongly convex (i.e., μ > 0) cases; see [2,32,33]. We will use the results
to estimate iteration complexity of iALM.

Theorem 2 Let {xk} be the sequence generated from Algorithm 2. Assume x∗ to be a
minimizer of (2.8). The following results holds:

1. If μ = 0 and α0 = 1, then

φ(xk) + ψ(xk) − φ(x∗) − ψ(x∗) ≤ 2Lφ‖x0 − x∗‖2
k2

, ∀k ≥ 1. (2.9)
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2. If μ > 0 and α0 =
√

μ
Lφ

, then

φ(xk)+ψ(xk)−φ(x∗)−ψ(x∗) ≤ (Lφ + μ)‖x0 − x∗‖2
2

(
1 −

√
μ

Lφ

)k

, ∀k ≥ 1.

(2.10)

3 Ergodic convergence rate and iteration complexity results for
primal "-solutions

In this section, we first establish an ergodic convergence rate result of Algorithm 1.
From that result, we then specify algorithmparameters and estimate the total number of
gradient evaluations in order to produce a primal ε-solution. Two different settings of
the penalty parameters are studied: onewith constant penalty and anotherwith geomet-
rically increasing penalty parameters. For each setting, the tolerance error parameter
εk is chosen in an “optimal” way so that the total number of gradient evaluations is
minimized.

Throughout this section, we make the following assumptions.

Assumption 1 There exists a point (x∗, y∗, z∗) satisfying the KKT conditions in (2.1).

Assumption 2 For every k, there is xk+1 satisfying (1.9).

The first assumption holds if a certain regularity condition is satisfied, such as
the Slater condition (namely, there is an interior point x of X such that Ax = b
and fi (x) < 0,∀i ∈ [m]). The second assumption is for the well-definedness of the
algorithm. It holds if X is compact and fi ’s are continuous on X .

3.1 Convergence rate analysis of iALM

To show the convergence results of Algorithm 1, we first establish a few lemmas.

Lemma 3 Let {(yk, zk)}Kk=0 be the sequence obtained from the updates (1.10) and
(1.11). Then for any (y, z) and any 0 ≤ k < K, it holds

1

2ρk

[‖yk+1 − y‖2 − ‖yk − y‖2 + ‖yk+1 − yk‖2]− 〈yk+1 − y, rk+1〉 = 0, (3.1)

1

2ρk

[‖zk+1 − z‖2 − ‖zk − z‖2 + ‖zk+1 − zk‖2]

−
m∑

i=1

(zk+1
i − zi ) · max

(− zki
βk

, fi (xk+1)
) = 0, (3.2)

where rk = Axk − b.
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Proof From (1.10), it follows that

〈
yk+1 − y,

1

ρk
(yk+1 − yk) − rk+1

〉
= 0.

Using the equality 2u�v = ‖u‖2 − ‖u − v‖2 + ‖v‖2, we have the result in (3.1). By
similar arguments, one can show (3.2). ��

Lemma 4 For any z ≥ 0, we have

m∑

i=1

([zki + βk fi (xk+1)]+ − zi
)
fi (xk+1) −

m∑

i=1

(zk+1
i − zi ) · max

(− zki
βk

, fi (xk+1)
)

≥ 1

ρ2
k

(βk − ρk)‖zk+1 − zk‖2. (3.3)

Proof Denote

I k+ = {i ∈ [m] : zki + βk fi (xk+1) ≥ 0}, I k− = [m]\I k+. (3.4)

Then

the left hand side of (3.3)

=
∑

i∈I k+

[
(zki − zi ) fi (xk+1) + βk[ fi (xk+1)]2 − (zki + ρk fi (xk+1) − zi

)
fi (xk+1)

]

+
∑

i∈I k−

[
−zi fi (xk+1) −

(
zki − ρk zki

βk
− zi

)(
− zki

βk

)]

= (βk−ρk)
∑

i∈I k+
[ fi (xk+1)]2+

∑

i∈I k−

[
−zi

(
fi (xk+1) + zki

βk

)
+ 1

β2
k

(βk − ρk)(z
k
i )

2

]

≥ (βk − ρk)
∑

i∈I k+
[ fi (xk+1)]2 + 1

β2
k

(βk − ρk)
∑

i∈I k−
(zki )

2

= 1

ρ2
k

(βk − ρk)‖zk+1 − zk‖2,

where the inequality follows from zi ≥ 0 and fi (xk+1) + zki
βk

≤ 0, ∀i ∈ I k−, and the
last equality holds due to the update (1.11). ��

The next theorem is a fundamental result by running one iteration of Algorithm 1.

123



Y. Xu

Theorem 3 (One-iteration progress of iALM) Let {(xk, yk, zk)} be the sequence gen-
erated from Algorithm 1. Then for any x ∈ X , any y, and any z ≥ 0, it holds that

f0(xk+1) + y�rk+1 +
m∑

i=1

zi fi (xk+1) + βk − ρk

2
‖rk+1‖2

+ βk − ρk

2ρ2
k

‖zk+1 − zk‖2 + 1

2ρk
‖yk+1 − y‖2 + 1

2ρk
‖zk+1 − z‖2

≤ Lβk (x, y
k, zk) + 1

2ρk
‖yk − y‖2 + 1

2ρk
‖zk − z‖2 + εk . (3.5)

Proof From (1.9), it follows that for any x ∈ X ,

f0(xk+1) + 〈yk, rk+1〉 + βk

2
‖rk+1‖2 + Ψβk (x

k+1, zk) ≤ Lβk (x, y
k, zk) + εk . (3.6)

Since 〈yk, rk+1〉 = 〈yk+1 − y, rk+1〉 + 〈y, rk+1〉 − ρk‖rk+1‖2, by adding (3.1) and
(3.2) to the above inequality, we have

f0(xk+1) + y�rk+1 +
m∑

i=1

zi fi (xk+1) +
m∑

i=1

(
[zki + βk fi (xk+1)]+ − zi

)
fi (xk+1)

+
(

βk

2
− ρk

)
‖rk+1‖2 + Ψβk (x

k+1, zk) −
m∑

i=1

[zki + βk fi (xk+1)]+ fi (xk+1)

+ 1

2ρk

[‖yk+1 − y‖2 − ‖yk − y‖2 + ‖yk+1 − yk‖2]

+ 1

2ρk

[‖zk+1 − z‖2 − ‖zk − z‖2 + ‖zk+1 − zk‖2]

−
m∑

i=1

(zk+1
i − zi ) · max

(− zki
βk

, fi (xk+1)
)

≤ Lβk (x, y
k, zk) + εk . (3.7)

Note that

Ψβk (x
k+1, zk) −

m∑

i=1

[zki + βk fi (xk+1)]+ fi (xk+1)

=
∑

i∈I k+

[
zki fi (x

k+1) + βk

2
[ fi (xk+1)]2 − [zki + βk fi (xk+1)] fi (xk+1)

]

+
∑

i∈I k−

[
− (zki )

2

2βk

]
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= −
∑

i∈I k+

βk

2
[ fi (xk+1)]2 −

∑

i∈I k−

(zki )
2

2βk

= − βk

2ρ2
k

‖zk+1 − zk‖2, (3.8)

where the sets I k+ and I k− are defined in (3.4). Hence, plugging (3.3) and (3.8) into
(3.7) yields (3.5). ��

By Lemma 2 and Theorem 3, we have the following convergence rate estimate of
Algorithm 1.

Theorem 4 (Ergodic convergence rate of iALM) Under Assumptions 1 and 2, let
{(xk, yk, zk)}Kk=0 be the sequence generated from Algorithm 1 with y0 = 0, z0 = 0
and 0 < ρk ≤ βk, ∀k. Then

∣∣ f0(x̄K ) − f0(x
∗)
∣∣ ≤ 1

∑K−1
t=0 ρt

⎛

⎝2‖y∗‖2 + 2‖z∗‖2 +
K−1∑

k=0

ρkεk

⎞

⎠ , (3.9a)

‖Ax̄K − b‖ + ∥∥[f(x̄K )]+
∥∥ ≤ 1

∑K−1
t=0 ρt

⎛

⎝ (1 + ‖y∗‖)2
2

+ (1 + ‖z∗‖)2
2

+
K−1∑

k=0

ρkεk

⎞

⎠ .

(3.9b)

In addition, if βk = β and ρk = ρ,∀k ≥ 0, then

f0(x∗) − dβ(ȳK , z̄K ) ≤ 2

K

(
1

ρ
‖y∗‖2 + 1

ρ
‖z∗‖2 +

K−1∑

k=0

εk

)
. (3.10)

In the above,

x̄K =
∑K−1

t=0 ρtxt+1

∑K−1
t=0 ρt

, ȳK = 1

K

K−1∑

t=0

yt , z̄K = 1

K

K−1∑

t=0

zt . (3.11)

Proof Since ρk ≤ βk , the two terms βk−ρk
2 ‖rk+1‖2 and βk−ρk

2ρ2
k

‖zk+1 − zk‖2 are non-
negative. Dropping them and multiplying ρk to both sides of (3.5) yields

ρk

[
f0(xk+1) + y�rk+1 +

m∑

i=1

zi fi (xk+1)

]
+ 1

2
‖yk+1 − y‖2 + 1

2
‖zk+1 − z‖2

≤ ρkLβk (x, y
k, zk) + 1

2
‖yk − y‖2 + 1

2
‖zk − z‖2 + ρkεk, (3.12)
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where x ∈ X , y is any vector, and z ≥ 0. Summing up (3.12) with x = x∗ and noting
Lβk (x

∗, yk, zk) ≤ f0(x∗), we have

K−1∑

k=0

ρk

[
f0(xk+1) − f0(x∗) + y�rk+1 +

m∑

i=1

zi fi (xk+1)

]

+ 1

2
‖yK − y‖2 + 1

2
‖zK − z‖2

≤ 1

2
‖y0 − y‖2 + 1

2
‖z0 − z‖2 +

K−1∑

k=0

ρkεk . (3.13)

By the convexity of fi ’s and the nonnegativity of z, we have

f0(x̄K ) − f0(x∗) + y�(Ax̄K − b) +
m∑

i=1

zi fi (x̄K )

≤ 1
∑K−1

t=0 ρt

K−1∑

k=0

ρk

[
f0(xk+1) − f0(x∗) + y�rk+1 +

m∑

i=1

zi fi (xk+1)

]
,

which together with (3.13) implies

f0(x̄K ) − f0(x∗) + y�(Ax̄K − b) +
m∑

i=1

zi fi (x̄K )

≤ 1
∑K−1

t=0 ρt

(
1

2
‖y‖2 + 1

2
‖z‖2 +

K−1∑

k=0

ρkεk

)
.

