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This paper addresses the significance of and need for understanding the thermal impulse response func-
tion for (1) validating in-situ thermocouple models; and, (2) forming a “parameter free” inverse heat con-
duction methodology. The former application is the focus of the present study but it will be evident how
to implement the findings of this presentation into the latter situation. The experimental component of
this study utilizes a new small-sample, high-accuracy, electrical heating test facility for producing a
quantifiable and accurate heat flux source. The impulse response kernel at the probe site is extracted
and used for verifying the proposed in-depth thermocouple model. A linear, first-order thermocouple
model is proposed based on the orientation of the probe and limited test temperature range. The location
of the thermocouple and time constant are assumed known from some independent means or experi-
ments. The impulse response function is determined and compared with the kernel of the resulting solu-
tion of the heat equation using the first-order model. Both kernels should nearly replicate if the model is
not physically deficient. This preliminary investigation demonstrates a new means for (1) reconstructing
the impulse response function and (2) validating a thermocouple model. Further, this experimentally
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generated impulse function can be used for resolving inverse heat conduction problems.
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1. Introduction

High-quality and repeatable heat flux sources are in demand for
calibration purposes that cover a large design space involving tem-
perature, heating rate (°C/s), heat flux (W/m?) and experimental
run time. Three purposes for such a facility involve (1) the calibra-
tion of heat flux gauges [1-5]; (2) investigating and modeling
in-depth thermocouples that correct for “smearing” [6-8] (i.e.,
relationship between measured thermocouple temperature and
the required heat equation’s positional temperature); and, (3) val-
idating inverse heat conduction (IHC) methods. IHC formulations
serve as a remote means for estimating the surface (net) heat flux
or temperature [9-11]. Smearing implies attenuation and delay
effects relative to the ideal signal as the sensor’s response function
is not of a true Dirac delta form [6-8].

Recently, a well-defined heat flux source has been demon-
strated using an instrumented aluminum nitride substrate
possessing a tungsten heater trace sandwiched between two in-
depth resistance temperature detectors (RTD’s). The entire heater
is only 1.02 mm thick. Frankel et al. [12] describe the complete
design to testing process that includes detailed model building

* Corresponding author.
E-mail addresses: jfrankel@utk.edu (J.I. Frankel), hchen28@utk.edu (H. Chen).

https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.098
0017-9310/© 2019 Elsevier Ltd. All rights reserved.

and uncertainty analysis. In a nutshell, the heater is modeled and
test cell property parameters are determined through a series of
well-designed experiments guided by sensitivity analysis. This
heater is used in a non-symmetric configuration that can produce
a heat flux of 100 W/cm? possessing a temperature limit of approx-
imately 400 °C. Owing to the initial design of the test cell, experi-
mental run times are typically limited to less than 40 s. Through
experimental validation studies, based on thin-slug calorimetry
and model-based uncertainty analysis, the results indicate excel-
lent accuracy for the design space [12]. The estimated total uncer-
tainty for the departing one-sided heat flux is less than 5%.

2. Brief overview of experimental test facility (small sample
heat flux cell)

Frankel et al. [12] describe the development of a new high-
accuracy heat flux test cell. In that investigation, high repeatability
was established as well as a high degree of accuracy for producing
the exiting heat flux on the sample side. The first generation in-
depth instrumented aluminum nitride (AIN) heater was designed
with the following constraints q” <100 W/cm?, T <400 °C with a
cross-sectional area of 6.45 cm? (1 sq. in.). This initial study was
invoked for establishing a clear blueprint leading to an accurate
sample-side heat flux characterization. The small sample test facility


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2019.05.098&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.098
mailto:jfranke1@utk.edu
mailto:hchen28@utk.edu
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.098
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt

1302 J.I Frankel, H. Chen/International Journal of Heat and Mass Transfer 141 (2019) 1301-1314

Nomenclature

S
&

cross-sectional surface area, 25.4 mm x 25.4 mm

b probe position, m

buoming  Nominal axial position of TC

c specific heat, J/(kg K)

C heat capacitance, J/K

C- constant, J/m?

