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This paper presents 1) a new preconditioned data reduction formulation, and 2) enhanced thin-film temperature
gauge model for estimating the source heat flux applicable to impulsive test facilities used in hypersonic test programs.
In such short-time tests, the heat flux is recovered from an active temperature-sensitive thin film. The physical
situation permits a constant-property, semi-infinite substrate heat conduction model to be formulated relating the net
substrate heat flux to the thin-film interface. Conventional lumped models assume no volumetric effects in the thin
film. An enhanced boundary condition for the substrate is proposed that includes the storage of energy in the thin film.
There are cases when the energy storage in the thin film should not be neglected. A parameter-free, physically
motivated preconditioner is introduced to the integral equation system. This concept is applied to both the
conventional and enhanced thermal models for predicting the source heat flux. A future-time method is proposed as
the regularization scheme. The optimal future-time parameter is identified using a thermal phase-plane analysis that
provides both a qualitative and quantitative means for estimating optimality. Highly favorable results are
demonstrated for the simulated data sets based on a constant heat flux pulse.

Nomenclature

cross-sectional area, m?2
constant, s~!/2

specific heat capacity, J/(kg - K)

energy rate, W

thermal conductivity, W/(m - K)

kernels with appropriate units
multiplication factor

kernels with appropriate units

number of data points beyond the initial condition
maximum number of future time parameters
heat flux, W /m?

source heat source, W /m?

approximate source heat flux, W /m?
cross-correlation coefficient for heat flux
cross-correlation coefficient for heat flux rate
real part

temperature, °C

initial temperature, °C

time, s

maximum data collection time, s

dummy time variable, s

width of plate, m

spatial coordinate, m

dummy variable

thermal diffusivity, m?/s

thermal effusivity, W4/s/(m? - K)

time sampling intervals, s

thickness of thin-film sensor, m

Dirac delta function

constant, /s

future time parameter, s

future time parameter, s

coefficient with appropriate units

= reduced temperature, T — T, °C
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9,1 = Fourier transformed reduced temperature, K - m
0 = film reduced temperature, °C
P = density, kg/m?

I. Introduction

ANY aerospace engineering applications [1-4] require the

prediction of a test article’s surface heat flux or source heat
flux based on either 1) local [5-9] or global [10-18] surface
temperature or 2) in-depth or backside temperature [19-29]
measurements. The use of the latter measurement location leads to
the so-called inverse heat conduction problem (IHCP), which is
highly ill-posed [19,20]. In many applications involving surface
temperature measurement, the fundamental measurement equation
for producing the net surface heat flux is based on the exact solution
of the linear heat equation [30] that presumes that all thermophysical
properties are constant. This assumption could restrict the
temperature range for its applicability especially in long-duration
ground tests. Measurement techniques include null-point calorimetry
[31,32], temperature-sensitive paints (TSP’s) [10-18], and co-axial
thermocouples [5-9]. When using an in-depth temperature sensor,
a second inverse problem exists as the sensor itself does not
represent the positional temperature described by the heat equation.
In most studies, the in-depth thermocouple temperature is assumed
to be the positional temperature necessitated by the heat equation
[30]. Not accounting for this second inverse probe problem may lead
to misleading (attenuated and delayed) surface heat flux results
[33,34]. With regard to the IHCP, two approaches are presently being
used in practice. The classical or “parameter required” [19,20]
approach requires the specification of the host material’s
thermophysical properties, probe location, and probe characteristics
(e.g., time constant). In contrast, a calibration approach is termed a
“parameter-free” method [21-29] as the geometrical, thermophys-
ical, and sensor characteristics are not explicitly stated in the
measurement equation but are contained in the calibration data used
in the formulation.

This paper focuses on improving data reduction associated with
estimating the source heat flux from a thin-film temperature sensor
[35-40]. Section II presents the two mathematical models to be
examined: the conventional model and the enhanced model.
Section III introduces a preconditioner that will be applied to each
model and compared with the original integral model. It will be
demonstrated that the chosen preconditioner is based on a step
response function (not impulse response function). Section IV
describes the inverse approach taken whereby a future-time
regularization method is introduced into the ill-posed mathematical
setting. A discrete and finite set of regularization parameters are used
for producing a family of corresponding predictions. The optimal
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regularization parameter is extracted using a thermal phase-plane
concept and cross-correlation principles. Section V presents
numerical results indicating the merit of the proposed precondi-
tioner-regularization method for extracting the “best” source heat
flux prediction. Section VI closes the paper with concluding remarks.

II. Formulation

Two thin-film heat transfer models describing the thin-film/
substrate interaction are schematically displayed in Fig. 1. Both
models assume that 1) the time frame is sufficiently small that the
backside of the substrate remains at the initial condition; 2) one-
dimensional heat conduction is dominant; and 3) constant
thermophysical properties are applicable due to the relatively small
temperature rise in the substrate. It is assumed throughout this paper
that the cross-sectional area of the thin film is identical to the cross-
sectional area of the substrate [35]. Further, it is assumed that there is
no interpenetration of the thin film into the substrate during the
manufacturing process. Thus, a sharp interface and perfect thermal
contact are assumed between the thin film and substrate. In each case
shown in Fig. 1, a general energy balance about the thin film’s control
volume (C.V.) can be express as

Ein + Egenerated = Eout + Estorage (1)

Figure la displays the schematic of the thin film/substrate omitting
volumetric sources Egeneraed = Egiorage = 0- Figure 1b displays a
control volume (C.V.) that neglects self-heating (Egeneraea = 0) effects
but retains the storage of energy (Eorage # 0). Normally, the thickness
of the thin film is in the range of 0.1-2 ym for a rapid response and
durability. The location of the y axis is indicative of volumetric effects
in the lumped thin-film sensor. That is, Ax = 0 in Fig. 1a, whereas
|Ax| > 0 in Fig. 1b. Notice that the net surface heat flux into each
substrate defines the location of x = 0. The conventional model
displayed in Fig. 1a will be referred to as model 1, and the enhanced
model given in Fig. 1b will be referred to as model 2. Model 2 allows
for a nonnegligible sensor thickness to be assumed (accounting for
delay and attenuation effects due to the sensor itself).