The results in (3.9) thus follow from Lemma 2 with

α =
∑K−1

k=0 ρkεk∑K−1
k=0 ρk

, c1 = 1

2
∑K−1

k=0 ρk
, c2 = 1

2
∑K−1

k=0 ρk
.

When βk = β and ρk = ρ,∀k ≥ 0, letting y = 0, z = 0 in (3.12) and minimizing
the right hand side about x give

f0(xk+1) + 1

2ρ
‖yk+1‖2 + 1

2ρ
‖zk+1‖2 ≤ dβ(yk, zk) + 1

2ρ
‖yk‖2 + 1

2ρ
‖zk‖2 + εk .

Summing the above inequality from k = 0 to K − 1, using the convexity of f0 and
concavity of dβ , and also noting y0 = 0, z0 = 0, we have

K f0(x̄K ) ≤
K−1∑

k=0

f0(xk+1) ≤
K−1∑

k=0

dβ(yk, zk) +
K−1∑

k=0

εk ≤ Kdβ(ȳK , z̄K ) +
K−1∑

k=0

εk .
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Now the result in (3.10) follows from (3.9a). ��
Remark 1 Note that if ρk ≡ ρ > 0, ∀k and

∑∞
k=0 εk < ∞, then a sublinear

convergence result follows from (3.9) and (3.10) in terms of both primal and dual
variables. The work [38] has also analyzed the convergence of Algorithm 1 through
the augmented dual function dβ . However, it requires

∑∞
k=0

√
εk < ∞, which is

strictly stronger than the condition
∑∞

k=0 εk < ∞. The result in (3.10) seems also
new. Without the y-part, i.e., no linear constraint, [38, Equation (26)] shows that

‖∇zLβ(xk+1, zk) − ∇dβ(zk)‖ ≤
√

2εk
β
. Hence, to have O(1/K ) convergence rate

about dβ , applying [40, Proposition 1] would require
∑∞

k=0
√

εk < ∞, and thus
(3.10) is not implied.

3.2 Iteration complexity of iALM for primal "-solutions

In this subsection, we apply Nesterov’s optimal first-order method to each x-
subproblem (1.9) and estimate the total number of gradient evaluations to produce
a primal ε-solution of (1.1). Note that the convergence rate results in Theorem 4 do
not assume specific structures of (1.1) except convexity. If the problem (1.1) has richer
structures than those in (1.3),more efficientmethods can be applied to the subproblems
in (1.9).

The following results are easy to show from the Lipschitz differentiability of fi ,
i ∈ [m].
Proposition 1 Assume (1.3a), (1.3b), and the boundedness of dom(h)∩X . Then there
exist constants B1, . . . , Bm such that

max
(| fi (x)|, ‖∇ fi (x)‖

) ≤ Bi , ∀x ∈ dom(h) ∩ X ,∀i ∈ [m], (3.14a)

| fi (x̂) − fi (x̃)| ≤ Bi‖x̂ − x̃‖, ∀x̂, x̃ ∈ dom(h) ∩ X ,∀i ∈ [m]. (3.14b)

Let the smooth part of Lβ be denoted as

Fβ(x, y, z) = Lβ(x, y, z) − h(x).

Based on (3.14), we are able to showLipschitz continuity of∇xFβ(x, y, z)with respect
to x for every (y, z).

Lemma 5 Assume (1.3a), (1.3b), and the boundedness of dom(h) ∩ X . Let Bi ’s be
given in Proposition 1. Then ∇xFβk (x, y

k, zk) is Lipschitz continuous on dom(h)∩X
in terms of x with constant

L(zk) = L0 + βk‖A�A‖ +
m∑

i=1

(
βk Bi (Bi + Li ) + Li |zki |

)
. (3.15)

Proof For ease of description, we let β = βk and (y, z) = (yk, zk) in the proof. First
we notice that ∂

∂uψβ(u, v) = [βu + v]+, and thus for any v,
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∣∣∣∣
∂

∂u
ψβ(û, v) − ∂

∂u
ψβ(ũ, v)

∣∣∣∣ ≤ β|û − ũ|, ∀û, ũ.

Let hi (x, zi ) = ψβ( fi (x), zi ), i = 1, . . . ,m. Then

‖∇xhi (x̂, zi ) − ∇xhi (x̃, zi )‖
= ∥∥ ∂

∂u
ψβ( fi (x̂), zi )∇ fi (x̂) − ∂

∂u
ψβ( fi (x̃), zi )∇ fi (x̃)

∥∥

≤ ∥∥ ∂

∂u
ψβ( fi (x̂), zi )∇ fi (x̂) − ∂

∂u
ψβ( fi (x̃), zi )∇ fi (x̂)

∥∥

+ ∥∥ ∂

∂u
ψβ( fi (x̃), zi )∇ fi (x̂) − ∂

∂u
ψβ( fi (x̃), zi )∇ fi (x̃)

∥∥

≤ β| fi (x̂) − fi (x̃)| · ‖∇ fi (x̂)‖ + ∣∣ ∂

∂u
ψβ( fi (x̃), zi )

∣∣ · ‖∇ fi (x̂) − ∇ fi (x̃)‖
≤ βB2

i ‖x̂ − x̃‖ + Li (βBi + |zi |)‖x̂ − x̃‖.

Hence,

‖∇xFβ(x̂, y, z) − ∇xFβ(x̃, y, z)‖

≤ ‖∇g(x̂) − ∇g(x̃)‖ + β‖A�A(x̂ − x̃)‖ +
m∑

i=1

‖∇xhi (x̂, zi ) − ∇xhi (x̃, zi )‖

≤
(
L0 + β‖A�A‖ +

m∑

i=1

[
βB2

i + Li (βBi + |zi |)
]
)

‖x̂ − x̃‖,

which completes the proof. ��
Therefore, letting φ(x) = Fβk (x, y

k, zk) and ψ(x) = h(x) + ιX (x), we can apply
Nesterov’s optimal first-order method in Algorithm 2 to find xk+1 in (1.9). From
Theorem 2, we have the following results. Note that if the strong convexity constant
μ = 0, the problem is just convex.

Lemma 6 Assume that g is strongly convex with modulus μ ≥ 0. Given εk > 0, if we
start from xk and run Algorithm 2, then at most tk iterations are needed to produce
xk+1 such that (1.9) holds, where

tk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌈
dist(xk,X ∗

k )
√
2L(zk)√

εk

⌉
, if μ = 0,

⎡

⎢⎢⎢

log
(
L(zk )+μ

2εk
[dist(xk,X ∗

k )]2
)

log 1/
(
1 −

√
μ

L(zk )

)

⎤

⎥⎥⎥
, if μ > 0,

(3.16)

and X ∗
k denotes the set of optimal solutions to minx∈X Lβk (x, y

k, zk).
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Below we specify the sequences {βk}, {ρk} and {εk} for a given ε > 0, and through
combining Theorem 4 and Lemma 6, we give the iteration complexity results of iALM
for producing a primal ε-solution. We study two cases. In the first case, a constant
penalty parameter is used, and in the second case, we geometrically increase βk and ρk .

Given ε > 0, we set {βk} and {ρk} according to one of the follows:

Setting 1 (constant penalty) Let K be a positive integer number and C1 a positive real
number. Set

ρk = βk = β = C1

K ε
, ∀ 0 ≤ k < K .

Setting 2 (geometrically increasing penalty) Let K be a positive integer number, C1
a positive real number, and σ > 1. Set

β0 = C1

ε

σ − 1

σ K − 1
, (3.17)

and

ρk = βk = β0σ
k, ∀ 0 ≤ k < K .

Note that if K = 1, the above two settings are the same, and in this case,Algorithm1
simply reduces to the quadratic penalty method. For either of the above two settings,
we have

∑K−1
k=0 ρk = C1

ε
, which is required in our analysis. To have this hold, we do

not have to fix K first. Instead, we can keep ρk = βk,∀k, simply choose β0 and C1
first, and then run K outer iterations either with constant parameter β or geometrically
increasing one such that

∑K−1
k=0 ρk ≥ C1

ε
. The order of our complexity results will

remain the same if β0 is in the order of 1
ε
.

From (3.15), we see that the Lipschitz constant depends on zk . Hence, from (3.16),
to solve the x-subproblem to the accuracy εk , the number of gradient evaluations will
depend on zk . Below we show that if εk is sufficiently small, zk can be bounded and
thus so is L(zk).

Lemma 7 Let {(xk, yk, zk)}Kk=0 be the sequence generated from Algorithm 1 with {βk}
and {ρk} set according to either Settings 1 or 2. If y0 = 0, z0 = 0, and εk’s are chosen
such that

K−1∑

k=0

ρkεk ≤ C2

2
, (3.18)

for a certain constant C2 > 0, then

L(zk) ≤ L∗ + βk H , ∀ 0 ≤ k ≤ K , (3.19)

where

H = ‖A�A‖ +
m∑

i=1

Bi (Bi + Li ), L∗ = L0 + ‖�‖
(
‖y∗‖ + 2‖z∗‖ +√C2

)

123



Y. Xu

and � is given in (1.14).

Proof Letting (x, y, z) = (x∗, y∗, z∗) in (3.12), noting Lβk (x
∗, yk, zk) ≤ f0(x∗), and

using (2.2), we have

1

2
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − z∗‖2 ≤ 1

2
‖yk − y∗‖2 + 1

2
‖zk − z∗‖2 + ρkεk .

Summing the above inequality yields

1

2
‖yk − y∗‖2 + 1

2
‖zk − z∗‖2

≤ 1

2
‖y0 − y∗‖2 + 1

2
‖z0 − z∗‖2 +

k−1∑

t=0

ρtεt , ∀ 0 ≤ k ≤ K ,

which implies

‖zk‖ ≤ ‖z∗‖ +
√√√√‖y0 − y∗‖2 + ‖z0 − z∗‖2 + 2

k−1∑

t=0

ρtεt .