dhote thermocouple hole diameter, m
f sampling frequency, Hz

k thermal conductivity, W/(m K)
K kernel function, Km?/J

K impulse response kernel, Km?[]
K5 approximate impulse response kernel, Km?/]

S N approximate impulse response kernel, Km?/]
5N approximate impulse response kernel, Km?/]

N approximate impulse response kernel, Km?/]
kernel function, s~!

linear operator, (unitless)

functional operator, Km?[]

/m.opt”

multiplication factor

L
M
My
N maximum number of data points
Nq heat operator kernel function, m?K/J
N, first-order TC model kernel, m2K/]
P; model specific parameters
4 heat flux, W/m?
~I
q
Rk
RK
t

measured heat flux, W/m?

cross correlation coefficient
derivative cross correlation coefficient
time, s

tmax maximum time for experiment, s
T temperature, (K or °C)
To temperature initial condition, (K or °C)

u dummy time variable, s
% voltage, V

V, Vi voltage constants, V

b% spatial variable, m

z dummy time variable, s

Greek symbols

o thermal diffusivity, m?/s

Y future-time parameter, s

";m discrete spectrum of future-time parameters, s

“;61 opt optimum future-time parameter, s

) dirac delta function

0 reduced temperature, (K or °C)

Orc reduced measured thermocouple temperature, (K or °C)

0, g reconstructed reduced measured thermocouple temper-
" ature, (K or °C)

2 coefficient, m?K/(W s'/?)

u dummy time variable, s

U,, 1y  voltage function constants, s

£ time shifted variable, s

p density, kg/m>

0,, 01 voltage function constants, s

T thermocouple time constant, s

Subscripts

TF thin-film thermocouple

TC thermocouple

exp experimental

is displayed in Fig. 1. A full characterization was performed on the
heater and its surrounding insulation. The insulation used in the test
cell is based on Zicar's Microsil™ whose thermal conductivity is
approximately 0.025 W/m K in the defined temperature range.

3. Impulse kernel and mathematical formulation

As a preliminary investigation, the transient, one-dimensional
linear heat equation described in a semi-infinite medium is used
for illustrating principles and concepts. As this paper is motivated
by its experimental outcomes, we begin by showing the experi-
mental configuration, test cell and sample clamping prior to dis-
cussing the mathematical formulation. Fig. 2 displays the (a)
physical test cell; (b) sample clamping; and, (c) schematic for
mathematical model. The heater produces an excellent spatially
uniform heating source for one-dimensional sample studies (under
the appropriate 1-D, semi-infinite assumptions involving: temper-
ature range, penetration times, two-dimensional edge effects,
quality of the encapsulating insulation, etc.).

It should be recognized that the Non-Integer System Identifica-
tion (NISI) method [13-18] is an inverse heat conduction method
that is based on experimentally determining the impulse response
function. This approach requires the determination of numerous
experimentally derived system parameters based on a fractional
derivative formulation and a least-squares procedure. Addressing
the optimal number of parameters is somewhat problematic. This
paper suggests an alternative methodology that only requires the
determination of single parameter. In fact, the parameter being
sought is the optimal regularization parameter. This paper offers
a novel means for identifying the optimal regularization parameter
which is the “crux” of all inverse problems.

This proposed semi-infinite analysis does not preclude general-
ization but permits visualization of the concepts in an easily under-
stood geometrical framework. Therefore, the constant property
heat equation, in the reduced temperature variable,
0(x,t)2T(x,t) — T,, is given as [19]

190 0
& a(xa t) - W(X’ t)a

subject to the boundary conditions

xe[0,00), t >0, (1a)

" _ @
q (07t)_ k 8X(07t)7
q"(c0,t) = 0, (or (oo, t) = 0), ¢

(1b, ¢)

v
o

and initial condition
0(x,00=0, xe[0,00), (1d)

where T(x,t) is the temperature, T, is the uniform initial condition,
q"(0,t) is the net surface heat flux, k is the thermal conductivity and
o is the thermal diffusivity. The independent variables for space/
time are denoted as x and t, respectively. For this study, the math-
ematical model side conditions are assumed adiabatic. The linear
heat equation is valid for limited temperature ranges based on
the material used. Note that the net surface heat flux, q”(0,t) is
experimentally provided as an outcome of the heater model
described in Ref. [12] from the contact experiment. The equivalent
integral form [20-22] of the differential system described in Egs.
(1a-d) is given as

0(x,t) = /:; q"(0,u)K(x,t —u)du, (x,t) >0, (2a)

where the kernel, K(x,t — u) is given as
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Fig. 1. a-c: Small sample test facility (a) overall set up, (b) heater geometry, and (c)
heater x-ray.

