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This paper describes the first steps toward developing a highly-accurate multi-layered slug calorimeter 
for estimating the surface heat flux in high-enthalpy flows associated with hypersonic ground test 
campaigns. Slug geometry, material choices, test conditions, manufacturing method, mathematical 
modeling and instrumentation selection must be integrated into the design process in order to achieve 
the desired accuracy outcome. Integration is often overlooked in lieu of simplified data reduction 
equations that relate in-depth temperature measurements to the desired surface heat flux. Simplified 
models are often physics deficient and can lead to misleading interpretations. This paper illustrates 
the need for inclusive modeling in arriving at the data reduction equation for the heat flux gauge. 
Several important results are highlighted in this paper including the: (a) identification of data reduction 
model discrepancies; (b) significance of Volterra integral formulations for algorithm development; 
(c) implementation of a parameter-free preconditioner operated on data reduction model for low-pass 
filtering; (d) development of the approximation thread for uncertainty propagation; (e) achievement of 
stability through the future-time method; and, (f) extraction of the optimal regularization parameter 
through phase-plane and cross-correlation concepts for estimating the “best” heat flux.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper proposes a technical pathway toward reconstructing the surface (net) heat flux for a newly proposed multi-layered slug 
calorimeter. Slug calorimeters [1–7] are fundamental gauges for estimating heat flux [8,9]. The rudimentary gauge provides fundamental 
insight into an energy balance; and, further illustrates the concept of a data reduction equation based on simple input-output principles. 
In this case, the input is the surface heating source while the output is the measured slug “bulk” temperature. The measured in-depth 
slug temperature is assumed as the “bulk” value. Unfortunately, this simple data reduction equation is computationally unstable due to its 
mathematical structure involving time differentiation of the measured (non-perfect) discrete temperature. Thus, the data reduction process 
involves a violation of well-posedness [10,11].

The rudimentary gauge involves a slug of a material that is encapsulated in an ideal insulator (adiabatic condition) where a single sur-
face is exposed to the heating source. From first principles, the imparted surface energy is related to the storage of energy. Unfortunately, 
many assumptions are contained in this simplified formulation. In forward/direct problems [8,9], the input (i.e., heat flux) is given and the 
output (i.e., temperature history) is determined. This seemingly simple reversal leads to an inverse problem [12–14]. This class of problem 
is ill posed [10,11]. That is, noise in the measured data amplifies the error in the response which worsen with increasing sampling rate. 
Simplified models put severe constraints on the design of the sensor for maintaining idealized system boundary conditions. Further, the 
measured temperature at fixed position is not truly equal to the “bulk” temperature described in the data reduction equation. Finally, 
it should be remarked that the temperature measuring sensor possesses its own intrusive characteristics that produce time delays and 
attenuation effects [15,16].

* Corresponding author.
E-mail addresses: jfranke1@utk.edu (J.I. Frankel), ekici@utk.edu (K. Ekici).
https://doi.org/10.1016/j.ast.2020.105869
1270-9638/© 2020 Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.ast.2020.105869
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2020.105869&domain=pdf
mailto:jfranke1@utk.edu
mailto:ekici@utk.edu
https://doi.org/10.1016/j.ast.2020.105869


2 J.I. Frankel, K. Ekici / Aerospace Science and Technology 102 (2020) 105869
Nomenclature

a constant, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1/2

A cross sectional area, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

b constant, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K-m2/J
c specific heat capacity, . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg-K)
�c specific heat capacity, . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg-K)
Ė Energy per unit time, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
f s sampling frequency, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
k thermal conductivity, . . . . . . . . . . . . . . . . . . . . . . . . . W/(m-K)
L1 length, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M f multiplication factor
N number of data points beyond the initial condition
P maximum number of future-time parameters
q′′ heat flux, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

q′′
s source heat source, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

q̃′′
s,η1,γm,N approximate source heat flux, . . . . . . . . . . . . . . . . . W/m2

r constant, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/K
R(q′′) cross-correlation coefficient for heat flux
R(dq′′/dt) cross-correlation coefficient for heat flux rate
t time, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

tmax maximum data collection time, . . . . . . . . . . . . . . . . . . . . . . s
T lumped temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T ∗ distributed temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
To initial temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tr reference temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u dummy time variable, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
x spatial coordinate, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek

α thermal diffusivity, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
β thermal effusivity, . . . . . . . . . . . . . . . . . . . . . . W-

√
s/(m2-K)

�t time sampling intervals, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
εq,m heat flux RMS error, . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/cm2

γ continuous future-time parameter, . . . . . . . . . . . . . . . . . . . s
γm discrete future-time parameter, . . . . . . . . . . . . . . . . . . . . . . s
η1 probe location, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
θ reduced temperature, . . . . . . . . . . . . . . . . . . . . T − To , ◦C, K
ρ density, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

Flow characterization is key in high enthalpy facilities for (i) new material development associated with thermal protection systems 
(TPS’s); and, (ii) code validation studies for modeling purposes. New hypersonic test facilities are being introduced world wide. However, 
significantly less effort has been directed toward heat flux sensor development. This paper provides the primary steps for developing 
a cold or explosively bonded, multilayered slug calorimeter that can be developed using various backside boundary conditions (i.e., in-
sulated or cooled). This initial paper focuses on analytical developments in order to display and clarify physical deficiencies associated 
with the produced data reduction equation. With this initial analysis, a plan is suggested for achieving the desired accuracy goals. The 
approach takes advantage of physics; materials; connectivity of materials; analysis tools; computational tools; experimental design and 
instrumentation; and, insight. References [17,18] and the classical Schultz and Jones [19] AGARD report (with noted corrections [20,21]) 
detail previous methods for analyzing measured data for this style of heat flux gauge. These reported methods serve as a baseline for 
developing the preconditioned integral equation proposed here. References [17] and [18] provide background and clarity for developing 
preconditioned equations.

Section 2 provides the mathematical formulation of the data reduction equation based on a set of assumptions. Section 3 describes 
the regularization and numerical methods used for producing a family of heat flux predictions based on the regularization parameter. 
Section 4 provides numerical results comparing models and identify physics deficiency as well as describing the means for estimating the 
optimal heat-flux prediction. Section 5 presents some concluding remarks and makes recommendations for the next progressive step.

