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1

Introduction

Since the early days of two-dimensional Conformal Field Theory (CFT), it has been real-

ized that the discipline has deep ties to the geometry of Riemann surfaces [1]. In particular,

bundles over the moduli spaces of these surfaces encode field theoretic data such as the

spectrum and correlation functions. By understanding the behavior of these objects in

limiting situations (i.e. approaching boundaries of compactified moduli space), one can

reconstruct field-theoretic quantities of interest. In order to implement this in practice,

however, we need some understanding of moduli spaces at arbitrary genus, their symme-

tries, and functions defined on them. We also need specific field theories to investigate.

This brings us to the notion of an orbifold, which in CFT can be regarded as a mech-

anism by which we ‘divide out’ symmetries to obtain a new theory from an old one [2, 3.



In [4], we proposed a procedure for constructing torus partition functions of orbifold theo-
ries which emphasizes modular invariance in favor of construction of twisted sector Hilbert
spaces. Such a method is firmly on the geometry side of this ‘field theory/geometry cor-
respondence,” but by applying it to higher genus Riemann surfaces we will be able to
recover field theoretic objects such as correlation functions and Operator Product Expan-
sion (OPE) coefficients. This paper describes the extension of the modular orbits method
beyond genus one.

This is far from the first time that orbifolds have been considered on higher genus
surfaces. An excellent early exposition exists in [5], which focuses mainly on Zsg orbifolds
of theories with central charge ¢ = 1. The technology employed there is appropriately
specialized to that case — we aim to provide results that cover a broader class of theories.

One motivation for extending the available higher genus technology comes from the
modular bootstrap program (see [6-11] and references therein). Given a CFT, one can
take its local data (spectrum and OPE coefficients), and construct the partition function
on any given Riemann surface. These partition functions must be invariant under modular
transformations (the familiar SL(2, Z) in the genus one case, Sp(2g,7Z) at genus g). Turning
this around, the requirement of modular invariance puts constraints on the local data of
the CFT [12-14]. By improving the tools needed to analyze CFTs on higher genus surfaces,
and by increasing the list of examples which are manifestly modular invariant, as this paper
aims to do, we hope to contribute to this ongoing research effort.

We begin in section 2 by introducing the relevant material from the algebraic geometry
of Riemann surfaces. This includes a look at the partition functions of CFTs on these
surfaces, notably the free bosonic theory which is solvable. We also introduce the concept of
a degenerating surface. In section 3 we modify our proposed method of computing orbifold
partition functions from [4] to include higher genus surfaces. We follow this by using the
Ising model as a toy example to demonstrate implementing the proposal and obtaining data
about the underlying CFT from the higher genus partition function. Section 4 examines
the action of the mapping class and modular groups on higher genus surfaces, in particular
their action on partial traces of the partition function. With this knowledge, in section 5 we
compute higher genus partition functions for orbifolds of free bosonic theories by subgroups
of continuous symmetries. This allows us to implement our procedure in a fully explicit
fashion; we demonstrate how one can compute correlation functions and OPE coefficients
in the resulting theories. Finally we conclude in section 6 with a summary and outlook at
further applications of these methods.

2 Review of higher genus Riemann surfaces

A standard reference for the material presented here is [15]. On a Riemann surface of
genus g we have a homology basis consisting of 2¢g cycles, traditionally called a; and b;
(¢ = 1,...,9). Correspondingly, the cohomology has a basis in g holomorphic and ¢
antiholomorphic one-forms, w;(z) and @;(Z). Conformal invariance allows us to fix their
a periods, while their b periods form the moduli 7;; that describe our surface. We can



summarize this as

]{ wj = 0ij j{ wj = Tij, (2.1)
a; bl

with conjugate relations for w;(z). Generalizing the complex structure constant 7 from the
torus, the period matrix 7;; is symmetric with positive-definite imaginary part. It gives
a space of complex dimension 3g — 3. For g < 3 the entries of this matrix can be taken
directly as the moduli describing the surface. Above genus three the correspondence ceases
to be one-to-one; the unconstrained entries in the period matrix exceeds the number of
moduli, and we must impose constraints known as Schottky relations on ;.

We are able to define theta functions associated with these surfaces, as well. The
higher genus equivalent to the usual theta function is the Siegel theta function, given by!

0(z|T) = Z exp [miz - T - x + 2mix - 2. (2.2)
TEZI

Here z is a g-vector. Luckily we have a canonical way of associating points y on our
Riemann surface with g-vectors; we use the Abel map, given by

y

zi(y) = / w. (2.3)
Yo

This construction maps our surface onto its Jacobian variety, the complex g-torus given by

C9/(Z9 + 7Z9). This allows us to regard (2.2) as a function of a point on our surface and

its period matrix, in analogy to the situation on the torus.

Assigning antiperiodic boundary conditions to the cycles of our torus has the effect of
shifting z and x by half lattice vectors. Since this is a situation that arises often, we call
these quantities theta functions with characteristics (also known as spin structures), and
write them as

0 [i] (z|T) = Z exp[mi(x+06)-7-(x+06)+2mi(z+9) - (z+¢€)]. (2.4)

r€ZI

The usual choice of characteristics is to take (d,€) € %Zg X %Zg i.e. they are g-component
vectors whose entries are each 0 or 1/2. In this case, we see that the parity of a half-integer
characteristic theta function in its z argument is given by the quantity 4(J - €) mod 2 (0 for
even, 1 for odd). By extension we label the characteristic as even or odd. A theta function
(with characteristics) evaluated at z = 0 is known as a theta constant; one sees from the
preceding discussion of periodicity that odd theta constants vanish. When we have an odd
characteristic, which we will write as A = (0, €) for short, it is sensible to define a spinor as

g 1/2
ha(zlr) = | aziGA(Oh')wi(z)] . (2.5)
=1

'Here and going forward, we use a dot to denote the contraction of multi-component objects, e.g. -7 -z
should be understood as Zf,j:l z;Ti;25. We also will tend to omit indices, writing the genus g period
matrix simply as 7.



Finally, we write the prime form,

E(ow) = Oa( /[, w|T)

= halelr)ha(w]7) (2:6)

which (as the notation indicates) is independent of the particular choice of odd
characteristic A.
As an example, consider the torus. There we have three even spin structures (0,0),

(0,1),(3,0) and a unique odd spin structure, (3, 4

1 3) (39 5, 3)- One often writes these four functions as

1

01(z7) =0 B] (z|7), Oa(z|7) =0 [1

8] (2[7), O3(z|7) = 0[8] (2|7), Oa(z|7) = HB] (2]7).