A. Heat Conduction into the Substrate

The defined location of the x axis in Fig. 1 permits the following
formulation for heat conduction into the substrate. The linear heat
equation for a semi-infinite medium is [30]

100

——(x t)—@(x 1) x €0, o) t>0 (2a)
adt o2 T -

where the reduced temperature is given as 8(x, t) = T'(x,t) — T,; the
spatial and temporal time variables are x and ¢, respectively; and the

thermal diffusivity is a. Equation (2a) is subject, for the present study
due to convenience, to the boundary conditions

q''(0,1) = —k%(o, 1), t>0 (2b)
ox

limO(x, 1) = 0, t>0 (2¢)

where ¢’/ (0, ¢t) is the net (conductive) heat flux into the substrate, and

k is the thermal conductivity. Further discussion on Eq. (2b) will be
forthcoming. The initial condition is given by

0(x,0) =0, x>0 (2d)

The analytic solution for the direct or forward problem is obtained

by the Fourier cosine transform [41]. The transform pair is defined as

([41] p. 17).
Transform:

0,(1) = \/g / °_°0 0(x, 1) cosix)dx, (L1 >0  (3a)

Inversion:

O(x, 1) = @ A : 0,(cos(x)dd (. f)>0  (3b)

The solution readily becomes

1 [ e—xz/(4a(t—u))
Ox, 1) = 577 ) o q""(0,u) BT du, (x,5) 20

(o)

where f = {/pck is the thermal effusivity or so-called thermal
product of the substrate material, where c is the substrate’s specific
heat capacity and p is the substrate’s density.

Equation (3c), evaluated at x = 0, becomes the data reduction
equation for recovering the net surface heat flux, ¢’’(0, t) when a
surface temperature, and 7'(0, ) is known corresponding to the model
described in Fig. 1a. Evaluating Eq. (3c) at x = 0 produces the first-
kind Abel integral equation for net surface heat flux, ¢'/(0, )

1 t
00,1) =——+ "0, u)ky (t — u) du, t>0 (4a)
ﬁ\/; u=0 1 !
where the convolution (or displacement) kernel, k; (t — u) is given as
1
ki(t—u) = , t—u>0 (4b)
t—u

Owing to the location of the x axis defined in Fig. 1, this statement
holds true for both models. The purpose of this formulation is stated

L)
Y
T-F thickness
AX
Ribdiak 3 Substrate
_— ubstrate . q"(0.1)
q.(7) q"(0.1) q.(2) ¢ \.
A i
> —
AL X / X
- F.ir'lm - Thin Film (T-F)
a) b)

Fig.1 Thin-film/substrate schematics: a) model 1 and b) model 2.
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as “Given 0(0, t) determine ¢;’(¢)”. When noisy data are present, ill-
posedness is revealed as the sampling rate increases.

Inversion of Eq. (4a) can be accomplished in several ways and
provides insight into the preconditioning process. Using a classical
integral equation approach ([42] p. 47) and recognizing that Eq. (4a)
is an Abel integral equation of the first kind permits inversion via the
first iterate kernel leading to

q"0,1) = \/_/ (0 w)k (t — u)du t>0 (4c)
An alternative formulation for Eq. (4c) is given by
t
g0 = ——L_ 000 4, 10 @d)

ar Ju=0 ([ - u)3/2

Equation (4d) can be arrived at by several approaches.
Equation (4d) is the normal starting point for developing the
Cook-Felderman discretization [43] often used in null point
calorimetry [32], thin films [35], and co-axial thermocouples [44].
The Cook—Felderman discretization [43] is merely a discretization
and does not address the ill-posedness of the formulation.
Equations (4c) and (4d) describe heat flux in an explicit form that is
commonly used [45] in experimental studies.

B. Model 1: Source Heat Flux, g’ (¢)

The control volume defined in Fig. 1a reduces the energy balance
(W) in the thin film displayed in Eq. (1) to

Ein = Eoul (53)
or in terms of the desired outcomes
g’ (DA = q"(0, DA, 120 (5b)

where A, is the cross sectional area of the sensor. Substituting
Eq. (4¢) into Eq. (5b) produces the explicit form

ql'(t) = f/ —(o Wkt —u)ydu >0  (5¢)

In contrast, an implicit form is obtained by substituting Eq. (5b)
into Eq. (4a) to arrive at

0(0, 1) = U(Wk (t—u)du,  t>0  (5d)

t
Y qs
ﬂ \/— u=0
In fact, the latter relationship is the preferred formulation for
this study.