2. Formulation of data reduction equation

This section provides the analytic derivation leading to a new data reduction equation for estimating the net surface heat flux, q′′(0, t)
into the proposed multi-layered calorimeter. This initial model helps define the analytic process and necessary numerical toolset for a new 
generation of calorimeters. Fig. 1a displays a heat flux source, q′′

s (t) impinging the front face of a “slug” at x = 0 while all other surfaces 
(sides and back) are assumed adiabatic (substrate : k2 = 0 W/(m-K)). The two-region problem is defined using a high-thermal conductivity, 
high-thermal diffusivity slug (Region 1) ideally adhered to an adiabatic substrate (Region 2). For this case, Region 1 is modeled as a slug 
(spatially lumped (L) mass) where a single time-varying temperature is produced. When the thermophysical properties are assumed 
constant, the modeled temperature is representative of the average temperature in the slug. However, when instrumentating the slug, say 
using a thermocouple located at x = η1 < L1, the measured temperature is not identically the average temperature. This can introduce 
a bias. Further, if the product of density and specific heat (i.e., ρ1�c1(T ∗

1 (x, t))) is temperature dependent then the lumped temperature 
is approximated as the average temperature, T̄1(t). Here, T ∗

1 (x, t) is the temperature associated with a fully distributed (D) solution in 
Region 1.

Typical calorimeters are based on Fig. 1a for producing a simplified data reduction equation. However, substantial onus is now placed 
on designing and fabricating a gauge that meets the adiabatic constraints (e.g., [6]). In reality, this is a difficult task as an adiabatic 
surface does not exist. Some extended models possessing a “heat loss term” have been suggested [7] in order to retain the simplified 
ordinary differential equation form. The large testing space involving temperature range, heat flux, and test duration further complicates 
the functionality of the sensor. Shock and expansion tunnel experiments involve small temperature rises and short test times while arc-jet 
experiments may involve large temperature spans at either short- or long-time exposures.

Fig. 1b displays the next step toward reality as the adiabatic backside is replaced with a substrate of low thermal conductivity (k2 > 0
W/(m-K)) while maintaining adiabatic sides for the one dimensional assumption. The one-dimensional semi-infinite model is identical 
to the one-dimensional adiabatic side model if the source in uniform in space at any instant in time. Region 2 is now formulated as a 
distributed (D) system possessing a spatially and temporally varying temperature profile. In this case, thermal contact resistance is present 
at the interface of the two dissimilar materials at x = L1. Fig. 2a provides an exploded view of a Lumped-Distributed (L-D) formulation 
based on the defined CV’s. Fig. 2b displays a Distributed-Distributed (D-D) formulation based on the defined CV’s shown in this figure. 
Fig. 2b displays a schematic for developing a distributed formulation for Region 1 that is connected to a distributed formulation in Region 
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Fig. 1. Schematic of (a) idealized sensor; and (b) simplified model with adiabatic sides.

Fig. 2. Exploded view for (a) the L-D formulation; (b) the D-D formulation; and, (c) photograph of a cold-welded, two-layer sample.

2. The present study is based on the geometry provided in Fig. 2a. In this study, the onus is placed on developing an inclusive model 
leading to a simplified design process. Further, the mathematical formalism is based on resolving an ill-posed, first-kind Volterra integral 
equation. To repeat, this approach places the burden of work on the analysis process rather than the sensor’s design and fabrication 
process. Fig. 2c displays an “explosively-welded” laminated material composed of pure copper and stainless steel (e.g. [22]). This cold-
weld process produces excellent thermal contact involving a substrate material that can be easily instrumented. This process does not 
appear to disturb the morphology at the interface [22]. The reader is referred to Ref. 22 for further details on morphology and contact. 
Common practice (for non-cooled gauge) uses an insulating material as the second layer where perfect thermal contact is not assured over 
repeated cycling. As will be demonstrated in an upcoming study, insulation can be placed behind an instrumented substrate causing no 
difficulties in the analysis. In this case, second temperature probe would be installed at x = η2, L1 < x < η2. The resulting data reduction 
equation would be derived based on the physical region, 0 ≤ x ≤ η2.

In developing the data reduction equation for this study, Region 1 is assumed to contain temperature dependent thermophysical 
properties while the Region 2 is assumed to possess constant thermophysical properties. This represents the first step in our proposed 
design process. Let the specific heat, �c1(T ∗

1 ) > 0 for Region 1 be given as �c1(T ∗
1 ) = c1,0 + c1,1(T ∗

1 − Tr) where Tr is a reference temperature. 
This temperature variation is sufficient for both demonstrating the analysis and is physically representative of copper. The initial condition 
is given as To for both regions. The reduced temperature is defined as θ j = T j − To , j = 1, 2 which is valid for either lumped, T j or 
distributed temperatures, T ∗

j , j = 1, 2. Thus, the specific heat in Region 1 is expressed as �c1(T ∗
1 ) = c′

1,0 + c1,1(T ∗
1 − To) = c′

1,0 + c1,1θ∗
1 =

c1(θ∗
1 ) where c′

1,0 = c1,0 + c1,1(To − Tr). The specific heat for Region 2 is designated as c2 (evaluated at the initial condition). Further, the 
net surface heat flux, q′′(0, t) is assumed to be equal to the source heat flux, q′′

s (t). This is a valid approximation when the source is the 
dominant mode of heat transfer. This approximation is often the case in aerospace ground testing. All energy balances are derived based 
on energy conservation given as [8,9]

Ė in + Ė gen = Ėout + Ė stor . (1)
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Region 1: Energy Balance
The lumped heat equation for Region 1 can be derived via a physical or mathematical formulation. The physical formulation follows 

the control volume, CV1 defined in Fig. 2a leading to

q′′
s (t)A = ρ1�c1(T1(t))L1A

dT1

dt
(t) + q′′

1,out(t)A, x ∈ [0, L1], t ≥ 0, (2a)

or upon dividing by the cross-sectional area, A and making use of the reduced temperature definition, we get

q′′
s (t) = ρ1c1(θ1(t))L1

dθ1
dt

(t) + q′′
1,out(t), x ∈ [0, L1], t ≥ 0. (2b)