(2.7)
The list of identities that these functions satisfy is extensive. We mention one that will
appear repeatedly in our calculations:

2.01(0|7) = —2mn3(7). (2.8)

We can choose the coefficient of dz for the single holomorphic one-form w to be a
constant (which we take as 1), so at genus one the spinor (2.5) is constant over the surface

ha = 1/0,(0]7). (2.9)

_ 01(z —w|T)
= o

and takes the form

The torus prime form is then
(2.10)

2.1 Partition functions

What should we expect from the partition function of a CFT evaluated on such a surface?
We illustrate the case of a single scalar field to gain intuition and prepare for more detailed
examples later. Recall that the partition function, or vacuum amplitude, of a theory is
simply the path integral evaluated with no additional operator insertions:

Z = /DgpesEM, (2.11)

with Sg[¢] the Euclidean (Wick rotated) action functional. Recall that, in order to compute
the torus partition function, we would have imposed the following boundary conditions on
our field

olz+1,z2+1)=¢(2,2), pl+1z+7) =0p(z2), (2.12)
i.e. it should obey the periodicities of the surface it’s defined on. On a higher genus surface
we impose similar conditions

olz+a,z+a;) =p(z,2), ©z+bi,z+b)=pz2). (2.13)

This expression should be understood schematically as imposing periodicity on the fields
as their arguments wind the various a and b cycles of the higher genus surface.



In the case of the free scalar, we are used to identifying one cycle as space and the other
as time. The winding numbers along these cycles give the familiar momentum and winding
of the boson. Topologically, the path integral (2.11) will have instanton contributions from
paths that wind these cycles. We refer to this as the momentum lattice part of the partition
function, and it is given by

211
Ziom. = (det Tm7)'/2 3~ exp [4 (pL T PL—PR" ?'R)] (2.14)
(pL.pR)ET
where the momenta live on the lattice
Fg:{(;+yR,;—yR> (x,y)EngZg}, (2.15)

with R the radius of compactification. The remaining part of the path integral handles
the contributions of oscillator modes, so we refer to it as the oscillator piece. Having no
way to detect the winding, this piece is identical (up to an infinite multiplicative constant
from the noncompact zero mode) to the partition function of the noncompact boson. The
integral can be evaluated by noting that the boson action is gaussian, and the result is

Zose. = (det Tmr)~Y/2(detA)~1/2 (2.16)

where A is the scalar Laplacian, whose determinant is understood to be zeta function
regularized. Combining these two gives the full partition function at genus g as [16]

1 211
Z = exp | — ST - — ST . 2.17
N > exp [ o (PL T PL— PR T pR) (2.17)

(pr,pr)ET

—1/2 are in order. Naively, one would expect

Some comments on the prefactor (det A)
that the determinant of the Laplacian would factorize into the product of determinants
of chiral Dirac operators. However, the conformal anomaly gives an obstruction to this

factorization in the form of the Liouville action S7,. We expect a relation of the form [17]
det A = €2 | det 8o/, (2.18)

where 0y is the chiral Dirac operator acting on scalars and ¢ the theory’s central charge. The
quantity det 0y is expected to be well-behaved under the degeneration relations defined in
the following section, in the sense that, in the leading order, it simply goes to its lower genus
counterpart(s) [17]. The anomalous term e“*Z, however, is dependent on the metric chosen
for the higher genus surface (it does not show up on the torus because we can always choose
a flat metric). Its precise form will have no bearing on the CFT data we wish to obtain.
One way to effectively disregard this term is to take the quotient of the partition
function in question with the appropriate power of the noncompact free boson partition
function (the power being such that the central charges match) [18]. Since the anomalous
terms are universal, they will cancel. We then apply degeneration to the result and, knowing
the results for the boson, extract the information we desire about the CFT of interest. To
this end, going forward we will write the prefactor (det A)~'/2 as a function H,(7) on
the moduli space. The only details of H we will need are that it goes to its lower genus

counterpart(s) under degeneration and that Hy(7) = |n(7)|~2.



2.2 Degeneration

An important operation on higher genus Riemann surfaces is degeneration, in which a
surface tends toward a point on the boundary of its moduli space where it approaches a
surface (or surfaces) of lower genus. More precisely, for any surface g > 2 we have the
separating degeneration in which a cycle that is trivial in homology tends to zero. In this
limit, our surface of genus g resembles two surfaces of genera g1 +¢go = g connected by a long,
thin tube. Degeneration provides a link between data on surfaces of different genera, and
allows us to extract CFT data beyond the spectrum from higher genus partition functions.

Now we specialize to the case of a surface of genus two degenerating to two tori, with
complex structure constants 7 and 7». In particular, when we parameterize the separating
degeneration by a parameter ¢t € C — 0, the period matrix has a t expansion of the form [19]

T (Tl 0) + 2mit (0 1) +O(). (2.19)
0 7 10

In general, by inserting a complete set of states in the long, thin tube, we would expect
the partition function to have an expansion in t of the form [16]

Z— >t (0;(0)™ (0:(0))™, (2.20)

operators @

where the sum is over weights of operators appearing in the theory. The superscript of the
correlation function denotes the complex structure constant of the surface on which it has
been evaluated. As a check, the vacuum is the lowest weight state with h = h = 0, and so
at lowest order the genus two partition function indeed separates into the product of the
two genus one partition functions.

The other type of degeneration is one in which we let a homologically nontrivial cycle
degenerate. This causes our surface of genus g to approach a surface of genus g — 1 with a
thin handle attached. Again specializing to genus two, we will use translation invariance to
set the location of one end of the thin handle to 0; the location of the other will be called
z. Again we parameterize the degeneration in terms of a complex parameter . The form
of the period matrix under this degeneration is

T z
T +0(4), 2.21
(Z %m IOg |:E2(t270):|> ( ) ( )

where E(z,0) is the prime form (2.6). As before, we have an expectation for the form of
the partition function’s behavior [16]:

STt (04(2)0i(0)7, (2.22)

operators 1

where now we find that we are calculating genus-one two-point functions of operators with
themselves.