Since ‖u‖ ≤ ‖u‖1 for any vector u, we have from the above inequality that

‖zk‖ ≤ ‖z∗‖ + ‖y0 − y∗‖ + ‖z0 − z∗‖ +
√√√√2

K−1∑

t=0

ρtεt , ∀ 0 ≤ k ≤ K . (3.20)

Hence, if y0 = 0 and z0 = 0, and (3.18) holds, it follows from the above inequality
that

‖zk‖ ≤ ‖y∗‖ + 2‖z∗‖ +√C2, ∀ 0 ≤ k ≤ K , (3.21)

By the Cauchy-Schwartz inequality, we have from (3.15) that for any 0 ≤ k ≤ K ,

L(zk) ≤ L0 + βk H + ‖zk‖ · ‖�‖,

which together with (3.21) gives the result in (3.19). ��
“Optimal” subproblem accuracy parameters If tk gradient evaluations are

required to produce xk+1, then the total number of gradient evaluations is TK =∑K−1
k=0 tk to generate {xk}Kk=1. Given ε > 0, and {βk},{ρk} set according to either

Settings 1 or 2, we can choose {εk} to minimize TK subject to the condition in (3.18).
When μ = 0, we solve the following problem:

minimize
ε>0

K−1∑

k=0

dist(xk,X ∗
k )
√
L(zk)√

εk
, s.t.

K−1∑

k=0

βkεk ≤ C2

2
,
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where ε = [ε0, . . . , εK−1]. Through formulating the KKT system of the above prob-
lem, one can easily find the optimal ε given by

εk = C2

2

[dist(xk,X ∗
k )] 23 [L(zk)] 13

β
2
3
k

∑K−1
t=0 β

1
3
t [dist(xt ,X ∗

t )] 23 [L(zt )] 13
, ∀ 0 ≤ k < K . (3.22)

When μ > 0, we solve the problem below:

minimize
ε>0

K−1∑

k=0

√
L(zk)

μ
log

(
L(zk) + μ

2εk
[dist(xk,X ∗

k )]2
)

, s.t.
K−1∑

k=0

βkεk ≤ C2

2
,

(3.23)
whose optimal solution is given by

εk = C2

2

√
L(zk)

βk
∑K−1

t=0

√
L(zt )

, ∀ 0 ≤ k < K . (3.24)

Note that the summand in the objective of (3.23) is not exactly the same as that in the
second inequality of (3.16). They are close ifμ � L(zk) since log(1+a) = a+o(a).

The optimal εk given in (3.22) and (3.24) depends on dist(xk,X ∗
k ) and the future

points zk+1, . . . , zK−1, which are unknown at iteration k. We do not assume these
unknowns. Instead, we set εk in two different ways. One way is to simply set

εk = ε

2

C2

C1
, ∀ 0 ≤ k < K , (3.25)

for both cases of μ = 0 and μ > 0. Another way is to let

εk = C2

2

1

β
1
3
k

∑K−1
t=0 β

2
3
t

, ∀ 0 ≤ k < K , (3.26)

for the case of μ = 0, and

εk = C2

2

1√
βk
∑K−1

t=0
√

βt
, ∀ 0 ≤ k < K , (3.27)

for the case of μ > 0. We see that if βk H dominates L∗ and dist(xk,X ∗
k ) is roughly

the same for all k’s, then {εk} in (3.26) and (3.27) well approximate those in (3.22)
and (3.24). If {βk} and {ρk} are set according to Setting 1, i.e., constant parameters,
then the {εk} in both (3.26) and (3.27) is constant as in (3.25).

Plugging these parameters into (3.16), we have the following estimates on the total
number of gradient evaluations.

Theorem 5 (Iteration complexity with constant penalty and constant error) For any
given ε > 0, let K be a positive integer number and C1,C2 two positive real numbers.
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Set {βk} and {ρk} according to Setting 1 and {εk} by (3.25). Let (x̄K , ȳK , z̄K ) be given
in (3.11). Then

∣∣ f0(x̄K ) − f0(x∗)
∣∣ ≤ ε

(
2‖y∗‖2 + 2‖z∗‖2)

C1
+ ε

2

C2

C1
, (3.28a)

‖Ax̄K − b‖ + ∥∥[f(x̄K )]+
∥∥ ≤ ε

[
(1 + ‖y∗‖)2 + (1 + ‖z∗‖)2]

2C1
+ ε

2

C2

C1
, (3.28b)

f0(x∗) − dβ(ȳK , z̄K ) ≤ ε
(
2‖y∗‖2 + 2‖z∗‖2)

C1
+ εC2

C1
. (3.28c)

Assumeμ ≤ L0
4 . Then Algorithm 1 can produce (x̄K , ȳK , z̄K ) by evaluating gradients

of g, fi , i ∈ [m] in at most TK times, where

TK =
⌈
2DK

√
C1

C2

(√
L∗
ε

+ 1

ε

√
C1H

K

)
+ K

⌉
, if μ = 0, (3.29)

and

TK =
⌈
2K

(√
L∗
μ

+
√
C1H

μK ε

)
log

(
D2C1

C2

(
L∗ + μ

ε
+ C1H

K ε2

))
+ K

⌉
, if μ > 0.

(3.30)

Proof The results in (3.28) directly follows from Theorem 4 and the settings of {βk},
{ρk}, and {εk}. For the total number of gradient evaluations, we use (3.16). First, for
the case ofμ = 0, from the first equation of (3.16) and the parameter setting, it follows
that the total number of gradient evaluations

TK ≤
K−1∑

k=0

dist(xk,X ∗
k )

√
2(L∗ + C1H

K ε
)

√
ε/2

√
C2/C1

+ K . (3.31)

Since
√
a + b ≤ √

a + √
b for any two nonnegative numbers a, b, we have from the

above inequality and by noting dist(xk,X ∗
k ) ≤ D that

TK ≤ 2D

√
C1

C2

K−1∑

k=0

√
L∗ +

√
C1H
K ε√

ε
+ K = 2DK

√
C1

C2

(√
L∗
ε

+ 1

ε

√
C1H

K

)
+ K ,

which gives (3.29).
For the case of μ > 0, we first note that for any 0 < a ≤ 1, it holds log(1 + a) ≥

a − a2
2 ≥ a

2 . Hence, if μ ≤ L0
4 , we have μ ≤ L(zk )

4 and
√

μ/L(zk )

1−
√

μ/L(zk )
≤ 1. Therefore,

log
1

1 −√μ/L(zk)
= log

(
1 +

√
μ/L(zk)

1 −√μ/L(zk)

)
≥ 1

2

√
μ/L(zk)

1 −√μ/L(zk)
,
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and thus

1

log 1
1−

√
μ/L(zk )

≤ 2

√
L(zk)

μ

(
1 −

√
μ/L(zk)

)
≤ 2

√
L(zk)

μ
. (3.32)

Using the above inequality and the second inequality of (3.16), we have that the total
number of gradient evaluations

TK ≤
K−1∑

k=0

2

√
L∗ + C1H

K ε

μ
log

(
L∗ + C1H

K ε
+ μ

εC2/C1
[dist(xk,X ∗

k )]2
)

+ K . (3.33)

Since
√
L∗ + C1H

K ε
≤ √

L∗ +
√

C1H
K ε

and dist(xk,X ∗
k ) ≤ D, the above inequality

implies (3.30). This completes the proof. ��
From Theorem 5, we can immediately obtain the following corollary about primal

ε-solutions.

Corollary 1 (Iteration complexity for primal ε-solutions) Let ε > 0 be given. To pro-
duce a primal ε-solution, Algorithm 1 needs to evaluate gradients of g, fi , i ∈ [m] in
at most O(ε−1) times for convex case ofμ = 0 and O(ε−1/2| log ε|) times for strongly
convex case of μ > 0.

Proof Let C1 and C2 be two constants such that

C1 ≥ max

(
2‖y∗‖2 + 2‖z∗‖2, (1 + ‖y∗‖)2

2
+ (1 + ‖z∗‖)2

2

)
+ C2

2
. (3.34)

From the error bounds in (3.28a) and (3.28b), it follows that x̄K is a primal ε-solution.
Set K independent of ε. Then the total number of gradient evaluations TK = O(ε−1)

in (3.29) and TK = O(ε−1/2| log ε|) in (3.30). This completes the proof. ��
We make two observations below about the results in Theorem 5 and Corollary 1.

Remark 2 The choices of C1 and C2 in (3.34) assume the knowledge of ‖y∗‖ and
‖z∗‖, which are often unknown. Practically, we can simply set C1 and C2 as certain
constants, and the errors in (3.28) would be multiples of ε. In this case, Algorithm 1
will produce a primal O(ε)-solution.

If we represent ε by the total number t of gradient evaluations, we can obtain the
convergence rate result in terms of t . For simplicity, let C1 = C2 and K = 1 in (3.29).

Then the total number of gradient evaluations is about t = 2D

(√
L∗
ε

+ 1
ε

√
C1H

)
.

By quadratic formula, one can easily show that

ε =
(
D

√
L∗ +

√
L∗D2 + 2Dt

√
C1H

)2

t2
≤ 4L∗D2

t2
+ 4D

√
C1H

t
.
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Let x̂t = x̄K to specify the dependence of the iterate on the number of gradient
evaluations. Plugging the above ε into (3.28a) and (3.28b), we have

∣∣ f0(x̂t ) − f0(x∗)
∣∣ ≤

(
2‖y∗‖2 + 2‖z∗‖2

C1
+ 1

2

)(
4L∗D2

t2
+ 4D

√
C1H

t

)
, (3.35a)

‖Ax̂t − b‖ + ∥∥[f(x̂t )]+
∥∥

≤
(

(1 + ‖y∗‖)2 + (1 + ‖z∗‖)2
2C1

+ 1

2

)(
4L∗D2

t2
+ 4D

√
C1H

t

)
. (3.35b)

If there are no equality or inequality constraints, then H = 0, y∗ = 0, z∗ = 0, and the
rate of convergence in (3.35a) matches with the optimal one in (2.9); if the objective
f0(x) ≡ 0 and there are no inequality constraints, then H = ‖A�A‖, y∗ = 0, z∗ = 0,
L∗ = 0, and the rate of convergence with C1 = 2 in (3.35b) roughly becomes

‖Ax̂t − b‖2 ≤ 8
√
2D2‖A�A‖

t2
,

whose order is also optimal. Therefore, the order of convergence rate in (3.35) is
optimal, and so is the iteration complexity result in (3.29) to obtain a primal ε-solution.

For the strongly convex case, if there are no equality or inequality constraints,
the iteration complexity result in (3.30) is optimal by comparing it to (2.10). With

the existence of constraints and nonsmooth term in the objective, O(ε− 1
2 ) is a lower

complexity bound for first-order methods to find a primal ε-solution [35]. Hence, our
iteration complexity result is nearly optimal.