C. Model 2: Source Heat Flux, g’ (¢)

The control volume defined in Fig. 1b reduces the energy balance
(W) displayed in Eq. (1) to

Ein = Eout + Estorage (63)

or in terms of the desired outcomes
do,
q;' (DA, = q"'(0, A, + (pcAx) A, ? (1), t>0 (6b)

where 6,(¢) is the lumped, thin-film reduced temperature and
(pcAx), is associated with the thermophysical and geometrical
properties of the thin film. For the linear formulation, 8 (%) represents
the average temperature in the film. It should be noted that the heating
rate d6/dt can exceed 150,000 K/s in shock studies, and stating
“thinness” as a rationale for omitting the storage term is insufficient.
The storage term must be much smaller than the source term in these
short-time studies. The initial temperature in the thin film and

substrate is assumed identical. This formulation assumes the validity
of a lumped thin-film analysis and the existence of ideal (perfect)
interfacial contact between the thin film and substrate. The ideal
thermal contact condition is expressed as

0,(1) = 00,1, 120 (60)

which permits Eq. (6b) to be written as
00
g5’ (DA, = q" (0, DA, + (pcAx) A, > 0, 1), t>0 (6d)

Dividing Eq. (6d) by the cross-sectional area, A_; solving for the
net surface heat flux, ¢'’(0, #); and then substituting this result into
Eq. (4a) produces

00.0 =52 [ (00 = Gean, 57 0.0 oo - wa

t>0 (6e)

This formulation is not convenient owing to the appearance of time
derivative of the reduced surface temperature.

If given g/’ (¢) then Eq. (6e) can be viewed as an integro-differential
equation for the reduced surface temperature, 6(0, 7). However, the
reverse is proposed for this study; that is, Eq. (6e) represents a
Volterra integral equation of the first kind for the unknown source
heat flux, ¢;'(¢). Before proceeding further, it is advantageous to
develop a standard form for future analysis. With this said, and
Eq. (6e) being a linear functional equation, one can initially solve for
the reduced surface temperature, 9(0, t), in terms of source heat flux,
q;'(1), by Laplace transforms. Taking the Laplace transform of
Eq. (6e) yields

LI0(0. 1)} = ﬁ%L{ / 'zo(q;'(u) ~(pean, 2 0. u))

(6f)
ki(t—u) du}, R(s) >0

where L is the Laplace operator defined through ([46] p. 1020)

LUF() = f(s) = [:)f(t)e‘”dt, R(s) >0 (62)

and possesses the convolution integral defined by ([46] p. 1020)

[ roearf =foie. w0 @

where f(¢) and g(¢) are real-valued functions.
With these definitions, Eq. (6f) becomes

0(0.5) = O s R0 O

f(f+)

wherea = 1/nandn = (pcAx),/p. Inverting Eq. (7a) ([46] p. 1024)
through the convolution theorem produces

e(o,r)=ﬂi,7 / QWi —wydu, 120 (Tb)
u=0

where the kernel k, (¢ — u) is given as

ky(t — u) = e Werfc(a/t — u), r—u>0 (70

and where erfc(z) is the complementary error function ([46] p. 297).
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A standardized form is now available for models 1 and 2, and can
be written as

m=1,2, t>0

®)

000.1) = v, / gk, (- 1) du,
u=0

where v, = (B/7)~" and v, = (By)~". Here, m = 1 refers to model
1, and m = 2 refers to model 2.
Before departing this section, let us explicitly express Eq. (7b) as

1 1 2 2
0(0,1) = / (u eﬂ (t=u)/(pcAx);
©.0 (pcAx); Ju=o 2" ()
B
f t— d t>
X er C((,DCAX)f Vt—u)du, >0 ©)

Appendix A shows that Eq. (7b) properly reduces to Eq. (4a) as
Ax — 0 through a brief asymptotic analysis.

III. Physics-Based Preconditioning with Parameter-
Free Function

A new data reduction methodology will be demonstrated and
applied to the two previously developed models. The advantage of
the new data reduction methodology will become self-apparent
during the discussion. By expressing the models in a common form, it
is possible to develop the preconditioner concept on Eq. (8) with the
understanding that the coefficient v,, and convolution (or
displacement) kernel k,,, (# — u) take on the chosen model particulars.
Additionally, a single numerical algorithm can be developed as the
entire process is expressed in a standardized form applicable to both
models and both data reduction schemes.

A. Time Domain Analysis
Let t — z in Eq. (8) to obtain

000,z2) = v, /Z q! (w)k,,(z — u) du, m=1,2, 7220

(10a)

Next, operate on Eq. (10a) with the trial function W,(¢ - z) and
integrate from z = 0 to z = ¢ to get

/’ W (1 - 2)0(0.2) dz = v, /t W(1-2)
z=0 z=0

X/Z q! (w)k,,(z — u)dudz, m=1,2,

=0

z>0 (10b)

Interchanging orders of integration on the right-hand side term in
Eq. (10b) produces

t t
/ Yy (t—2)0(0,2) dz = v, / )
z=0 u=0

t
x/ Yi(t = 2ky(z—u)dzdu, m=1,2, z>20  (10c)

or in the standard form (let z — u on left-hand side for cosmetic
reasons)

t t
[ we-wo0.wd=v, [ aremae-ua
m=102 z>0 (10d)

where

M, (t—u) = /[ Wit = 2k, (z — u)dz,

u

m=1,2, t—u>0 (10e)

One interpretation of this process is associated with a filtering
operation of the functional equation. In many studies, a digital filter is
applied solely on the raw reduced temperature data. This one-sided
operation removes the equal sign from the energy balance. Further,
ill-posed problems are highly sensitive to noise and the system’s
interpretation of noise. In an analytic setting, Eq. (10d) is equivalent
to Eq. (10a). However, for an ill-posed setting involving noisy and
discrete data, this approach could have a profound effect on
outcomes.