It is clear, from this physical formulation, that the reduced lumped temperature, θ1(t) = T1(t) − To is solely a function of time, t and 
uniform in space. This temperature is not actually measureable. To illustrate the physical meaning of this temperature, we return to 
Eq. (1) and derive the fully-distributed, one-dimensional conservation of energy statement as [8,9]

ρ1�c1(T
∗
1 (x, t))

∂T ∗
1

∂t
(x, t) = −∂q∗

1
′′

∂x
(x, t), x ∈ [0, L1], t ≥ 0, (3a)

where the “astrid” superscript refers to the fully distributed formulation in Region 1. Further, Eq. (3a) in the reduced temperature variable 
becomes

ρ1c1(θ
∗
1 (x, t))

∂θ∗
1

∂t
(x, t) = −∂q∗

1
′′

∂x
(x, t), x ∈ [0, L1], t ≥ 0. (3b)

Assuming ρ1 is a constant, we next integrate Eq. (3b) over the spatial variable defined by Region 1 to obtain

ρ1

L1∫
x=0

c1(θ
∗
1 )

∂θ∗
1

∂t
(x, t)dx = −

L1∫
x=0

∂q∗
1
′′

∂x
(x, t)dx, t ≥ 0,

or

ρ1

L1∫
x=0

c1(θ
∗
1 )

∂θ∗
1

∂t
(x, t)dx = −(q∗

1
′′
(L1, t) − q∗

1
′′
(0, t)), t ≥ 0, (3c)

which by the weighted mean-value theorem [23] produces

ρ1c1(θ
∗
1 (ξ(t), t))

L1∫
x=0

∂θ∗
1

∂t
(x, t)dx = −(q∗

1
′′
(L1, t) − q∗

1
′′
(0, t)), t ≥ 0, (3d)

where ξ(t) ∈ [0, L1], t ≥ 0 and c1(θ∗
1 ) > 0. Further, we can now extract the time derivative from the integrand via Leibniz rule [23] as

ρ1c1(θ
∗
1 (ξ(t), t))L1

d

dt

(∫ L1
x=0 θ∗

1 (x, t)dx

L1

)
= q′′

s (t) − q∗
1
′′
(L1, t), t ≥ 0, (3e)

where q∗
1(0, t) = q′′

s (t), t ≥ 0. The final form becomes

q′′
s (t) = ρ1c1(θ

∗
1 (ξ(t), t))L1

dθ̄∗
1

dt
(t) + q∗

1
′′
(L1, t), t ≥ 0, (4a)

where the average reduced temperature, θ̄∗
1 (t) is defined mathematically as

θ̄∗
1 (t) =

∫ L1
x=0 θ∗

1 (x, t)dx

L1
.

Equation (4a) is subject to the consistent, reduced temperature initial condition

θ∗
1 (ξ(0),0) = θ̄∗

1 (0) = θ∗
1 (L1,0) = 0. (4b)

It is evident that Eq. (2b) and Eq. (4a) are mathematically similar but not identical.

Region 2: Distributed Semi-Infinite Heat Equation
For this first study, Region 2 assumes constant thermophysical properties. The heat equation for this region, in terms of the reduced 

temperature, θ∗
2 (x, t), is [8,9]

1

α2

∂θ∗
2

∂t
(x, t) = ∂2θ∗

2

∂x2
(x, t), x ∈ [L1,∞), t ≥ 0, (5a)

subject to the imposed boundary conditions
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−k2
∂θ∗

2

∂x
(L1, t) = q∗′′

2 (L1, t) = q∗′′
1 (L1, t), (5b)

θ∗
2 (L1, t) = θ∗

1 (L1, t), (5c)

and far-field condition

lim
x→∞ θ∗

2 (x, t) = 0, t > 0, (5d)

with the initial condition

θ∗
2 (x,0) = 0, x ∈ [L1,∞). (5e)

Equation (5c) expresses perfect thermal contact which, in reality, is difficult to achieve or quantify. The semi-infinite model (no thermal 
penetration to the back of the substrate) lends itself to the reduced Region 2 temperature-heat flux relationship at x = L1 [8,24]

θ∗
2 (L1, t) = 1

β2
√

π

t∫
u=0

q∗′′
2 (L1,u)√
t − u

du, t ≥ 0, (6a)

where β2 = √
ρ2c2k2 is known as the thermal product or thermal effusivity. Using the interfacial boundary conditions, Eqs. (5b-c), Eq. (6a)

can be alternatively written as

θ∗
1 (L1, t) = 1

β2
√

π

t∫
u=0

q∗′′
1 (L1,u)√
t − u

du, t ≥ 0. (6b)

Next, we invert Eq. (6b) using the Abel inversion [24,25] to produce

q∗′′
1 (L1, t) = β2√

π

t∫
u=0

∂θ∗
1

∂u
(L1,u)

du√
t − u

, t ≥ 0. (6c)

Substituting Eq. (6c) into Eq. (4a) yields

q′′
s (t) = ρ1c1(θ

∗
1 (ξ(t), t))L1

dθ̄∗
1

dt
(t) + β2√

π

t∫
u=0

∂θ∗
1

∂u
(L1,u)

du√
t − u

, t ≥ 0. (6d)

At this juncture, we now make an approximation involving the temperature variables; namely, we assume θ∗
1 (ξ(t), t) ≈ θ̄1(t); θ∗

1 (L1, t) ≈
θ̄1(t); and, θ̄∗

1 (t) ≈ θ̄1(t). With this, Eq. (6d) becomes

q′′
s (t) ≈ ρ1L1c1(θ̄1(t))

dθ̄1
dt

(t) + β2√
π

t∫
u=0

dθ̄1
du

(u)
du√
t − u

, t ≥ 0, (6e)

or

q′′
s (t) = ρ1L1c1(θ̄1(t))

dθ̄1
dt

(t) + β2√
π

t∫
u=0

dθ̄1
du

(u)
du√
t − u

, t ≥ 0, (6f)

where q′′
s (t) ≈ q′′

s (t), t > 0. The data reduction model equation is now based on Eq. (6f) with its intrinsic assumptions and proposed 
definition of reduced temperature. This first approximation begins the string of approximation events.

