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ARTICLE

A theory of instruction for introductory programming skills
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ABSTRACT
Background and Context: Current introductory instruction
fails to identify, structure, and sequence the many skills
involved in programming.
Objective: We proposed a theory which identifies four dis-
tinct skills that novices learn incrementally. These skills are
tracing, writing syntax, comprehending templates (reusable
abstractions of programming knowledge), and writing code
with templates. We theorized that explicit instruction of
these skills decreases cognitive demand.
Method: We conducted an exploratory mixed-methods
study and compared students’ exercise completion rates,
error rates, ability to explain code, and engagement when
learning to program. We compared material that reflects this
theory to more traditional material that does not distinguish
between skills.
Findings: Teaching skills incrementally resulted in improved
completion rate on practice exercises, and decreased error
rate and improved understanding of the post-test.
Implications: By structuring programming skills such that they
can be taught explicitly and incrementally, we can inform
instructional design and improve future research on under-
standing how novice programmers develop understanding.
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1. Introduction: CS1 instruction could better teach programming skills

Programming requires many distinct skills. In addition to basic knowledge of
programming constructs (Tew & Guzdial, 2010), programming also requires pro-
cedural skills to perform tasks with these constructs (e.g. tracing code and writing
correct syntax) (Davies, 1993; Sanders et al., 2012; Winslow, 1996). For example,
tracing is a critical skill (Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, &
Lister, 2009), which Nelson, Xie, and Ko (2017) formally defined as being able to
look at code and predict state changes and outputs through the compilation and
execution of a programming language’s constructs. Explaining code is another
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critical skill, defined as reading a piece of code and describing it in relation to the
code’s purpose (Whalley et al., 2006). And then, of course, there is the skill of
writing code, typically characterized as composing syntactically correct code with
a purpose in the context of a problem or specification (Robins, Rountree, &
Rountree, 2003). Many works described and empirically investigated the relation-
ships between these various skills, finding that while related, these skills are
distinct (Corney, Lister, & Teague, 2011; Lopez et al., 2008; Robins et al., 2003;
Venables et al., 2009; Winslow, 1996).

To teach programming skills effectively requires sequencing them.
Educational psychologist Bruner (1966) argued that instruction requires specify-
ing “the ways in which a body of knowledge should be structured so that it can
be most readily grasped by the learner,” as well as “effective sequences in which
to present the materials to be learned.” Studies of introductory computer
science (CS1) instruction specifically have found gaps in the instruction of
programming skills; for example, Kreitzberg and Swanson (1974) found that
even when students had learned concepts, they could not readily apply them to
programming skills; Sanders et al. (2012) identified that learning to program also
required learning to apply multiple skills, and CS1 instruction lacked adequate
instruction in these skills. In our own observations, we have found CS1 courses at
our institution continue to have problems with overlapping instruction on
programming skills in a way that makes instruction potentially inaccessible for
novices. For example, on the very first day of our university’s recent CS1 course,
the instructor showed content on syntax and then proceeded with writing
exercises for practice. Within an hour-long lecture, the instructor showed exam-
ple programs and their output, then asked learners to trace code and determine
correct outputs as well as write code to produce given outputs. Learners with no
prior knowledge felt overwhelmed as they were asked to both trace and write
code simultaneously. Theoretically, empirically, and anecdotally, the lack of
sequencing of skills appears to be a longstanding problem in CS education.

One way to address the lack of structure in programming skills instruction is
to provide explicit instruction on each skill, in sequence (Archer & Hughes, 2010;
Doyle, 1983). For example, Soloway and Ehrlich (1984) proposed identifying and
teaching programming skills by providing instruction on libraries of stereotypi-
cal solutions to problems, as well as strategies for coordinating and composing
them. Others have proposed teaching skills separately and incrementally with
the aim of automating more basic skills (e.g. writing correct syntax) to reduce
confusion and improve learning by lowering cognitive demand (Anderson,
Boyle, Farrell, & Reiser, 1984; Lister et al., 2004). The hope in these works was
that this explicit instruction on skills would free learners to concentrate on more
advanced skills relating to problem-solving (Buck & Stucki, 2000). Although
there have been many theories with implications for CS1 instructional design
for programming skills, few have been translated to concrete instruction, and
when they have, they often lack evaluation.
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In this paper, we build upon these prior theories of CS1 instruction, propos-
ing a new theory of instruction for CS1 programming skills that is simple, has
direct implications for instructional design, and that, when translated into
concrete learning materials, may have measurable impacts on learning. Our
theory structures and sequences four distinct skills: tracing, writing correct
syntax, recognizing the parts and objectives of templates (reusable abstractions
of programming knowledge), and using templates to solve problems. We
hypothesize that explicit, incremental instruction on these four skills will result
in the following effects:

(1) Learners will be more able to complete programming tasks
(2) Learners will make fewer errors
(3) Learners will have a greater understanding of the relationship between

parts of the code and the overall purpose
(4) Learners will be more engaged in the learning process

To evaluate our hypotheses, we created learning materials for a subset of CS1
concepts that include instructional content, practice exercises with feedback, and
a post-test which covers these four skills. We then conducted an exploratory,
mixed-methods evaluation of this curriculum with nine novice programmers to
explore the validity of our hypotheses and theory more broadly.

The structure of the paper is as follows: We further substantiate our claims
about the current gaps between empirical findings on programming skills and
theories of instruction in Section 2. We then propose our theory of programming
skills instruction in Section 3. In Section 4, we provide a concrete example of
learning materials (instruction, practice, post-test) that we designed based on our
theory. In Section 5, we describe hypotheses based on our theory and detail
a study we conducted to evaluate these hypotheses. We share the results of our
evaluation in Section 6. Finally, we interpret the results, evaluate our hypotheses,
and discuss the implications of our theory in Section 7.

2. Related work: CS1 skills and theories to inform instructional design

In this section, we explore three aspects of related work identifying different
programming skills, gaps in prior theory, and the use of patterns to scaffold
programming knowledge. This related work helps substantiate the need for
a new theory of instruction as well as provide the foundation for it.

2.1. Programming skills (tracing, explaining, writing) are distinct and may
develop sequentially

Much of the literature on the relationships between the skills of tracing, explaining,
and writing code came from a common thread of research from the Leeds Working
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Group and BRACElet workshops (Clear et al., 2011). This work investigated the
teaching and learning of novice programmers, using the Structure of Observed
Learning Outcomes (SOLO) taxonomy (Biggs & Collis, 2014) as a framework for
evaluating novice programmers’ responses to code tracing and explaining pro-
blems (Lister, Simon, Thompson, Whalley, & Prasad, 2006). Different studies used
slight variations of the SOLO taxonomy (Murphy, Fitzgerald, Lister, & McCauley,
2012; Philpott, Robbins, & Whalley, 2007; Whalley et al., 2006), but they all typically
referenced four hierarchical levels of student responses:

(1) Prestructural: Response demonstrates no relevant knowledge or is unre-
lated to the question.

(2) Unistructural: Response provides a description for a small portion of the
code.

(3) Multistructural: Response is a line-by-line description of most of the
code.

(4) Relational: Response provides a summary of what the code does in terms
of the code’s purpose.

Lister et al. (2006) found that responses from experts (educators) tended to
manifest at the relational level of the SOLO taxonomy for tracing problems, as
experts were “seeing the forest.” In contrast, novices who could not produce
relational level responses were “failing to see the forest” and were unable to
extract the purpose or summary of what the code does at a more abstract
level. This work suggested that novice programmers who could provide rela-
tional level responses demonstrated expertise. We used the SOLO taxonomy
for evaluating depth of understanding among participants (see Section 6.3).

Using the SOLO taxonomy to analyze the quality of responses, the Leeds
Working Group and BRACElet workshops made findings related to the program-
ming skills novices learn (e.g. tracing, explaining, and writing code). Philpott et al.
(2007) found that novices’ mastery of code tracing indicated their readiness to
reason about or explain the code, suggesting tracing was prerequisite knowledge
for explaining code. Sheard et al. (2008) found a positive correlation between
code explaining and writing tasks. Lopez et al. (2008) found a similar correlation
and suggested a potential hierarchy of programming related tasks with the
knowledge of program constructs at the bottom, code tracing and explaining
ability as part of one or more intermediate levels, and writing ability at the top.
Venables et al. (2009) found a causal relationship between code tracing and
writing, and that the skills of tracing and explaining were strong predictors of
performance on code writing.

This prior work shows that tracing, explaining, and writing code are distinct
skills that are potentially dependent and develop sequentially. Furthermore,
the SOLO taxonomy can be used to evaluate the quality of novices’ responses
to tracing and explaining questions.
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2.2. Theory decomposing programming skills lacks connections to
instruction and lacks a simplifying structure to make instructional design
tractable

Being able to distinguish skills does not necessarily provide guidance on how
they should be taught. To teach these distinct programming skills identified in
the previous section, it would be helpful to have a theory to inform the design
of CS1 instruction that considers these skills. In addition to needing a theory of
instruction to structure and sequence programming skills, it would be ideal to
have it also be translatable to concrete instruction. We found that prior work in
theories of instruction was typically not easily translatable to instruction or did
not adequately account for different programming skills.

2.2.1. Some theories provide abstract constraints without fully specifying
instruction
Basing instruction off some theories has resulted in constraints for instructional
design without full specification of learning activities. Taxonomies, such as the
SOLO taxonomy discussed previously (Section 2.1), often serve as theories to
provide constraints. Two examples illustrate uses of taxonomies: Recent revi-
sions to Bloom’s taxonomy described the cognitive development of novices
across knowledge domains that are CS-specific (Fuller et al., 2007). Many have
used Bloom’s or the SOLO taxonomy to classify instructional content and
assessment items (Thompson, Luxton-Reilly, Whalley, Hu, & Robbins, 2008).
Similarly, Gluga et al. used neo-Piagetian theory to classify the difficulty of
computer science instruction, finding instructors with varying backgrounds
could reliably identify a problem’s required level of development (after using
a tutorial to learn those levels) (Gluga, Kay, Lister, Simon, & Kleitman, 2013;
Gluga, Kay, Lister, & Teague, 2012). These taxonomies and related theories
have provided general guidelines for instruction, but fall short of being able to
be directly translated to instruction.

Rather than directly adapt more general theories from the learning sciences,
other researchers developed new frameworks and structures specific to com-
puter science to provide constraints for instructional design. Whalley and Kasto
(2013) proposed a Block model for measuring the difficulty of code compre-
hension questions and compared it to the SOLO and Bloom taxonomies.
Similarly, Fuller et al. (2007) developed a two-dimensional matrix taxonomy
based on Bloom’s taxonomy along dimensions of producing and interpreting
and includes some concrete discussion of narrow slices of CS1, databases, and
computing professionalism courses. Mead et al. (2006) combined many
threads related to cognition and learning to describe an anchor graph to
represent dependencies among concepts in a course. These prior works pro-
vide CS-specific frameworks or structures to support instructional design at
a high-level, but still cannot be directly translated to instruction.
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For each of these theories, we are unaware of work that uses them to make
concrete instructional designs that cover all the skills/components in the
theory. So while some theories provide a means for general classification of
content, they are often too abstract to be directly translated to concrete
instruction.

2.2.2. More specific theories do not translate to instruction that supports skill
development
More specific theories of instructional design include instructional designs that
have clear realizations, specifying how the knowledge is organized explicitly
for learners, concrete examples of instruction, and concrete examples of
practice and/or assessment. The users of these theories are researchers and
teachers, and potentially also learners themselves. These more concrete the-
ories align with the perspective of Bruner (1966), in which a theory of instruc-
tion must define how a body of knowledge should be structured and
sequenced so it is interpretable for a learner.

Some concrete theories of CS instruction translate to instruction but do not
mention programming skills. For example, Caspersen and Bennedsen (2007)
incorporated cognitive load theory and cognitive skill acquisition into a model
of human cognitive architecture and then presented an introductory object-
oriented programming course. This course used a pattern-based approach to
programming and schema acquisition, but did not specify how to incorporate
different programming skills.

Other concrete theories of instruction provide mention of sequenced pro-
gramming skills but did not detail instruction and practice to fully scaffold the
acquisition of these skills. For example, Buck and Stucki (2000) proposed
a hierarchical progression of skill sets based on Bloom’s taxonomy. This hier-
archy identified tracing as a “lower-level” skill, but their course description did
not include tracing instruction or practice beyond predicting what line exe-
cutes next. More specifically, the knowledge and comprehension levels of their
modified Bloom’s taxonomy preceded implementing skills at higher levels, yet
the course design did not provide instruction or practice to support those
levels of knowledge. While the instruction does describe executing code
snippets, it does not assess whether learners can trace code. The only code
comprehension exercise described involved “student[s] predict the next state-
ment to which control will pass, throughout an entire execution of
a procedure. If they predict incorrectly, they are shown the actual line to be
executed next, and they continue from there. . .” In a follow-up paper, Buck and
Stucki (2001) discussed the implementation of this comprehension practice, as
well as practice that involves translating program code into a flowchart; much
of the justification for that instructional design was to try to avoid teaching
variable concepts, and it is unclear when/how variables are taught or assessed.
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Similar to Buck and Stucki (2001) but drawing on neo-Piagetian theories of
programming learning (Morra et al., 2012), Szabo, Falkner, and Falkner (2014)
described a well-defined theory for course design, yet their course design was
ambiguous and lacked practice and instruction for lower level skills. While
Szabo applied their theory to designing a second programming course, the
theory did not describe lower level instruction or assessments (e.g. tracing) at
the sensorimotor or pre-operational levels for new concepts such as object-
oriented language features or concepts. Instead, learners experienced “objects
in real life and their interactions” and that seems to have counted for those
skill levels. Yet in their theory they defined those levels as relating to tracing
ability at the sensorimotor level as “low abstraction level, can barely trace
code” and pre-operational level “can reliably trace code, but cannot under-
stand functionality”. This misalignment between the specifications in their
theory of instructional design and the actual instructional design exists in
other parts of the instruction as well.