Remark 3 From both (3.29) and (3.30), we see that T1 ≤ TK , ∀K ≥ 1, i.e., K = 1
is the best. Note that if y0 = 0, z0 = 0, and K = 1, Algorithm 1 reduces to the
quadratic penalty method by solving a single penalty problem. However, practically
K > 1 could be better since dist(xk,X ∗

k ) usually decreases as k increases. Hence,
from (3.31) or (3.33), TK can be smaller than T1 if K > 1; see our numerical results
in Sect. 6.

The rest part of this section assumes geometrically increasing penalty parameters.
We do not have a fixed augmented dual function, and thus we only consider primal
error in the iteration complexity results.

Theorem 6 (Iteration complexity with geometrically increasing penalty and constant
error) For any given ε > 0, let K be a positive integer number and C1,C2 two positive
real numbers. Set {βk} and {ρk} according to Setting 2 and {εk} to (3.25). Assume
μ ≤ L0

4 . Let x̄K be given in (3.11). Then the inequalities in (3.28a) and (3.28b) hold,
and Algorithm 1 can produce x̄K by evaluating gradients of g, fi , i ∈ [m] in at most
TK times, where

TK =
⌈
2D

√
C1

C2

(
K

√
L∗
ε

+
√
C1H(σ − 1)

ε(
√

σ − 1)

)
+ K

⌉
, if μ = 0, (3.36)
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and

TK =
⌈
2Gε

(
K

√
L∗
μ

+
√

H

μ

√
C1(σ − 1)√
ε(

√
σ − 1)

)
+ K

⌉
, if μ > 0. (3.37)

where

Gε = log
C1D2

εC2
+ log

(
L∗ + μ + H

(
C1(σ − 1) + β0ε

)

σε

)
.

Proof When μ = 0, we have from the first inequality in (3.16) that the total number
of gradient evaluations satisfies

TK ≤
K−1∑

k=0

dist(xk,X ∗
k )

√
2(L∗ + βk H)√
εk

+ K . (3.38)

Plugging into (3.38) the εk given in (3.25) and noting dist(xk,X ∗
k ) ≤ D yields

TK ≤ 2D

√
C1

C2

K−1∑

k=0

√
L∗ + βk H√

ε
+ K . (3.39)

Note that
∑K−1

k=0
√

βk = √
β0

σ
K
2 −1√
σ−1

. From (3.17), it holds

σ K = C1(σ − 1)

β0ε
+ 1, (3.40)

and thus σ
K
2 − 1 ≤

√
C1(σ−1)

β0ε
. Therefore,

K−1∑

k=0

√
βk ≤

√
C1(σ − 1)√
ε(

√
σ − 1)

, (3.41)

and using
√
L∗ + βk H ≤ √

L∗ + √
βk H , we have

K−1∑

k=0

√
L∗ + βk H ≤

K−1∑

k=0

(√
L∗ +√βk H

)
≤ K

√
L∗ +

√
C1H(σ − 1)√
ε(

√
σ − 1)

, (3.42)

which together with (3.39) gives (3.36).
For the strongly convex case, we use (3.32) and the second inequality of (3.16) to

have
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TK ≤ 2
K−1∑

k=0

√
L∗ + βk H

μ
log

(
L∗ + βk H + μ

2εk
[dist(xk,X ∗

k )]2
)

+ K . (3.43)

Since dist(xk,X ∗
k ) ≤ D and εk’s are set to those in (3.25), the above inequality

indicates

TK ≤ 2
K−1∑

k=0

√
L∗ + βk H

μ
log

C1D2(L∗ + βk H + μ)

εC2
+ K . (3.44)

For 0 ≤ k < K ,

βk ≤ βK−1 = β0σ
K−1 = β0

σ
σ K (3.40)= β0

σ

(
C1(σ − 1)

β0ε
+ 1

)
= C1(σ − 1) + β0ε

σε
.

(3.45)
Plugging into (3.44) the second inequality in (3.42) and the above bound on βk , we
have (3.37) and thus complete the proof. ��

Remark 4 Comparing the iteration complexity results in Theorems 5 and 6, we see that
if K = 1, the number TK in either case ofμ = 0 orμ > 0 is the same for both penalty
parameter settings as σ → ∞. That is because when K = 1, iALM with either of the
two settings reduces to the penalty method. If K > 1, the number TK for the setting of
geometrically increasing penalty can be smaller than that for the constant parameter
setting as σ is big; see numerical results in Sect. 6.

Theorem 7 (Iteration complexity with geometrically increasing penalty and adaptive
error) For any given ε > 0, let K be a positive integer number and C1,C2 two positive
real numbers. Set {βk} and {ρk} according to Setting 2. Assume μ ≤ L0

4 . If μ = 0,
set {εk} as in (3.26), and if μ > 0, set {εk} as in (3.27). Let x̄K be given in (3.11).
Then the inequalities in (3.28a) and (3.28b) hold, and Algorithm 1 can produce x̄K

by evaluating gradients of g, fi , i ∈ [m] in at most TK times, where

TK =
⌈
2D

√
C1

C2

(√
L∗
ε

(σ − 1)
1
2

(σ
1
6 − 1)(σ

2
3 − 1)

1
2

+
√
HC1(σ − 1)

ε(σ
2
3 − 1)

3
2

)
+ K

⌉
, if μ = 0,

(3.46)
and

TK =
⌈
2Gε

(
K

√
L∗
μ

+
√

H

μ

√
C1(σ − 1)√
ε(

√
σ − 1)

)
+ K

⌉
, if μ > 0. (3.47)

where
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Gε = log
C1D2

εC2
+ log

(
L∗ + μ + H

(
C1(σ − 1) + β0ε

)

σε

)

+ log

√
(σ − 1)2 + β0ε(σ − 1)/C1

σ − √
σ

.

Proof For the case of μ = 0, we have (3.38), plugging into which the εk given in
(3.26) yields

TK ≤ 2√
C2

√√√√
K−1∑

t=0

β
2
3
t

K−1∑

k=0

dist(xk,X ∗
k )β

1
6
k (L∗ + βk H)

1
2 + K .

Since dist(xk,X ∗
k ) ≤ D, the above inequality implies

TK ≤ 2D√
C2

√√√√
K−1∑

t=0

β
2
3
t

K−1∑

k=0

β
1
6
k (L∗ + βk H)

1
2 + K . (3.48)

Note that

√√√√
K−1∑

t=0

β
2
3
t =

√√√√
K−1∑

t=0

β
2
3
0 σ

2t
3 = β

1
3
0

√√√√σ
2K
3 − 1

σ
2
3 − 1

,

and

K−1∑

k=0

β
1
6
k (L∗ + βk H)

1
2 ≤

K−1∑

k=0

β
1
6
k

(√
L∗ +√βk H

)
= √L∗

K−1∑

k=0

β
1
6
k + √

H
K−1∑

k=0

β
2
3
k

= √L∗β
1
6
0

σ
K
6 − 1

σ
1
6 − 1

+ √
Hβ

2
3
0

σ
2K
3 − 1

σ
2
3 − 1

.

Hence, it follows from (3.48) that

TK ≤ 2D√
C2

β
1
3
0

√√√√σ
2K
3 − 1

σ
2
3 − 1

(
√
L∗β

1
6
0

σ
K
6 − 1

σ
1
6 − 1

+ √
Hβ

2
3
0

σ
2K
3 − 1

σ
2
3 − 1

)
+ K . (3.49)

From (3.40) and the fact
√
a + b ≤ √

a + √
b, ∀a, b ≥ 0, it follows that

σ
2K
3 − 1 ≤

(
C1(σ − 1)

β0ε

) 2
3

, σ
K
6 − 1 ≤

(
C1(σ − 1)

β0ε

) 1
6

. (3.50)

Therefore, plugging the two inequalities in (3.50) into (3.49) yields (3.46).
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For the case of μ > 0, we have (3.43). Since dist(xk,X ∗
k ) ≤ D and εk’s are set to

those in (3.27), the inequality in (3.43) indicates

TK ≤ 2
K−1∑

k=0

√
L∗ + βk H

μ
log

(
√

βk

K−1∑

t=0

√
βt

L∗ + βk H + μ

C2
D2

)
+ K

= 2
K−1∑

k=0

√
L∗ + βk H

μ

(
log

√
βk D2∑K−1

t=0
√

βt

C2
+ log

(
L∗ + βk H + μ

)
)

+ K .

(3.51)

Therefore, plugging into (3.51) the inequality in (3.41), the upper bounds of∑K−1
k=0

√
L∗ + βk H and βk in (3.42) and (3.45) respectively, we obtain (3.47) and

complete the proof. ��
Remark 5 Let us compare the iteration complexity results in Theorems 6 and 7. We

see that for the case of μ = 0, as K > 1 and σ is big, if
√

L∗
ε

dominates
√
HC1
ε

,
the iteration complexity result in Theorem 7 is better than that in Theorem 6 (see the

numerical results in Table 2), and if
√
HC1
ε

dominates
√

L∗
ε
, the two results are similar.

For the case ofμ > 0, as K > 1, the iteration complexity result in Theorem 6 is better
than that in Theorem 7.

4 Iteration complexity for primal-dual "-solutions and nonergodic
results

In this section, we show iteration complexity result for obtaining a primal-dual ε-
solution by employing the relation between iALM and the inexact proximal point
algorithm (iPPA). Also we establish a nonergodic convergence rate result of Algo-
rithm 1 through existing bounds on the primal objective and feasibility errors.
Throughout this section, we assume there is no affine equality constraint in (1.1),
i.e., we consider the problem

minimize
x∈X

f0(x), s.t. fi (x) ≤ 0, ∀i ∈ [m], (4.1)

where fi , i = 0, 1, . . . ,m, satisfy the assumptions through (1.2)–(1.3b). We do not
include affine equality constraints for the purpose of directly applying existing results
in [37,39]. Although results similar to those in [37,39] can possibly be shown for the
equality and inequality constrained problem (1.1), we do not extend our discussion
but instead formulate any affine equality constraint a�x = b by two affine inequality
constraints a�x−b ≤ 0 and−a�x+b ≤ 0 if there is any.Without causing confusion,
we will directly use the results established in the previous section by regarding A and
b as a zero matrix and vector, and thus yk = 0,∀k ≥ 0 if y0 = 0.