Frequency Domain Analysis for Producing a Resolvable Data Reduction Equation
Substituting the estimated specific heat, given as c1(θ̄1(t)) = c′

1,0 + c1,1θ̄1(t), for Region 1 into Eq. (6f) and then taking the Laplace 
transform yields

L{q′′
s (t)} = ρ1L1L{ d

dt

(
(c′

1,0θ̄1(t) + c1,1
2

θ̄2
1 (t)

)
} +L{ β2√

π

t∫
u=0

dθ̄1
du

(u)
du√
t − u

}, Re(s) ≥ 0, (7a)

where s is a complex variable with the Laplace transform being defined as [25]

L{ f (t)} = f̂ (s) =
∞∫

t=0

f (t)e−stdt, Re(s) > 0. (7b)

Equation (7a) reduces to

q̂′′
s (s) = ρ1L1s

(
c′
1,0

ˆ̄θ1(s) + c1,1
ψ̂1(s)

) + β2
√
s ˆ̄θ1(s), Re(s) > 0, (8a)
2
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where

ψ̂1(s) = L{θ̄2
1 (t)}, Re(s) > 0, (8b)

since ψ1(t) = θ̄2
1 (t), t ≥ 0.

Equation (8a) can be expressed as

q̂′′
s (s) = ρ1L1c

′
1,0

ˆ̄θ1(s)
√
s(a + √

s) + ρ1L1
c1,1
2

sψ̂1(s), Re(s) > 0, (9)

where a = β2/(ρ1L1c′
1,0). Next, dividing Eq. (9) by 

√
s(a + √

s)ρ1L1c′
1,0 yields

1

ρ1L1c′
1,0

q̂′′
s (s)√

s(a + √
s)

= ˆ̄θ1(s) + c1,1
2c′

1,0

√
s

(a + √
s)

ψ̂1(s), Re(s) > 0. (10a)

Let b = 1/(ρ1L1c′
1,0) and r = c1,1/(2c′

1,0) and divide Eq. (10a) by the preconditioner, sm , m = 1, 2, ... to get

b
q̂′′
s (s)

sm+1/2(a + √
s)

=
ˆ̄θ1(s)
sm

+ r
1

sm−1/2(a + √
s)

ψ̂1(s), Re(s) > 0. (10b)

Assuming a minimal regularity condition on ψ̂1(s) and the availability of an analytical inversion, suggests letting m = 1 and thus 
Eq. (10b) becomes

b
q̂′′
s (s)

s3/2(a + √
s)

=
ˆ̄θ1(s)
s

+ r
1√

s(a + √
s)

ψ̂1(s), Re(s) > 0. (10c)

Equation (10c) is now the data reduction equation of interest in the frequency domain. Next, let us invert Eq. (10c) using the convolution 
theorem [26]

L{
∞∫

u=0

f (u)g(t − u)du} = f̂ (s) ∗ ĝ(s), Re(s) > 0. (11)

Inverting Eq. (10c) produces

b

t∫
u=0

q′′
s (u)κq(t − u)du =

t∫
u=0

θ̄1(u)du + r

t∫
u=0

θ̄2
1 (u)κψ(t − u)du, t ≥ 0, (12a)

since ψ1(t) = θ̄2
1 (t) and where the kernels κq(t) and κψ(t) are defined as

κq(t) = L−1{ 1

s3/2(a + √
s)

} = 1

a2

(
2a

√
t√

π
− 1+ ea

2ter f c(a
√
t)

)
, (12b)

κψ(t) = L−1{ 1√
s(a + √

s)
} = ea

2ter f c(a
√
t), t ≥ 0, (12c)

where er f c(z) is the complementary error function. Observe that all auxiliary conditions are absorbed into the integral representation. 
Equation (12a) is a linear, first-kind Volterra integral equation for the unknown surface heat flux, q′′

s (t) ≈ q′′
s (t), t ≥ 0.

Next, let us assume that “measured” instrument temperature, θη1 (t) is equal to the “exact” positional temperature, θ∗
1 (η1, t) where 

η1 ∈ [0, L1] per Fig. 1b, i.e. θη1 (t) = θ∗
1 (η1, t). At this point, perfect reduced temperature measurements are assumed in this derivation. 

Next, we assume that the average temperature, θ̄1(t) is equal to the measured positional temperature, θ∗
1 (η1, t). Equation (12a) is now 

expressed as

b

t∫
u=0

q′′
s (u)κq(t − u)du ≈

t∫
u=0

θ∗
1 (η1,u)du + r

t∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t − u)du, t ≥ 0, (13a)

or

b

t∫
u=0

q′′
s,η1

(u)κq(t − u)du =
t∫

u=0

θ∗
1 (η1,u)du + r

t∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t − u)du, t ≥ 0, (13b)

which now extends the approximation thread to q′′
s (t) ≈ q′′

s (t) ≈ q′′
s,η1

(t).
It should be remarked that prefiltering the data disrupts the equal sign in Eq. (6f) even in the presence of ideal data. In contrast, the 

preconditioner operates on the equation itself thereby preserving the equal sign even in the presence of ideal data. Hence, as this is an 
ill-posed problem that is highly sensitive to noise, the concept of preconditioning the functional equation describing the energy balance is 
preferred.
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3. Regularization and numerical methods

This section provides the final computational form of the data reduction equation for recovering an approximation of q′′
s (t) in a discrete 

sense where the reduced temperature data are imperfect. Numerical results, for the heat flux, require stabilization owing to the ill-posed 
nature of the formulation. In this context, the notion of future-time is introduced for accomplishing the regularization. Regularization is a 
means for introducing filtering. This approach basically transforms the first-kind integral equation for the heat flux into an approximate 
second-kind Volterra integral equation. This new equation possesses stronger stability characteristics than the original first-kind form. For 
additional insight, the reader is referred to Refs. [17,18,27]. In a nutshell, time is advanced by t → t+γ with γ ≥ 0 where γ is the future-
time parameter (or regularization parameter). As written, γ forms a continuous spectrum of values. Substituting this time advancement 
into Eq. (13b) produces

b

t+γ∫
u=0

q′′
s,η1

(u)κq(t + γ − u)du =
t+γ∫

u=0

θ∗
1 (η1,u)du + r

t+γ∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t + γ − u)du, t ≥ 0, (14a)

or

b

t∫
u=0

q′′
s,η1

(u)κq(t + γ − u)du + b

t+γ∫
u=t

q′′
s,η1

(u)κq(t + γ − u)du

=
t+γ∫

u=0

θ∗
1 (η1,u)du + r

t+γ∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t + γ − u)du, t ≥ 0, (14b)

or

b

t∫
u=0

q′′
s,η1

(u)κq(t + γ − u)du + bq′′
s,η1

(t)

t+γ∫
u=t

κq(t + γ − u)du

≈
t+γ∫

u=0

θ∗
1 (η1,u)du + r

t+γ∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t + γ − u)du, t ≥ 0, (14c)

where we assume q′′
s,η1

(u) ≈ q′′
s,η1

(t), in u ∈ [t, t + γ ]. Recovering the equal sign suggests

b

t∫
u=0

q′′
s,η1,γ

(u)κq(t + γ − u)du + bCγ q
′′
s,η1,γ

(t)