Observations: 1) The function W (#) is reminiscent of a filter and
hence should behave as a low-pass filter; b) if Ws(z) = 6(¢) then
Eq. (10d) recovers Eq. (4a); c) if g;'(f) = 8(¢) then v,,k,,(f) can be
interpret as an impulse response function; and d) if ¢;’(t) = H(t)
then v,,M,,(t) can be interpreted as a step response function where
6(t) = Dirac delta function and H(f) = unit step function. The
purpose of introducing the integral operator is twofold. First,
W,(#) =1 in the time domain represents 1/s in the Laplace
frequency domain. As noted in Ref. [26], this represents the first
invertible function beyond the Abel inversion based on standard
mathematical tables. Second, this operation produces a parameter-
free, low-pass filtering effect that assists in identifying the optimal
regularization operator [26,47]. This will be clearly seen by the
simulations.

B. Frequency Domain Analysis

Let us return to Eq. (4a) and let m = 1 for additional guidance on a
good choice for W (t) [26]. Taking the Laplace transform of Eq. (4a)
produces

q;'(s)
75

The Abel inversion [48] of Eq. (5¢) leads to Eq. (4a) and can be
equivalently obtained using Laplace transforms. This provides a hint
on a good choice for ¥/ (r). Dividing both sides of Eq. (11a) by /s
merely leads to the Abel inversion. The next logical suggestion
involves dividing Eq. (11a) by s and then inverting. Division of s in
Eq. (11a) produces

9(0, s) = v/

R(s) >0 (11a)

q;'(s)

0(0.
Q:ylﬁ 37

N

R(s)>0 (11b)
which inverts to

t t
/ 600, u)du = 2u, / q: (u)~/t — udu, t>0 (llc¢)
u=0 =|

u=0

since L{s~'} = 1and L{s~>/?} = 2./t/x ([46] pp. 1021-1022) and
further observe that M (¢t — u) is 24/t — u. From this, W,(¢ — u) is
identified as unity. In the frequency domain, the transformed reduced
temperature data are attenuated by a factor of 1/s.

To recap, Table 1 provides the parameters and kernels for models 1
and 2 using the conventional or natural formulation. Table 2 provides
the parameters and kernels for models 1 and 2 using the
preconditioned formulation when W, (¢t — u) = 1.

Table1 Conventional approach: v,, and

k,(t—u)
Model, m Uy k,(t—u)
1 1
m=1 —
NS Jt—u

1

— = (1= 1) orf, -
I~ pean), ed Werfc(a/t — u)

m=2
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Table2 Preconditioned approach: v,, and M, (t — u)

Model, m v, M, (t —u)

1
m=1 — 2Jt—u

NG

m=2 i: ! E(Za t_u—l+e”2(”“)erfc( t—u))
pn = penn, o\ Jr

IV. Future-Time Regularization and Optimal
Regularization Parameter

This section offers a relatively simple and straightforward
approach for estimating the source heat flux, ¢/’ (f), from the reduced
surface temperature measurement, 6(0,¢). The approach taken
transforms a first-kind Volterra integral equation into a second-kind
integral equation (approximation possessing a regularization
parameter) for the unknown source heat flux, ¢;’(¢). This second-
kind equation can produce a stable numerical approximation. This
concept directly addresses system stability. For the present paper, a
future-time method [21-26,49] is used for generating a second-kind
Volterra equation. A family of approximations describing the source
heat flux is formed based on the choice of the regularization
parameter. The predictions are collected and a means for extracting
the “best” prediction must be identified. In fact, this is the real crux for
all inverse problems. This paper suggests developing the
identification of optimal prediction using concepts from a thermal
phase plane [24-26]. The first step involves a qualitative assessment,
whereas the second step seeks a metric based on cross-correlation
principles [24-26].

A. Regularization by a Future-Time Method

For sake of conciseness and brevity, the conventional and
preconditioned formulations are concurrently regularized illustrating
the existence of a uniform numerical theme. Further, each induced
approximation is clearly indicated through the notational string. The
future-time approach begins by advancing time through the
regularization parameter now defined as y > 0. It should be
recognized that, unlike other regularization methods [19,20],
causality is retained. Let W;(# — u) = 1 and introduce future time
through ¢t — ¢ + y, where y is the future-time parameter having units
of time. Doing so in each integral equation produces

1+y
9(0,[—}—;/):1/,,,/ q! Wk, (t +y —u)du, m=1,2

u=0

(12a)

t+y t+y
[ 00,1+ v — ) du = 1), [ 0! OM(t + 7 — ) du,
u=0 u=0

m=12 t>0 (12b)

respectively. At this juncture, a continuous spectrum describing y is
displayed. This will later be transformed into a discrete spectrum
defined by y,, n = 1,2, ..., P. Equations (12a) and (12b) can
alternatively be expressed as

13
00,1+ 7) = v, / 4/ (Wt + 7 — ) du

u=0

1+
+ vm/ "q k(4 y—wdu,  m=12  (13)
u=t

1+ ¢
[ y6’(0,l+}/—u)du=1/m/ q ()M, (t +y—u)du
u=0 u=0

1+
+vm/ 7q.€’(u)Mm(z+y—u)du, m=1,2 (13b)
u=t

for t > 0. Formally assuming that g, (u) ~ ¢,’(¢) in the small interval
u € [t,t + y] permits