Prior theoretical work presaged and reflected empirical findings that lower
level tracing skills precede writing skills; however, prior theories of instructional
designs do not fully specify focused practice, instruction, and assessment that
covers all the knowledge required for pre-requisite skills, particularly for lower
level pre-writing skills (e.g. program tracing).

2.3. Templates can help transition from learning a language to using it to
problem solve

A potential way to incorporate skill development into instruction is by repre-
senting knowledge of what programs can do with the use of pattern-like chunks,
which we will refer to as templates (Clancy & Linn, 1999). Templates are abstrac-
tions of programming knowledge that have generality and reusability (Clancy &
Linn, 1992; 1999), similar to Rist (1989)’s notion of schema, Kreitzberg and
Swanson (1974)’s notion of meta-rules of generalized problem-solving techni-
ques, Anderson et al. (1984)’s notion ofweak schemata, and Soloway and Ehrlich
(1984)’s notion of plans in the work. Providing novices with a “repertoire of
templates” (Clancy & Linn, 1992) can reduce the cognitive demands of writing
programs by providing ways to decompose a problem, enabling novices to use
these templates to support their planning and problem-solving process and
write more complicated programs (Mead et al., 2006; Rist, 1989).

Templates can be incorporated into instruction by using it as a scaffolding
technique. Linn and Dalbey (1985) proposed a Chain of Cognitive
Accomplishments that should arise from ideal instruction of programming.
This chain consisted of (1) features of language, (2) design skills relating to
the procedural skills of planning, testing, and reformulating code using tem-
plates, and (3) problem-solving skills which are abstracted from specific lan-
guages and applied to learning new languages and situations. Clancy and Linn
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(1999) suggested that exercises in code comprehension, identifying opportu-
nities and “nonopportunities” for pattern reuse, considering multiple represen-
tations of patterns, and comparing related patterns could benefit students
who were learning from instruction involving patterns.

In summary, prior work has not defined concrete instructional designs that
consider different skills that are important to programming and how these
skills develop. Prior theories tend to have either partially specified ambiguous
designs or a lack of focused practice and instruction for specific skills (espe-
cially the lower level, pre-writing skills). This ambiguity or inconsistency may
come from each theory’s coverage of a very broad range of skills (e.g. the
scope is often “programming rather than CS1" or other subsets). Prior work on
theories of instructional design tended to focus on program writing instruc-
tion, often not adequately specifying their designs for instruction and practice
for pre-requisite skills (such as tracing). A lack of instruction and practice for
pre-requisite skills may result in gaps in learners’ knowledge that exacerbate as
they prematurely practice more advanced skills such as code writing. Common
patterns such as templates may be able to support skill development by
providing scaffolding in the transition from semantic understanding of code
to problem-solving with code.

3. Theory: separating, structuring, and sequencing programming
skills

In the previous section, we established that distinct programming skills exist,
yet prior theories do not translate to concrete instruction that supports the
development of these skills; we draw upon prior work to propose a theory that
structures and sequences these skills and can be translated to instruction that
scaffolds the development of these skills. In this section, we identify three
claims we draw from prior work which serve as the foundation of our theory.
We then describe our theory and how we structure knowledge across four
programming skills (tracing, writing correct syntax, understanding templates
as reusable abstractions of programming knowledge, applying templates to
solve problems) which build upon each other. This theory is focused to novice
programmers and by design does not explicitly account for skills including
debugging, problem-solving, and solving problems that require inventing new
or previously unlearned templates.

Table 1 shows our “quadrant” of introductory programming skills. We
distinguish the skills of tracing (S1), writing correct syntax (S2), recognizing
templates and their uses (S3), and using templates to solve problems (S4)
across two dimensions. These dimensions are skills (read, write) and knowledge
(semantics, templates). Skills refer to reading already written code and inter-
preting meaning from it, and writing code. Knowledge is either at a machine
level (semantics) and at a task/objective level (templates).
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3.1. Connecting theory to prior work: differentiating and ordering skills

We based our theory of incrementally teaching decoupled programming skills on
three claims that distinguished different skills novice programmers must learn:

(1) C1: Tracing code is a different and precursory skill to writing syntactically
correct code

(2) C2: Understanding the features of a programming language is different
than solving a problem with code

(3) C3: Comprehending code templates is a different skill than using templates
to write code to fulfill an objective

Prior work described in Section 2 substantiates the three claims which are at
the foundation of our theory.

The prior work in Section 2.1 on the proposed and empirically supported
distinction between reading (tracing) and writing code helps substantiate our
first claim (C1). While prior work tended to frame writing code as composing
syntactically correct code that also has an objective, we distinguish between
the skills of writing correct syntax and writing code that has an objective. For
C1, we focus only on the skill of writing correct syntax. Although we have
a more specific definition of writing, we still find that the prior work in Section
2.1 substantiates C1, the claim that tracing is a precursory skill to writing
correct syntax.

To substantiate the next claim (C2), we look to the prior work in Section 2.3
on templates and the Chain of Cognitive Accomplishments. More specifically,
we focus on how ideal instruction of programming teaches the features of the
language (first chain) before design skills relating to using templates (second
chain). Lastly, substantiating C3 requires drawing parallels between program-
ming skills (from Section 2.1) and template use (from Section 2.3). We focus the
definition of code explanation to say that it relates to recognizing templates
and their uses (which we call comprehending templates) because both skills
require looking at code and mapping it to an objective or purpose. As
described in Section 2.1, multiple studies found that explaining code was
a separate and precursor skill to writing code (Lopez et al., 2008; Sheard
et al., 2008; Venables et al., 2009). Furthermore, Clancy and Linn (1999)
suggested that code comprehension questions could support instruction on
templates. We substantiate our third and final claim C3 with two points: code
explanation (as defined by prior work) is similar to reading/comprehending

Table 1. Decomposition of different skills across two dimensions.
semantics related to code templates related to goals/objectives

Read S1. Predict effect of syntax on program behavior S3. Recognize templates and their uses
Write S2. Write correct syntax S4. Use templates to complete objective
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templates, and both skills precede writing code with a template. Therefore,
prior work substantiates our three claims.

Our theory recommends reading before writing (as substantiated by C1, C3)
and semantics before templates (as substantiated by C2).

3.2. A theory of instruction for four programming skills across two
dimensions

To further explain our theory, we now describe each skill in incremental order
from S1 (reading semantics) to S4 (writing templates). To provide an example
of how a learner can demonstrate knowledge of each skill, Figure 1 decom-
poses a classic template of a variable swap operation (Sheard et al., 2008) into
the four skills in our theory. All code is in Python syntax. We refer to this figure
as we describe each skill below.

S1, Reading semantics (top left in Table 1) refers to the ability to accurately
trace code and predict the effect of syntax on program behavior. We adopt the
theory of program tracing defined by Nelson et al. (2017), which states that
knowing programming tracing is understanding the set of all mappings
between syntax, semantics, and state during compilation. After a learner
develops the understanding of reading semantics, they are able to trace
code and determine its intermediate and final states and outputs. They do
not necessarily know how to write correct code or use code to perform
a certain task. Reading semantics is a precursor skill to writing syntax (by C1)
and using templates (by C2), so it is the foundation to all other skills. As
a result, it is first in the sequence of skills in our instruction.

Learners demonstrate knowledge of reading semantics by being able to
describe each line of the program and also being able to accurately trace the
code and determine the final variable values (final state), as demonstrated in
the top left of Figure 1. This knowledge is comparable to the multistructural
level of the SOLO taxonomy (described in Section 2.1). Note that the purpose
of the code as a whole (to swap two variables’ values) is out of the scope of
reading semantics. In the example, given a line of code y = temp, learners
demonstrate knowledge of reading semantics by knowing that the value
stored in variable y updates to the value stored in variable temp.

When they have a strong understanding of reading semantics for a given
programming construct, learners should be able to understand how that
construct affects the program statement and output for a piece of code.
They do not necessarily understand the purpose of the construct in relation
to the code or problem more broadly, as that comes later with template
knowledge. They also do not necessarily know how to write correct syntax,
but that is the next skill to learn.

S2, Writing semantics (bottom left in Table 1) refers to the translating of
unambiguous natural language descriptions of language constructs into syntax
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that will compile and execute as expected. Because this is a translation from an
unambiguous specification, this skill does not require understanding the
objective of the code at a relational level. To know how to write semantics is
to be able to write syntactically correct code (construct a valid abstract syntax
tree, AST), modify preexisting code without introducing syntax errors (fill in
a missing part of a valid AST or modify a valid AST), and correct code with
syntax errors (recognize an invalid AST). Visual blocks-based languages obviate
this skill by enforcing correct syntax by providing drag-and-drop feedback and
therefore not requiring a programmer to know how to write correct syntax.
A novice must know how program constructs execute during compilation, so
they must have an understanding of reading semantics (S1) before writing
semantics.

The bottom left quadrant of Figure 1 is an example of writing semantics practice.
A learner demonstrates knowledge of writing semantics by being able to translate
a line-by-line description of code into lines of code with correct syntax. In the
example, a learner can translate “define variable x and set it to 1” as x = 1 (in Python).

To write correct code that meets an unambiguous specification, a learner
must have an understanding of reading semantics to know how code con-
structs affect execution and understanding of writing semantics to know how

Figure 1. Demonstrated knowledge relating to each of the four programming skills in our
theory, using the example of a variable swap. Each skill is represented as a cell in the
quadrant with a description of how a learner demonstrates the skill at the top of each
quadrant. For each skill, a learner demonstrates that skill (for a variable swap) by translating
a given prompt (gray box) into a response (blue box). For example, the first skill of reading
semantics (S1, top left) relates to determining the intermediate and final program states and
program output. A learner can demonstrate knowledge of this skill by taking a program and
correctly explaining what each line of code does and determining the correct variable values
after execution.
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to translate these code constructs to correct syntax. Weak knowledge of
reading semantics but strong knowledge of writing semantics would result
in a learner writing syntactically correct code which failed to meet the speci-
fication and does not execute as intended. Strong knowledge of reading
semantics but weak knowledge of writing semantics would result in writing
code which contains syntax errors and could look like a pseudocode that could
meet the specifications.

S3, Reading templates (top right in Table 1) refers to the skill of identifying
reusable abstractions of programming knowledge (which we will refer to as
templates) and mapping them to an objective. Reading templates consists of
being able to trace code and map parts of the code to parts of a template and
identify what the objective or purpose of the code is. Novices acquire knowl-
edge of templates by recognizing them in other programs, learning them
through instruction, or devising them.

The top right quadrant of Figure 1 is an example of reading templates
practice. A learner demonstrates knowledge of reading templates by being
able to look at a program and recognize its purpose relative to a template they
previously learned. In the example, a learner can look at the program in Figure
1 and recognize that parts of the code (e.g. the bottom three lines) implement
a variable swap template. This description synthesizes knowledge across multi-
ple lines of code, so it demonstrates relational knowledge, a higher level
knowledge in the SOLO taxonomy.

To read templates from pre-defined code, a learner must have understanding
of reading semantics knowledge to map syntax and semantics to changes in
program state as well as reading templates knowledge to translate this machine-
level understanding to a goal/purpose understanding. Weak knowledge of read-
ing semantics would result in a novice having misunderstandings about how the
code executes. This could result in them not recognizing a template in the code,
recognizing a template but not recognizing it was incorrect, or recognizing the
wrong template.

S4, Writing templates (bottom right in Table 1) requires a learner to start with
a problemdescription that contains ambiguity, identify a template that they could
use to solve the problem, and implement each component of the template in
code. Extracting an objective from a natural language problem description is the
first step to writing a template. From there, writing a template is a “reverse
mapping” when compared to reading a template: whereas reading templates
requires learners to map from code to parts of a template to a template objective,
writing templates requires learners to map from an objective (extracted from
a problem description) to parts of a template to code.

The bottom right quadrant of Figure 1 is an example of writing templates
practice. A learner demonstrates knowledge of writing templates by being able
to read a problem description, recognize the need for a previously learned
template, and devise a plan which uses the template to solve the problem. In
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the example, learners must recognize from the problem description that they
can use a variable swap (perhaps cued by the fact that the problem description
states “each variable ends up with the original value of the other variable”).
They then devise a step-by-step plan which implements the variable swap
template, a process utilizing knowledge of reading templates. They can then
use this plan and write code to solve the problem, requiring knowledge of
reading and writing semantics.

To write templates to solve a problem given a problem description,
a learner must have an understanding of reading templates to know the
objective and components of templates, and reading and writing semantics
to write correct code. If they had weak knowledge of reading templates, they
would not be able to recall the templates and would have to solve the
problem by creating their own templates. If they had weak knowledge of
reading or writing semantics, they would not be able to translate the template
to correct syntax or semantics.