=
t+γ∫

u=0

θ∗
1 (η1,u)du + r

t+γ∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(t + γ − u)du, t ≥ 0, (14d)

where

Cγ =
t+γ∫

u=t

κq(t + γ − u)du =
γ∫

z=0

κq(z)dz, γ ≥ 0, (14e)

which now extends the approximation thread to q′′
s (t) ≈ q′′

s (t) ≈ q′′
s,η1

(t) ≈ q′′
s,η1,γ

(t). At this juncture, it is prudent to move from the 
continuous domain into the discrete domain as expected when experimental data are available. Let the time sample spacing be defined 
as �t = tmax/N where N data points exist beyond the initial condition. The time span of the experiment is denoted as tmax . The sampling 
frequency is f s = 1/�t . It is also convenient to move the defined continuous parameter, γ into its discrete counterpart defined as γm =
mM f �t , m = 1, 2, ..., P and where M f is a convenient multiplication factor. For numerical convenience, observe that γm is defined in 
terms of sampling frequency. Therefore, letting t → ti and γ → γm in Eq. (14d) produces

b

ti∫
u=0

q′′
s,η1,γm

(u)κq(ti + γm − u)du + bCγmq
′′
s,η1,γm

(ti)

=
ti+γm∫
u=0

θ∗
1 (η1,u)du + r

ti+γm∫
u=0

(
θ∗
1 (η1,u)

)2
κψ(ti + γm − u)du, i = 1,2, ...,N −mM f , (15a)

while Eq. (14e) becomes
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Cγm =
γm∫

z=0

κq(z)dz, m = 1,2, ..., P . (15b)

Observe that the resolvable heat flux prediction is reduced to t′max = tmax −γm or (N−mM f )�t . Next, we subdivide the integration regions 
per data panel as

b
i∑

j=1

t j∫
u=t j−1

q′′
s,η1,γm

(u)κq(ti + γm − u)du + bCγmq
′′
s,η1,γm

(ti)

=
i+mM f∑

j=1

t j∫
u=t j−1

θ∗
1 (η1,u)du + r

i+mM f∑
j=1

t j∫
u=t j−1

(
θ∗
1 (η1,u)

)2
κψ(ti + γm − u)du, i = 1,2, ...,N −mM f ;m = 1,2, ..., P . (16a)

Generalized product integration [24] is now introduced through

b
i∑

j=1

q′′
s,η1,γm

(t j)

t j∫
u=t j−1

κq(ti + γm − u)du + bCγmq
′′
s,η1,γm

(ti)

≈
i+mM f∑

j=1

θ∗
1 (η1, t j)

t j∫
u=t j−1

du + r

i+mM f∑
j=1

(
θ∗
1 (η1, t j)

)2 t j∫
u=t j−1

κψ(ti + γm − u)du, i = 1,2, ...,N −mM f ;m = 1,2, ..., P , (16b)

or in order to recover the equal sign, we write

b
i∑

j=1

q′′
s,η1,γm,N(t j)Mq( j, i,m) + bCγmq

′′
s,η1,γm,N(ti)

= �t

i+mM f∑
j=1

θ∗
1 (η1, t j) + r

i+mM f∑
j=1

(
θ∗
1 (η1, t j)

)2
Mψ( j, i,m), i = 1,2, ...,N −mM f ;m = 1,2, ..., P , (16c)

Mq( j, i,m) =
t j∫

u=t j−1

κq(ti + γm − u)du, j = 1,2, ..., i, (16d)

Mψ( j, i,m) =
t j∫

u=t j−1

κψ(ti + γm − u)du, j = 1,2, ..., i +mM f ; i = 1,2, ...,N −mM f ;m = 1,2, ..., P , (16e)

which now extends the approximation thread to q′′
s (t) ≈ q′′

s (t) ≈ q′′
s,η1

(t) ≈ q′′
s,η1,γm

(t) ≈ q′′
s,η1,γm,N (t). Equations (16d,e) can either be an-

alytically or numerically integrated. It is evident that an explicit expression for the heat flux, q′′
s,η1,γm,N(ti) avails itself with one more 

manipulation. Releasing j = i in the first summation on the left-hand side of Eq. (16c) and solving for the heat flux, q′′
s,η1,γm,N(ti) renders

q′′
s,η1,γm,N(ti) = �t

∑i+mM f

j=1 θ∗
1 (η1, t j) + r

∑i+mM f

j=1

(
θ∗
1 (η1, t j)

)2
Mψ( j, i,m) − b

∑i−1
j=1 q

′′
s,η1,γm,N(t j)Mq( j, i,m)

bMq(i, i,m) + bCγm

, (17)

i = 1, 2, ..., N − mM f ; m = 1, 2, ..., P . As with all experimental studies, the measured data are inexact, that is, θ∗
1 (η1, ti) ≈ θ̃∗

1 (η1, ti), 
i = 1, 2, ..., N which when substituted into Eq. (17) produces

q′′
s,η1,γm,N(ti) ≈ �t

∑i+mM f

j=1 θ̃∗
1 (η1, t j) + r

∑i+mM f

j=1

(
θ̃∗
1 (η1, t j)

)2
Mψ( j, i,m) − b

∑i−1
j=1 q

′′
s,η1,γm,N(t j)Mq( j, i,m)

bMq(i, i,m) + bCγm

, (18a)

i = 1, 2, ..., N −mM f ; m = 1, 2, ..., P or

q̃′′
s,η1,γm,N(ti) = �t

∑i+mM f

j=1 θ̃∗
1 (η1, t j) + r

∑i+mM f

j=1

(
θ̃∗
1 (η1, t j)