1
0001 +7) ~ v / 0!/ (@ + 7 — ) du

u=0

t+
ol () / ket 47 — ) du (14a)
u=t

+y 1
/ 00,1 +y—u)du %ym/ q!' (WM, (t +y—u)du
u=0 u=0

t+
+umq;’(t)/ "M, (t+y—w)du, m=1,2, >0 (14b)
u=t

Simplifying and recovering the equal sign requires

1
000.1 4 7) = vy / 0 Wkt + 7 — 1) dut + 1 Cg L ()

u=0

(15a)
+y T
/ 00,t+y—u)du =um/ qs, WM, (t +y — u)du
u=0 u=0
+ v, DY gl (1), t>0 (15b)
where g, (t) = q;'(¢) and
+y 7
cy =/ km(t+}/—u)du:/ Okm(z)dz (15¢)
u=t 7=

+y 14
Dy = / M (t+7—u)du = / OM,,,(z) dz (15d)
u=t =

Equations (15a) and (15b) are now Volterra integral equations of
the second kind [42] for ¢;,(f). Good stability characteristics should
prevail for sufficiently large v, Cy’ and v, D}'. A very small value of y
retains too many high frequencies in the signal, thereby leading to an
unstable prediction of source heat flux. In contrast, an excessively
large value of y does not retain enough high frequencies in the signal,
thus leading to oversmoothing in the predicted source heat flux.

To implement this regularization approach, departure from the
continuous time variable, #, is required. The discrete sampling times
are defined as #;,i = 1,2, ..., N, where N represents the number of
data points beyond the initial condition. Here, #; = iAt such that
At = t,,,./N. Data collection terminates at t = t,,,. A correspond-
ing discrete spectrum of future-time parameters are now needed and

expressed as y,, n = 1,2, ..., P. It is convenient to define y, in
terms of the sampling step. This leads to y, = nMAt,
n=1,2,..., P, where M is a convenient multiplication factor.

The discrete forms for Eqs. (15a) and (15¢) and Egs. (15b) and
(15d) are given as

1
0(07 i+ 7n) = Um[

0 qs/.,y,,(u)km(li + Yn— 14) du

+ U Cy gl (1) (16a)

ti+n t;
/ 00,1+ = 0 du =, / a3 OM 1+ 7, = ) d
u= U=

+ DmD%qs/,/r,, (ti)’

i:l,z,---,N_an, ”21,2,-.‘,P (l6b)
respectively, where
Tn
K :/ kn(@)dz,  m=12 n=12...P (16

Vn
D} = , M, (z)dz,

m=1,2, n=12,...,P (l16d)
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Observe that the resolvable or effective time domain is decreased
from #,,, 10 1 — nMAt,n = 1,2, ..., P. A consistent numerical
integration method is used based on a product trapezoial rule [42].
The notational flow or explicit chain of events in the approximation is
important in analysis. With this said, discretizing Eq. (16) leads to
q:'(t) = q;, (1) = q5), (t) = q;/, y(¢). Incorporating noisy data into
the equations leads to the final notation ¢;'(f) =~ g, (t) =

qs/./y,, ([) & qs/,c/,,.N(t) = és,y,,.N(ﬂ-

B. Thermal Phase Plane and Cross Correlation for Estimating 7,

It is enlightening to review stability using both qualitative and
quantitative means. This is especially important for understanding
the connection between physics and mathematics. The heat equation
possesses a time derivative of the temperature [Eq. (2a)] or heat
flux [Eq. (3d)]. All reconstructions are propagated through the
fundamental field equation that inherently contains certain continuity
expectations. With this said, a logical parameterized plot involving
the thermal phase plane seems highly reasonable. This could allow
for a quick and simple qualitative view of stability as it is well known
that the time derivative of experimental data is highly unstable
[50,51]. Instability increases as the sampling rate increases (due to
intrinsic time differentiation of data). The thermal phase plane, for
this study, is defined by a plot of (dg;’/df)(¢) against ¢;'(¢).

Conventional mathematical convergences do not exist for ill-posed
problems. However, an alternative point of view, in terms of patterns
and pattern development, seems appropriate for this framework. With
that said, cross correlation [24-26] seems to provide a means for
comparing predictive paired sequences. If a normed source heat flux
error over the regularization parameter is available, then a minimum
would be observed defining the optimal regularization parameter.
Clearly, in an experimental setting this does not exist.

Let the source heat flux cross-correlation coefficient be given as
[24-26]

Rq (és/,,y,,‘Nv és./;/,,H N)
+DMs ~,
pap o” gl n0.1)Gl, | v0.1)

N—(n+1)M N—(n+1)M
T G 0 e G 0
(17a)

n=1,2, ..., P —1,while the source heat flux rate cross-correlation
coefficient be given as [25,26]
R;(q;), v és///,,ﬂ N)
S M Gl w013, 8 (0.1)
T G 0 o Gl 0,
(17b)

n =1,2, ..., P — 1.Phase shiftis not included in this analysis [24].
The interested reader should consult Ref. [24] for an alternative
methodology for estimating the regularization parameter based on
phase shift and its general behavior as the future-time parameter is
increased. Further, as indicated in Ref. [47], both attenuation and
delay effects can be visually seen when an oscillatory heat flux input
is imposed and models are compared.