4.1 Relation between iALM and iPPA

Let L0(x, z) be the Lagrangian function of (4.1), namely,
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L0(x, z) = f0(x) +
m∑

i=1

zi fi (x),

and let Lβ(x, z) be the augmented Lagrangian function of (4.1), defined in the same
way as that in (1.8). In addition, let d0(z) be the Lagrangian dual function, defined as

d0(z) = min
x∈X

L0(x, z), for z ≥ 0,

and let dβ(z) � minx∈X Lβ(x, z) be the augmented dual function.
Applying Algorithm 1with ρk = βk to (4.1), we have iterates {(xk, zk)} that satisfy:

Lβk (x
k+1, zk) ≤ dβk (z

k) + εk, (4.2a)

zk+1 = zk + βk∇zLβk (x
k+1, zk). (4.2b)

The iPPA applied to the Lagrangian dual problem maxz≥0 d0(z) iteratively performs
the updates:

zk+1 ≈ Mβk (z
k), (4.3)

where the operator Mβ is the proximal mapping of −βd0, defined as

Mβ(z) = argmax
u≥0

d0(u) − 1

2β
‖u − z‖2.

In (4.3), the approximation could be measured by the objective error as in (4.2a) or
by the gradient norm at the returned point zk+1; see [15] for example.

It was noted in [37] that

dβ(z) = max
u≥0

d0(u) − 1

2β
‖u − z‖2, (4.4)

and in addition, if x̂ ∈ X satisfies Lβ(x̂, z) ≤ dβ(z) + ε, then (c.f., [23])

‖z + β∇zLβ(x̂, z) − M(z)‖ ≤ √2βε. (4.5)

Therefore, iALM with updates in (4.2) reduces to iPPA in (4.3) with approximation
error

‖zk+1 − Mβk (z
k)‖ ≤ √2βkεk . (4.6)

4.2 Iteration complexity for primal-dual "-solutions

In this subsection, we start from a dual variable that is nearly optimal in terms of
an augmented dual objective and obtain a nearly optimal dual variable in terms of a
Lagrangian dual function by approximately solving one additional primal subproblem.
We first establish the following result.
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Lemma 8 Given β > 0, assume z̄ to satisfy dβ(z̄) ≥ f ∗
0 − δ1 for a certain δ1 ≥ 0.

Let z̄+ = z̄ + β∇zLβ(x̂, z̄), where x̂ ∈ X satisfies Lβ(x̂, z̄) ≤ dβ(z̄) + δ2 for some
δ2 ≥ 0. Then

d0(z̄+) ≥ f ∗
0 − δ1 − B̄

√
2βδ2, (4.7)

where B̄ =
√∑m

i=1 B
2
i and Bi ’s are constants in (3.14).

Proof Denote z̃ = Mβ(z̄). From (4.4), it follows that d0(z̃) = dβ(z̄) + 1
2β ‖z̃ − z̄‖2,

and thus d0(z̃) ≥ f ∗
0 − δ1. In addition, we have from (4.5) that ‖z̄+ − z̃‖ ≤ √

2βδ2.
Note that d0 is Lipschitz continuous with constant B̄; cf. [1, Theorem 6.3.7]. Hence,

d0(z̄+) ≥ d0(z̃) − B̄‖z̄+ − z̃‖ ≥ d0(z̃) − B̄
√
2βδ2 ≥ f ∗

0 − δ1 − B̄
√
2βδ2,

and we complete the proof. ��
Let δ1 be the right hand side of (3.28c) and choose δ2 = ε2

8β B̄2 in Lemma 8. Then from

the result in (3.28c), we have the next lemma.

Lemma 9 Let z̄K be the dual solution in Theorem 5 and set z̄K+ = z̄K +
β∇zLβ(x̂K , z̄K ), where x̂K satisfies

Lβ(x̂K , z̄K ) ≤ dβ(z̄K ) + ε2

8β B̄2
. (4.8)

Then

f ∗
0 − d0(z̄K+) ≤ 2ε‖z∗‖2

C1
+ εC2

C1
+ ε

2
. (4.9)

From (3.16), we are able to find x̂K satisfying (4.8) by applying Algorithm 2 and
running it to tK iterations, where

tK =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌈
4B̄D

√
βL(z̄K )

ε

⌉
, if μ = 0,

⎡

⎢⎢⎢

log
(
L(z̄K )+μ

ε2/4
β B̄2D2

)

log 1/
(
1 −

√
μ

L(z̄K )

)

⎤

⎥⎥⎥
, if μ > 0.

(4.10)

Below we estimate the iteration complexity of obtaining a primal-dual ε-solution.

Theorem 8 (Iteration complexity for primal-dual ε-solution) Under the assumptions
of Theorem 5, let x̄K and z̄K+ be respectively given in (3.11) and Lemma 9. Then we
have (4.9) and also

∣∣ f0(x̄K ) − f0(x∗)
∣∣ ≤ 2ε‖z∗‖2

C1
+ ε

2

C2

C1
, (4.11a)

∥∥[f(x̄K )]+
∥∥ ≤ ε(1 + ‖z∗‖)2

2C1
+ ε

2

C2

C1
. (4.11b)
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In addition, to produce (x̄K , z̄K+), at most T̂K gradient evaluations on g, fi , i ∈ [m]
are required, where

T̂K = TK +
⎡

⎢⎢⎢

4B̄D
√

C1
K ε

(L∗ + C1H
K ε

)

ε

⎤

⎥⎥⎥
, if μ = 0, (4.12)

and

T̂K = TK +
⌈
2

(√
L∗
μ

+
√
C1H

μK ε

)
log

(
4B̄2D2C1

K ε3

(
L∗ + μ + C1H

K ε

))
⌉

, if μ > 0.

(4.13)
In the above, TK is defined in (3.29) for μ = 0 and in (3.30) for μ > 0.

Proof We only need to estimate T̂ K . From (3.19) and (3.11), it follows that L(z̄K ) ≤
L∗ + βH . For μ = 0, plug β = C1

K ε
into the first equation of (4.10) and also note

L(z̄K ) ≤ L∗ + C1H
K ε

. Then we have tK ≤
⌈

4B̄D
√

C1
Kε

(L∗+C1H
Kε

)

ε

⌉
and obtain (4.12). For

μ > 0, we plug β = C1
K ε

and the upper bound of L(z̄K ) into the second equation of
(4.10), and in addition, we use (3.32) to conclude that tK is no greater than the second
term in the right hand side of (4.13). Therefore, we complete the proof. ��

Remark 6 Choose C1 and C2 such that C1 ≥ max
(
4‖z∗‖2 + 2C2,

(1+‖z∗‖)2
2 + C2

2

)
.

Then (4.9) and (4.11) imply that (x̄K , z̄K+) is a primal-dual ε-solution. In addition, for

μ = 0, we set K = �ε− 2
3 � and have T̂ K = O(ε− 4

3 ); forμ > 0, we set K independent

of ε and have T̂ K = O(ε− 1
2 | log ε|).

4.3 Nonergodic convergence rate and iteration complexity of iALM for primal
"-solutions

For iALM with updates in (4.2) on solving (4.1), [39, Theorem 4] establishes the
following bounds on the objective error and feasibility violation:

f0(xk+1) − f0(x∗) ≤ εk + ‖zk‖2 − ‖zk+1‖2
2βk

, (4.14a)

fi (xk+1) ≤ |zki − zk+1
i |

βk
, ∀ i ∈ [m]. (4.14b)

If in (4.2a), εk = 0, ∀k, [14, Theorem 2.2] shows that

‖zk − zk+1‖
βk

≤ ‖z0 − z∗‖
∑k

t=0 βt
. (4.15)

123



Y. Xu

Therefore, combining the results in (4.14) with εk = 0, ∀k and (4.15), and also noting
the boundedness of zk from (3.21), one can easily obtain a nonergodic convergence
rate result of exact ALM on solving (4.1). However, if εk > 0, we do not notice any

existing result on estimating ‖zk−zk+1‖
βk

. By bounding {zk}, we can easily establish a
bound on this quantity and thus show a nonergodic convergence rate result of iALM.

Theorem 9 (nonergodic convergence rate)Given a positive integer K and a nonnega-
tive number C2, choose positive sequences {βk} and {εk} such that∑K−1

k=0 βkεk ≤ C2
2 .

Let {(xk, zk)}Kk=0 be the sequence generated from the updates in (4.2) with z0 = 0 on
solving (4.1). Then it holds that for any 0 ≤ k < K,

∣∣ f0(xk+1) − f0(x∗)
∣∣ ≤ εk +

(
2‖z∗‖ + √

C2
)2

2βk
, (4.16a)

∥∥[f(xk+1)]+
∥∥ ≤ 1

βk

(
4‖z∗‖ + 2

√
C2

)
. (4.16b)

Proof Using (3.21)with y∗ = 0, we have ‖zk‖ ≤ 2‖z∗‖+√
C2. By triangle inequality,

it holds ‖zk − zk+1‖ ≤ 4‖z∗‖ + 2
√
C2. Then the results in (4.16) directly follow

from (4.14). ��
Remark 7 From the results in (4.16), we see that to have {xk} to be a minimizing
sequence of (4.1), we need βk → ∞ and εk → 0 as k → ∞. Hence, setting {βk} to
a constant sequence will not be a valid option.

Below we set parameters according to Setting 2 and estimate the iteration com-
plexity of iALM on solving (4.1) by applying Nesterov’s optimal first-order method
to (4.2a). Again, note that the results in Theorem 9 do not need specific structure of
(4.1) except convexity. Hence, if the problem has richer structures, one can apply more
efficient methods to find xk+1 that satisfies (4.2a).

Theorem 10 (nonergodic iteration complexity)Given a positive integer K andpositive
numbers C1,C2, choose positive sequences {ρk} and {βk} according to Setting 2. In
addition, choose {εk} according to (3.25) for both cases ofμ = 0 andμ > 0, or choose
{εk} according to (3.26) for the case of μ = 0 and (3.27) for μ > 0. Let {(xk, zk)}Kk=0
be the sequence generated from Algorithm 1 with yk = 0, ∀k, and z0 = 0 on solving
(4.1). Then

∣∣ f0(xK ) − f0(x∗)
∣∣ ≤ ε

2

C2

C1
+ εσ

2C1(σ − 1)

(
2‖z∗‖ +√C2

)2
, (4.17a)

∥∥[f(xK )]+
∥∥ ≤ εσ

C1(σ − 1)

(
4‖z∗‖ + 2

√
C2

)
. (4.17b)

If {εk} is chosen according to (3.25) for both cases of μ = 0 and μ > 0, the total
number TK of gradient evaluations is given in (3.36) and (3.37) respectively; if {εk}
is set according to (3.26) for the case of μ = 0 and (3.27) for μ > 0, then TK is given
in (3.46) for μ = 0 and (3.47) for μ > 0.
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Proof Note that βk is increasing with respect to k. Hence, the εk given in both (3.26)
and (3.27) is decreasing, and thus

εK−1 ≤
∑K−1

t=0 βtεt∑K−1
t=0 βt

≤ ε

2

C2

C1
.