3 Orbifolds at higher genus

In an orbifold theory, we define partial traces similarly to the partition function (2.11)

Zio(1,7) = / Dy, ge B, (3.1)

except we have modified our boundary conditions from (2.12) to include transformation by
group elements in the periodicity:

oz+1,z241)=k-v(2,2), @lz+1,24+7T)=g-¢(z2). (3.2)

At higher genus we would make an analogous change to (2.13), which would give us
the boundary conditions

olz+ai, 24+ a;) =ki-p(2,2), plz+bi,z2+b) =g (2 2), (3.3)

which we again emphasize are to be understood schematically. The partial traces that we
compute would now be of the form

Zk17"'7k9;glz'~~7gg(7—77__) :/D(’Okl7""k9;glv~~~7gg€_SE[¢]7 (34)

where we are imposing group element boundary conditions on each of the surface’s 2g
homotopy one-cycles.

We begin with a proposal to construct partition functions of Z or Zy orbifold theories.
In this situation, since the orbifold groups are abelian, we do not have to worry about
imposing commutation constraints on the elements appearing in the partial traces (3.4).
Also, since cyclic groups have H?(G,U(1)) = 0, we should not have disconnected orbits
entering with a choice of discrete torsion. Nevertheless, we discuss a simple case where
discrete torsion does arise, namely Zso X Zo, in the context of orbit structure at higher genus
in section 4.4. The steps given in [4] for the analogous situation on the torus generalize in
a straightforward way to higher genus surfaces:

1. Use the knowledge of the parent theory to construct the untwisted sector partial
traces ZO,-.-,O;n1,--.7ng-
2. Apply modular transformations to the untwisted sector partial traces to obtain all
partial traces Zm, .. mgni,....n,- NOte that (for the Zy case) the subscripts may not

be periodic modulo N (but will be periodic modulo N?).

3. Construct the twisted sector partition functions

1 NZ-1 N2-1
Zons,emg(1:7) = 325 ST Zonymginning (T 7). (3.5)

n1=0 ng=0
Here the m; will be periodic modulo KN for some integer 1 < K < N, and we can
construct the full orbifold partition function as

KN-1 KN-1

Za(r,T)= > o Y Ty (T, 7). (3.6)

m1:0 WLg:O



Before diving into specific examples, we can extract new features from the material pre-
sented so far. Consider how partial traces behave in the degeneration limits of section 2.2.
For simplicity consider a genus two partition function under the separating degeneration.
We expect it to yield a series of the form (2.20). We could write an analogous expression
for a partial trace Zi, ky:g:,92°

T digre = Y EHO(0)E 4, (Oi(0)F - (3.7)
operators 1

What are these (O(0)), , that have appeared? When h = h = 0 they are the partial
traces of the partition function on the torus, but in higher orders they are objects we
have not yet examined. Following the rest of the proposed orbifold procedure, we would
calculate the full genus two partition function by taking a sum over modular orbits of
the expression (3.7). Finally, expanding the left hand side as a series in ¢, we see from
interchanging the modular orbit and degeneration operations that the one-point function of
the operator O in the orbifold theory is given (just as with the vacuum one-point function)
by a sum over modular orbits of the object (O(0)), ,. This suggests that we should identify

Oy = [ DoryOz)e 8 (3.8)

where the subscript on the measure indicates the group-twisted boundary conditions (3.2).
This expression is written for the one-point function of an operator on the torus, but
is straightforwardly extended to encompass multi-point functions of various operators at
arbitrary genus. One would use (3.8) in place of the partition function partial traces Zj 4
to calculate correlation functions of operators that survive the orbifold procedure (that is,
operators which were present in both the parent theory and the resulting orbifold theory).

3.1 Example: Ising model partition function

As a simple example of the principles we’ve laid out so far, consider the Ising model. Its
partition function can be written at any genus as [5]

28 (7) = HY*(7)279 azﬂ '9 [g] (0|7) (3.9)

where the sum is over all half-integer characteristics. Viewed as a minimal model, it has
three primary states, the vacuum |1) with h = h = 0, a state |¢) with h = h = 1/2,
and a state |o) with h = h = 1/16. The model possesses a symmetry under which |o)
changes sign and the other two states remain invariant. In order to construct the partition
function of an orbifold by this symmetry, it will help to rewrite (3.9) on the torus in terms
of minimal model characters:

=1
Zine = il + Ixel? + Ixo (3.10)

where the x;(7) are the characters for the p = 3 minimal model. We will need the trans-
formation rules of these characters under modular transformations,

X1 (T + 1) =(x1 (T)7 Xe(T + 1) = _CXE(T)7 XO'(T + 1) = 6m/8€XU(T)’ (3‘11)



—7i/24 and

where ( = e

1

x1(=1/7) 33 ) (a0
x-1n =3 3 || x| (3.12)
Xa(_l/T) % —% 0 XU(T)

One can check that on the torus (3.9) and (3.10) are in fact equivalent. As a review of
our procedure at genus one, we construct the partition function of the Ising model orbifold
by its Zo symmetry.

As we understand the symmetry by its effect on the primary states, we can quickly
write the untwisted sector partial traces (using multiplicative notation for Zs) as

Z1a(7,7) = al” + Ixel* + x| (3.13)
Zl,—l(Tﬂ__) - ’XI‘Q + ‘Xe’Q - ’XU‘Q . (3'14)

Applying the method of modular orbits we can generate

Z,171(7',7_') = Z1771(—1/7', —1/7_')

1 1 1 P 1 2 11 1|2
= §X1 + §Xe + EXU + ‘2)(1 + §Xe - EXU — ’\/EXI - \ﬁxe
= X1Xc + XX1 + Ixo |, (3.15)
Z a4 a(rT)=Zq1(t+1,7+1)
= —X1Xe — XeX1 + Ixo |- (3.16)

At this point we’re done, and we can examine the resulting orbifold partition function. We
can work by sector; the untwisted sector partition function is

1
2y =5 (Za+ Zioa) = hal + el (3.17)

which simply consists of the invariant states |1) and |e) and their descendants. The twisted
sector partition function is

1
Z_1= B} (Z—l,l + Z—L—l) = ’XU|27 (3.18)

so this consists simply of the state |o) and its descendants. The full partition function is
just the original Ising model partition function back again.

In order to show that our proposed formalism yields the expected results at higher
genus as well, we calculate by modular orbits the same result at genus two. This compu-
tation is considerably lengthier than its torus counterpart, so we leave the full details to
appendix A. The result is, as expected, that we recover the Ising partition function, and
the orbifold acts trivially.