)2
Mψ( j, i,m) − b

∑i−1
j=1 q̃

′′
s,η1,γm,N(t j)Mq( j, i,m)

bMq(i, i,m) + bCγm

, (18b)

i = 1, 2, ..., N −mM f ; m = 1, 2, ..., P which now extends the approximation thread to q′′
s (t) ≈ q′′

s (t) ≈ q′′
s,η1

(t) ≈ q′′
s,η1,γm

(t) ≈ q′′
s,η1,γm,N (t) ≈

q̃′′
s,η1,γm,N(t). It is clear that experimental data reduction introduces an approximation thread into the interpretation process. As with 

all ill-posed problems, the key element lies in the prediction of the optimal regularization parameter, γopt . Too small a value leads 
to instabilities while too large a value leads to oversmoothing. Preconditioning assists in defining a means for acquiring the optimal 
regularization parameter using the proposed methods to be described in Section 4.
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Table 1
Simulation parameters.

Parameter/Property Value Units

k1,0 405 W/(m-K)

k1,1 -0.0619 W/(m-K2)

k2,0 14.5 W/(m-K)

k2,1 0.0151 W/(m-K2)

c1,0 385 J/(kg-K)

c1,1 0.0967 J/(kg-K2)

c2,0 470 J/(kg-K)

c2,1 0.1930 J/(kg-K2)

ρ1 8750 kg/m3

ρ2 7920 kg/m3

tmax 14 s

N 700 –

�t 0.02 s

f s 50 Hz

Tref 273.15 K

To 293.15 K

q′′
o 100 W/cm2

L1 3 mm

Fig. 3. Thermal conductivity as function of temperature.

4. Results

This section provides a progressive series of numerical experiments based on synthetic temperature data generated by a fixed input 
model using the parameters given in Table 1. That is, to emulate experimental data, a fully nonlinear distributed system is used for 
acquiring the temperature distribution in each region. These data are “numerically” exact to 16 places. These data are then downsampled 
to a physically acceptable sampling rate involving non-impulsive time scales. Table 1 provides the geometrical; and, thermophysical and 
mechanical properties used to generate these data. The thermophysical properties used in this study are representative values for pure 
copper and stainless steel 304. As this is a numerical study, these estimations are deemed appropriate. Using higher-order temperature 
dependencies does not cause any formulation difficulties (see Eq. (7a) and expressed conservative form). Recall, � j(� j) = � j0 +� j1(� j −
�ref ) where � can represent either thermal conductivity or specific heat while � can represent the regionally reduced temperature based 
on the input model chosen. Figs. 3 and 4 display the thermal conductivities and specific heats, respectively used in the modeling process; 
and, while Table 1 contains the necessary coefficients to generate Figs. 3 and 4. The source heat flux, q′′

s (t) for the present investigation is 
defined by

q′′
s (t) =

⎧⎨
⎩

0, 0s ≤ t ≤ 2s;
q′′
o , 2s < t ≤ 12s; and,

0, 12s < t ≤ tmax = 14s,

where q′′
o is provided in Table 1. This model suggests that the net surface flux, q′′

1(0, t) is zero for t > 12s (which is not physically correct 
due to other modes of heat transfer). However, this step change is often used in the modeling process due to its severity.

Before comparing data reduction models (r = 0: L-D with constant specific heat in Region 1 with r �= 0: L-D with temperature depen-
dent specific heat in Region 1), let us view the input temperatures generated using a fully distributed formulation for each region based 
on (a) constant properties evaluated at To = 293.15 K and (b) fully temperature dependent properties (per Table 1). This is illustrated as 
many investigators use constant property input data sets to justify accuracy of their inverse prediction based on a constant property data 
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Fig. 4. Specific heat as function of temperature.

Fig. 5. Constant property and temperature dependent property input data models.

Fig. 6. Percent difference between two input models.

reduction equation. This removes the effect of real material properties unless clearly justified (e.g. low temperature rise as developed in 
a shock tube experiment). Fig. 5 displays the copper’s reduced temperatures at x = 0, L1 for the two input models. Observe that a 30 K
difference occurs at the peak value. Fig. 6 provides a percent difference, as defined as, (Tlinear − Tnonlinear)/Tnonlinear × 100. This figure 
indicates a maximum of 5% in the indicated time and temperature ranges.

Fig. 7 provides insight into the previously noted temperature drop in the copper region. This is important as the copper region is 
assumed lumped. Hence, the temperature drop is assumed small. As seen in Fig. 7, both input models show a relatively small temperature 
drop (approximately 7K ). This temperature drop across the thickness is acceptable for the lumped formulation.
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Fig. 7. Temperature drop in copper using constant and temperature dependent property input models.

Fig. 8. Linear input model with constant property (r = 0) data reduction equation.

Next, let us now consider the data reduction model given in Eq. (12a) or (18b) with r = 0, using both input data sets; and, shortly r �= 0
where the input temperatures are based on temperature dependent thermophysical properties. Again, all input data are determined from 
a fully distributed, one-dimensional study. The lumped temperature for Region 1 is always assumed to be the distributed temperature at 
x = L1/2. Practically speaking, this is how the 3 mm layer will be instrumented as installing a sensor at either x = 0 or x = L1 is not 
practical, possible or advisable.

Case 1: Linearized Data Reduction, r = 0 using constant and temperature dependent property data sets

For this initial test, the data reduction equation described in Eq. (12a) and Eq. (18b) use r = 0. The thermophysical properties are 
evaluated at the initial condition To = 293.15 K. The sampling rate is 50 Hz though similar results were obtained using 100 Hz. Fig. 8
displays the exact heat flux and the reconstructed heat flux using the L-D data reduction equation when γ1 = 0.04s. This case indicates 
that estimating the lumped temperature by the probe positional temperature is highly reasonable. This makes sense in light of Fig. 7 and 
the physical heating scenario.