If {εk} is chosen according to (3.25) for both cases of μ = 0 and μ > 0, then the
above bound on εK−1 obviously holds. In addition, from (3.45), we have

βK−1 ≥ C1(σ − 1)

εσ
.

Therefore, plugging into (4.16) the bounds on εK−1 and βK−1 gives the desired results
in (4.17).

The bounds on the total number TK of gradient evaluations follow from the same
arguments as in the proofs of Theorems 6 and 7. Hence, we complete the proof. ��
Remark 8 From the results in (4.17), we see that if

C1 ≥ max

(
C2

2
+ σ

2(σ − 1)

(
2‖z∗‖ +√C2

)2
,

σ

(σ − 1)

(
4‖z∗‖ + 2

√
C2
))

, (4.18)

then xK is a primal ε-solution to (4.1). If ‖z∗‖ ≥ 6
5 , C2 = ‖z∗‖2, and σ

σ−1 ≈ 1
(e.g., σ = 10 is often used), then the C1 in (4.18) is roughly twice of that in (3.34) by

assuming no affine constraint. For the iteration complexity, if
√

L∗
ε
dominates

√
H‖z∗‖

ε
,

then the nonergodic result is roughly
√
2 times of the ergodic result for both convex

and strongly convex cases. If
√
H‖z∗‖

ε
dominates, then the former would be roughly

twice of the latter for the convex case, but still roughly
√
2 times for the strongly

convex case. However, in either case, both ergodic and nonergodic results have the
same order of complexity.

5 Comparison with several existing results

In this section, we compare our iteration complexity results to several existing ones.

5.1 Affinely constrained convex problems

Let us compare our iteration complexity to those in Nedelcu et al. [29] and Liu et
al. [25], both of which consider the affinely constrained convex problem (1.13) with
possibly nonsmooth f0. The former defines a primal-dual ε-solution in away similar to
ours. It shows that to reach a primal-dual ε-solution,4 a nonaccelerated iDGM requires

4 Nedelcu et al. [29] assumes every subproblem solved to the condition 〈∇̃Lβ(xk+1, yk ), x − xk+1〉 ≥
−O(ε), ∀x ∈ X , which is implied by Lβ(xk+1, yk ) −minx∈X Lβ(x, yk ) ≤ O(ε2) if Lβ is smooth with
respect to x.
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O(ε−1) outer iterations and every x-subproblem solved to an accuracy O(ε2), and an

accelerated iDGM requires O(ε− 1
2 ) outer iterations and every x-subproblem solved to

an accuracy O(ε3). Assume the composite structure of the objective, i.e., f0 = g+ h.
Then by applying Nesterov’s optimal first-order method to each subproblem, both the
nonaccelerated iDGMandaccelerated iDGMinNedelcu et al. [29]would needO(ε−2)

gradient evaluations to produce a primal-dual ε-solution for convex problems. Hence,

as mentioned in Remark 6, our result is better by an order of ε− 2
3 . For strongly convex

problems, the accelerated iDGM would need O(ε− 1
2 | log ε|) gradient evaluations,

which is in the same order as our result.
Assume that f0 = g+ h in (1.13) and g is smooth. In [25], a point (x̄, ȳ) is defined

as a primal-dual ε-solution of (1.13) if

‖Ax̄ − b‖ ≤ √
ε,

〈
∇g(x̄) + A�ȳ, x̄ − x

〉
+ h(x̄) − h(x) ≤ ε, ∀x ∈ X . (5.1)

This definition is different from ours. In addition, [25] adopts a directly verifiable
stopping condition. It is shown that O(ε−2) gradient evaluations are required to pro-
duce a primal-dual ε-solution. In the appendix, we show that if (x̄, ȳ) satisfies (5.1),
it must be an O(

√
ε)-solution in Definition 2. Hence directly applying the result in

[25] gives the iteration complexity O(ε−4) to produce an ε-solution in our defini-
tion. On the other hand, let (x̄, ȳ) be a primal-dual ε-solution in Definition 2. We can
obtain an O(

√
ε)-solution of (5.1) by performing one additional proximal gradient

update. Hence, directly applying our result in Theorem 8 gives the iteration complexity

O(ε− 8
3 ) to produce an ε-solution in (5.1). Therefore, it is not clear whether the result

in [25] or our result is better.

5.2 General convex problems

In this subsection, we compare our complexity result to those in [26], which was
published online after our first submission. A more general convex cone program
is considered in [26]. Specialized to the functional constrained problem (1.1), [26,
Algorithm 4] also solves the ALM subproblem inexactly to update the primal iterate,

the same as in (1.9). It requires O(ε− 7
4 ) gradient evaluations to produce an ε-KKT

point (x̄, ȳ, z̄) that satisfies z̄ ≥ 0 and

dist

⎛

⎝0, ∂ f0(x̄) + NX (x̄) + A�ȳ +
m∑

j=1

z̄ j∇ f j (x̄)

⎞

⎠ ≤ ε, (5.2a)

‖Ax̄ − b‖ + ∥∥[f(x̄)]+]∥∥ ≤ ε, (5.2b)
√ ∑

j :z̄ j>0

f j (x̄)2 ≤ ε. (5.2c)

A modified method, i.e., [26, Algorithm 5], is also given, and at each outer iteration,
it inexactly solves a perturbed subproblem that is strongly convex. More specifically,
its k-th subproblem is
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min
x∈X

Lβk (x, y
k, zk) + 1

2βk
‖x − xk‖2, (5.3)

which is solved by Nesterov’s optimal first-order method until a point xk+1 is found
such that

dist

(
0, ∂xLβk (x

k+1, yk, zk) + NX (xk+1) + 1

βk
(xk+1 − xk)

)
≤ εk, (5.4)

for some εk > 0. The modified method can achieve a significantly better complexity
result O(ε−1| log ε|) to yield an ε-KKT point defined in (5.2). In addition, note that
the stopping condition in (5.4) can be checked.

By the convexity of f j ’s and the optimality condition (2.2), one can show that if
(x̄, ȳ, z̄) satisfies all conditions in (5.2), then it must be a primal-dual O(ε)-solution in
Definition 2. Hence, the complexity result of the modifiedmethod in [26] is better than
ours. As shown in Sect. 6, however, its numerical performance can be significantly
worse than the iALM under our setting. Similar to the discussion in Sect. 5.1, for
the unmodified method in [26], it is not clear whether its complexity result or ours is
better.

5.3 Iteration complexity from existing results on iPPA

Through relating iALM and iPPA, iteration complexity result can be obtained from
existing results about iPPA to produce near-optimal dual solution. On solving problem
minz φ(z), [15] analyzes the iPPA with iterative update:

zk+1 ≈ argmin
z

φ(z) + 1

2βk
‖z − ẑk‖2.

If the above approximation error satisfies

‖zk+1 − proxβkφ
(ẑk)‖ = O(1/ka), (5.5)

for a certain number a > 1
2 , and the parameter βk is increasing, then by choosing

specifically designed ẑk , [15] shows that

φ(zk) − φ(z∗) = O(1/k2) + O(1/k2a−1).

From our discussion in Sect. 4.1, if εk = O( 1
k2aβk

) in (4.2a), then we have (5.5) holds
with φ = −d0, and thus obtain the convergence rate in terms of dual function:

d0(z∗) − d0(zk) = O(1/k2) + O(1/k2a−1).

Note that zk is bounded from the summability of βkεk and the proof of Lemma 7.
Hence, setting βk to a constant for all k and applying Nesterov’s optimal first-order
method to each subproblem in (4.2a), we need O(ka) gradient evaluations.
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Let a = 3
2 . Then K = O(1/

√
ε) iPPA iterations are required to obtain a dual

ε-solution, i.e., d0(zK ) ≥ d0(z∗) − ε, and the total number of gradient evaluations is

TK =
K∑

k=1

O(k
3
2 ) = O(K

5
2 ) = O(ε− 5

4 ).

However, it is not clear how to measure the quality of the primal iterates.

6 Numerical results

In this section, we conduct numerical experiments on the quadratically constrained
quadratic programming (QCQP):

minimize
x∈Rn

1

2
x�Q0x + c�

0 x,

s.t.
1

2
x�Q jx + c�

j x + d j ≤ 0, j = 1, . . . ,m,

xi ∈ [li , ui ], i = 1, . . . , n.

(6.1)

Clearly, (6.1) is one example of (1.1) with X = ×n
i=1[li , ui ], g(x) = 1

2x
�Q0x+ c�

0 x,
h ≡ 0, f j (x) = 1

2x
�Q jx + c�

j x + d j for j ∈ [m], A = 0, and b = 0.
We conduct two sets of tests. The first one is to verify the established theoretical

results and compare the iALM with three different settings of parameters, and the
second is to compare the iALM with our setting to a modified iALM in [26].

6.1 First set of tests

Three QCQP instances are made. The first two instances are convex, and the third one
is strongly convex. For all three instances, we set n = 100,m = 5 and li = −1, ui =
1, ∀i . The vectors c j , j = 0, 1, . . . ,m are generated following Gaussian distribution,
and the scalars d j , j = 1, . . . ,m are made negative. This way, all inequalities in
(6.1) hold strictly at the origin x = 0, and thus the KKT conditions are satisfied at the
optimal solution.Q j , j = 0, 1, . . . ,m are randomly generated and symmetric positive
semidefinite.Q0 is rank-deficient for the first two instances and full-rank for the third
one. The data in the first two instances are the same except Q0, which is 100 times in
the second instance of that in the first instance.

For all instances, we set ε = 10−3,C1 = 1,C2 = ‖u− l‖, and K = 10, and the ini-
tial primal-dual point is set to zero vector. The algorithm parameters {(βk, ρk, εk)}K−1

k=0
are set in three different ways corresponding to Theorems 5, 6, and 7 respectively,
where σ = 10 is used for the geometrically increasing penalty. On finding xk+1 by
applyingAlgorithm 2 tominx∈X Lβk (x, z

k), we terminate the algorithm if the iteration
number exceeds 106 or

dist
(
−∇xLβk (x

k+1, zk),NX (xk+1)
)

≤ εk

‖u − l‖ , (6.2)
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whereX = ×n
i=1[li , ui ]. SinceLβk (x, z

k) is convex about x, and ‖u−l‖ is the diameter
of the feasible set X , the condition in (6.2) guarantees that xk+1 satisfies (1.9).