3.2 Example: Ising model correlation functions

Ising also provides a convenient check on the method of degeneration, since we know both
its genus two partition function and genus one correlation functions. We begin with the
separating degeneration, using the form of 7 given in (2.19) to rewrite (3.9) as a series in
t. We see that, to obtain the lowest order term in this series, we can simply take ¢ — 0.
In that case, the genus two theta function reduces to a product of two genus one theta
functions. So, we have

1
22 = P H (1) 310|010 T (0lm2)| = 20, (1) 20 (72).
4 rer b B2
1,01 2
QQ,BQEZg (319)

As expected, to lowest order we obtain the product of the correctly normalized torus
partition functions. Let us also calculate the next term, which will be useful for the
calculation of OPE coefficients. We get the coefficient of the order-t term in the theta

function’s Taylor series as
aq (€5

BJ (0]71)0-0 [52] (0]72), (3.20)

which will be nonzero only when both genus one spin structures are odd i.e. a1 = ag =

GZG[

f1 = B2 = 1/2. For this term in the sum over spin structures, the holomorphic and
antiholomorphic leading parts cancel due to the vanishing of odd theta constants. This
allows us to obtain a |t| term, given by

[t |n(r1) * (7). (3.21)

Comparing this result to (2.20), we identify the above term as giving the torus one-point
function of the h = h = 1/2 primary field e:

(e(0)) = mln(r)[*. (3.22)

This result agrees with other methods of calculation [20].
We now move to the non-separating degeneration limit of our genus two surface. In-
serting (2.21) into (3.9), we again obtain a series in ¢:

(zat+a9)?

im(f)rl > Z[EQ(tzO)] i a[gj((xg+a2)z|r)62ﬂﬁz<m+a2>. (3.23)

al,,31€Z§ T2 EZ
a2,B2€73
The lowest order term has x9 = ao = 0, in which the S5 sum gives simply a factor of 2 and
we recover the partition function.
At the next order we have contributions from the as = 1/2 terms both when x5 = 0
and xo = —1. Writing out these terms along with the terms from the two values of £o, the
remaining sum over genus one spin structure takes the form

> o] G +o[5] (5m) < b[5] G -o[s] (5| @a

a1,B1€Z5

~10 -



Whether the spin structure is odd or even these terms collapse to the same result, so our

o3 Gr)

Comparing with (2.22), we can identify the torus two-point function of the field o (which

next term in the t¢-series can be written as

1’ t V8

5|z MO Y

. (3.25)
EQ(z, 0) 9
a,B€Z;

has h = h = 1/16) with itself, again agreeing with expectation [5]:
al 1z
9[5] (5'7)

We note that a two-point correlation function of an operator with itself in CFT is

(0(2)a(0)) = %IE(Z, ) n(r)I 7t Y : (3.26)

a,BGZ%

expected, when expanded in z, to take the form

(0i(2)0i(0)) ~ 3~ Nigj2s =2 zh =2 (0,(0)) . (3.27)

Setting z = 0 in (3.26) we indeed obtain the vacuum one-point function (partition function)
with unit coefficient, so we have A,,1 = 1. Moving to the next order term, we expand the
theta function in z. Using the fact that E(z,0) is linear in z to leading order and evaluating
the theta derivative in terms of eta functions, the next term will be

L RVBUSSL 1S 2 (3.28)
Comparing with (3.27), we learn two things. First we see that A\ys; = 0 since expanding
our theta sum did not yield a |z|'/® term. This is consistent with the expectation that the
multi-point function of an odd number of o vanishes (note that we didn’t find a o one-point
function when we applied the separating degeneration). Using our earlier result (3.22) for
(€(0)), we also learn that Asse = 1/2, which agrees with the literature [21].

4 Modular transformations

The large diffeomorphisms of a Riemann surface (i.e. diffeomorphisms modulo those
smoothly connected to the identity) form a group known as the mapping class group.
For the torus this is the familiar modular group SL(2;Z), but at higher genera it has a
more involved structure. Its action on the period matrix, however, is easy to describe. Our
homology basis of a and b cycles has an (antisymmetric) intersection product o given by

aiobj:&;j, aioaj :biobj =0. (4.1)

Modular transformations are given by linear transformations of the one-cycles which pre-
serve (4.1), which necessitates that they be given by the symplectic group Sp(2¢;Z). This
action carries over to the period matrix, and indeed the partition functions we’ve examined
so far are invariant under such transformations of 7. Orbifold partial traces, however, are
sensitive to the full mapping class group, which is an extension of Sp(2¢;Z) [22]. In this
section we examine the action of this group on the homotopy one-cycles of a genus two
surface, which will allow us to deduce its effect on partial traces.

- 11 -



4.1 Torus review

Let’s begin by understanding the torus’ SL(2;Z) symmetry in a language that will readily
generalize to higher genus. Homologically the torus has two independent cycles, which
we’ll call ¢ and b. There is also a holomorphic one-form w. We can choose to normalize w

such that
/w =1 /w =T (4.2)
a b

with 7 € H being the familiar complex structure constant. The mapping class group is
generated by Dehn twists about these cycles, which involves cutting the surface along
a given cycle, rotating one side of the cut by 27 and gluing the surface back together.
This does not change the surface, but will affect cycles intersecting the one that was cut.
Specifically, the two Dehn twists on the torus change the one-cycles as [16]

a— a a—a—1>

: : 4.3
b>b+a L A (4.3)

a

The effects of each Dehn twist can be absorbed into changes in 7 and w. Specifically, after
the twist D, we have a changed b-cycle, so we should recalculate

T':/w:/ w:/w+/w:T+1 (4.4)
v b+a b a

so we see that this twist has had the effect 7 — 7 + 1. After D, the a-cycle is changed.

Now we have
/w—/ w=1-r, (4.5)
a’ a—b

from which we see that if we take w — (1 — 7)~'w, we retain the normalization fa, W' =1,

T'Z/bw':(l_”_l/b“’:1i7' (4.6)

In summary, the effects of the two twists on the complex structure constant are

at the cost of a new 7:

Dy:7—71+1, Dy:7— (4.7)

1—7

These two transformations generate the large diffeomorphisms of the torus. Note that,
under arbitrary composition of D, and Dy, the resulting 7 can always be written in the
form 7/ = (A7 + B)(Ct+ D)~ ! for integers A, B, C, D. Expressing the Dehn twists in this

(& 5) form gives
11 10
D, = , Dy = , 4

agreeing with one of the SL(2;Z) presentations given in [22].
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Figure 1. A genus two Riemann surface, with 5 oriented homotopy one-cycles.