3}
2
T
<

)
Kx,t—u)=21 : , x>0, t—-u>=0, (2b)
-u
. B oy . . . .
with the parameter 2=, /-2 = N This equivalence is demon

strated by the application of the Fourier cosine transforms (or
Green’s functions [23]). The convolution (or displacement) kernel
given in Eq. (2b) is non-singular for x > 0. Let us evaluate Eq. (2a)
atx=>b >0 to get

t
0(b,t) :/ q"(0,u)K(b,t —u)du, t=>0. (2c)
u=0

The reader is reminded that the reduced temperature, 0(b, t) is
based on the positional temperature associated with the heat
equation and not the probe/sensor temperature. That is, assuming
that a thermocouple is located at x=b >0 suggests that
0(b,t)# 0, (b, t). In-depth installed thermocouples, depending on
whether it is an exposed bead, grounded or ungrounded encapsu-

TCprobes
TypeN

Thermocouple

(c)

Fig. 2. Experimental configuration (a) physical test cell; (b) sampling clamping;
and, (c) model schematic.

lation, produce various time constants based on its physical
construction and chosen installation practices. Sheath orientation
and other internal features can also play a role in establishing
the positional temperature, 6(b, t). Further, conduction lead losses
may occur. In order to relate the positional temperature to the
measured temperature (basically removing the “smearing” effect,
i.e., attenuation and delay), a model of the sensor is proposed as

L[OfC(b7 t)] = 0(b7 t)a t> Oa (33)

where L = linear functional operator that could be a differential or
integro-differential operator. This operator, L will contain various
“to be determined” properties (ex. in-situ time constant). For
example, if an exposed thermocouple bead is placed at the in-
depth position at x = b > 0, and we assume that no conductive lead
losses are present (say leads are parallel to isotherms though this
does not assure a lack of lead losses) then a first-order model based
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on a constant property energy balance performed about the
exposed bead produces

a0y
dt
subject to 0, (b,0) =0 as by (b,t) = Te(b,t) — T, where 7 is the so-
called thermocouple time constant. Therefore, for this case, we
identify L as
d

L:rE—H.

It is particularly revealing to express Eq. (2c) with Eq. (3a) sub-
stituted into the left-hand side. Performing this substitution and
then inverting the operator L yields the symbolic form

Oc(b,t) =L7'(M[g")), t >0,

T

(b,t) + Orc(b,t) = L{Oyc(b,t)] = 0(b,t), t >0, (3b)

(30)

(4)

where M is the integral operator described by Eq. (2c). Explicitly
expressing Eq. (4a) yields

t v4
0ulb.t) = [ Utz B [ a0 uK(bz— ududz, ¢ >0,
(4b)

where {Pj};:1 are the r-number of parameters in the thermocouple
model, and [(t, z; {Pj};zl) is the inverted or resulting kernel function
(ex. Green’s function) associated with operator L. It is noted that the
spatially evaluated kernel K(b,z — u) possesses two thermophysical
properties; namely, k and «. Changing orders of integration in Eq.
(4b) on the defined triangle described by the limits of integration
produces

Occ(b,t) = L' (M[q"))

t t
_ / q'(0,u) / (6,2 {PY]_, K (b,z — w)dzdu, ¢ > 0,
u=0 z=u

(53)
which can be expressed as
Oc(b,t) = / [O q'(0,u)K(t — wydu, €30, (5b)
U=
where the new kernel function can be written as
K(t—u) = / itz Py K (b2 u)dz, t—u >0, (50)
2-u