We report the difference of primal objective value and optimal value, the fea-
sibility violation at both actual iterate xk and the weighted averaged point x̄k =∑k

t=1 x
t/
∑k

t=1 βt , and also the difference of dual objective value and optimal value
at the actual dual iterate zk . Since a KKT point exists for the instances, the optimal
dual objective value equals the optimal primal objective value. The optimal solution
and dual objective values are computed by CVX [13]. In addition, to compare the
iteration complexity, we also report the number of gradient evaluations and function
evaluations for each outer iteration. The results are provided in Tables 1, 2, and 3
respectively for the three instances. We also report the results from quadratic penalty
method, which corresponds to setting K = 1 (see the discussions in Remark 3).

From the results, we can clearly see that the quadratic penalty method is worse,
namely, running a single iALM step with a big penalty parameter is significantly
worse than running multiple steps with smaller penalty parameters. Also, we see that
the iALM with three different settings yields the last actual iterate xK and the aver-
aged point x̄K of similar accuracy. For all three instances, to produce similarly accurate
solutions, the iALM with constant penalty requires more gradient and function eval-
uations than that with geometrically increasing penalty. Furthermore, the iALM with
geometrically increasing penalty and constant error requires fewest gradient and func-
tion evaluations on the first and third instances. However, the setting of geometrically
increasing penalty and adaptive error is the best for iALM on the second instance.
That is because the gradient Lipschitz constant of the objective in the second instance
is significantly bigger than that in the first instance, in which case the bound on TK in
(3.46) is smaller than that in (3.36).

6.2 Second set of tests

We randomly generate 20 convex QCQP instances, in the same way as we generate
the first instance in the previous subsection. Among them, 10 instances have size of
n = 100 and m = 5 and another 10 of n = 1, 000 and m = 10. The parameters
{(βk, ρk, εk)} of the iALM are set according to Theorem 6, and all other settings are
the same as in the first set of tests. We compare to the modified method [26, Algorithm
5], which inexactly solves the perturbed subproblem (5.3) at the k-th outer iteration
until the stopping condition (5.4) holds. Its parameters are set to βk = 1.5β0 and
εk = 0.6ε0 with β0 = ε0 = 0.1. This setting appears to be the best for the modified
method in this test. The iALM runs to 10 outer iterations, and the modified method is
terminated once it produces a point satisfying all conditions in (5.2) with ε = 10−3.
We report the results in Table 4 for the size of n = 100,m = 5 and in Table 5 for
the size of n = 1, 000,m = 10. In the tables, objErr is computed as | f (x̄) − f ∗|,
where x̄ is the last iterate; pres, dres, and compl respectively stand for the primal
residual, dual residual, and the violation of complementarity condition computed by
the measures in (5.2). From the results, we see that for each tested instance, the iALM
under our setting takes significantly shorter time and also achieves higher accuracy (by
any measure among objErr, pres, dres, and compl) than the modified method
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in [26]. Although we cannot guarantee an ε-KKT point, the numerical results clearly
show that it is achieved.

7 Concluding remarks

We have established ergodic and also nonergodic convergence rate results of iALM
for general constrained convex programs. In addition, we have shown that to reach a
primal ε-solution, it is sufficient to evaluate gradients of smooth part in the objective
and the functions in the inequality constraints for O(ε−1) times if the objective is

convex and O(ε− 1
2 | log ε|) times if the objective is strongly convex. For the convex

case, the iteration complexity result is optimal, and for the strongly convex case, the
result is nearly optimal. Furthermore, we have shown that to produce a primal-dual

ε-solution, the result is O(ε− 4
3 ) for convex case and still O(ε− 1

2 | log ε|) for strongly
convex case.

A Relation of the primal-dual "-solutions in Definition 2 and (5.1)

In this section, on linearly constrained problems in the form of (1.13) with f0 =
g + h, we compare the two different definitions of primal-dual ε-solutions given in
Definition 2 and (5.1). The analysis in the second part follows from the proof of
Theorem 2.1 in [25].

First, let (x̄, ȳ) be a point satisfying (5.1). Then it follows from (2.2) that

f0(x̄) − f0(x∗) ≥ −〈y∗,Ax̄ − b〉 ≥ −‖y∗‖√ε.

In addition, we have from the convexity of g and (5.1) that for any x ∈ X and any
constant β > 0,

f0(x̄) − f0(x) − 〈ȳ,Ax − b〉
= f0(x̄) − f0(x) − 〈A�ȳ, x − x̄〉 − 〈ȳ,Ax̄ − b〉
≤ 〈∇g(x̄) + A�ȳ, x̄ − x〉 + h(x̄) − h(x) − 〈ȳ,Ax̄ − b〉
≤ ε + ‖ȳ‖√ε.

Letting x = x∗ in the above inequality gives f0(x̄) − f0(x∗) ≤ ε + ‖ȳ‖√ε, and
minimizing the left hand side about x ∈ X yields f0(x̄)−d0(ȳ) ≤ ε+‖ȳ‖√ε.Hence,
(x̄, ȳ) is an O(

√
ε)-solution in Definition 2.

On the other hand, let (x̄, ȳ) be a primal-dual ε-solution in Definition 2. Let

L0(x, y) = f0(x) + 〈y,Ax − b〉

and

x̄+ = argmin
x∈X

〈
∇g(x̄) + A�ȳ, x

〉
+ h(x) + L0

2
‖x − x̄‖2. (A.1)
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Table 1 Results by quadratic penalty method (i.e., iALM with K = 1) and iALM with three different
settings on solving an instance of the QCQP problem (6.1)

#OutIter #Grad #Fun | f0(xk ) − f ∗
0 | ‖[f(xk )]+‖ | f0(x̄k ) − f ∗

0 | ‖[f(x̄k )]+‖ f ∗
0 − d0(zk )

Quadratic penalty method

1,000,000 2,709,547 3.4843e−05 8.6455e−05 3.4843e−05 8.6455e−05 9.3664e−06

Constant penalty and constant error

0 1.9949e+01 0.0000e+00 1.9949e+01 0.0000e+00 4.8272e+00

1 561,406 1,521,166 7.4624e−05 8.6422e−04 7.4624e−05 8.6422e−04 7.2143e−09

2 18 48 6.3627e−08 1.1199e−08 3.7280e−05 4.3212e−04 7.9194e−09

3 1 2 6.4334e−08 7.5897e−09 2.4832e−05 2.8808e−04 6.4559e−09

4 1 2 6.4465e−08 4.4346e−09 1.8608e−05 2.1606e−04 9.0242e−09

5 12 33 6.4518e−08 3.6546e−09 1.4873e−05 1.7285e−04 7.4387e−09

6 1 2 6.4424e−08 9.6058e−10 1.2384e−05 1.4404e−04 8.0724e−09

7 1 2 6.4468e−08 6.9566e−09 1.0605e−05 1.2346e−04 5.4207e−09

8 7 19 6.4575e−08 5.4913e−09 9.2717e−06 1.0803e−04 7.9159e−09

9 5 14 6.4194e−08 1.0084e−08 8.2344e−06 9.6026e−05 6.0310e−09

10 25 68 6.4380e−08 3.6994e−09 7.4045e−06 8.6423e−05 7.0640e−09

Geometrically increasing penalty and constant error

0 1.9949e+01 0.0000e+00 1.9949e+01 0.0000e+00 4.8272e+00

1 79 219 4.8272e+00 1.4965e+02 4.8272e+00 1.4965e+02 4.8070e+00

2 25 68 4.8244e+00 1.4620e+02 4.8249e+00 1.4651e+02 4.6124e+00

3 63 171 4.6110e+00 1.1372e+02 4.6449e+00 1.1676e+02 3.2827e+00

4 48 131 2.6482e+00 3.9786e+01 2.9365e+00 4.6130e+01 7.7828e−01

5 148 404 3.3960e−01 4.1060e+00 6.4690e−01 7.8394e+00 8.1817e−03

6 419 1141 3.6545e−03 4.4951e−02 6.9539e−02 8.0933e−01 1.1014e−06

7 68 191 4.5173e−06 6.0954e−05 6.9754e−03 8.0843e−02 2.3645e−08

8 28 81 8.1256e−08 9.5097e−08 6.9764e−04 8.0830e−03 2.4096e−08

9 4 17 8.3883e−08 7.1671e−09 6.9690e−05 8.0828e−04 2.3640e−08

10 3 15 8.3654e−08 4.6715e−10 6.8937e−06 8.0828e−05 2.3715e−08

Geometrically increasing penalty and adaptive error

0 1.9949e+01 0.0000e+00 1.9949e+01 0.0000e+00 4.8272e+00

1 12 37 4.7787e+00 1.5604e+02 4.7787e+00 1.5604e+02 4.8062e+00

2 2 5 4.8180e+00 1.5082e+02 4.8163e+00 1.5128e+02 4.6055e+00

3 6 18 4.6268e+00 1.1583e+02 4.6614e+00 1.1912e+02 3.2565e+00

4 17 46 2.6514e+00 3.9850e+01 2.9424e+00 4.6322e+01 7.6990e−01

5 41 116 3.3800e−01 4.1017e+00 6.4579e−01 7.8268e+00 8.0789e−03

6 103 285 3.5713e−03 4.4256e−02 6.9331e−02 8.0726e−01 5.3699e−06

7 56 158 8.1959e−08 9.2275e−05 6.9512e−03 8.0661e−02 2.0134e−06

8 208 570 1.9113e−06 3.8904e−06 6.9371e−04 8.0654e−03 2.4591e−07

9 788 2141 5.3716e−07 1.0078e−07 6.8921e−05 8.0612e−04 6.1617e−08

10 2751 7460 1.2807e−07 4.2665e−09 6.7830e−06 8.0458e−05 8.2154e−09

In this instance, Q j is symmetric positive semidefinite for each j = 0, 1, . . . ,m, and Q0 is singular. All
Q j ’s have similarly large spectral norm
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Table 2 Results by iALM with three different settings on solving an instance of the QCQP problem (6.1)