3.3. Summary of theory: read before write; semantics before templates

To summarize, we emphasize that the theory defines four distinct skills and
sequences instruction, such that knowledge of each skill can be demonstrated
and built upon knowledge of previous skills. The sequence emphasizes teach-
ing reading before writing, semantics (features of a programming language)
before templates (patterns of use). A key distinction we make is the separation
of writing skills into writing correct syntax (S2) and writing meaningful code
with the use of a template. By doing so, we can produce instruction which
teaches semantics before templates. The structure of this theory has direct
implications for instructional design.

4. Instruction: teaching skills incrementally

Having presented structure and sequence for four distinct skills, we now
present several new genres of instruction that might be used to teach accord-
ing to our theory. We do this by presenting a concrete example of learning
materials that taught programming constructs (e.g. conditional statements) by
teaching four programming skills in the order the theory proposed: Students
learn the semantics by getting instruction, practice, and feedback on tracing
(S1), then writing correcting syntax (S2), then reading a template (S3) related
to that construct (e.g. using conditionals to find a maximum value), and finally
on using a template to write code (S4). By providing instruction, practice, and
feedback from each skill in the sequence proposed in our theory, this curricu-
lum can support gradual skill development.

We include an outline of the learning materials to illustrate the sequence of
constructs taught as well as the sequence of skills taught for each construct:
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(1) Introduction
(a) Describe four skills
(b) Describe lesson structure
(c) Motivate metacognitive prompts
(d) Explain how code runs (teaching strategy from Xie, Nelson, and Ko (2018

memory tables))
(2) Data types**
(a) Reading semantics
(b) Writing semantics
(3) Variables
(a) Reading semantics (taught memory tables from Xie et al. (2018) to

complete strategy on reading code)
(b) Writing semantics
(c) Reading template: Variable swap
(d) Writing template: Variable swap
(4) Arithmetic operators
(a) Reading semantics
(b) Writing semantics
(c) Reading template: digit processing
(d) Writing template: digit processing
(5) Print statements**
(a) Reading semantics
(b) Writing semantics
(6) Relational operators
(a) Reading semantics
(b) Writing semantics
(c) Reading template: float equality
(d) Writing template: float equality
(7) Conditional statements
(a) Reading semantics
(b) Writing semantics
(c) Reading template: find max/min value
(d) Writing template: find max/min value
** Some constructs did not include learning a template because the ordering of

constructs made it such that learning those constructs did not afford the learning
of a new template. The participant needed to learn an additional construct before
learning a new template.

The learning materials began by explaining what it would cover (“basics of
Python”) and that it contained content to read and understand, practice exercises
to attempt, and solutions to exercises with explanations. It also mentioned the
importance of metacognition, thinking about one’s own thinking (National
Academies of Sciences, 2018; Zimmerman & Schunk, 2011), and explained the
purpose of the metacognitive prompts contained within the lesson. These

14 B. XIE ET AL.



retrospective prompts varied depending on the targeted skill: prompts to retro-
spectively reflect on code and explain the purpose of each line of code using code
comments demonstrated reading semantics; prompts to explain how a given pro-
gram might function demonstrated reading templates; prompts to preemptively
write a plan in plain English for how they intend to solve a given programming
problem demonstrated writing templates. The learning materials then provided an
overview of how code runs (“typically. . .one line at a time from top to bottom, left to
right”) and explained how to read code line-by-line by following a simple “sketch-
ing” (Cunningham, Blanchard, Ericson, & Guzdial, 2017) strategy proposed and
evaluated by Xie et al. (2018). It then provided an overview of the concepts covered
before beginning instruction on the programming constructs.

In developing the learning materials, we assumed no prior programming knowl-
edge, so taught the programming constructs of data types, variables, operators
(arithmetic, comparison), print statements, and conditionals in Python3.Weordered
the constructs such that each construct only depended on knowledge of previously
learned constructs.We chose Python because it is a common introductory language
that appealed to a broad range of students (including non-majors) and did not
require more advanced programming constructs such as methods or classes to
execute (Ranum, Miller, Zelle, & Guzdial, 2006; Ranum & Miller, 2013). We drew our
selected programming constructs from an adaptation of the first case study in
Designing Pascal Solutionswhich used basic programming constructs to accomplish
a concrete task (verifying a number is a valid passkey) (Clancy & Linn, 1992). The
learning materials included both instructional content to read and exercises (and
their solutions) for learners to practice applying each skill. We delivered the learning
materials as a paper packet of 86 pages, printed single-sided so participants could
easily reference previous pages.

We used instruction on conditional statements as an example to explain
how the curriculum progressed across the four skills in our theory (S1-S4).

4.1. Instruction on semantics

The first skills the curriculum teaches are reading semantics (S1) and writing
semantics (S2). These skills relate to understanding the features of
a programming language.

4.1.1. Instruction on reading semantics (S1)
We began by connecting the new construct to previously learned ones and to
relatable examples. Given that conditionals came after learning relational
operators, we framed conditionals as a way to “do different things based on
different relationships.” We then provided a relatable example of a situation
requiring a conditional: “If I don’t have any homework tonight, then I will meet
up with my friends.” We then define the programming construct: “Conditional
statements (also known as if-statements) enable different code to execute
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based on a given relationship.” After this, the instruction continues teaching
how to trace code with conditional statements (S1).

To teach S1, the instruction provides examples framed around real-world con-
texts and incrementally adds complexity. For conditionals, it described a situation
where a participant wanted to buy a beverage but only if it cost $1 or less. It then
showed the code to reflect this basic conditional where amessage instructing them
to “buy the soda!” appeared if thecost≤=1.00. After explainingwhat the code in
the example did, we added complexity by introducing the else statement. We
motivated the else statement by framing it as a tool “to run different code if the
condition executes to false” and expanded upon the previous example by having
the else condition print a message warning against buying the soda. Because
conditionals break the “top down, left to right” control flow they were previously
familiar with, we then provided an annotated example showing which lines of code
executed and which did not, as shown in Figure 2.

We repeated this process of motivating the need for the added complexity
of an else-if (a way to add additional branching options) and then adding
it to the previous example. After this, we provided practice exercises in the
form of tracing questions and asked participants to determine the output of
code that contained conditional statements.

Practicing reading semantics (S1) requires a learner to trace code and does
not require knowledge of any other skills. This practice consisted of looking at
fixed-code questions (McCartney, Moström, Sanders, & Seppälä, 2004) where
a learner determines intermediate and final program states for a pre-defined
piece of code. Figure 3 shows examples of practice exercises for S1.

If a learner hasweak knowledgeof S1, theywouldhavemisunderstandings about
how tokens in the code affect program behavior. Thus, it is ideal for exercises to
make misconceptions observable by revealing errors in the intermediate (variable
values) and output (print statements) values when a novice traces code. For exam-
ple, Figure 4 shows an error a learnermakes relating to incorrectly tracing code. The
learner sketched annotations to the program (writing the values of variables, cross-
ing out lines that did not execute) that were encouraged in the instruction, but not
required for that exercise. Tracing exercises that require learners to predict inter-
mediate and final states help identify understanding andmisconceptions relating to
reading semantics.

Figure 2. When teaching participants the skill of tracing (S1) for conditionals, we provided an
explanation and this visualization to show how the control flow is different based on different inputs.
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4.1.2. Instruction on writing semantics (S2)
After practicing reading semantics and receiving feedback in the form of the
correct solution and an explanation, learners then move on to learning how to
write correct syntax (S2). To teach correct syntax, the instruction defined
syntax rules for the construct (e.g. conditionals), adding nuance about the
language grammar that was not necessarily visible when learning how to read
semantics (S1). Figure 5 shows a table with these syntactic rules for condi-
tionals as well as example code with these rules violated and then corrected.

When learners practice writing semantics, they would also need knowledge
of S1 (reading semantics). Practicing writing semantics consists of translating
lines of unambiguous natural language (e.g. “Declare a variable profit and set
it to 87”) to lines of code. Weak knowledge of S1 would result in a learner
writing code constructs that do not align with the description of a given line.
Weak knowledge of S2 would result in a learner knowing which constructs to

Figure 3. Practice exercise for tracing skill (S1) for conditionals. Participant reads the code,
crosses out the lines of code that do not execute, and then determines what the code would
output.

Figure 4. Example of a reading semantics (S1) error. Here, the exercise provided the
participant with a code snippet (left) and initial values for variables a, b, and c (above).
The participant then traced through the code and determined the output (the dotted red box
denotes the likely error the first line as suggested by the inline annotation, which was not
required by the exercise).
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use, but making syntax errors when writing those constructs. In both cases of
weak knowledge of S1 or weak knowledge of S2, the learner may write code
that contains errors such that the code would not run or the code would have
unexpected behavior. To differentiate between the misunderstandings
between S1 and S2, the instruction prompts learners to write comments to
explain “in their own words” what each line of code is doing. Figure 6 provides
an example of an exercise with an S2 error. By understanding what constructs
a learner intended to write, we can differentiate between whether their mis-
understanding is from a poor understanding of what semantic tokens do (S1)
or weak understanding of how to write semantic tokens (S2).

4.2. Instruction on template knowledge (S3)

After learning to read and write semantics for a new construct, a learner then
transitions to how to use templates of common code use patterns to apply
knowledge of this construct. With each programming construct, we taught
a template that reflected the application of that construct (often with other
constructs) to accomplish a task.

4.2.1. Templates have an objective and multiple parts or steps
A template consisted of an objective as well as multiple parts or steps required to
make the template perform its intended purpose. We included templates in
instruction to motivate potential uses of programming and as a scaffolding tech-
nique to bridge between learning the features of a programming language and
learning to use the language to problem solve. In total we taught four templates:

Figure 5. A table in writing semantics curriculum for conditionals which shows syntax rules
relating to the construct and concrete examples of contrasting “bad code” which contains
syntax errors with “fixed code” which corrects the errors.
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● variable swap: switching the values stored in 2 variables by using
a temporary variable and variable updates.

● digit processing: accessing specific digits in an integer with multiple digits
by repeatedly using modulus to access the rightmost digit, and then
dividing and using integer truncation to drop the rightmost digit from
the input integer.

● float equality: checking if two floats are approximately equal by comparing
the absolute difference to a small threshold value using a relational operator.

● max/min: finding the maximum or minimum of three (or more) numbers
using conditionals and the and operator.

Instruction on templates comes after instruction on reading and writing
semantics and is also divided into reading and writing portions. The instruction
first teaches learners how to read templates and recognize the purpose and
components of a template that utilizes the construct they are learning (S3),
then to apply these templates to write code to complete an objective (S4).

4.2.2. Instruction on S3 (reading templates)
Learning to read templates is fundamentally about learning patterns of com-
putation that solve a class of problems. Our learning materials introduced
learners to the “max/min” template, which they could use to find the max-
imum or minimum value from multiple variables that all store numbers (data
structures were out of the scope of this instruction). Before introducing
a template, we provided an example or visualization that attempted to make
the objective and steps of the template more relatable and concrete. For the
max/min template, we provided an explained visualization showing the step-
by-step process of finding the maximum value from 3 variables. Figure 7 shows
part of that visualized explanation.

The instruction then translated the same process to code and explained the
relationship between the visualization and the code. Our intention was to

Figure 6. Example of errors in a writing semantics (S2) exercise which required a learner to
translate the unambiguous natural language to Python syntax. The dotted red boxes denote
errors in S2 relating to conditionals (forgetting colons after the conditional statements). The
learner’s comments reflect correct/intended behavior, but the written code is syntactically
incorrect, suggesting an S2 error.
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promote comprehension and abstraction through mutual alignment of two
(perhaps partially) understood situations (Kurtz, Miao, & Gentner, 2001). After
doing so, the learning materials explicitly provided the steps involved in
a max/min template in natural language:

To find the maximum (largest) or minimum (smallest) value, we do the
following:

(1) Use if statements to check one value against all other remaining values
(a) We may need a compound conditional statement (using and)

(2) Ignore the value we just checked and repeat step one if there are at least
two remaining values

(3) If there are no more values to compare against, then we reach our else
condition.

The learning materials then transitioned to practice reading this template.
When learners practice reading templates, they would also need knowledge

of S1. Practicing reading templates consists of looking at previously written
code and determining if it correctly implemented a given template and if not,
what part of the template was not properly implemented. Weak knowledge of
S1 would result in a learner not being able to correctly trace the code. Weak
knowledge of S3 would result in a learner not recognizing how parts of the
code map to different components of a template. In both cases of weak
knowledge of S1 or weak knowledge of S3, the learner would have trouble
looking at code and identifying if it properly implemented a template. To
differentiate between misunderstandings of S1 and S3, our instruction had
learners read code and identify if it correctly implements each part of
a template, while also explicitly tracking the state of the program. The instruc-
tion observed their ability to trace code (S1) by having them update memory
tables (Xie et al., 2018) with variable declarations and updates. Errors relating

Figure 7. Instruction for reading a template (S3) often began with an example or visualization to
make the template objective and steps more concrete. For the template which uses if state-
ments to find the max/min value among variables, we provided a visualization showing how
learners could use pairwise comparisons to find the max/min values of more than 2 values.
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to changing program state suggest weak knowledge of S1. Failure to identify
whether code implemented parts of a template correctly suggested weak
knowledge of S3. Figure 8 illustrates an S3 error for the float equality template,
which a learner could use to check if two floats are approximately equal.

4.2.3. Instruction on writing templates (S4)
After engaging with instruction on how to read a template, the lesson moved
on to teaching how to apply a template to fulfill a computational objective.
Obviously, problem-solving is important to this process, but out of the scope
of this instruction. In our learning materials, we focused on the more narrow
scope of providing rules to address errors that could arise when translating
a template into code. Whereas writing semantics (S2) instruction specified
rules to prevent syntactic errors, writing templates (S4) instruction specified
rules to prevent logic errors which would be syntactically correct but result in
code which did not perform to the specification of the template. Figure 9
provides an example of instruction to address errors relating to conditionals.