4.2 Genus two mapping class group

We would like to do something similar for a genus two surface. We now have two ‘torus-like’
components, which both have their own a- and b-cycle, giving us four cycles. In order to
generate the entire mapping class group, however, we need to add a fifth cycle [22]. Let this
cycle run between the two holes, intersecting each b-cycle once, and call it ¢ (see figure 1
for an illustration). We now have two holomorphic one-forms. Their normalization along
the a- and b-cycles will be analogous to the torus, but now we have to keep track of their
period over the c-cycle. Let

a; b; ¢ ¢

where the result for the c-cycle comes from it being homologous to a; — as. The Dehn
twists affect the cycles as (leaving other cycles invariant)

ar — a1 — by ‘a2—>a2—b2 'b1—>b1—|—C

Dy, :b; — b; + a;, Dy, : , : , : .
@i PR b T e s e by T by s by —c

(4.10)

Running through the same analysis as above, we find that the effect on the periods is

711+17'12 (4.11)
T2

T2 (4.12)

To1 To2 + 1
Ti1 T T11 T12 (4 13)
721 T 1—7‘11 721 ng—detr '

given by

T11
21

1 T

1

21

1

1 T

21 T 21 722

<7’11—d€t7”7’12) (4 14)

1 T

Tl T: To1 — 1 T2 +1

T
<
N N NN N

N (T“ +lme - 1) (4.15)



These 5 operators have realizations given in (A.23)—(A.27), again akin to the torus, as
matrices which should constitute a presentation of the genus two modular group Sp(4;7Z).

4.3 Orbifold partial traces

What is the effect of a torus Dehn twist on a partial twist Zj, 4, as defined in (3.1)7 We
established that D, takes the b-cycle to b + a, so after the twist going around b would
implement both g and k, so we expect D : Zy g — Zj, g. Similarly, Dy takes a to a — b,
so we should have Dy : Zy g — Zj4-1 4. Composition of these operations can then generate
partial traces labeled by arbitrary combinations of powers of g and k. Since we have
explicit forms of D, and Dj in terms of their action on the complex structure constant, we
can construct any such partial trace in terms of untwisted sector partition functions with
varying arguments in 7.

Turning back to genus two, we should be assigning a group element to all four cycles
now, so our partial traces should take the form Zj ., . Similarly to the torus, the action
of the Dehn twists on these objects should be

Dy, Zjomn — Zk l;mkon (4.16)
Do, : Zjomn — Zikj;mnl (4.17)
Dy, * Zitimn — Ziom—t tn (4.18)
Dy, : Zy t;mpn — Zkin—1mn (4.19)

De: Zijsmm = Zi smki=1 nk=11- (4.20)

We can see that, since the a and b twists generate SL(2;Z) x SL(2;Z), in any situation
where SL(2,7Z) generated the full partition function at genus one, we can get the full genus
two partition function without D.. Recall that, in the case of an orbifold by Z, we can
label our group elements by integers. At genus one, we can reach an arbitrary partial trace
Zm.n from the untwisted sector through the modular transformation

r (4.21)

_ ar +b atT +b
Zm,n(TaT) = ZO,T (T‘ s )
n—mT n—mT

where we have chosen a and b such that an + bm = r = gcd(m,n). From these conditions

a b
(m/r n/r) (4.22)

is in SL(2;Z). At genus two, in order to reach an arbitrary partial trace Z,, moini ng, We
make the analogous SL(2;Z) x SL(2;7Z) transformation

one sees that the matrix

al 0 b1 0
0 as 0 by

4.23
—my/r 0 ni/ri 0 ( )

0 —mafra 0 ng/ro
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where, of course, we have picked ajn; + bym; = r1 = ged(my,n1) and agng + bamg =
r9 = gcd(ma, ng). Our partial trace can then be calculated as (antiholomorphic arguments
omitted to save space)

T T
Zmy maina,na ([7_1; T;z ) (4.24)

B -1
al 0 711 712 b1 0 - 0 711 T12 21 0
:Z 1T T1 1
o ([0 a2 [ﬁz m] " [0 sz ([ 0 —m] [ﬁ? 722] +[ D

The full partition function is then obtained by summing over mq,ms,n1,n2. We expect

[en}

that different choices of the pairs a1,b1 and as,bs will not affect the form of the partial
traces; we will see this explicitly for theories with continuous symmetries in section 5.

4.4 'Test case: Zo X Zo

There are, of course, situations where we are unable to generate the entire genus one
partition function starting from the untwisted sector. Perhaps the simplest such case is
an orbifold by Zs X Zsy. In that case, we are able to put constraints on the torus partition
function just by examining the structure of orbits at genus two. Let’s begin by establishing
notation for the elements of Zg X Zs:

0,00=1 (L,0O)==z (0,1)=y (1,1)

z. (4.25)

We'll quickly review the genus one case. Beginning in the untwisted sector, we have partial
traces Zi1, Zia, Z1y, Z1-- SL(2;Z) modular orbits generate 6 more: Zy1, Zya, Zy1, Zyy, 21,
Z,,. These 10 are all that can be reached from the untwisted sector via modular orbits.
There is one additional orbit, consisting of the remaining 6 partial traces, which must be
added in by hand: Z,y, Z,., Zys, Zyzs Zowy Z2y-

Moving back to genus two, do we see similar behavior? Note that, under a separating
degeneration, we expect the partial traces to behave as

Za1a2b1b2 — Za1b1 : Zazbg' (4.26)

We can begin to map things out starting from the untwisted sector and noting that the
a and b Dehn twists act exactly as they would in the genus one case. Then the indices
(a1,b1) and (ag,b2) can separately take on all ten combinations reachable from the genus
one untwisted sector. It’s up to D, to give us new combinations, which it does. Take for
instance D.Z;.11 = Zgyy- This would degenerate to Z,,-Z.,, both of which are inaccessible
from the genus one untwisted sector. However, one can check that traces which degenerate
to one accessible and one inaccessible genus one trace cannot be generated this way (e.g.
there’s no way to reach Z, ., with Dehn twists starting from the untwisted sector).

Schematically, from taking modular orbits of untwisted sector partial traces and then
degenerating, we get

Accessiblerz - Accessibler 4 Inaccessibler2 - Inaccessibler. (4.27)
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On the other hand, we expect the full genus two partition function should degenerate to
a product of genus one partition functions, for which (4.27) is missing the cross-terms.
However, even without the cross-terms, we can determine the full partition function on the
torus up to a relative sign: Z,—; ~ (Accessible =+ Inaccessible). This ambiguity is exactly
the choice of discrete torsion.