Observe that we have not explicitly defined the kernel function,
I(t,z; {Pj}}zl) but suggest its mere existence. As will be shown, the
explicit form of this kernel is not necessary if a calibration process
is pursued. An important observation arises if the surface heat flux
could be represented by a Dirac delta function, that is,
q"(0,t) = §(t — 0). Substituting this into Eq. (5b) produces the
important result

J.I Frankel, H. Chen/International Journal of Heat and Mass Transfer 141 (2019) 1301-1314

Ore(b,t) = K(t), t >0, (5d)
which states that I?(t) is physically the in-depth thermocouple tem-
perature response, 6 (b, t) to a surface impulse heat flux. The kernel

K(t) in reality is unknown due to several factors. However, this ker-
nel function can be experimentally reconstructed if viewed as an
inverse problem. That is, let us assume that a validated heat flux
facility [12] is available and that a thermocouple is placed at
x =b > 0. The in-depth thermocouple installation will be assumed
fixed among all future tests. For example, this can be checked by
a mere electrical resistance measurement (when the TC is installed
in an electrically conducting material). If the substrate is an electri-
cal conductor then an Ohm meter can be used to measure the resis-
tance between one thermocouple lead wire and the substrate. Once

K(t) is determined for fixed probe location then a thermocouple
model can be compared with this experimentally arrived kernel
that required no input parameters. Additionally, this kernel can be
used for resolving the heat flux if postulated as an inverse heat con-
duction problem That is, this calibrated sensor-test article now
accounts for the transducer’s characteristics per Fig. 3. This paper

focuses on developing the kernel function, K(t) in a sound manner
for future exploitation.

The rigorous formulation and systematic equation development
described above are necessary ingredients for the detailed under-
standing of delays and attenuation effects introduced by an intru-
sive thermocouple (i.e., T(b,t)#T(b,t)). Precision measurements
require a validation procedure. The present study designs a means
for experimentally validating a thermocouple model through the
physically obtainable impulse response function.

4. Determining the impulse response kernel via calibration

Letting ¢ =t —u in Eq. (5b), and after some additional manip-
ulations, produces

t
(b, £) = / K(Oq'(0.t - )de, ¢ >0, (6)

0

where q”(0,t — ¢) is now interpreted as the convolution kernel for

the first-kind Volterra integral equation in the function K(t) [20-
22]. Further, as we are dealing with an experimental study, an upper
time limit is now introduced as t € [0, tmax] Where tpnax is the time
where data are no longer collected. An experiment is proposed to

determine the impulse response kernel, K (t). The goal is now stated

as “Determine the impulse response kernel, K(t) given measured inexact
in-depth thermocouple data, 0, (b, t); and, given measured in-exact, net
surface heat flux data, q"(0,t) as produced from the heater model.”
Observe that the thermophysical and geometrical properties are
not required in this statement. Further, only experimentally

Measurement error

T(0,1) q"(b,1) -
— N 4 ¥
q"(0,t) - T(b,t) T.(b,t)

Desired input

Inverse Heat
Conduction Problem

Measured output

Inverse Transducer
Problem

Fig. 3. Dissection of system/probe displaying inverse heat conduction problem (IHCP) and inverse transducer problem (ITP).
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acquired data are used in the reconstruction of the impulse response
kernel. Also note that the characterization of the thermocouple is

built into the kernel K(t) and hence not explicitly specified. That
is, no transducer model (as suggested by Fig. 3) is proposed. How-
ever, results from this approach can be used for verifying a thermo-
couple transfer function model. Finally, the present formulation
needs to be recast into a discrete setting for further analysis.