When learners practice writing templates, they also need knowledge of S1,
S2, and S3. Practicing writing templates is consistent with typical code writing
practice where learners read a problem description and must write code to
solve the problem. Weak knowledge of S1 or S2 results in errors similar to what
we could expect in practice for writing semantics. Weak knowledge of S3
results in a learner either not recognizing how they can use a template to
solve the problem or not being able to write code to implement the template.
To differentiate between misunderstandings, we asked learners to first write
a plan to solve the problem in natural language, then write code to complete
the task described to them, then annotate each line similar to what they would
do when practicing writing semantics (S2). An incorrect plan suggests weak

Figure 8. Example of a reading templates (S3) error relating to the template to extract digits
from a number. The learner erroneously thought that the extraction of the digit was not being
done correctly (with the modulo operator) and selected option B. They correctly traced the
code, as demonstrated by the properly completed memory table, so they did not make an S1
error. Therefore, they made an S3 error, likely failing to realize that the code was not properly
updating the starting value current.
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knowledge of S4. We can differentiate between weak knowledge of S1 and S2
by looking at a learner’s line-by-line annotations. Figure 10 provides an exam-
ple of an S4 error where a learner wrote a plan which incorrectly defines
a variable swap (this example is from a different unit than conditionals; we
selected it because the error is more apparent here).

4.3. The post-test used a variety of exercises to evaluate each skill

We developed a summative assessment to measure how well learners were
able to apply the four skills (S1-S4) in the context of the programming con-
structs and templates covered in the instruction. The assessment measured
participants’ ability to read and write semantics and templates. It consisted of
seven questions which roughly increased in difficulty, based on face validity
and performance of pilot tests with novice programmers.

We designed the questions to assess specific programming skills. Questions
assessing reading semantics (S1) asked learners to trace stand-alone code
segments that were not part of a larger code base, determine what initial
program state would result in a given final state, and comment their own code;
these questions were similar to tracing questions in prior studies (e.g. Lister
et al. (2004)) and only the experimental group had practice on them. Questions

Figure 9. A table in writing templates curriculum for template to find maximum or minimum
value from multiple number variables using conditionals. Rules to support the correct
implementation of the template are shown in the left column, with the middle bad code
column demonstrating code with a violation of the rule (in bold), and the rightmost
Explanation column explaining the error.
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assessing writing semantics (S2) asked learners to translate an unambiguous
description of program steps, and asked them to write correct syntax; while
both groups had practice on these questions, the control group had more
practice. Questions assessing reading templates (S3) asked learners to sum-
marize in natural language what a program did; these questions were similar
to code explanation questions in prior studies (e.g. Whalley et al. (2006)) and
only the experimental group had practice on them. Questions assessing writ-
ing templates (S4) provided learners with a problem description (with ambi-
guity) and asked them to write a plan in natural language to solve the
problem; while both groups had practice on these questions, the control
group had more practice.

Some questions had multiple parts and assessed different skills at different
parts. For example, we asked participants to write a plan, code, and comments for
a program that determines whether a number is valid and prints appropriate
messages. Given a four-digit number as input, the program should determine if
the input has a correct “check digit.” The check digit for a number is its rightmost
digit and is correct if the check digit is equal to the remainder of the sum of the
other three digits divided by seven. The program should print a given message if
the input is valid and a different message if the input is not valid. We adopted this
task from the first case study in Designing Pascal Solutions (Clancy & Linn, 1992).
The learner solved this problem across three explicitly scaffolded steps: Firstly,
they determined whether a specific template was applicable to solving the
problem (S3 knowledge) and used a template create a step-by-step plan for
solving the problem in plain English (S4 knowledge). In this case, the digit
processing template (see Section 2.3) that they learned in the curriculum could

Figure 10. Example of a writing templates (S4) error relating to the variable swap template.
The participant was told to provide “a step-by-step plan for solving the problem” which
involved swapping variables. They incorrectly planned the swap, suggesting an S4 error.
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have been helpful. Next, they used their plan to write code to solve the problem
(S2 knowledge). Finally, they commented the code, explaining the function of
each line (S1 and S3 knowledge).

When learners write code to problem solve (such as in the example in the
previous paragraph), they use skills relating to templates (S3, S4) before using
skills related to semantics (S1, S2); this is backward relative to how we taught
the skills. Teaching templates before semantics may better motivate problem-
solving, but it can result in a problem-specific understanding of what con-
structs can do. To better support a more general understanding of what
programming construct can do, we teach semantics before templates.

After each question, we asked them the same three questions to understand
their perceptions about working through the question: (1) After reading the
problem statement, what did you think of first? (If you were reminded of
a construct in general or a general structure of solution, please note that.); (2)
What was the most difficult part of this problem?; (3) On a scale of 1–7, rate your
confidence in your solution: (Circle one). We adapted the first 2 questions from
Fisler and Castro (2017). We asked what they thought of first as a manipulation
check to determine if they thought about the templates we taught.

4.4. Comparing our curriculum to similar

To clarify nuances to our curriculum, we compare it to the similar curricula by
Clancy and Linn (1992), de Raadt (2008), Hertz and Jump (2013), and Thota and
Whitfield (2010).

Because we draw heavily from the work by Marcia Linn’s use of templates
for instruction (Linn & Clancy, 1992), our instruction on reading and writing
templates (S3, S4) is very similar to how Clancy and Linn (1992) taught
introductory programming in Designing Pascal Solutions. This introductory
textbook taught the programming language Pascal through a case-based
reasoning model (Kolodner & Guzdial, 2000), where each chapter was a case
study with social and functional context. They relied on a model of cognitive
apprenticeship (Collins, Brown, & Newman, 1988) to teach programming pro-
blem-solving, so situating the template in a relatable context was key to
scaffolding. The textbook guides learners through the process of problem-
solving with a template, beginning with conceptualizing the problem descrip-
tion, then breaking the problem into sub-problems, and then iterating on
solutions. Throughout this process, the textbook asks self-test questions to
allow students to assess their own understanding. The textbook lacked explicit
instruction to teach programming constructs (S1 and S2 in our theory), instead
relying on 1) prior learning of the basics of constructs, or 2) extensive repeated
contextualized practice to inductively develop understanding of programming
constructs. A selective evaluation of this curriculum found that learners that
read expert solutions and commentary instead of writing their own solutions
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outperformed learners that wrote their own solutions (Linn & Clancy, 1992),
and another evaluation of an online template library had positive results
(Schank, Linn, & Clancy, 1993). But as a whole, this curriculum primarily
emphasized the skill of using templates to write code (S4 in our curriculum).
Other instructional designs have also used templates to teach problem-solving
skills (Muller, Haberman, & Ginat, 2007; Proulx, 2000), but they too do not
emphasize differences between reading and writing skills. While Designing
Pascal Solutions and similar instructional designs used templates to emphasize
the problem-solving process, our learning materials emphasize instruction on
programming skills that began with tracing instruction, as the empirical work
we reviewed earlier (see Section 2.1) suggested.

Hertz and Jump (2013) contributed a curriculum design that provided more
robust instruction on tracing, but lacked a theoretical foundation and did not
focus on other skills. They sequenced instruction within constructs to first provide
explicit instruction, examples, and practice on tracing (“trace-based teaching”)
involving intricate sketched program traces, and then provided practice writing
programs. This instruction was all within a traditional spiral pedagogy from
simpler to more advanced language constructs (Shneiderman, 1977). The work
did not explicitly mention any theoretical grounding, so the mechanism of learn-
ing is not clear. Trace-based teaching had greater coverage of CS concepts than
our instruction because it covered an entire Java-based data structures course.
This method of teaching was similar in approach to our tracing (S1) instruction, as
our instruction utilizes work by Xie et al. (2018), which partially builds off of trace-
based teaching. Because Hertz and Jump (2013) focused on improving instruction
on tracing, instruction on other skills (e.g. writing) were out of the scope of that
work. In contrast to this work, our lesson had a theoretical grounding and focused
on the development of four distinct skills that begin with tracing and ended with
writing code with templates.

Prior work by de Raadt (2008) assessed four “aspects” similar to the four
skills we proposed, but the instruction they created did not distinguish
between these aspects. For assessment, they proposed a quadrant along
dimensions that we viewed as parallel to ours: “comprehension-generation”
(read-write in our skill decomposition) and “knowledge-strategy” (semantics-
templates in our skill decomposition). They proposed these divisions for
assessment and not for instructional design. Their instructional design inte-
grated instruction on strategies (Soloway, 1986) which we viewed as similar to
our framing of templates. While de Raadt (2008) incorporated strategies in
their instructional design, they did not distinguish between the read-write
dimension in their instruction (only in assessment).

Thota and Whitfield (2010) proposed and evaluated a holistic approach to
designing an introductory object-oriented programming course that used the
SOLO taxonomy to define assessment criteria. They grounded their pedagogy
in phenomenography and constructivism, focusing on how a learner would
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understand it. They explored these learning approaches and compared them
to course performance. Whereas the emphasis of their work was in aligning
curriculum with learners’ approaches and preferences, our curriculum empha-
sizes the progression of programming skills, something not explicitly explored
in Thota and Whitfield (2010).

Taken together, these curricula have some similarities in use of templates
(Clancy & Linn, 1992; de Raadt, 2008), supporting lower-level skills Her (Hertz &
Jump, 2013; Nelson et al., 2017), and skill progression (Thota & Whitfield, 2010),
but we viewed our curriculum as unique in that it explicitly scaffolds a gradual
transition from lower-level (e.g. tracing) skills to higher-level writing skills.

5. Evaluation of theory: exploratory experimental study

Evaluating any theory is an incremental process. Given that we have just proposed
our theory in this article, evidence for its affordances to explain and predict
learning and inform instructional design will necessarily have to develop across
multiple publications. Evaluations to conduct include psychometric studies to
determine the construct validity (Allen & Yen, 2001) of the practice items we
proposed, feasibility studies to determine how instruction based on this theory
could integrate with introductory computer science courses, and studies to
measure learning outcomes for learners with diverse prior knowledge, learning
contexts, and motivations. Because explicit instruction on incremental skills is
a focal point of the theory we proposed, we sought to provide some initial
evidence to evaluate the effects of such instruction on those skills. Given the
broader work necessary to evaluate our theory, we focused on a detailed, for-
mative investigation into learners’ experience and outcomes with the specific
structure and sequence of instruction we proposed, relative tomore conventional
learning materials that focus explicitly on program writing.

Our study was a between-subjects study to understand how learning materi-
als reflecting our theory improve completion rates, reduce errors, improve the
depth of understanding, and increases engagement. We provided the experi-
mental condition a curriculum that reflects this theory (as described in Section 4)
by labeling and providing practice for each skill. In contrast, we provided the
control group with a curriculum with the same instructional material to read but
no labeling of different skills, and practice on only writing skills (writing seman-
tics, writing templates); we choose to have the control condition have writing-
focused practice because this was consistent with much of the related work we
found. To balance the amount of practice learners received, we provided the
control group with additional writing practice when compared to the experi-
mental group, which had reading and (less) writing practice. So while the type of
practice varied between groups, we attempted to balance the amount of
practice. Figure 11 compares the instruction and practice learners of each
condition received.

26 B. XIE ET AL.



5.1. Hypotheses: explicit practice improves learning & engagement

We make the following hypotheses to predict the effect of instruction that
follows our theory of instruction:

H1: Novices who practice each skill will be able to complete more pro-
gramming tasks. We predicted that novices who practiced each skill will have
fewer repeat errors and will therefore be more able to complete more pro-
gramming problems. In contrast, we predicted that novices who only receive
practice consisting of multiple skills in combination will be less able to com-
plete programming problems because weak knowledge of one or many skills
hinders their ability to progress.

No difference in the completion rate would suggest that the different types
of practice exercises that the experimental group received was unnecessary
scaffolding as participants in the control group were still able to complete
exercises that confounded multiple skills. The control group having a greater
completion rate could suggest that practice for each skill was unnecessary,
confusing, or inauthentic.

H2: Novices who practice each skill independently will make fewer errors.
We predicted that errors in previous skills can appear in practice of later skills if
a novice does not develop sufficient understanding of previous skills. If
a novice did not develop sufficient understanding of earlier skills (S1, S2), our
theory suggests that errors relating to more advanced skills (S3, S4) will
compound because the skills build off of each other. That is, weak knowledge
of S1 (tracing) can result in errors that reappear in later practice (e.g. S4,
writing templates). We predicted that explicit instruction for each of the 4
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S1 
instruct

S2 
instruct

S2 
practice

S3 
instruct

S4 
instruct

S2 
practice

S4 
Practice

S4 
Practice

S1 
instruct

S2 
instruct

S1 
practice

S3 
instruct

S4 
instruct

S2 
practice

S3 
practice

S4 
practice

experimental practices both reading (white squares) and writing skills

Figure 11. Diagram of differences in learning materials for study conditions where circles are
instructional content and squares are practice and the numbers S1-S4 reflect the skills in the
theory (see Section 3). Whereas the control condition got practice only in writing semantics
(S2) and writing templates (S4) but more of it, the experimental condition got practice in
reading semantics (S1) and reading templates (S4) as well.
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skills can reduce the number of each type of error made, thus improving
novice performance in reading and writing programs.