5 Flavored partition functions

5.1 Review of genus one

At genus one, it is sometimes useful to define a flavored partition function in which we
keep track of additional quantum numbers. For a CFT with holomorphic (antiholomorphic)
currents J, (Jg), the flavored partition function is

Zf(T,7_', zp,z2r) = Tr {qLO_iqio_ieQmZLJLe_%iZRJR} (5.1)

and behaves under modular transformations as

7t at+b at+b
cr+d et +d

\ 2L, ZR) = emk(c(m+d)zi_C(Cf"'d)zé)Zf(T, T, (et +d)zp, (T 4+ d)zR).

(5.2)
Such a setup is particularly suited for the orbifold procedure [4]. For orbifold group G = Z
(or possibly Zy ), combining (4.21) with (5.2) gives the partial traces in terms of the flavored
partition function as

Zn(7) = emk(m?(rad —raf)=mn(a] —a})) 71 (- (o — mr)ar, (n — m7)ag) (5.3)

where we’ve chosen the o such that e?™@/ ¢ G, so that flavoring the partition function
corresponds to inserting a group element. Writing the partition function as a sum over
the weights of CFT states allows us to isolate the sum over n, which has the form of a
projector. Its role is to regulate which states show up in the twisted sectors such that
modular invariance is preserved.

For example, in the case of the free boson, an obvious choice of conserved current is
the U(1) x U(1) generated by p;, and pr. Given this choice, the partition function in the
m-twisted sector takes the form

Zin = |n(7)| 7> Y qsr2men) galon2men)’, (5.4)
where the sum is over states on the momentum lattice allowed by the projection constraint
arpr — arpr —m(af — af) € Z. (5.5)

Picking a5 and agr appropriately, one can straightforwardly construct the partition
functions of (asymmetric or symmetric) orbifold theories, though there’s no guarantee the
resulting partition function will differ from the parent one (which simply means the orbifold
was not consistent with modular invariance).
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5.2 Higher genus flavored orbifolds

On the torus we defined the flavored partition function by inserting terms in the trace over
states, but for the boson one can equally well express the partition function as a sum over
the momentum lattice, which will readily generalize to higher genus. Defining

Zg:2(7‘, T,ar,ar) = Ho(T) Z exp [2miay, - pr)exp [—2miaR - pR|
pL,PRED2
2m _
X exp T(pL~T-pL—pR-T-pR) , (5.6)

we're at least guaranteed analogous transformation properties to (5.2) under
SL(2;Z) xSL(2;Z). Then, making the choice (4.23) of modular transformation, we can
calculate the partial traces of a Z orbifold as in (4.24).

Running through the same calculation that led to (5.3), we arrive (unsurprisingly, but
perhaps reassuringly) at a result that straightforwardly generalizes (5.4):

2mi
Zmymy = Ha(T) Zexp [4(2% —2mayg) -7 (pr — 2mozL)]

omi ] 5

X exp [—4(;0}% —2mag) - T - (pr — 2mag)

where «, p and m are now two-component vectors (here may, should be understood as a
vector (myar,, maar,), likewise for mapg.) and the sum is over pr,pr € I's subject to the
individual projection constraints

QL PL, — QR PRy — ml(a%l — a%l) </ (5.8)

OLoPLy — ORyDRy — mQ(a%Z — oz?%?) € Z. (5.9)

We need to determine what the possible consistent choices for ar,,ar,,ar,, ag, are.
When of, = ar, and ar, = ag,, this expression clearly has the expected leading order
separating degeneration behavior, giving a copy of (5.4) on each torus (along with the
appropriate projection).

What happens if we pick ap, /g, # ar,/g,? Since our orbifold was built through
SL(2;Z)x SL(2;Z) orbits, it would appear that this choice could put elements of different
groups on the (a1, by) cycles than the (ag,b2) cycles. But we have to remember that Dehn
twists around the c¢ cycle exist, and need to be taken into account to ensure invariance
under the full modular group. Abbreviating D, = Dg, D4, and Dy = Dy, Dy, we can, in
the case of abelian groups for example, build actions such as

DyD2D3DoD:DyDoD:DyZ00 41(T) = Zo,0.1.g(T), (5.10)

which acts trivially on the period matrix but swaps the group elements on the b; and bs
cycles. In general, if we try to pick ar, /g, # ar,/r, such that ap /g, leads to a Zy, action
and oy, /g, to Zn,, the full set of modular orbits will be equivalent to a Zjcm (v, ,n,) orbifold
with ap, /g, = ap,/r,. Modularity effectively forces us to choose ap, /g, = ar,/r,-
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5.3 Flavored orbifold correlation functions

Now that we’ve computed the orbifold theory’s partition function, we can extract CFT
data. As we did with the Ising model in section 3.2, we’ll apply the degeneration proce-
dure to our boson partition functions. We begin with the usual compact boson (2.17) —
modifying the results in the orbifold theory will be straightforward.

Again we begin with the separating degeneration. For a generic radius, from (2.20) we
expect the |t|? term in this expansion to have as its coefficient the square of the 20¢dy torus
one-point function (the factor of two is chosen so that, in our conventions, the operator
has unit normalized two-point function on the sphere). Using the period matrix (2.19) and
taking both a ¢ and  derivative, we find the coefficient of the |¢|? term to be?

_ _ 21
4t |n(r)[Pn(r2)| > Y. PLIPRPLPR, €XD [4( 1T+ PR, T2 — PRI — p%z;z)],
PLy PRy ETL
PLosPRyEl (5.11)

from which we identify

(20090(0)) = 20’ (™) > S prorexp

{2772'
pL,PREL

Totr-sn]. 61
In light of the result for the orbifold partition function (5.7), in a flavored orbifold theory
this correlation function should take the form

(2000(0)) o, = 2% |1(7)| 7 > (pL — 2mag)(pr — 2mag)

pL,PRET
meZn
conditional to (5.5)

27 _
X exp [4((pL — 2mayg)*r — (pr — 2mo¢R)27)} . (5.13)

Turning to the separating degeneration, we now use the period matrix (2.22). The
logarithms from the off-diagonal terms give us our ¢ and ¢ terms, which appear here raised to
powers of the momentum running in the degenerating cycle. Specifically, for the coefficient
of tFL/AFkR/4 we find

AN _ 2mi _ _
2ABG O FEGOT T 5 exp | 2108 - o+ 2epk ~ 22k

pL,PRE
(5.14)
Recall that in the free boson theory we have vertex operators of the form
Okp kr = V2 cos (kreor + krer), O;CLykR = /2sin (kror + krer)- (5.15)

Both of these operators have weights h = k? /4, h = k% /4 and so are degenerate. In taking
the non-separating degeneration limit, we are finding the specific two-point functions

(O k() Ok (0)) + (Ohy 1y (2) Ok 1, (0)) (5.16)

2This analysis assumes that H2(7) has no |t|* term in its degeneration series.
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as it is this combination which takes the form of z~*2/2z7*&/2 times a series in integer
powers of z and Zz.