#OutIter #Grad #Fun | f0(xk ) − f ∗
0 | ‖[f(xk )]+‖ | f0(x̄k ) − f ∗

0 | ‖[f(x̄k )]+‖ f ∗
0 − d0(zk )

Quadratic penalty method

600, 7031, 627, 648 1.2262e−04 3.5018e−04 1.2262e−04 3.5018e−04 5.5078e−08

Constant penalty and constant error

0 2.4292e+00 0.0000e+00 2.4292e+00 0.0000e+00 8.7897e+00

1 106, 555 288, 743 1.2258e−03 3.5007e−03 1.2258e−03 3.5007e−03 3.5986e−07

2 858 2325 3.4720e−07 1.0421e−06 6.1307e−04 1.7507e−03 3.4319e−08

3 14 38 1.2626e−08 3.4507e−09 4.0871e−04 1.1671e−03 3.3900e−08

4 4 11 1.3058e−08 1.4235e−10 3.0653e−04 8.7535e−04 3.3936e−08

5 1 2 1.2586e−08 3.7554e−08 2.4522e−04 7.0027e−04 3.4521e−08

6 3 9 1.3122e−08 4.5633e−10 2.0435e−04 5.8356e−04 3.4121e−08

7 1 2 1.3257e−08 5.8908e−10 1.7516e−04 5.0019e−04 3.3762e−08

8 3 10 1.2685e−08 2.8823e−08 1.5326e−04 4.3767e−04 3.4946e−08

9 2 8 1.3242e−08 1.6142e−09 1.3623e−04 3.8904e−04 3.3745e−08

10 3 11 1.2717e−08 2.3642e−08 1.2261e−04 3.5013e−04 3.4793e−08

Geometrically increasing penalty and constant error

0 2.4292e+00 0.0000e+00 2.4292e+00 0.0000e+00 8.7897e+00

1 1006 2741 8.7897e+00 9.3636e+01 8.7897e+00 9.3636e+01 8.7818e+00

2 91 248 8.7896e+00 9.3581e+01 8.7896e+00 9.3586e+01 8.7029e+00

3 2400 6503 8.7021e+00 7.5041e+01 8.7109e+00 7.6215e+01 8.1272e+00

4 1885 5108 8.3403e+00 5.7872e+01 8.3897e+00 5.9057e+01 4.8927e+00

5 1397 3787 3.2123e+00 1.3502e+01 3.7378e+00 1.6466e+01 8.5509e−01

6 803 2178 4.9393e−01 1.5197e+00 8.2698e−01 2.6284e+00 3.0074e−02

7 501 1360 1.5245e−02 4.4612e−02 9.7567e−02 2.8394e−01 3.0183e−05

8 468 1273 5.2378e−05 1.5371e−04 9.8217e−03 2.8277e−02 6.8119e−09

9 38 109 6.4356e−08 2.2690e−07 9.8242e−04 2.8254e−03 2.3421e−08

10 4 16 1.0609e−08 8.8464e−10 9.8234e−05 2.8252e−04 2.3899e−08

Geometrically increasing penalty and adaptive error

0 2.4292e+00 0.0000e+00 2.4292e+00 0.0000e+00 8.7897e+00

1 127 359 8.7040e+00 8.9660e+01 8.7040e+00 8.9660e+01 8.7821e+00

2 10 27 8.7100e+00 8.9176e+01 8.7097e+00 8.9220e+01 8.7072e+00

3 94 255 8.7087e+00 8.0403e+01 8.7093e+00 8.1163e+01 8.1040e+00

4 355 962 8.3368e+00 5.7827e+01 8.3873e+00 5.9319e+01 4.8760e+00

5 532 1443 3.1974e+00 1.3416e+01 3.7241e+00 1.6386e+01 8.6191e−01

6 221 600 4.9539e−01 1.5239e+00 8.2695e−01 2.6281e+00 3.0145e−02

7 216 588 1.5121e−02 4.4260e−02 9.7439e−02 2.8355e−01 4.8526e−05

8 287 783 5.8283e−05 1.7224e−04 9.8150e−03 2.8258e−02 6.1104e−07

9 244 667 2.5987e−07 9.9441e−07 9.8197e−04 2.8243e−03 1.5846e−07

10 927 2518 2.2079e−09 6.0770e−08 9.8206e−05 2.8247e−04 3.2921e−08

In this instance, Q j is symmetric positive semidefinite for each j = 0, 1, . . . ,m. Q0 is singular, and its
spectral norm is about 100 times of that of every other Q j
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Table 3 Results by iALM with three different settings on solving a strongly convex instance of the QCQP
problem (6.1)

#OutIter #Grad #Fun | f0(xk ) − f ∗
0 | ‖[f(xk )]+‖ | f0(x̄k ) − f ∗

0 | ‖[f(x̄k )]+‖ f ∗
0 − d0(zk )

Quadratic penalty method

11,407 30,943 1.6555e−06 4.1227e−05 1.6555e−06 4.1227e−05 9.8318e−11

Constant penalty and constant error

0 1.3704e+01 0.0000e+00 1.3704e+01 0.0000e+00 7.7888e−01

1 4111 11,170 1.6951e−05 4.1227e−04 1.6951e−05 4.1227e−04 2.4024e−10

2 10 28 4.5144e−08 9.5417e−09 8.4530e−06 2.0614e−04 2.6835e−11

3 1 2 4.5496e−08 1.1679e−09 5.6202e−06 1.3742e−04 5.0360e−12

4 1 2 4.5470e−08 0.0000e+00 4.2038e−06 1.0307e−04 2.0108e−11

5 1 2 4.5410e−08 5.2874e−10 3.3539e−06 8.2455e−05 1.5403e−11

6 1 2 4.5423e−08 1.1857e−10 2.7874e−06 6.8712e−05 1.6200e−11

7 1 2 4.5417e−08 1.4938e−10 2.3827e−06 5.8896e−05 1.5124e−11

8 1 2 4.5420e−08 1.4935e−11 2.0792e−06 5.1534e−05 1.5547e−11

9 1 2 4.5417e−08 4.2566e−11 1.8431e−06 4.5808e−05 1.5184e−11

10 1 2 4.5417e−08 5.2216e−12 1.6543e−06 4.1227e−05 1.5563e−11

Geometrically increasing penalty and constant error

0 1.3704e+01 0.0000e+00 1.3704e+01 0.0000e+00 7.7888e−01

1 16 47 7.7888e−01 4.0032e+01 7.7888e−01 4.0032e+01 7.7743e−01

2 6 18 7.7879e−01 3.9621e+01 7.7880e−01 3.9658e+01 7.6323e−01

3 9 26 7.7142e−01 3.5936e+01 7.7269e−01 3.6303e+01 6.4109e−01

4 11 31 5.6681e−01 1.8568e+01 6.0051e−01 2.0298e+01 1.8942e−01

5 26 75 8.2135e−02 2.0563e+00 1.4945e−01 3.8384e+00 2.6057e−03

6 56 158 1.1249e−03 2.7458e−02 1.6675e−02 4.0689e−01 4.4251e−07

7 31 91 1.5987e−06 4.0394e−05 1.6772e−03 4.0708e−02 5.9485e−09

8 2 12 4.9762e−08 0.0000e+00 1.6776e−04 4.0703e−03 2.6423e−09

9 2 11 3.6101e−08 3.0525e−08 1.6745e−05 4.0705e−04 2.9782e−09

10 2 10 3.6919e−08 1.0977e−09 1.6412e−06 4.0706e−05 5.3375e−09

Geometrically increasing penalty and adaptive error

0 1.3704e+01 0.0000e+00 1.3704e+01 0.0000e+00 7.7888e−01

1 1 6 2.1524e+00 1.8206e+01 2.1524e+00 1.8206e+01 7.7827e−01

2 1 6 1.8807e−01 2.3036e+01 2.4599e−01 2.2315e+01 7.7005e−01

3 1 6 3.6907e−01 2.8225e+01 3.3200e−01 2.7560e+01 6.7280e−01

4 3 12 5.1655e−01 1.7712e+01 5.1962e−01 1.8616e+01 2.2134e−01

5 8 25 8.4506e−02 2.2023e+00 1.4307e−01 3.8034e+00 3.4037e−03

6 24 71 8.4618e−04 3.1440e−02 1.5993e−02 4.0623e−01 3.8825e−06

7 75 210 4.8570e−05 3.3014e−05 1.5905e−03 4.0504e−02 1.7042e−06

8 250 684 5.5023e−06 4.6695e−06 1.5741e−04 4.0367e−03 5.0884e−08

9 801 2178 5.7505e−07 1.2058e−07 1.5607e−05 4.0198e−04 3.6995e−09

10 2603 7062 5.8030e−08 0.0000e+00 1.5503e−06 4.0009e−05 1.0897e−10
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where L0 is the Lipschitz constant of ∇g. Then we have (cf. [45, Lemma 2.1])
L0(x̄, ȳ) −L0(x̄+, ȳ) ≥ L0

2 ‖x̄+ − x̄‖2. Since ‖Ax̄− b‖ ≤ ε and f0(x̄) − d0(ȳ) ≤ 2ε,
we have L0(x̄, ȳ) − d0(ȳ) ≤ ε‖ȳ‖ + 2ε. Noting d0(ȳ) ≤ L0(x̄+, ȳ), we have
L0
2 ‖x̄+ − x̄‖2 ≤ ε‖ȳ‖ + 2ε, and thus ‖x̄+ − x̄‖ ≤

√
2ε(‖ȳ‖+2)

L0
. By the triangle

inequality, it holds that

‖Ax̄+ − b‖ ≤ ‖A‖ · ‖x̄+ − x̄‖ + ‖Ax̄ − b‖ ≤ ‖A‖
√
2ε(‖ȳ‖ + 2)

L0
+ ε. (A.2)

In addition, we have from (A.1) the optimality condition

〈∇g(x̄) + A�ȳ + L0(x̄+ − x̄), x − x̄+〉 + h(x) − h(x̄+) ≥ 0,

and thus

〈∇g(x̄+) + A�ȳ, x̄+ − x〉 + h(x̄+) − h(x)

= 〈∇g(x̄+) − ∇g(x̄), x̄+ − x〉 + 〈∇g(x̄) + A�ȳ, x̄+ − x〉 + h(x̄+) − h(x)

≤ 2L0‖x̄+ − x̄‖ · ‖x̄+ − x‖ ≤ 2DL0

√
2ε(‖ȳ‖ + 2)

L0
.

Therefore, (x̄+, ȳ) is an O(
√

ε)-solution in the sense of (5.1).
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