If novices who practice each skill incrementally were to make more errors
(than novices who practiced using the skills in aggregate), then this could
suggest that earlier skills (e.g. S1, S2) are easier to learn in combination.

H3: Novices who practice each skill will have a greater depth of under-
standing of the skills. Our theory claims that S1 S4 are incrementally built off
of each other, so we predicted that providing explicit instruction and practice
for these skills will result in a greater depth of understanding, as demonstrated
by novices’ ability to use these skills in unison and explain what they are doing
for tasks such as writing code to complete an objective.

No change in the depth of understanding would mean that novices who
learn the skills in conjunction (control group) had an equivalent depth of
understanding, suggesting that it is unnecessary to differentiate between skills.
If practicing each skill results in a lesser depth of understanding, then this
would suggest that there may actually be benefits to practicing multiple skills
in conjunction as current CS1 instruction typically does.

H4: Novices who practice each skill will demonstrate more engagement in
the learning process. We predicted that a novice who learns each skill
incrementally will engage more with the learning experience because teaching
skills separately enables them to make perceptible progress. In contrast,
novices could feel overwhelmed by instructional content that teaches multiple
skills in unison without first developing understanding of separate skills.

If practicing each skill incrementally results in decreased engagement when
compared to practicing an aggregate of multiple skills, this could suggest that
novices found the incremental practice to be too easy or inauthentic to be
helpful, or too mechanistic to be interesting.

5.2. Participants: undergraduates who were novice programmers

We recruited undergraduates who had an interest in programming but mini-
mal prior experience (no formal coursework, <10 hrs ever spent programming)
and were fluent in English. It was important for us to find “rank novices” who
had as little prior programming as possible to minimize confounding situations
where participants previously learned some programming concepts through
a different form of instruction. We recruited from three introductory infor-
matics and human-centered design & engineering courses from a large public
university using in-person announcements, emails, and flyers. We received
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approval from our Institutional Review Board prior to conducting this human
subjects study and received permission from instructors prior to contacting
their students. We framed the study as an opportunity to explore program-
ming by spending a day learning it, offering no compensation. We stratified
participants into (typically pair-wise) groups based on four factors in order of
priority: prior programming experience, year in school, gender, and major.
Participants within each group were randomly assigned to a condition.

After group assignment, we ended up with five participants in the experi-
mental condition and four in the control condition. While the sample size is
not large enough to make quantitative claims of statistical significance and
effect size, we were able to make detailed analyses of each individual partici-
pant. All participants were undergraduates from the same institution except
one (in experimental condition) who had completed her Bachelor’s degree and
was taking extra courses to prepare to apply for graduate school. All partici-
pants were pursuing or received a different humanities or social sciences major
(e.g. communication, medical anthropology, economics), with no participants
studying computer science, engineering, or informatics. Five participants iden-
tified as female and four as male; we balanced gender identities across condi-
tions. Participants could identify as multi-ethnic, so five identified as Asian, four
as White, one as Pacific Islander, and one as African-American. We relied on
self-reported experiences to serve as proxies for prior knowledge. The control
group had more prior knowledge, with two participants currently enrolled in at
least one introductory course requiring programming and also having pre-
viously used an online learning tool (e.g. MIT Scratch, Codecademy). In con-
trast, none of the participants in the experimental group reported having
taken or being enrolled in a course requiring programming at the time of
recruitment, although one participant reported reading “the first couple chap-
ters” of Learn Python the Hard Way (Shaw, 2017).

5.3. Procedure: learning from 1 of 2 instructional material variants

We conducted the study simultaneously in two classrooms with participants
separated by condition. We began the study by explaining the objective, and
had participants complete a pre-survey with questions on demographics,
fatigue, mindset, and a computer programming self-efficacy scale from
Ramalingam and Wiedenbeck (1998). We then explained the study schedule
and moved on to the instructional portion of the study.

For the instructional time, we provided participants with a paper packet with
instructional material, practice problems, and solutions to the practice problems.
Participants in different conditions received different packets. We allotted them
3 h to work through the content at their own pace and learn everything they
could to perform well on the post-test. We encouraged participants to work
sequentially through the packet and attempt problems before looking at the
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solution, but did not enforce this policy. To track their progress, we asked
participants to initial each page they completed. To determine effort on practice
exercises, we had participants self-report after each practice exercise whether
they produced an answer without consulting the solutions and whether their
answer matched the provided solution. Participants paced themselves and took
breaks as necessary.We allowedparticipants to ask questions, whichwe answered
by either referring to content in the paper packet or informing them that we were
unable to answer the question until after the conclusion of the study.We recorded
the questions asked and who asked them.

After the instructional period, we gave the students a 10- to 15-min break.
Towards the end of the break, we gave them a brief (3 min) mental rotation
test (Vandenberg & Kuse, 1978) as a distractor task. The objective of the
distractor task was to mitigate short-term, temporary learning gains related
to taking the post-test shortly after learning the material. A distractor task
occupies participants’ working memory with content unrelated to the post-test
so participants would rely more so on long-term memory when working on
the post-test (Liu & Fu, 2007; Stadler, 1995). We selected an assessment of
spatial orientation (Ekstrom, Dermen, & Harman, 1976) as the distractor task
because prior work has found a correlation between spatial reasoning and
programming ability (Cooper, Wang, Israni, & Sorby, 2015), although we did
not compare performances for this study because of confounding factors
relating to fatigue and engagement. After the break concluded, participants
spent 60 min taking the assessment and then completed a postsurvey.

6. Results: evaluating our hypotheses

In this section, we provide results to the evaluation we defined in the previous
section. These results attempted to provide some initial evidence relating to
the hypotheses we proposed relating to differences in the completion of
practice, errors made in the post-test, depth of understanding on the post-
test, and engagement throughout the study.

The objective of this evaluation was to provide evidence to suggest
that practicing each of these skills actually improved learning outcomes.
We wanted to try to observe longitudinal changes to understanding (H1)
and engagement (H4) as participants learned from instruction that
reflected our theory compared to more traditional instruction which did
not provide practice on each skill. After participants engaged with these
different learning materials, we wanted to understand differences in learn-
ing outcomes. Specifically, we sought to measure differences in under-
standing for each skill to provide evidence to support our sequencing of
skills (H2). In addition, we sought to measure differences in the depth of
understanding to provide evidence to suggest that explicit practice ben-
efits learners (H3).
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We choose to quantify our data on participant performance because addi-
tional qualitative prompting would have further fatigued participants and
made data more difficult to interpret. Our learning materials took about
3 hours to work through because they spanned from basic concepts (to
account for participants having minimal prior knowledge) to more advanced
concepts (to enable coverage of multiple templates). As a result, we needed to
balance collecting rich data on participants’ thought processes with interrupt-
ing their learning process and excessively fatiguing them. We conducted pilot
studies to evaluate the use of qualitative prompts such as think-aloud, follow-
up questions, and annotations to indicate confusion. While these prompts
could have provided rich data on learners’ thought processes, we found that
learners’ rate and quality of responses varied individually and also tended to
diminish as they progressed further and became more fatigued. We ended up
using brief follow-up questions (multiple choice, short answer) and metacog-
nitive prompts of planning and commenting code because they were light-
weight and beneficial enough for participants to engage with them. We
quantified self-reported feedback, scoring of the post-test, and qualitative
coding of metacognitive prompts to identify potential longitudinal trends as
learners progressed in the learning materials as well as potential trends relat-
ing to understanding different skills. We do not attempt any statistical analysis
due to our small sample size and only report frequency counts. This initial
evaluation provided initial evidence to support our theory and also potential
trends to motivate future investigation.

6.1. H1: experimental condition completed more practice exercises

H1 predicted that the experimental condition would be able to complete more
programming problems because they received practice in each of the four
skills, and that results in better understanding of the skills. To evaluate com-
pletion of the instructional content, we looked at participants’ self-reported
measures of whether they solved a practice exercise and/or got the exercise
correct without consulting the solution, which was provided.

We found a difference in completion rate between groups for the exercises
they attempted, as shown in Figure 12. For the earlier units on data types and
variables as well as the unit on print ( � 1=3 of the lesson), participants in both
conditions were able to both provide an answer and provide a correct answer
without looking at the solutions. In later units (e.g. arithmetic operators,
relational operators, conditionals), only about half of the control group pro-
duced an answer on their own and typically only 1 got the correct answer. In
contrast, most if not all of the experimental group were typically able to
provide an answer without looking at the solutions. But while participants in
the experimental condition more consistently provided answers to exercises
without looking at solutions, they often did not get exercises completely
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correct. This could be because of issues with the practice exercises, as some
participants expressed confusion about some exercises’ instructions and
response options (especially for practicing reading templates, S3). Comparing
completion and correctness for all the exercises between conditions is con-
founded because many exercises are different between condition.

For more direct comparisons of performance, we compared rates of com-
pletion and correctness for the 10 exercises involving writing code that were
present in both conditions’ lessons. Only a subset of the writing exercises (S2,
S4) are the same between conditions and they are shown separate from other
exercises in Figure 13.

Every participant in the experimental group was able to produce an answer
without consulting the solutions for most (6 out of 10) exercises. Furthermore,
all but one participant from the experimental group got most (7 out of 10) of
the exercises correct. In contrast, only half of the control group participants
were able to produce an answer for half of the exercises. Furthermore, at most
half of the control group were able to produce a correct answer for 7 out of 10
of the exercises. From this, we still observe that the experimental group was
more consistently able to produce answers that were typically correct. We
again see the trend that the completion and correctness rate tended to
decrease after the first two units. These findings align with our hypothesis
H1, where novices who get practice with each skill will be able to complete
more programming tasks because they have a better understanding of earlier
skills.

We can say that there is evidence to support H1, as participants in the
experimental condition self-reported completing more exercises in the instruc-
tion and also reported getting them correct throughout the lesson, whereas
the control group’s rate of completion and correctness diminished later in the
lesson.

Figure 12. Completion and correctness rates for all exercises. Number of participants in each
condition who reported completing each exercise (larger lighter dot) and getting an exercise
correct (smaller, darker dot) without looking at the solution. While the experimental condition
tended to make more errors (in part because of confusion with S3 exercises specific to their
condition), they still tended to consistently complete exercises before consulting the solutions.
In contrast, the control condition tended to complete fewer exercises as the instruction
progressed.
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6.2. H2: experimental condition made fewer errors, especially on later skills

H2 predicted that participants in the experimental group would make fewer
errors because practicing each skill would help better develop their program-
ming skills by doing so incrementally. We predicted that if novices did not
adequately understand programming skills with practice, errors would com-
pound from earlier skills (S1, S2) to later skills (S3, S4), resulting in more errors
in the later, more advanced skills. To evaluate error frequency and type, we
broke down the post-test score by the four skills as shown in Figure 14. It
shows that while there was large variation within both groups, participants in
the experimental condition performed better. In part because of the small
sample size and correcting for repeated statistical tests, we found no signifi-
cant difference between the performance of the control and experimental
group participants. Regardless, we found some evidence to support H2, as
participants in the experimental condition made fewer errors on the post-test,
especially in the later skills of reading and writing templates (S3 & S4).

6.3. H3: depth of understanding is greater for experimental group
participants

H3 predicted that the experimental group would demonstrate a greater depth of
understanding because they practiced each skill incrementally. To evaluate the
depthof understanding, we analyzed participants’ responses to themetacognitive
prompts in the post-test. These included retrospective code comments, preemp-
tive plans for the code they would write, and code explanation prompts. We
developed our codebook based on the SOLO taxonomy (Castro & Fisler, 2017;
Sheard et al., 2008) and followed a coding method from (Lister et al., 2010).

Figure 13. Completion and correction rates for identical exercises in both conditions. Number
of participants in each condition who reported completing each exercise (larger lighter dot),
getting an exercise correct (smaller, darker dot). When controlling for the exercises partici-
pants attempted, we see a more clear trend that the experimental group more consistently
completes exercises and gets them correct even as they progress further in the lesson. In
contrast, we see that after the first two units (data types, variables), there is a drop off in the
rate of completion and correctness for the control group.
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Following the process of Castro and Fisler (2017), we defined a multi-strand SOLO
taxonomy for our codebook.

Our codebooks are as follows:
The adapted SOLO taxonomy reflects a hierarchy of depth of understanding.

● Relational (R): A summary of what the code does in terms of the use of
a template (the forest). Learner provides reference to a template which
has an objective and integrates it into a task. This reflects knowledge of S3
and/or S4 (and therefore S1 and/or S2) in our quadrant of skills.

● Multi-structural (M): Description relating to more than 1 line of code but
not a template. This reflects knowledge of S1 and/or S2 in our quadrant of
skills, but not S2 or S3.

● Unistructural (U): Description of one line of the code. Reflects S1 and/or S2
knowledge (but not S3 or S4). For qualitative coding of comments only.

● Other (O): Any other description of the part or all of the code, displaying
no real evidence of understanding of the code as a whole; response has
little to no alignment with code being described.

● No answer (NA): No answer provided or answer is unintelligible.

The adapted SOLO taxonomy above assumes completeness at each level, but
this is not always the case. Another dimension to the depth of understanding
is the completeness or lack thereof:

● Incomplete (I): Learner provides a response which is partially correct, but
is missing parts or details that would make it complete.

● Error (E): Learner provides a response which has some correctness, but
also some inaccuracies.

To assess the reliability of the coding scheme, three authors independently
categorized all participant responses for all questions (186 responses in total).