5. Inverse analysis by a future-time method

Starting with Eq. (6), let t — t + 7y thereby advancing time [24-
26]. Doing so yields

) ~

bu(b,t +7) = / KEQO.t+7-0)de, te(0.tm—7),  (72)

&=0

which reduces the amount of recovery time for the impulse
response kernel by y. Here, y represents the future-time parameter,
i.e., regularization parameter [9-11]. All inverse problems require
regularization for stability to be recovered. The most difficult task
lies in estimating the “optimal” regularization parameter. This ini-
tial study implements the future-time method for stabilization. This
simple concept retains the causality feature and produces a simple
computational procedure. Other methods, such as Singular-Value
Decomposition (SVD) [27], are also available for stabilizing the
numerical procedure. The SVD method does not retain causality.
Eq. (7a) can be expressed as

t -
ulbt+7) = [ K@OTO.0+7- 0z

t+7
+ / KGOt 17— &de, te (Ot —T).  (7H)

=t

Assuming IA((g“) ~ IA<(t) in the interval ¢ € [t, t + 7] for small y
produces the first approximation as

t
Orc(b,ti+7) / K(E)q'(0.6+7 - £)de
=0
~ v
+K(t) / q”(O,t+7 — f)df, t €0, tmax — 7] (7¢)

Je=t

In order to recover the equality, a change of notation is
required; namely,

t
Ouclbti7) = [ KlE)q"(0.647 - E)de
; t+y

+K5(t) [ q"(0,t+7—&)dé, te[0,tmax—7], (7d)

&=t
where Iﬁ<\7(t) ~ I?(t). Next, if g =t +7 — ¢ is substituted into the sec-
ond integral in Eq. (7d) then Eq. (7d) can be written as
t —
O (b, t+7) :/ K5(8)q"(0,t4+7 = &)dEé+K5(t) G5, t€ [0, tmax — 7],
&=0
(7e)

where

G- [ a0 (76)
n=0

Eq. (7e) is a second-kind Volterra integral equation [21] for

k—(t). This mathematical structure possesses better stability char-

v

acteristics for sufficiently large G; then the first-kind Volterra inte-

gral equation for I?(t) as displayed in Eq. (6). Next, form the
discrete version of Eq. (7e) in preparation of using experimental

data for both the in-depth temperature and net surface heat flux.
let t—t,i=12,.,N-mM; and, TP =

rﬁMfAt, m=1,2,..,M where, Mf = convenient multiplication fac-

therefore

tor, tmax = N At = total time of data collection, N = total number of
sampled times beyond the initial condition; and, At = sampling
time step. Evaluating Eq. (7e) at the discrete times produces

"

K5 (900, + T — £)dE

9[5(b7 ti + 75) =

+K; (6)Cy . i=1,2,.,N—mM;, m=12,...M,
(8a)

where
Cva:/#zoq"(ovﬂ)d#’ m=1,2,..M. (8b)

Fig. 4 aids visualizing the time-span reduction in resolving the
impulse response kernel.

Eq. (8a) can alternately be expressed in the time segmented
form (basic calculus)

-1

ch(b7 ti+ 7m) = Z féztjt' k?m(é)q”((l ti + 7m - é)dé + k?m(ti)c7mv
=

i=1,2,.,N-mM;, m=1,2,..M.
(9a)

At this junction, a second approximation is now introduced
based on discretizing Eq. (9a). A right-hand product integration
rule is introduced into Eq. (9a) leading to [24-26]

t

i~ _ 3 -
Q[C(b, ti + ?Fn) z]; Kﬁ(tj) fg:jrj,l q"(0,t; + Vm — &dé+ Kym(ti)ciw

i=1,2,.,N-mM;, m=12 ..M.

(9b)

In order to recover the equality, the approximation is denoted in
the notation change given as

i~ —~
Occ(b,ti +75) = L Ks_5(t) 5 0(0,t+ 75, — &)dé + K;_5(t)Cy,,
=" m

i=1,2,.,N-mM;, m=12, ..M,
(90

Kernel Function

Resolvable time

'
IIIIIIIIIIIIIIIIIIIIIlIIIl.