As in the Ising model case, we can expand these two-point functions to find CFT data.
Noting that, to leading order, F(z,0) ~ z and differentiating the lattice sum once in z and
once in Z yields

k2 /2-1—k2 _ 2mi _
kepkpzt /2 KR/2 . 9r2 (1) 2 Z PLDPR €XP [4(7’}9% - Tp%)]. (5.17)
pL,PrRETL

Comparing this with (5.12), we can pick out

+ Ao

kr kg

= +krkg. (5.18)

AO’“L>’€RO’€LJ€R26W§W O;cL,kR28‘p5‘P

In fact, a direct computation of OPEs reveals that the right-hand side is —kpkg, so our
procedure seems to be consistent.

Again, the analogous computation for the orbifold proceeds similarly, and we find
in that case the same result, but with k; — k; — 2may, kp — kr — 2mapr and only
holding when the projection constraint (5.5) is satisfied, i.e. only for (kr, kgr,m) satisfying
arkr, —agkr —m(a? —a%) € Z.

5.4 Correlation function generalities

Finally we present some thoughts and observations on calculating correlation functions and
OPE coefficients in more general theories. The methods of this paper provide two slightly
different routes to such results. First, as in the preceding examples, one could calculate
the theory’s partition function(s) at higher genus. Degeneration allows for calculation of
multi-point functions, then expansion in z and comparison to relations such as (3.27) yields
OPE coefficients. In the case of theories with continuous symmetries we have presented
means for simplifying the calculation.

The second method would be to begin with the parent theory genus one correlation
functions (O(z)) (written here as one-point functions, but in general could be multi-point)
and compute their equivalents of partial traces, defined in terms of a path integral in (3.8).
Once one has the objects (O), .,
straightforward. For each k € G one can form

computing correlation functions in the orbifold theory is

O =5 3 Ohy- (519)

geG

For k the identity this simply reproduces the parent theory correlation functions that
were invariant under the group action. For other values of k we produce the twisted
sector correlation functions. Once again, expanding these in z allows one to identify OPE
coeflicients.

Both methods have advantages and disadvantages. Ideally one might hope to pro-
duce partition functions at arbitrary genus and extract the desired information that way.
However, explicit computations at arbitrary genus quickly become difficult to intractable,
so this may not be feasible. Additionally, higher order correlation functions will require
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expanding the period matrix (and any other relevant quantities) to higher orders in the de-
generation parameter, which may also become unwieldy. Working directly with the genus
one correlation functions means that one can entirely avoid working on higher genus sur-
faces, and can begin directly from the desired order of multi-point function. The downside

to this method is that it may not be clear how to evaluate (O), ., even knowing the par-

kg’
ent theory correlators. Perhaps the best use case of the correlatiz)n function partial trace
method would be a scenario in which one can express the genus one correlation functions
in terms of a sum over states, but has no access to higher genus partition functions. Then,
just as for the partition function, one should be able to evaluate (O), , for the untwisted
sector (by inserting a representation of the group acting on the states), and fill in the
twisted sectors by modular orbits. This approach has the potential flaw that there can be
orbits which do not involve the untwisted sector — in [4] we presented one workaround for
this issue when calculating partition functions of orbifolds by groups that are solvable, in
the form of an iterated orbifold procedure. We expect such a method to work as well for
correlation functions.

There should also be a third, more direct route to make contact with the OPE coeffi-
cients. In yet another degeneration limit (a refinement of the non-separating degeneration),
we can view the genus two surface as a pair of spheres connected by three long thin tubes.
By inserting complete sets of states in each tube, we can relate the genus two partition func-
tion to sums of squares of sphere three-point functions [12], weighted by particular powers
of degeneration parameters depending on the operators involved. The sphere three-point
functions are in turn directly related to OPE coefficients. Although we understand how
this works schematically, and can verify some relations at low orders in conformal weights,
fixing all of the details of this approach is work in progress.

6 Conclusion

At genus one we have a very nice general expression for a theory’s partition function (at
least in the case of a discrete, diagonalizable spectrum) given by

Z(t) =Tryp [exp [27ri7 (h - 2—1)} exp [—27ri? (ﬁ - i)“, (6.1)
which cleanly encodes CFT data given by the spectrum (h, h) as a function of the surface
geometry, captured in the complex structure constant 7. At higher genus there is, in gen-
eral, no equally nice expression; we might have expected this, since we are now necessarily
encoding more information than just the spectrum. It is not unreasonable to wonder, given
a theory to start with, how much we need to know or specify to construct an orbifold. We
have argued here that so long as one knows the partition functions (at various genera) of
the parent theory and understands how the orbifold group modifies those (in the form of
untwisted sector partial traces), modular invariance will dictate the rest.

In the specific case of (theories which can be cast as) free bosons, we have the notion of
a momentum lattice, which allows us to cast (6.1) in the form (2.17), which does generalize
quite readily to higher genus. This provides a rich testing ground for our ideas, as the

—90 —



technology of flavored partition functions allows us to demonstrate our proposal in a fully
explicit nature. Orbifolds by arbitrary cyclic actions (both symmetric and asymmetric)
built out of momenta have at genus two the partition function (5.7), the form of which
holds for higher genera as well.

The analysis at higher genus comes full circle in addressing some of the potential
concerns laid out with the genus one version of this procedure in [4]. One of the potentially
glaring issues with modular orbits is that not all orbits can be reached from the untwisted
sector through modular transformations, threatening to leave our procedure incomplete.
As we saw explicitly in section 4.4, these disconnected orbits will make themselves present
in higher genus partition functions, so the process of degeneration can be used to fill out
full genus one partition functions. Further, combined with genus two modular invariance,
these disconnected orbits should show up with an appropriately constrained choice of phase
(which is, though we did not show it here, dictated by H?(G,U(1))). We have focused our
explicit examples on genus two in this paper, partly because it is the simplest example past
the torus, but also because it is known that modular invariance at genus one and two is
sufficient to fully determine the constraints of discrete torsion on how orbits combine [23].
This parallels another solution to this issue which can be implemented purely at genus one
in which an orbifold by a solvable group is built up in an iterated fashion. Here the choice of
discrete torsion appears as a choice of how successive actions behave in the twisted sectors
of their predecessors.