Fig. 9 presents the predicted heat flux using temperature data collected at x = L1/2 as generated by the fully distributed formulation 
using temperature dependent thermophysical properties. This case is closer to reality. The L-D data reduction equation (r = 0) displays 
the effect of “real” data. The total temperature rise in this study is not deemed excessive but clearly shows the effect of physically “real” 
data. Basically, the constant property data reduction equation is now rendering about a 11% difference (or bias) at t = 11.92s. This time is 
chosen based on subtracting 2 × γ1 for reducing the forward influencing data. This value is used as a common marker for comparison.

The heat flux predictions in these two cases are based on the future-time parameter, γ1 = 0.04s. In the presence of ideal data, it can 
be shown that little future time is required for recovering the optimal heat flux prediction. Discussion on choosing the value for this 
parameter is held until noisy data are implemented. The heat flux “jump” case displays a notable Gibbs-like phenomena. For the present 
study, all numerical temperature histories are assumed to be equal to the probe temperature. This basically assumes idealized sensors. As 
noted earlier, in-situ thermocouples produce subtle effects due to their intrusiveness.

Case 2: Data Reduction, r �= 0 using temperature dependent input model

Next, consider the data reduction equation that accounts for a temperature dependent specific heat in Region 1; namely Eq. (12a) and 
Eq. (18b) with r �= 0. Recall that this data reduction model assumes that Region 1 is spatially lumped while possessing a temperature 
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Fig. 9. Temperature dependent input model with constant property (r = 0) data reduction equation.

Fig. 10. Nonlinear input model for producing reduced temperature with r �= 0 data reduction equation.

dependent specific heat. The stainless steel substrate assumes constant properties evaluated at the initial condition. This contrast is per-
formed for comparing the effect constant specific heat (Fig. 9) to a more realistic temperature varying specific heat in the copper slug. 
Fig. 10 displays the reconstructed surface heat flux using the input data created from the fully nonlinear input model and data reduction 
equation with r �= 0. For copper, only a small amount improvement is gained in the heat flux reconstruction. This has been similarly ob-
served in copper-based, null-point calorimetry (using the linear heat equation). However, the present formulation can easily accommodate 
such variability in the presence of alternative materials. This comparison also helps establish the cause of the bias through eliminating this 
issue. First, this sensor design permits good interfacial contact which promotes the mathematical assumptions imposed in the analysis. 
Further, it is possible to bond a three-layer configuration involving copper-stainless steel-copper that can be highly useful if the calorime-
ter requires a backside cooling loop for highly elevated temperature cases. The copper third layer would help recover the one-dimensional 
assumption needed in the slug-substrate model. Second, the analytical form producing Eqs. (12a) and (18b) are computationally simple 
and perform well in the reconstruction under noiseless data. Third, Figs. 7–9 suggest that the substrate region model requires additional 
material behavior accountability in the substrate (Region 2). This can be shown by determining the heat flux leaving the fully nonlinear 
input model at x = L1 and substituting this time-varying result into a consistent form of Eq. (2a). This identified “culprit” is the key 
element for adjusting the sensor’s instrumention/analysis plan in order to achieve the desired high-accuracy, heat flux goal. This is the 
topic of the next paper. Finally, we must now address the presence of noise in the temperature data; and, demonstrate that Eq. (18b) can 
be used to accurately reconstruct the surface heat flux per chosen model (i.e., Fig. 10).

Case 3: Data Reduction, r �= 0 using nonlinear input temperature model with noise addition at probe site

Case 3 demonstrates heat flux recoverability in the presence of noisy temperature data that are collected at the probe site, η1 = L1/2. 
This step is significant as all future formulations will be designed to produce a similar functional form, i.e., linear first-kind Volterra 
integral equation in surface (net) heat flux. Noisy data are generated per

θ̃∗
1 (η1, t j) = θ∗

1 (η1, t j) + εr j||θ∗
1 (η1, t)||∞, j = 1,2, ...,N,

where η1 = L1/2, r j is the jth random number drawn from the interval [−1, 1] and ε is a noise factor. This is a rather extreme form 
of error generation but serves to illustrate the methodology. For this set of results, ε = 0.005, leading to noise addition of ±1.6K or 
≈ 0.5% error. Type T thermocouples (limited to about 350 ◦C) offers a similar limit of error specification [28]. Fig. 11 provides the reduced 



J.I. Frankel, K. Ekici / Aerospace Science and Technology 102 (2020) 105869 13
Fig. 11. Reduced temperature for exact and noisy data at the probe location.

Fig. 12. Family of heat flux predictions when r �= 0 in the data reduction equation.

temperature with and without noise addition at x = η1 = L1/2 that are downsampled to 50 Hz using the fully nonlinear forward coupled 
solutions for Region 1 and 2.

Fig. 12 presents a family of heat flux predictions using the regularization parameter defined by γm = mM f �t where M f = 3. This 
value of M f is chosen in order to provide some separation between two incremental predictions. The next question arises “What is the 
optimal prediction and how does one extract it?”. This is actually the crux of inverse problems as classical error analysis concepts are 
not applicable. It is observed that as γm increases a smoother prediction results. This occurs as less higher frequencies in the signal are 
retained as the regularization parameter increases. Hence, oversmoothing will occur at some point beyond the optimal value leading to 
error growth. Large oscillations are expected for regularization parameters smaller than the optimal value. That is, retaining too many high 
frequencies in the measured signal plays havoc on time differentation of the temperature data [12–14]. It should be noted that this occurs 
even when the formulation does not explicitly display the time derivative of temperature.

Fig. 13 displays the corresponding heat flux phase-plane ( dq
′′

dt vs. q′′ where t is parameterized) over a family of regularized predictions 
[29,30]. Here, the heat flux rate, dq′′

dt is calculated by central finite differences; and forward/backward differences at the end points. In 
general, this figure assists in eliminating unstable predictions (too small γm ) that retain too many high frequencies in the signal. This is 
seen when m = 1, γ1 = 0.06s. The left grouping is clearly associated with t ≤ ton and tof f ≤ t ≤ tmax −mM f �t while the right grouping 
is associated with ton < t < tof f . Bias in the data reduction model is graphically evident. Identifying the jump from instability to stability 
for increasing future-time parameter provides the glimpse into sufficient prediction smoothness. This is qualitatively seen between the 
phase plane predictions of γ1 and γ2. Oversmoothing is evident in the core displayed by the two groupings. At this juncture, γ2 appears 
to be in proximity of the optimal regularization parameter. It should be noted that an “exact” value for γ is not necessary (or practical or 
potentially possible) for inverse problems.