P —7

max m tmax

Fig. 4. Time reduction associated with the future-time method for resolving the
impulse kernel problem.
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where K._y(t) ~K;_ () ~K(t;), i=1,2,..N—mM;, m=1,2,...M. A
third approximation is now introduced into the estimation chain.
An additional error is introduced into the approximation string

associated with the collected temperature data, i.e,
5m(b,ti)~0m(b,ti), i= 1,2,...,&—511% and the “measured” net heat

flux data denoted as q”(0,t;)~q"(0,t;), i= 1,2,...,1(1—1?11\_@. With
these introductions into Eq. (9c), we obtain

étc(b:ti+ﬂ;}fn) ~ ZKy_N(tj) ;ZfH (NZ”(O,H”},;? - é)d§v+K?_N(t;)C?m,
J:] m m
i=1,2,. .N—-mM;, m=12,...M.
(9d)

To recover the equality, Eq. (9d) is expressed as

~ _ i = v - _ o=
Orc(b,ti+7;,) =]§ Ko 5(t) 2, @"(0,t+7, = E)dé+ K 5(6)Cs,

i=1,2,..N-mM;, m=12,...M,
(9e)

where K._g(t) ~ K-_x(t) ~ Ks (t) ~K(t), i=1,2,...N—mM;,

m=1,2,...,M. To recap, four approximations or assumptions have
been introduced into this one-dimensional linear model. The first
approximation is associated with stabilizing the ill-posed first kind
Volterra integral equation (i.e., recasting into an approximate sec-
ond kind integral equation for the unknown impulse response ker-
nel). The second approximation is associated with the numerical
discretization of the resulting integral equation. The third and
fourth approximations are based on the introduction of experimen-
tal errors. The sampling frequency sets the time discretization, At~.
The most difficult part in resolving inverse problems lies in the
determination of the optimal regularization parameter. For this

study, choosing the best or “optimal” future-time parameter, fﬁl‘opt

M
is required from the discrete spectrum {y,;l}, . Next, Eq. (9e)
=

can be expressed in a time-marching form. To begin, release j =i
in the series on the right-hand side and perform operations that

provide an explicit expression for IA<7_‘N(t,-). Doing so yields

I:< Uebtir)- Y Ko 5(6) >—[Jr}1
- q(t) = 7w :
7 n(0) @0, ' (10)

‘m

770447, ~O)du

i=1,2,.. . N-mM, m=12, ..M,

which depends on the discrete spectrum of regularization parame-

ters given as {“7),;]}’::1. The above numerical implementation is care-
fully described so the reader can quickly emulate the methodology.
It should be noted and observed that Eq. (10) is easily
programmable.

It is interesting to note that the in-depth reduced temperature
measurements can be constructed using

[P
70, = [ Koy NGt = ) (0, )
u=0

i=1,2,..,N—moM;, (11)

tc‘yﬁopt’

~ N—zﬁgp[l\jlf
3 I N —mop: My ~
when provided {q (0,t;)};_, K Lti—u)}

"m,opt” i—=0

optimal regularization parameter, 7, ... It should be noted that

and the

mian)w?_N(h t;) — Oc(b, t)|?, m=1,2,...M may not suggest the

correct optimal regularization parameter for the surface heat flux
in an inverse heat conduction study. This is important to note and
will shortly be illustrated. Additionally, this concept does not pre-
clude developing different calibration data sets based on different
frequencies.

6. Results for experimentally determining the “Best impulse
response kernel

A large set of test conditions were examined based on the
experimental system’s limitations and design space. In a nutshell
and to recap, the experimental test cell has a temperature limit
of 400 °C, heat flux limit of 100 W/cm?. A time span of less than
approximately 30 s [12] is used for assuring the geometric assump-
tions previously outlined. As this is a linear model and initial study,
the main limitation lies in the temperature range and time span.
Hence, the heater’s temperature for this investigation does not
exceed approximately 200 °C. It can be stated that the thermocou-
ples’ (Type N probe, Type K thin film) lead data were investigated
for validating a normal distribution in errors. Additionally, a
similar spectral study was performed on the net surface heat flux
yielding a similar normal distribution in the lead data.