There was also the potential that using a pure modular orbits method, we may have
ended up computing modular invariant objects which had no sensible interpretation as
the partition function of any CFT. A preliminary check on this was that our expressions
led to multiplicities that were non-negative integers. Higher genus calculations go further
towards validating our methods — now we have seen that the expressions we obtain behave
in the expected way under worldsheet degeneration. Furthermore, we are able to compute
sensible correlation functions, and in all cases where we were able to compare to alternative
calculational methods our results were found to match.

There are several directions that could be followed from here. One of our original mo-
tivations for understanding, in detail, the precise connections between genus two partition
functions and the data (spectrum and OPE coefficients, or equivalently, correlation func-
tions of local operators) was to be able to apply the philosophy and methods of the modular
bootstrap program to genus two. Some work in this direction has been done [12-14], and
we would like to systematize this approach.

Our approach to orbifolds also opens up the possibility of computing OPE coefficients
in situations where neither the orbifold nor the parent theory have a known free field re-
alization. We have given a prescription for constructing the genus two partition functions
even in such cases, as long as the genus two partition function (and related objects with in-
sertions of group elements) are known for the parent theory. As discussed in section 5.4, we
can extract lower genus correlation functions and OPE coefficients from there (perhaps up
to some extra discrete data). This could be relevant for model building (where, for instance
certain OPE coefficients translate to physical quantities such as Yukawa couplings).
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Finally, an interesting direction to move would be to combine this work with the idea
of conformal interfaces, topological or otherwise [24-34]. These defects can be used to
formulate many aspects of 2D CFTs and the RG flows between them, and little work has
been done on higher genus aspects of this formulation.
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A Ising orbifold at genus two

To compute the Ising model orbifold of section 3.1, we will use a set of coordinates on

moduli space given by

q = e2m‘(7’11—r12)’ go = 627rz‘(722—7'!2)7 g3 = p2miTI2 (A_l)

These coordinates are naturally adapted to the picture of the Riemann surface as a pair of
three-punctured spheres connected by tubes anchored at the punctures. Each coordinate
q; describes the moduli (length and twist) of one of the three tubes.

In terms of the g; instead of 7,

1 n « 21 n « 21 n n (6 (63 2 ;
0 lgi gj (la) = D7 a7 " gy g e ekl a4 (41

nez?

Under a modular transformation given by an Sp(4,7Z) matrix (é 5 ), 7 and z transform as

T—7=(A-7+B)-(C-74+ D), z—>Z:(T-CT+DT)_1-Z. (A.3)
If we define
o=D-a-C B+ %diag(CDT), f=-B-a+A-B+ %diag(ABT), (A4)

then the theta functions transform as
of | o i ) 1/2 inz(C-7+D) 1.Czpy | &
0 g (Z]T) =€e?det (C-T7+ D) ’'"e 0 5 (z|T). (A.5)

Here ¢ is a phase that we won’t need to worry about. Finally, if we omit the z argument
of the theta function, it should be assumed that we take z = 0.
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According to [18], the genus two partition function for the Ising model has the form (3.9)

= mo b el plog] o+ [t b3 ]
1 1 3 2
+938(7)+982(7)+088(T)+023](7)
ol lo[1
4o 2z ()| + |6 5%] (T)} (A.6)

We do not need to worry about the details of Ha(7) except that under modular transfor-
mations it transforms as

Hy(7) = |det (C - 7 + D)% Hy(7), (A7)

which makes Z®) modular invariant.
To get a better sense of the different pieces, let’s look at them in the ¢; variables,

0 0_ 1,2 12 1,102
[0 o =3 """ (A8)
i n,me”L
0 0] m in? Im2 linim)?
9[01 (M= > (V"¢ " " a3 , (A.9)
2| n,me”
00 n in? 1m? l(ntm)?
9[10 M=> -D"¢" " a3 ) (A.10)
2 7] n,meL
0 0] L 1n? Lnam?
9[11 (r)= Y (—1)""g" g3 q§( " (A.11)
2 2] n,mez
10] Lnad)? 12 1(namal
’ [(2)8 (= qf( +2) a5 q§( mtd) , (A.12)
J n,me”Z
1 0] 2
20 m il 1m2 Linymyl
9[3; (=2 (1 2l g galmimsa)” (A.13)
J n,me”L
1] 1,2 1(mal)2 1(namal)?
’ [8(2) ()= af qi( +2) q§( mts) (A.14)
J nmeZ
03 0 An? () At d)
Olrol(= 2> (-1"af" ¢ G2 : (A.15)
L2 7] n,mez
[1 1] 1 1\2 1 1\2 1 2
5 5 5 (n+s35 5 m+35 5 (n+m+1
AFHIOESY g ") gD gl (A.16)
L J n,me”L
3 3] wbmtt $ed)” (med)? Hemty?
0133 (= > (-1 ai a3 q2 . (A.17)
L2 2] n,mez
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In each of these expressions the exponents of each ¢; are either always integer or half-
integer, indicating that in this contribution the corresponding tube has |1) or |e) states or
their descendants propagating, or they are integer plus one-eighth, indicating that the |o)
states and its descendants are in play. Thus, we are led to propose the following expressions
for the untwisted partial traces (now leaving 7 arguments implicit on theta functions),
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Adding together all four of these we have

1

Zig = 1 (Zigaa+Ziga,-1+Zig—110+ Zig—1,-1)

~m0)

which is just the result of restricting to invariant states in each tube.
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Now, from the expressions in section 4.2, we can identify the Sp(4,7Z) matrices associ-

ated to various Dehn twists,
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(A.30)

(A.31)
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We can now easily confirm that all the untwisted sector partial traces are invariant under
Dy, , Dq,, and D., as we might expect. Under Dy, and Dy,,
are not, and begin to generate twisted sector partial traces. In the (1, —1) twisted sector,

72) is invariant but the others
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Z1,-1:1,1 = Day - Z1,—1:1,-1 = Ha(1) {

Z1,-1,-11 = Day - Z1,-1,-1,-1 = Ha(7) { 0 [

Adding up, we have

Proceeding similarly for the other sectors, we find

and
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As expected, our final result returns the original theory, as in the genus one calculation:
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