Figure 14. Post-test scores by skill and in total for participants in each condition. Overall, the
experimental condition tended to score better than the control condition across all 4 skills. These
differences were more notable for the later skills of reading and writing templates (S3, S4).
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Disagreements on the first pass were minimal and were due to ambiguities in
the code definitions. After an additional pass, all three authors came to 100%
agreement on every code across all responses.

We found that in all types of questions (explain in plain English, under what
conditions, write a plan to solve this problem, comment your code), participants in
the experimental group produced responses that reflected higher level relational
understanding. Figures 15 and 16 show this difference in depth of understanding.
Figure 15 shows that for questions that assessed reading template (S3) knowledge
(explain in plain English, determine under what conditions something was true), all
participants from the experimental group who answered provided multistructural
responses which reflected knowledge of reading semantics (S1) and relational
knowledge which reflected knowledge of reading templates (S3). In contrast, at
least half of control participants provided responses that reflected incomplete
knowledge on all question types, producing responses that were incomplete,
lacking in evidence of understanding (other), or not responding at all. Figure 16
shows that participants in the experimental group wrote more comments which
reflected relational (S3) knowledge than participants in the control group, although
one participant in each condition did not write any comments. For one of the
questions (7C), three out of five experimental group participants wrote comments
wheremost lines demonstrated relational understanding. In contrast, only 1 of the 4
control group participants wrote any comments at all for the same question, and
a lesser proportion of their comments reflected relational understanding.
A confounding factor to this analysis is non-response, as some participants in
both conditions noted feeling fatigued by the time they took the post-test.
Regardless, we find that experimental group demonstrated higher level under-
standing at least twice as often as the control group did.

We found evidence to support H3, as participants in the experimental group
produced question responses and code commentswhich reflected greater depth of
understanding (as determined by the SOLO taxonomy) at least twice as often when
compared to participants in the control group.

Figure 15. SOLO levels of understanding for post-test questions by participant. These ques-
tions asked participants to explain in plain English (3B, 4B), determine under what conditions
something is true (4C), and plan code to solve a problem (6C, 7A). Each colored block
represents a participant’s response to an exercise. The experimental condition shows
a higher level of understanding (more relational responses).
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6.4. H4: engagement varied by person

H4 predicted that because a novice learned skills incrementally, they would be
more engaged with the learning experience.

To understand engagement, we reviewed researcher notes of participant
interactions during the instruction and also looked to postsurvey questions.
Researcher notes focused observations on participants (actions suggesting
engagement or lack thereof) and responses to conversation that relate to
fatigue, interest, and motivations relating to study participation. Postsurvey
questions asked participants to rate on a numeric scale to what extent they
found the content of the learning materials interesting, gave their best effort
on the learning, and completed practice problems without consulting solu-
tions. We also asked them what they did and did not enjoy about the study as
free-response questions.

Overall, we found that the variation for participants within the same condition
was too great to identify trends in engagement between conditions. When
considering researcher notes, differences in participant behavior existed in
both conditions, with some participants in both conditions able to engage for
extended periods of time without interruption, and others being distracted (e.g.
a member of the control group stepping out to buy coffee, a member of the
experimental group stepping out for a phone call). When considering postsurvey
response data, we found that Likert response data tended to vary wildly within
conditions (as shown in Figure 17). We found responses to free-response ques-
tions to be unremarkable as they focused on features of the study that were

Figure 16. SOLO levels of understanding for comments to participants’ code in writing
templates (S4) post-test questions. We asked participants to write a comment to explain
each line of code they wrote. Participants in the experimental condition tended to write
comments which reflected the relational understanding of the templates they applied to solve
the question.
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consistent between condition; for example, participants in both conditions noted
that they felt the medium of the learning materials (80+ pages) and the length of
the study (in total 5–6 hours) hindered engagement.

We can say we did not find much initial evidence to support or refute H4.
We observed variation in individual participant behaviors and found postsur-
vey responses indistinguishable between conditions. Further investigation into
engagement and perhaps refinement of the instructional design and measure-
ment tools could yield stronger evidence.

7. Discussion: theory and “piece by piece” instruction may have
helped

By proposing a theory of instruction for CS1 skill development, developing con-
crete learning materials from that theory, and evaluating potential learning out-
comes with those materials, the contributions of this paper attempt to improve
the design of CS1 instruction. In this section, we review each of the three
contributions, offer interpretations of our results, note limitations, propose future
work, and describe implications for this work to both research and practice.

7.1. Contributions: theory of instruction, learning materials, initial
evaluation

The first contribution of the paper is the theory of CS1 instruction which
structures and sequences programming skill. While prior work has identified
that there are distinct skills which novices learn in sequence, theories of CS1
instruction have yet to consider this skill progression such that theories can
translate to concrete learning materials. So, we proposed a theory which
identifies distinct introductory programming skills that novices can learn
sequentially. Skills are taught explicitly and incrementally so as not to over-
whelm learners. The theory proposes that instruction first develop skills related
to the semantics of a language by teaching tracing (S1: reading semantics) and

Figure 17. Participants’ survey responses to questions relating to engagement with the
learning materials, by condition. Engagement varied by person, so we did not identify any
trend in engagement between conditions.
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then writing correct syntax (S2: writing semantics). After explicit instruction on
these skills, instruction should then use templates to teach comprehending
common patterns in code (S3: reading templates) and then writing programs
that implement these templates (S4: writing templates). We believe that the
most salient part of this theory is not necessarily the four specific skills we
defined, but rather the emphasis on being rigorous and explicit in how skills
are defined and ordered in instruction; doing so will make a theory of CS1
instruction more useful for the design of learning materials.

The second contribution of this paper is the learning materials that we devel-
oped from the proposed theory. To provide a case study of translating this theory
into concrete learning materials, we created an introductory Python curriculum
which sequentially taught each of the four skills for introductory CS1 concepts.
The learning materials focused instruction, practice, and feedback on one skill at
a time. We developed new genres of practice items for writing semantics (transla-
tion of unambiguous description to code) and reading templates (determining if
code implements a template correctly). We used these concrete learningmaterials
as a case study to evaluate the efficacy of our theory.

The third and final contribution of the paper is the initial evaluation of the
theory, where we sought to understand the impact of explicit instruction and
practice of introductory programming skills on novices. We developed hypoth-
eses from our theory that predicted that learners who received explicit practice
on each of the four skills would be able to complete more practice exercises,
make fewer errors, have a greater depth of understanding, and be more
engaged. To evaluate these hypotheses, we conducted an exploratory study
with novice programmers where the experimental group learned from the
material that reflected the theory and distinguished between skills and pro-
vided explicit practice for all four skills. In contrast, the control group learned
from the material that did not differentiate between skills in instruction and
provided practice for only writing-related skills. Even though we attempted to
control for amount of practice, we found evidence to suggest that those who
received practice on all skills completed more exercises during practice, made
fewer errors in the post-test (especially for later skills relating to templates),
produced responses that reflected greater depth of understanding, but did not
indicate differences in engagement. This evaluation provides some initial
evidence relating to the efficacy of our theory, but there are multiple inter-
pretations to these results.

7.2. Interpretation of results: explicit practice may have helped, but
confounds exist

One interpretation of the results is that they provide some initial evidence to
suggest that explicit practice for each of the four programming skills can
improve CS1 instruction. We found that the participants who received practice
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on all four skills more consistently completed practice exercises, made fewer
errors on the post-test (especially for the more advanced skills of reading and
writing templates), and produced responses that reflected deeper understand-
ing on the SOLO taxonomy. We can interpret the results to suggest that this
evidence provides support for our theory and that providing explicit, sequen-
tial instruction for programming skills (teaching them “piece by piece”) helps
novices learn to program when compared to more writing-focused instruction
that does not distinguish between skills. This small-scale evaluation provides
some evidence to support the theory and the broader claim that CS1 instruc-
tion can benefit from more structure and consideration of skill progression.

Another interpretation is that differences in learning outcomes were because
of the unbalanced use of metacognitive prompts in the learning materials.
Because participants in different conditions had different frequencies of question
types and different questions had different prompts, there was an imbalance in
metacognitive prompting between conditions. We relied on self-report from
metacognitive prompts to identify sources of error. Metacognition is challenging
for learners (National Academies of Sciences, 2018), so the quality of these self-
reports varied. Furthermore, prior work has found that prompting learners to
thinkmetacognitively can improve their ability to read andwrite code (Loksa & Ko,
2016). This is a potentially confounding factor when evaluating differences in
learning gains. But, the control condition had more practice with writing tem-
plates, the question with the most prompting. Therefore, the confound of the
amount of metacognitive practice was biased against the experimental condition
and in favor of the control condition.

Another interpretation of the results is that the difference in learning outcomes
was a result of individual differences in participants. The small sample size for this
initial study requires us to consider the variation between individuals. For exam-
ple, the only two participants who reported having a fixed mindset (Dweck, 2008)
ended up in the control group by chance. Fixed mindset can negatively impact
learning to program (Murphy & Thomas, 2008), so differences in mindset could
have been biased in favor of the experimental condition. In contrast, prior knowl-
edge was biased against the experimental condition, as we assigned the two
participants with the most prior knowledge, the only two who were currently
enrolled in a programming class, to the control condition.

Other potential confounding factors were approximately balanced between
conditions, such as programming self-efficacy and fatigue. We measured pro-
gramming self-efficacy before and after the study using a survey that had under-
gone validation by Ramalingam and Wiedenbeck (1998). We found that for both
conditions, participants reported low initial programming self-efficacy (average of
1–1.8 on 7-point Likert scale) and reported a final programming self-efficacy that
was greater (1.83–5.83). Another confound we checked for was fatigue. Prior to
the study, participants in both conditions all reported getting ample rest (6–8 hrs),
although participants in both conditions reported feeling distracted or sleepy to
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some extent during the instruction and post-test. We found similar patterns of
increase in programming self-efficacy and levels of fatigue in both condition, so
we do not have evidence to suggest that these potential confounds are impactful
to the differences in learning outcomes.

7.3. Limitations and future work: improving rigor and breadth of theory

In this section, we note limitations and frame them as future work so we can
improve upon the theory, the learning materials, and evaluating the effective-
ness of these learning materials.

Future work could expand upon this theory by understanding how well
skills transfer. Investigating how well different sub-skills transfer between
programming languages can help improve skill development but is out of
the scope of the learning materials we created, which taught introductory
Python. This transfer between programming languages and environments is
the third and final link in the Chain of Cognitive Accomplishments proposed
by Linn and Dalbey (1985). Reading semantics (S1) and writing semantics (S2)
likely do not transfer well because program syntax varies, but reading and
writing templates (S3, S4) may transfer better as templates are supposed to
reflect common patterns that exist across programming languages. Structuring
learning materials according to this theory could decrease the teaching
required to learn a second programming language.

Another potential thread of future work includes considering how to incor-
porate additional skills with the theory. As stated previously, many important
programming skills are out of the scope of this theory. These skills include
testing, debugging, problem-solving, and solving problems that require
inventing new or previously unlearned templates (“creating” templates). For
example, problem-solving is not explicitly addressed or taught in this theory of
instruction. To determine if learning outcomes were relational in our adapta-
tion of the SOLO taxonomy, we considered whether novices integrated tem-
plates to their solution. We did not, however, consider how novices
conceptualized the problem description and solved the problem. Connecting
this theory to theories of programming problem-solving such as the one by
Loksa et al. (2016) could be promising. Another example of a skill we did not
incorporate is how novices could develop their own templates, something that
is more likely to happen as they learn more concepts and attempt more
complex tasks. Finally, we taught semantic concepts (e.g. variables, conditional
statements) in isolation and used templates to integrate these skills; Huang
(2018) suggested that integrating skills across concepts may require instruction
on additional skills (such as tracking program state and managing cognitive
load) which are out of the scope of their theory. We believe that expanding
and iterating upon our theory can result in theories of instruction that make
CS1 instruction more robust.
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Future work can also improve the learning materials with psychometric analysis
of practice and assessment items and identifying the amount of practice required for
each skill. Psychometric evaluation of the new item genres we proposed, which
assess different skills, could help us better understand how distinct knowledge of
each skill may be and how reliable interpretations of exercise performance are. This
evaluation would be especially insightful in reading templates (S3) and writing
templates (S4) practice (as defined in Section 4) as they are more novel in design.
We found that for reading templates practice which asked learners to identify the
mistake in the implementation of a template, the wording of the multiple choice
options confused some participants in the experimental group. Those participants
felt they correctly identified the location of the error in the code, but felt multiple
answer responses could explain the error. Figure 12 may reflect this confusion as
only 1 of the 5 experimental group participants reported getting the reading
templates question correct even though 3–5 participants attempted each question.
For writing templates practice, participants in both conditions often did not anno-
tate the code with comments after writing the code. Confusion with the wording of
reading templates questions and non-response relating to comments in writing
practice makes the scores harder to interpret, so improving the design of exercises
with psychometric evaluation is promising future work.

Another way to improve practice is to understand how much practice is
required for each skill. Our theory suggests that some skills are precursory
skills, so perhaps these more precursory skills (e.g. tracing) require less practice
than more complex later skills (e.g. writing templates). We did not vary the
amount of practice participants got (except in an attempt to counterbalance
the amount of practice between conditions), so another open question is
identifying how much practice participants require before understanding the
skill well enough to progress.