It will be evident [5] that driving R, (g, v 4y}, ., n) to unity is
easily accomplished. However, smoothness is controlled by the
source heat flux_ rate as previously noted. Interpreting the rate
term, R, (q Sy N qs 718D 18 Tundamental for defining the optimal
future- tlme parameter Oversmoothing is approached as
R; (q“s”yx N,qs 7a0.8) = 1. This limiting case attempts to extract
more accuracy out of the data than possible. To reiterate, cross
correlation is used to describe the alignment or the formation of a
pattern. The thermal phase plane plot assists to qualitatively display
the onset of a pattern. The onset of the pattern leads to the optimal

Table 3 Simulation parameters

Parameter/property  Value Unit

¢ (Macor) 790 J/(kg-K)
¢ (platinum) 130 J/(kg-K)
Ax 0.5 pum

At 1.0 Us

er (noise factor) 0.03 _

k (Macor) 146 W/(m-K)
M, 3 —_
N (data) 100 _
p (Macor) 2,531 kg/m?3
p (platinum) 21,400  kg/m3
Ginax 300 W/em?
tmax 0.0001 s

regularization parameter, yoy. This has been demonstrated in
Refs. [24-26].

V. Results

This section provides preliminary numerical clarity and results
illustrating the benefits of the proposed preconditioned data
reduction equation for the two proposed models in the recovery of the
source heat flux, ¢,’(¢). For this study, the thin film is composed of
pure platinum,* which is ideally adhered to the Macor® substrate per
Fig. 1. The source heat flux, to be studied in this paper, is given as
([40] Fig. 5)

45" () = Giax> 1 €0, Imay] (18)
for practical shock tunnel applications. The interested reader can
review Ref. [47] for a highly transient heat flux given as

”([) = Qmax(e ((t=11)/01)? + 0756—(0—72)/62 )’ t>0
The reduced temperature data are produced using

0, = 0(0,1;) + ¢7[0(0, 1) || 7, i=12,...,N 19
where 6(0,1) is the exact (or numerically “exact”) model-based
reduced surface temperature obtained by solving the direct or
forward problem. Here, the infinity norm is defined as
7]l = max,ep,, jlhl, while r;, i =1,2, ..., N, denotes the ith
drawn random number from the interval [—1, 1]. Table 3 provides the
parameters for the simulations. Figure 2 displays the source heat flux
described by Eq. (18) using the parameters defined in Table 3.

As this study is numerical in nature, the generated surface
temperature data for fixed source heat flux varies with the chosen
model. In practice, only a single set of surface temperature data exists.

Source Heat Flux, gs”(t) (W/cm?)
3

000 002 004 006 008 0.10 0.12)
Time, t (ms)

Fig.2 Source heat flux, Eq. (18-), using Table 3 data.
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Fig. 4 Comparison between model 1 and 2 reconstructed reduced
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Fig.5 Source heat Tlux prediction for model 1 (conventional).
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Fig.3 Model 1: a) 6(0, t),0; and b) (06/0t)(0, t) based on Eq. (4a) using Eq. (18).
5’3 25 Thus, this study focuses on the formulation and implementation of
= the regularization method for resolving each model equation; that is,
S 20 - for fixed model (1 or 2) temperature data are constructed per the exact
C:;, Model 1 (x=0cm) solution of the model. The imposed preconditioned approach can be
5 45 compared with the conventional approach for fixed model. If
® experimental data are available, then a single set of reduced
2 i temperature data can be used. For brevity, noiseless data results are
g 10 4 e not presented (though studied) as it validates the numerical method.
E ? f Model 2 (x=0
g 5 of sl [amiem) A. Model 1: Conventional and Preconditioned Predictions
A ;‘o Before delving into the results, it appears germane to provide some
§ 04 graphical indications describing both surface temperature and time
5 rate of change of the surface temperature. Model 1 can be used for this
E insight. It is important to note that most studies do not actually
000 0.02 0.04 006 008 018 012 provide t.he heating rate as defined by (0T /0¢)(0, t). This quantity is
: actually important to present [see Eq. (6e)].
Time, t (ms)

Table 3 parameters are reflective of the parameters used and results
obtained by Flaherty and Austin ([40] Fig. 5). In fact, the heating rate
appears to be as high as 150,000 K/s (or more) [40]. With this said,
Figs. 3a and 3b provide the Macor reduced surface temperature (°C)
via Eq. (4a) and heating rate (°C/s) as calculated by a low-order finite
difference method. For model 1 Ax = 0 and using the parameters
described in Table 3, the heating rate shown in Fig. 3b is significant. It
is important to visualize the difference between the reconstructed
reduced surface temperature using the identical heat flux source
given by Eq. (18). Figure 4 displays the reduced surface temperature
histories for both model 1 and model 2. Measured temperatures relate
the true physics that accounts for the energy balance, property
variations, and dimensionality, and may need to be adjusted to
account for the sensor intrusiveness. The most inclusive model
should approach the measured temperatures for a given heat flux.
Hence, simulated model 2 temperatures used in model 1 can
incorrectly predict the surface heat flux.