Significant amount of insight into the estimation of the optimal regularization parameter can be obtained by a well considered experi-
mental test run. In fact, a step heat flux source is a good place to begin. This will be discussed in a later study. In numerical studies, which 
are intended as a first means of discovery, the error is calculable and can provide guidance into developing a “rule” or set of “criteria” for 
extracting γopt . Table 2 provides some obvious metrics. Here, the heat flux root-mean-square error (RMSE) error is defined as
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Fig. 13. Heat flux phase plane.

Table 2
Output calculations (A: t ∈ [0, t′max], B: t ∈ [ton, tof f ]).

m γm (s) εq,m (W/cm2) A: dq′′
dt |avg (W/m2-s) B: dq′′

dt |avg (W/m2-s)

1 0.06 9.64 −11623 13328

2 0.12 8.16 −5144 2713

3 0.18 8.56 −4469 −1076

4 0.24 9.17 −3963 −5560

5 0.30 9.83 −3617 −5937

6 0.36 10.5 −2903 −6631

7 0.42 11.1 −2959 −7418

8 0.46 11.7 −3674 −8431

9 0.54 12.3 −4283 −9429

εq,m =

√√√√√
N−mM f∑

j=1

(q′′
s (t j) − q̃′′

s,η1,γm,N(t j))2

N −mM f
, m = 1,2, ..., P , (19)

which, of course, is not available in experimental test campaigns. Table 2 indicates γ2 = 0.12s ≈ γopt . The RMSE metric may not actually 
be the “best” metric for ill-posed problems. From an experimental view point, the introduced step heat flux brings additional insight into 
both the present problem and calibration studies [30]. Reviewing, the family of heat flux predictions, indicates some data reduction model 
deficiency as the source is not fully reconstructed. The simplicity of the imposed heat flux indicates that the heat flux rate should be 
negative for all stable future-time parameters, γm . It is interesting to note the sudden changes in columns 4 and 5 in Table 2. In fact, the 
average heat flux rate (slope) from Fig. 12 indicates a negative value. Observe that the heat flux rate distinctively jumps from a positive 
value to a negative value in column 5 at m = 3 or γ3 = 0.18 s.

Another measure that has been successful is based on cross-correlation principles [29,30] whereby one interprets “closeness” or pattern 
development over a parameter set. In this problem, the parameter set involves the regularization parameter, γm . Let the surface heat flux, 
cross-correlation coefficient be given as [29,30]

Rq(q̃
′′
s,η1,γm,N , q̃′′

s,η1,γm+1,N) =
∑N−(m+1)M f

j=0 q̃′′
s,η1,γm,N(0, t j)q̃′′

s,η1,γm+1,N
(0, t j)√∑N−(m+1)M f

j=0 (q̃′′
s,η1,γm,N(0, t j))2

∑N−(m+1)M f

j=0 (q̃′′
s,η1,γm+1,N

(0, t j))2
, (20a)

while the surface heat flux rate cross-correlation coefficient is defined as

Rq̇(
˙̃q′′
s,η1,γm,N , ˙̃q′′

s,η1,γm+1,N) =
∑N−(m+1)M f

j=0
˙̃q′′
s,η1,γm,N(0, t j) ˙̃q′′

s,η1,γm+1,N
(0, t j)√∑N−(m+1)M f

j=0 ( ˙̃q′′
s,η1,γm,N(0, t j))2

∑N−(m+1)M f

j=0 ( ˙̃q′′
s,η1,γm+1,N

(0, t j))2
, (20b)

m = 1, 2, ..., P − 1. Let the proposed stopping criterion be given by Rq(q̃′′
s,η1,γm,N , ̃q′′

s,η1,γm+1,N
) → 1 and Rq̇(

˙̃q′′
s,η1,γm,N , ̇̃q′′

s,η1,γm+1,N
) ≈ 0.75

which correlates well with the root-mean-square error (RMSE). Of course, the RMSE is only available in simulation studies. This chosen 
criterion is based on simulation, estimated noise level, experiments, and experience.

For graphical simplicity in axis definitions, let R(q′′) = Rq(q̃′′
s,η1,γm,N , ̃q′′

s,η1,γm+1,N
) and R(dq′′/dt) = Rq̇(

˙̃q′′
s,η1,γm,N , ̇̃q′′

s,η1,γm+1,N
) in Fig. 14. 

Fig. 14 displays the cross-correlation phase plane. As remarked earlier, it is normally important to retain sufficient high frequencies in the 
signal and hence one often chooses the lower value in the pairing set. Fig. 15 presents the exact source heat flux; and, two of the “best” 
reconstructed surface heat fluxes using γ2 and γ3. Both of these results appear graphically similar. Again, the discrepancy between the 
predicted heat flux and exact heat flux is due to bias in the data reduction model. However, the proposed numerical procedure display 
robustness, stability and accuracy when compared with Fig. 10.
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Fig. 14. Heat flux cross-correlation coefficient phase plane.

Fig. 15. Best estimates of heat flux.

5. Conclusions

This exploratory study presents the ground work for developing a new multi-layer, explosively-bonded, calorimeter for hostile testing 
environments. Heat flux gauge accuracy, based on calorimetry, requires a carefully formulated and resolvable data reduction equation re-
lating in-depth transient temperature measurements to the net surface heat flux. This is a formidable task owing to a large temperature 
ranges and substantial heat fluxes generated in aerospace ground test facilities. In such cases, temperature dependent thermophysical 
properties need to be accounted and integrated into the data reduction equation. This process requires integration of analysis and instru-
mentation strategies in the design process. Numerical results, based on synthetic input data, reveal several important findings. This paper 
illustrates the need for inclusive modeling in arriving at the data reduction equation for the heat flux gauge. Several important results are 
highlighted in this paper including the: (a) identification of data reduction model discrepancies; (b) significance of Volterra integral formu-
lations for algorithm development; (c) development of the approximation thread for uncertainty propagation; (d) achievement of stability 
through the future-time method; and, (e) extraction of the optimal regularization parameter through phase-plane and cross-correlation 
concepts for estimating the “best” heat flux. The next step in the process involves developing an instrumentation plan and computational 
methodology that can be integrated into a data reduction equation that takes advantage of the presented findings.
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