Further evaluation of this theory could investigate how learners with different
motivations engage with instruction derived from our theory. Learners all came
from the same institution, self-selected to participate in this study, and received
no compensation, so the study likely did not include learners who had more
extrinsic motivations. Furthermore, the survey taken prior to participating in the
study asked about mindset, programming self-efficacy, prior programming
experience, attitudes towards programming, level of fatigue, ethnic identity,
and parents’ education, so stereotype threat could have affected their learning
process and post-test performance (Schmader & Johns, 2003; Schmader, Johns, &
Forbes, 2008). We found it necessary to collect some of this information prior to
the study (e.g. mindset, self-efficacy, attitudes, level of fatigue), but we could have
collected other information after the study. By designing additional learning
materials based on this theory and conducting evaluations with participants in
different contexts and with varied motivations, we can better understand how
diverse novices conceptualize instruction based on this theory and how effec-
tively they can learn from this instruction.
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7.4. Implications and conclusion: specific theories can structure instruction
for learners

Implications of this work extend to both research and practice and the inter-
actions between them.

As a larger and more diverse body of learners begin to study CS1, there is
a need to make instruction that is more effective, and, as a result, a greater
need to connect research and practice on how people learn to program.
Computing education research communities continue to grow around the
world as do the communities of computing instructors. Yet, much of the
current CS1 instruction still starts with “hello world” or an equivalent task,
which has learners first and foremost writing code they do not understand to
receive an output from a computer that is also ambiguous. CS1 instruction
often does not structure knowledge relating to different programming skills,
even though research suggests there are many skills that may develop sequen-
tially. The gap between research and practice makes research findings difficult
to translate to pedagogy and instruction.

Specific theories of instruction such as the one proposed in this paper can help
inform and substantiate instructional design. Prior theories of instruction are not
specific to CS1 or are too ambiguous to be easily translated into learning
materials. To address this gap, we proposed a theory which sequences and
structures knowledge relating to introductory programming skills in such a way
that the theory can directly inform instructional design. To show this, we can
develop an introductory Python lesson based on our theory and found some
initial evidence to validate our theory. As detailed in the previous section, more
work needs to be done to develop and evaluate this theory, but the promise is
that instruction can be more approachable to future learners.

By developing and evaluating theories which structure skill progression and
can easily translate to concrete learning materials, we can teach skills incre-
mentally and avoid overwhelming learners.

Acknowledgments

We thank the many pilot study and study participants for their time and thoughtful feed-
back. We also thank the instructors who helped us iterate on our ideas and recruit
participants.

Learning materials (lesson, post-test) and additional study information can be found at
https://github.com/codeandcognition/archive-2018cse-xie This material is based upon work
supported by the National Science Foundation under Grant No. 1639576, 1703304, 1735123,
1314399, 12566082, and 1829590.

Disclosure statement

No potential conflict of interest was reported by the authors.

42 B. XIE ET AL.

https://github.com/codeandcognition/archive-2018cse-xie


Funding

This work was supported by the National Science Foundation [1703304], [1735123],
[1829590], [12566082], [1639576], [1314399].

Notes on contributors

Dastyni Loksa is a Ph.D student at the University of Washington, advised by Prof. Andrew J.
Ko in the Code & Cognition Lab. His research interests center on the mental processes of
problem solving and design, specifically the metacognitive and self-regulation skills neces-
sary for successful computer programming. He seeks to develop methods of learning and
teaching cognitive skills for programming so that we can support learners from any back-
ground and cognitive style. He received his Bachelor’s degree in informatics at University of
California, Irvine and his Master’s degree in information science from University of
Washington.

Greg L. Nelson is a Ph.D student at the University of Washington, advised by Prof. Andrew J.
Ko in the Code & Cognition Lab. His research interests center on rigorous theories of
computer programming knowledge and using them to create better learning environments,
but also include scientific process, statistical methods, HCI, and augmented reality. He seeks
to foster a world where anyone can learn programming and sees programming as a
medium that promises to revolutionize society, similar to widespread natural language
literacy and the printing press. He has received a National Science Foundation (NSF)
Graduate Research Fellowship, and received his BS in Computer Science and Physics from
Georgetown; he hopes you judge him and others using the merits and an understanding of
their work and, where he was taught to be a critical and reflective scientist and take awards
and titles.

Matthew J. Davidson is a Ph.D. student in Measurement & Statistics at University of
Washington, College of Education. His research centers on assessment of writing, especially
of English language learners. He is particularly interested in investigating methods for
analyzing data captured during the process of writing. He hopes to develop ways to use
that data both as a tool for formative assessment and to investigate the validity of student
response processes on writing tests. Ultimately, he is committed to making assessment data
support student learning. He received his bachelor’s degree in Philosophy, History, and
English from the University of Texas, and his Master’s of Education in Learning Sciences from
the University of Washington.

Dongsheng Dong is a Ph.D. student in Measurement & Statistics at University of
Washington, College of Education. Her research interests center on the development of K-
12 STEM assessments, item development, and game-based learning. She is especially

COMPUTER SCIENCE EDUCATION 43

Benjamin Xie is a Ph.D. student at the University of Washington Information School, advised 
by Dr. Amy J. Ko in the Code & Cognition Lab. His research is in designing and 
developing interactions that have learners and intelligent agents collaborate to make 
learning computing more inclusive, work that spans human-computer interaction, arti�cial 
intelligence, and computing education. His vision is to computationally model how people 
learn programming to develop personalized online learning experiences where the learner 
is in control. He is a National Science Foundation (NSF) Graduate Research Fellow and was 
previously an MIT EECS-Google Research and Innovation Scholar. He received his Master's 
and Bachelor's degrees in computer science from MIT.



interested in developing and optimizing test items and test accommodations for K-12 STEM
assessments which could better reflect students’ real potentials and assure the validity of
assessments. She is also enthusiastic about using different methodologies to explore and
describe students’ thinking and behavior patterns through large-scale assessments. She
received her Master’s degree in TESOL from University of Pennsylvania, Graduate School of
Education.

Harrison Kwik is a recent graduate of the University of Washington Computer Science
department, but still continues to collaborate with members of the Code & Cognition
Lab. During his undergraduate career, he assisted with various projects within the lab and
also independently conducted research on transfer students within computer science. He is
interested in continuing to pursue research and plans on applying to Ph.D. programs in the
next coming months.

Alex Hui Tan is a recent graduate of the University of Washington Information School, and a
current software developer at Hazel Analytics, Inc.. As an undergraduate, Alex taught
Scratch, HTML and CSS to K-8 students through a partnership between Computing Kids
and Seattle Public Schools. In pursuit of his interest in computing education, Alex assisted in
the Code & Cognition lab, helping prototype tools for programming practice.

Leanne Hwa is a senior at the University of Washington Information School, supporting the
Code & Cognition Lab on programming tutors while independently investigating the role of
informal computing mentors amongst south Seattle teens. She is passionate about mentor-
ship and representation in STEM and has served various leadership roles within UW Women
in Informatics and also as a teaching assistant for the introductory Informatics course.

Min Li, an associate professor in Measurement & Statistics at College of Education, University
of Washington, is an assessment expert with a deep interest in understanding how student
learning can be accurately and adequately assessed both in large-scale testing and class-
room settings. Her work reflects a combination of cognitive science and psychometric
approaches in various projects on STEM assessments, including examining cognitive
demands of science items, measurement issues in constructing instructionally sensitive
test items, effects of context characteristics on item parameters, issues of testing linguistic
minority students in mathematics and science, analyzing teachers’ classroom assessment
practices, development of instruments to evaluate teachers’ assessment practices, and use
of science notebooks as assessment tools. She received her bachelor’s degree in psychology
from Beijing Normal University and Ph.D. in education from Stanford University.

44 B. XIE ET AL.

              
             

             
           
             
             

            
               
             

           
            

              
             

            
           
             
             

            
               
             

           
            

              
             

             
           
             
             

            
               
             

           
            

Amy J. Ko is an Associate Professor at the University of Washington Information School 
and an Adjunct Associate Professor in Computer Science & Engineering. She directs the 
Code & Cognition Lab, where she invents and evaluates interactions with people and 
code, spanning the areas of human-computer interaction, computing education, and soft- 
ware engineering. She is the author of 100 peer-reviewed publications, 9 receiving best 
paper awards and 3 receiving most in�uential paper awards. In ’13, she co-founded 
AnswerDash, a SaaS company o�ering instant answers on websites using a selection- 
based search technology invented in her lab. In ’10, she was awarded an NSF CAREER 
award for research on evidence-based bug triage. She received her Ph.D. at the 
Human-Computer Interaction Institute at Carnegie Mellon in 2008. She received degrees 
in Computer Science and Psychology with Honors from Oregon State University in 2002.



References

Allen, M. J., & Yen, W. M. (2001). Introduction to measurement theory. Long Grove, IL:
Waveland Press.

Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J. (1984). Cognitive principles in the design
of computer tutors (No. TR-84-1-ONR). Retrieved from http://www.dtic.mil/docs/citations/
ADA144825

Archer, A. L., & Hughes, C. A. (2010). Explicit instruction: Effective and efficient teaching. New
York, NY: Guilford Press.

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy
(structure of the observed learning outcome). Cambridge, MA: Academic Press.

Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press.
Buck, D., & Stucki, D. J. (2000). Design early considered harmful: Graduated exposure to

complexity and structure based on levels of cognitive development. SIGCSE Bullettin, 32(1),
75–79.

Buck, D., & Stucki, D. J. (2001). JKarelRobot : A case study in supporting levels of cognitive
development in the computer science curriculum mathematical sciences department.
ACM SIGCSE Bulletin, 33(1), 16–20.

Caspersen, M. E., & Bennedsen, J. (2007). Instructional Design of a Programming Course:
A Learning Theoretic Approach. In Proceedings of the Third International Workshop on
Computing Education Research (pp. 111–122). New York, NY: ACM.

Castro, F. E. V., & Fisler, K. (2017). Designing a multi-faceted SOLO taxonomy to track program
design skills through an entire course (pp. 10–19). ACM Press. Retrieved from http://dl.acm.
org/citation.cfm?doid=3141880.3141891

Clancy, M., & Linn, M. C. (1992). Designing pascal solutions: A case study approach. Rockville,
MD: Computer Science Press.

Clancy, M. J., & Linn, M. C. (1999). Patterns and pedagogy. Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education (pp. 37–42). New York, NY: ACM.

Clear, T., Whalley, J., Robbins, P., Philpott, A., Eckerdal, A., & Laakso, M. (2011, June). Report
on the final BRACElet workshop: Auckland University of Technology, September 2010.
Journal of Applied Computing and Information Technology, 15. http://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A431090&dswid=2905

Collins, A., Brown, J. S., & Newman, S. E. (1988). Cognitive apprenticeship: Teaching the craft of
reading, writing and mathematics. Thinking: the Journal of Philosophy for Children, 8(1), 2–10.

Cooper, S., Wang, K., Israni, M., & Sorby, S. (2015). Spatial skills training in introductory
computing. Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (pp. 13–20). New York, NY: ACM.

Corney, M., Lister, R., & Teague, D. (2011). Early relational reasoning and the novice
programmer: Swapping as the hello world of relational reasoning. In Proceedings of the
Thirteenth Australasian Computing Education Conference Volume 114 (pp. 95–104).
Australian Computer Society, Inc. Retrieved from http://dl.acm.org/citation.cfm?id=
2459936.2459948

Cunningham, K., Blanchard, S., Ericson, B., & Guzdial, M. (2017). Using tracing and sketching
to solve programming problems: Replicating and extending an analysis of what students
draw. Proceedings of the 2017 ACM Conference on International Computing Education
Research (pp. 164–172). New York, NY: ACM.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of
Man-Machine Studies, 39(2), 237–267.

de Raadt, M. (2008). Teaching programming strategies explicitly to novice programmers
(Unpublished doctoral dissertation). University of Southern Queensland.

COMPUTER SCIENCE EDUCATION 45

http://www.dtic.mil/docs/citations/ADA144825
http://www.dtic.mil/docs/citations/ADA144825
http://dl.acm.org/citation.cfm?doid=3141880.3141891
http://dl.acm.org/citation.cfm?doid=3141880.3141891
http://dl.acm.org/citation.cfm?id=2459936.2459948
http://dl.acm.org/citation.cfm?id=2459936.2459948


Doyle, W. (1983, June). Academic work. Review of Educational Research, 53(2), 159–199.
Dweck, C. S. (2008). Mindset: The new psychology of success. New York, NY: Ballantine Books.
Ekstrom, R. B., Dermen, D., & Harman, H. H. (1976). Manual for kit of factor-referenced

cognitive tests (Vol. 102). New Jersey, NJ: Educational Testing Service Princeton.
Fisler, K., & Castro, F. E. V. (2017). Sometimes, rainfall accumulates: Talk-alouds with novice

functional programmers. In Proceedings of the 2017 acm conference on international
computing education research (pp. 12–20). ACM. doi:10.1145/3105726.3106183

Fuller, U., Riedesel, C., Thompson, E., Johnson, C. G., Ahoniemi, T., Cukierman, D., . . .
Thompson, D. M. (2007). Developing a computer sciencespecific learning taxonomy.
ACM SIGCSE Bulletin, 39(4), 152. Retrieved from http://portal.acm.org/citation.cfm?doid=
1345375.1345438

Gluga, R., Kay, J., Lister, R., Simon, & Kleitman, S. (2013). Mastering cognitive development
theory in computer science education. Computer Science Education, 23(1), 24–57.