Focus is presently directed to model 1 using the conventional
analytic formulation described by Eq. (4a). Figures 5-7 describe the
reconstructed source heat flux as a function of the regularization
parameter, y,; resulting thermal phase diagram as a function of

£

£ 40000 + 1, =0.006 ms
E o 13 =0.009 ms
g . % =0.012ms S
= 20000 = PR A
g 4 15 =0.015ms AL P
; 5
HEU 3
[u]
14 .
® . *
©-20000 ‘S,-v 3
g e T e
g .
& -40000 : - ; : : : :

0 50 100 150 200 250 300 350
Source Heat Flux, gs” (W/cm?)
a)

0.95
¥'5=(0.021,0.024)ms
0.90- 1's=(0.018,0.021)ms Q‘-'
0.854 v's=(0.015,0.018)ms  ~=_
' ¥s=(0.0120.015)ms ~=o , °*
i AR ¥'5=(0.009,0.012)ms =, ¥'s=(0.024,0.027)ms
o 0.75
e ¥'5=(0.006,0.009)ms = |
0.70-
065/ 1'5=(0.003,0.008)ms
0.60- . v
0.55 - . - - : -
0993 0994 0995 0996 0997 0998 0999 1.000
b) Ry’

Fig. 6 Model 1. Conventional formulation: a) source heat flux phase plane and b) cross-correlation phase plane.
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Fig.7 “Best” source heat flux prediction for model 1 (conventional).
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Fig. 8 Source heat flux predictions for model 1 (preconditioned).

several regularization parameters; and cross-correlation phase
diagram. Figure 5 displays the reconstructed source heat flux using
model 1 and the conventional numerical method for the indicated
values of regularization parameter, y,,, n = 1, ..., 6. The exact heat
flux is shown in this figure as a basis for comparison. It is observed
that, as y,, increases, beyond some optimal condition, additional
smoothing occurs and that it is difficult to discern a favorable
comparison with the exact function, Eq. (18).

Figure 6a presents the previously described thermal phase plane. It
is difficult to discern the onset of a pattern and apparently renders the
phase-plane concept for extracting the regularization parameter
meaningless. Figure 6b presents the corresponding cross-correlation

phase plane for pairings (7, 7,4+1). 7 = 1,2, ..., 8. Here, the cross-
correlation coefficient for the source heat flux, R, (g}, v 4y, .¥)>
moves toward the value of unity (as desired). The cross-correlation
coefficient source heat flux rate R;(qy,, - Gs.,,,.~) Propagates to
unity in a near linear fashion. It should be noted that if a Gauss heat
flux [47] is imposed, then insufficient movement toward unity is
noted for the cross-correlation coefficient for the heat flux rate, and
thus renders difficulties in identifying the optimal regularization
parameter. The constant heat flux case is a relatively easy function to
reconstruct.

Figures 8-10 correspond to the previous sequence of plots
associated with the conventional integral formulation; however, this
series of results are associated with the preconditioned method where
W, (¢t — u) = 1. The identical data set and numerical integration rules
are implemented. In stark contrast, a different story is now conveyed.
Figure 8 mimics the choice of regularization parameters of Fig. 5.
However, in this case, the preconditioned approach renders results
possessing significantly less error than the conventional integral
formulation.

Figure 9a presents the thermal phase plane that clearly indicates the
onset of a pattern as y, is varied. Figure 9b presents the cross-
correlation phase plane where, unlike Fig. 6b, the points congregate
at unity. Care must be taken as results too close to unity for
R;(q S”y No z}s”y+ ,.v) violate physical expectations as noise exists in
the data. As with filtering, some blending of science and art is
required to interpret results. An imaginary vertical asymptote
provides guidance for choosing the optimal regularization set. It is
always best to retain as much high frequency in the signal as possible.
Figure 10 presents the exact source heat flux and predictions based on

350
(\E‘ 300 4 mg-‘«ﬂtmuu b o i
8 et
= 250 4
& 200
X
2 150 4
g
£ 100 4
§ « Exact
3 %07 |- y,=0009ms
o4 |+n=0012ms _

T T T T
0.00 0.02 0.04 0.06 0.08 0.18 0.12]

Time, t (ms)

Fig. 10 Source heat flux predictions for model 1 (preconditioned) near
optimal conditions.
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Fig. 9 Model 1. Preconditioned formulation: a) source heat flux phase plane and b) cross-correlation phase plane.
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Fig. 11 Exact and noisy reduced surface temperature data used for
model 2.
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Fig. 12 Source heat flux predictions for model 2 (conventional).

y3 and y,4. Both results are excellent in the context of this numerical
experiment. The source heat flux prediction using y; contains more
high-frequency content in the signal than the results from y,. In
general, preserving higher frequencies in the signal is often better
than seeking a “smooth” result especially when a time-varying heat
source is present. Therefore, for model 1, the new preconditioned
approach produces superior predictions. Maybe more important, it is
possible to characterize the “optimal” regularization parameter
leading to the “best” prediction.
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Fig. 14 Source heat flux predictions for model 2 (conventional).

B. Model 2: Conventional and Preconditioned Predictions

Following a similar presentation path as outlined in the discussion
of the results for model 1, Fig. 11 presents the noisy reduced surface
temperature data used in the following simulations. Figure 12
displays the family of source heat flux predictions using various
regularization parameters, y,, n=1,2,...,6, based on the
conventional integral formulation. Again, the conventional
formulation produces relatively large oscillations in the projection.

Figure 13 presents the thermal phase plane and cross-correlation
phase plane. Similar characteristics are observed with that of the
model 1 (conventional formulation) examination. Figure 14 displays
the optimal prediction illustrating the “best” extractable prediction
for this set of regularization parameters.