Gluga, R., Kay, J., Lister, R., & Teague, D. (2012). On the reliability of classifying programming
tasks using a neo-piagetian theory of cognitive development. In Proceedings of the ninth
annual international conference on International computing education research ICER ’12
(pp. 31). Retrieved from http://dl.acm.org/citation.cfm?doid=2361276.2361284

Hertz, M., & Jump, M. (2013). Trace-based teaching in early programming courses. In
Proceedings of the 44th ACM Technical Symposium on Computer Science Education (pp.
561–566). Retrieved from http://dl.acm.org/citation.cfm?doid=2445196.2445364

Huang, Y. (2018). Learner modeling for integration skills in programming (Unpublished
doctoral dissertation). University of Pittsburgh.

Kolodner, J. L., & Guzdial, M. (2000). Theory and practice of case-based learning aids. In
Jonassen, D.H. & Land, S.M. (Eds.), Theoretical Foundations of Learning Environments (pp.
215–242). New York, NY: Routledge.

Kreitzberg, C. B., & Swanson, L. (1974). A cognitive model for structuring an introductory
programming curriculum. In Proceedings of the May 6–10, 1974, National Computer
Conference and Exposition (pp. 307–311). New York, NY: ACM.

Kurtz, K. J., Miao, C.-H., & Gentner, D. (2001, October). Learning by analogical bootstrapping.
Journal of the Learning Sciences, 10(4), 417446.

Linn, M., & Dalbey, J. (1985, September). Cognitive consequences of programming instruc-
tion: Instruction, access, and ability. Educational Psychologist EDUC PSYCHOL, 20, 191206.

Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming problems.
Communications of the ACM, 35(3), 121–132. Retrieved from http://portal.acm.org/citation.
cfm?doid=131295.131301

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M. (2004). A multi-national
study of reading and tracing skills in novice programmers. In ACM SIGCSE Bulletin (Vol. 36, No.
4, pp. 119-150). New York, NY: ACM.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jacková, J., Lopez, M., McCartney, R.,
Robbins, P., Seppälä, O. and Thompson, E. (2010). Naturally occurring data as research
instrument: Analyzing examination responses to study the novice programmer. ACM
SIGCSE Bulletin, 41(4), 156–173.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for
the trees: Novice programmers and the solo taxonomy. In Proceedings of the 11th annual
sigcse conference on innovation and technology in computer science education (pp.
118–122). ACM. doi:10.1145/1140124.1140157

Liu, Y., & Fu, X. (2007). How does distraction task influence the interaction of working
memory and long-term memory? In D. Harris (Ed.), Engineering psychology and cognitive
ergonomics (Vol. 4562, pp. 366–374). Berlin, Heidelberg: Springer Berlin Heidelberg.

46 B. XIE ET AL.

https://doi.org/10.1145/3105726.3106183
http://portal.acm.org/citation.cfm?doid=1345375.1345438
http://portal.acm.org/citation.cfm?doid=1345375.1345438
http://dl.acm.org/citation.cfm?doid=2361276.2361284
http://dl.acm.org/citation.cfm?doid=2445196.2445364
http://portal.acm.org/citation.cfm?doid=131295.131301
http://portal.acm.org/citation.cfm?doid=131295.131301
https://doi.org/10.1145/1140124.1140157


Loksa, D., & Ko, A. J. (2016). The role of self-regulation in programming problem solving
process and success. Proceedings of the 2016 ACM Conference on International Computing
Education Research (pp. 83–91). New York, NY: ACM.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016).
Programming, problem solving, and self-awareness: Effects of explicit guidance (pp.
14491461). ACM Press.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing
and writing skills in introductory programming. Proceedings of the Fourth International
Workshop on Computing Education Research (pp. 101–112). New York, NY: ACM.

McCartney, R., Moström, J. E., Sanders, K., & Seppälä, O. (2004). Questions, annotations, and
institutions: Observations from a study of novice programmers. Proceedings of the Fourth
Finnish/Baltic Sea Conference on Computer Science Education (pp. 11-19). Helsinki, Finland:
Helsinki University of Technology, Department of Computer Science and Engineering,
Laboratory of Information Processing Science.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., & Thomas, L. (2006). A cognitive
approach to identifying measurable milestones for programming skill acquisition (Working
group reports on ITiCSE on Innovation and technology in computer science education ITiCSE-
WGR ’06 (December 2006), 182). Retrieved from http://portal.acm.org/citation.cfm?doid=
1189215.1189185

Morra, S., Gobbo, C., Marini, Z., Sheese, R., Gobbo, C., Marini, Z., & Sheese, R. (2012). Cognitive
development : Neo-piagetian perspectives. New York: Psychology Press.

Muller, O., Haberman, B., & Ginat, D. (2007). Pattern-oriented instruction and its influence on
problem decomposition and solution construction. ACM SIGCSE Bulletin (Vol. 39, No. 3,
pp. 151-155). New York, NY: ACM.

Murphy, L., Fitzgerald, S., Lister, R., & McCauley, R. (2012). Ability to explain in plain english
linked to proficiency in computer-based programming. In Proceedings of the ninth annual
international conference on international computing education research (pp. 111–118).
ACM. doi:10.1145/2361276.2361299

Murphy, L., & Thomas, L. (2008). Dangers of a fixed mindset: Implications of self-theories
research for computer science education. Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education (pp. 271–275). New York, NY: ACM.

National Academies of Sciences. (2018). how people learn II: Learners, contexts, and cultures.
Washington, DC: National Academies Press.

Nelson, G. L., Xie, B., & Ko, A. J. (2017). Comprehension First: Evaluating a Novel Pedagogy
and Tutoring System for Program Tracing in Cs1. Proceedings of the 2017 ACM Conference
on International Computing Education Research (pp. 2–11). New York, NY: ACM.

Philpott, A., Robbins, P., & Whalley, J. L. (2007). Assessing the Steps on the Road to Relational
Thinking. Proceedings of the 20th Annual Conference of the National Advisory Committee on
Computing Qualifications (pp. 286). Nelson, New Zealand: NACCQ.

Proulx, V. K. (2000). Programming patterns and design patterns in the introductory computer
science course SIGCSE, 5.

Ramalingam, V., & Wiedenbeck, S. (1998, December). Development and validation of scores
on a computer programming self-efficacy scale and group analyses of novice program-
mer selfefficacy. Journal of Educational Computing Research, 19(4), 367–381.

Ranum, D., Miller, B., Zelle, J., & Guzdial, M. (2006). Successful approaches to teaching intro-
ductory computer science courses with python. In ACM SIGCSE Bulletin (Vol. 38, No. 1, pp.
396–397). New York, NY: ACM.

Ranum, D. L., & Miller, B. N. (2013). Python programming in context (2nd ed.). Burlington, MA:
Jones & Bartlett Learning.

Rist, R. S. (1989, July). Schema creation in programming. Cognitive Science, 13(3), 389414.

COMPUTER SCIENCE EDUCATION 47

http://portal.acm.org/citation.cfm?doid=1189215.1189185
http://portal.acm.org/citation.cfm?doid=1189215.1189185
https://doi.org/10.1145/2361276.2361299


Robins, A., Rountree, J., & Rountree, N. (2003, June). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2), 137–172.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L., & Zander, C.
(2012). Threshold concepts and threshold skills in computing. In Proceedings of the ninth
annual international conference on international computing education research (pp. 23–30).
ACM. doi:10.1145/2361276.2361283

Schank, P. K., Linn, M. C., & Clancy, M. J. (1993). Supporting Pascal programming with an on-line
template library and case studies. International Journal of Man-Machine Studies, 38(6),
1031–1048.

Schmader, T., & Johns, M. (2003). Converging evidence that stereotype threat reduces
working memory capacity. Journal of Personality and Social Psychology, 85(3), 440–452.

Schmader, T., Johns, M., & Forbes, C. (2008, April). An integrated process model of stereo-
type threat effects on performance. Psychological Review, 115(2), 336–356.

Shaw, Z. A. (2017). Learn python 3 the hard way: A very simple introduction to the terrifyingly
beautiful world of computers and code. Boston, MA: Addison-Wesley Professional.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., & Whalley, J. L. (2008). Going solo
to assess novice programmers. In Proceedings of the 13th annual conference on innovation
and technology in computer science education (pp. 209–213). ACM. doi:10.1145/
1384271.1384328

Shneiderman, B. (1977, January). Teaching programming: A spiral approach to syntax and
semantics. Computers & Education, 1(4), 193–197.

Soloway, E. (1986, September). Learning to program = learning to construct mechanisms
and explanations. Communications of the ACM, 29(9), 850–858.

Soloway, E., & Ehrlich, K. (1984, September). Empirical studies of programming knowledge.
IEEE Transactions on Software Engineering, SE-10(5), 595–609.

Stadler, M. A. (1995, May). Role of attention in implicit learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 21(3), 674–685.

Szabo, C., Falkner, K., & Falkner, N. (2014). Experiences in course design using
neo-piagetian theory. In Proceedings of the 14th Koli Calling International Conference
on Computing Education Research (pp. 81–90). Retrieved from http://dl.acm.org/cita
tion.cfm?id=2674691

Tew, A. E., & Guzdial, M. (2010). Developing a validated assessment of fundamental cs1
concepts. In Proceedings of the 41st acm technical symposium on computer science educa-
tion (pp. 97–101). ACM. doi:10.1145/1734263.1734297

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom’s taxonomy
for CS assessment. In Tenth australasian computing education conference ace, Vol. 78.

Thota, N., & Whitfield, R. (2010). Holistic approach to learning and teaching introductory
object-oriented programming. Computer Science Education, 20(2), 103–127.

Vandenberg, S. G., & Kuse, A. R. (1978, December). Mental rotations, a group test of
threedimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.

Venables, A., Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code writing
skills in the novice programmer. In Proceedings of the fifth international workshop on
computing education research workshop (pp. 117–128). ACM. doi:10.1145/
1584322.1584336

Whalley, J.L., & Kasto, N. (2013). Revisiting models of human conceptualisation in the context of
a programming examination. In A. Carbone, & J. L. Whalley (Eds.), Proceedings of the Fifteenth
Australasian Computing Education Conference (Vol. 136, pp.64–73). Adelaide, Australia:
Australian Computer Society, Inc.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K. A., & Prasad, C.
(2006). An Australasian study of reading and comprehension skills in novice

48 B. XIE ET AL.

https://doi.org/10.1145/2361276.2361283
https://doi.org/10.1145/1384271.1384328
https://doi.org/10.1145/1384271.1384328
http://dl.acm.org/citation.cfm?id=2674691
http://dl.acm.org/citation.cfm?id=2674691
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/1584322.1584336


programmers, using the bloom and SOLO taxonomies. In Proceedings of the 8th
Australasian Conference on Computing Education (pp. 10). Australian Computer Society,
Inc.

Winslow, L. E. (1996, September). Programming pedagogy-a psychological overview. SIGCSE
Bullettin, 28(3), 17–22.

Xie, B., Nelson, G. L., & Ko, A. J. (2018). An explicit strategy to scaffold novice program
tracing. In 2018 acm sigcse technical symposium on computer science education. ACM.
doi:10.1145/3159450.3159527

Zimmerman, B., & Schunk, D. H. (2011). Handbook of self-regulation of learning and perfor-
mance. New York, NY: Taylor & Francis.

COMPUTER SCIENCE EDUCATION 49

https://doi.org/10.1145/3159450.3159527

	Abstract
	1. Introduction: CS1 instruction could better teach programming skills
	2. Related work: CS1 skills and theories to inform instructional design
	2.1. Programming skills (tracing, explaining, writing) are distinct and may develop sequentially
	2.2. Theory decomposing programming skills lacks connections to instruction and lacks asimplifying structure to make instructional design tractable
	2.2.1. Some theories provide abstract constraints without fully specifying instruction
	2.2.2. More specific theories do not translate to instruction that supports skill development

	2.3. Templates can help transition from learning alanguage to using it to problem solve

	3. Theory: separating, structuring, and sequencing programming skills
	3.1. Connecting theory to prior work: differentiating and ordering skills
	3.2. Atheory of instruction for four programming skills across two dimensions
	3.3. Summary of theory: read before write; semantics before templates

	4. Instruction: teaching skills incrementally
	4.1. Instruction on semantics
	4.1.1. Instruction on reading semantics (S1)
	4.1.2. Instruction on writing semantics (S2)

	4.2. Instruction on template knowledge (S3)
	4.2.1. Templates have an objective and multiple parts or steps
	4.2.2. Instruction on S3 (reading templates)
	4.2.3. Instruction on writing templates (S4)

	4.3. The post-test used avariety of exercises to evaluate each skill
	4.4. Comparing our curriculum to similar

	5. Evaluation of theory: exploratory experimental study
	5.1. Hypotheses: explicit practice improves learning & engagement
	5.2. Participants: undergraduates who were novice programmers
	5.3. Procedure: learning from 1 of 2 instructional material variants

	6. Results: evaluating our hypotheses
	6.1. H1: experimental condition completed more practice exercises
	6.2. H2: experimental condition made fewer errors, especially on later skills
	6.3. H3: depth of understanding is greater for experimental group participants
	6.4. H4: engagement varied by person

	7. Discussion: theory and “piece by piece” instruction may have helped
	7.1. Contributions: theory of instruction, learning materials, initial evaluation
	7.2. Interpretation of results: explicit practice may have helped, but confounds exist
	7.3. Limitations and future work: improving rigor and breadth of theory
	7.4. Implications and conclusion: specific theories can structure instruction for learners

	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	References