The last set of figures further endorses the utility of the proposed
preconditioner. This is demonstrated through model 2, which
possesses additional sophistication and detail over model 1.
Figures 15-17 correspond to the previous sequence of plots
associated with the conventional integral formulation; however, this
series of results are associated with the preconditioned method where
W;(¢ — u) = 1. The identical data set and numerical integration rules
are implemented (model 2). Figure 15 presents the family of source
heat flux predictions developed from the indicated discrete spectrum
of regularization parameters. Figure 15 mimics the choice of
regularization parameters displayed in Fig. 12. In this case, the
preconditioned (“parameter-free””) approach renders results possess-
ing significantly less error than the conventional integral formulation.
Figure 16a presents the thermal phase plane that clearly indicates the
onset of a pattern as y,, is varied. Again, only a small set (for clarity) of
phase plane results are indicated though qualitatively one could argue
that the jump from instability to stability occurs near y; [24-26].
Figure 16b presents the cross-correlation phase plane displaying that
a clear and progressive approach to unity is occurring for both
R, n+4)),,, x) and R, (45, N+ sy, n)- Following our

z

E

NEI 40000 4 e = 0.006 ms

2 +7,=0.009 ms

% v 7,=0012 ms

T 20000 4

B a7,=0015ms

o

h=

@

il 01 ¥

i

>

2

o

+= -20000 -

@

T

@

=

g -20000 T T T T T T T

D 0 50 100 150 200 250 300 80

) Source Heat Flux, gg" (chmz)

a

095
Ys={0.021,0.024)me
0.90 - f£={0.012.0.021)me TS *
-
¥5={0.015,0.018)ms
0851 s=(0.0 12,0.015)«5\‘%‘ . \
—~— e

080
B - T5=0.024,0 027)ms
’g 075 5={0.009,0.012)ms /7
24 .

070

“r5=(0.006.0.009)ms
065 -
et
0804 o s 75=(00020008)ms
055 —~ . -+ T T+ -
0993 0994 0959 0996 0997 09% 099 1000
b) Ra

Fig. 13 Model 2. Conventional formulation: a) source heat flux phase plane and b) cross-correlation phase plane.
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Fig. 15 Source heat flux predictions for model 2 (preconditioned).

previous discussions, we can identify candidate optimal parameters
of y,,. From Fig. 16b, y; to y5 are suggested.

Figure 17 presents the exact source heat flux and predictions based
on y3 to ys. Results are excellent in the context of this numerical
experiment. The predicted source heat flux, using y3, contains more
high-frequency content in the signal than the results from y,.
Therefore, for model 2, the new preconditioned approach produces
superior predictions. More important, it is possible to characterize the
“optimal” regularization parameter leading to the “best” prediction.

VL

A thorough analytical study has been undertaken illustrating
the importance of modeling and analysis for investigating and
understanding data reduction relationships associated with thin-film
temperature sensors for recovering the source heat flux. The extended
modeling effort provides additional assurance in the reconstruction
process when highly rapid transients are occurring (i.e., when
(pcAx)£(00/01)(0, 1)) is not relatively small when compared with
q!'(1)). Inthis case, the inclusion of the storage of energy in the model
of the thin-film/substrate system should be accounted. In fact, model
2 is closer to reality. Hence, using the measured temperatures and
model 1 will lead to an underestimation of the heat flux for the
example displayed in this paper. Finally, the preconditioned solution
based on the concept of a step response function produces accurate
predictions whereby the optimal regularization parameter can be
identified using thermal phase plane concepts. To reiterate, the
preconditioned formulation offers several attributes. First, the
predictions are noticeably more accurate than the conventional
formulation. Second, extracting the optimal regularization parameter
by the thermal phase concept now becomes available. Third, the

Conclusions

Fig. 17 Source heat Tlux predictions for model 2 (preconditioned).

extended model should be considered as it does not cause any
mathematical difficulties. It should be recalled that uncertainty
analysis [52] depends on the chosen model. Hence, “missing
physics” can contribute to a misunderstanding of the uncertainty
propagation.

Appendix : Limiting Process in Models

It is important to demonstrate that Eq. (7b) reduces to Eq. (4a) as
Ax — 0 (or similarly (pcAx), — 0)). Let us explicitly express
Eq. (7b) as

1 t 2 2
0(0,1) = 12 v (l—u)/(pcA)c)f
0.0 = o, |90

p —
X erfc ((pTx)f t— M) du, t> 0 (Al)

Next, let z = (B/t —u/(pcAx);) 2 0. As Ax - Ofort—u >0
then z — oo. The asymptotic analysis of the integrand is performed
before integration. The complementary error function can be
expressed in terms of its integral definition as ([46] p. 297)

2 L 2

erfe(z) = 7; e ™ du
U=z

2 o (=1\d _.
= [ (Z) L e, >0
Jr u:Z(Zu)due ! ‘=

or upon integration by parts leads to
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Fig. 16 Model 2. Preconditioned formulation: a) source heat flux phase plane and b) cross-correlation phase plane.
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2 1 o 1
erfc(z) = ﬁ (— Ze‘”z |Z°:Z - /;=Z ﬁe_“z du)
2 1 2 © 1 d 2
P ) 00_- S |
Jr ( 2’ =z + A:z 4 du® u)
Performing this procedure a second time yields

© o 3
+ / 47144 e_uz du)
u=z U=z

The pattern is now readily established. It can be shown that the
leading order behavior produces

—u?
erfe(z) = et o

1 _»
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erfc(z) = % (

or in asymptotic notation

1
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Substituting Eq. (A3) into Eq. (A1) renders

2 1 4 2 2
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Taking the limit as Ax — 0 (or z = o) produces

: : 2 ! ’
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or
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thereby
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which replicates Eq. (4a).
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