The first part of the experimental investigation lies in

reconstructing the impulse response kernel, K
“m,opt’
the regularization spectrum. The experimental process for produc-
ing the surface heat flux to the sample is based on controlling the
heater’s voltage to generate the power in the heater. The heater’s
departing energy flow is carefully described and analyzed in Ref.
[12]. Table 1 displays several test runs (in voltage) considered in
the test plan matrix. The voltages and parameter sets described
in Table 1 are provided to the heater through LabVIEW and defined

by

5(ti —u) over

1o\ 2
V(t)=Vee (%), t >0, (12)
and

(S (2
V() = Voe (%) £ vye <”l ) ,t>0. (13)

These cases and others were extensively examined. For this
paper, focus is directed to Case 1 (most stringent among Cases
1-3 and attempts to represent an impulse shape). The in-depth
thermocouple probe is an Omega NMQXL-032E-6, Type N with
exposed bead having a stainless steel sheath diameter of
0.813 mm. The drilled hole in the sample has a diameter of
0.9652 mm and is nominally located at 0.3175 mm from the active
surface. This position will shortly be re-visited and examined. Fig. 5
displays the estimated net heat flux into the stainless steel sample.

Table 1
Matrix test plan and voltage.
Case Description
number
1 Single Gauss (f =20 Hz, V, = 138.56 Volt, y,=5s, 6,=0.5s), Eq.
(12)
2 Single Gauss (f =20 Hz, V,=97.98 Volt, j1,=5s, 6, = 1.0 s), Eq.
(12)
3 Single Gauss (f=20Hz, V, =80 Volt, u,=5s, 6,=1.55s), Eq. (12)
4 Single Gauss (f = 53.3 Hz, V,=138.56 Volt, pl, =5, 6,=0.5s),
Eq. (12)
5 Double Gauss (f =20 Hz, V, =130 Volt, p,=3s, 6,=1s and
V; =110 Volt, n; =7s, o1 =15s), Eq. (13)
6 Double Gauss (f=53.3 Hz, V, =130 Volt, |,,=35s, 6,=1s and

V; =110 Volt, iy =7s, 61 =15), Eq. (13)
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From Fig. 5, a heat flux peak of approximately 80 W/cm? is gen-
erated. An estimate for the surface temperature is available as the
material properties are known per

~ ~ t

6(0,t) = T(0,t) — T, = \/%,1( /u:o 40, (0, u)\/fi_u . t>0, (14)
as thermal penetration to the back or side surfaces has yet not
occurred. The semi-infinite heat conduction model is assumed
valid. Using room temperature properties
(k=147W/mK, p=7900kg/m?, c¢= 477 ]/kg K[28]), a simple
product integration rule [22] provides the reduced surface temper-

ature, (3(0, t) per Eq. (14). Fig. 6 shows the corresponding estimated
reduced surface temperature. A 110 °C maximum temperature dif-
ference appears between the front and back surfaces of the sample.
The linear model with properties evaluated at room temperature
appears appropriate based on the temperature dependent proper-
ties of stainless steel 304 [28]. This was also numerically verified.
The reconstruction of the impulse response kernel is now con-

sidered using the in-depth thermocouple temperature, gm(b,t,-)

and estimated heat flux [12], ¢"(0,t;), i=1,2,..,N. Eq. (10) is
called upon for forming the impulse response kernel,

I??_Qﬁ(t,»), i=1,2, ...,ﬂl—rﬁMf, m=1,2,..,M over the future-time

regularization spectrum, ”}m, m=1,2,..,M. For this study,

M =10, M; =5, N =280, 7. = mM;At = mM;/20. Fig. 7a-d dis-
play the resulting kernels for Case 1 using a sampling frequency
of 20 Hz.

Fig. 7a-d display both the stability issues associated with
inverse problems and the reduction in time caused by the future-
time method (end padding). It is evident from Fig. 7a that the com-
putation of the impulse response kernel when &m:ﬁ =15s is
unstable implying insufficient smoothing (retaining too many high
frequencies in the signal). In contrast, Fig. 7d is extremely smooth
in light of noisy data. This implies that the regularization parame-
ter, )_);":9 = 2.25s is most likely over-smoothing the prediction (not
retaining enough high frequencies in the signal). However, one can
quickly observe that the optimal regularization parameter, "}rﬁﬂpt
lies between 1.75 and 2.25 s. The determination of this fundamen-
tal parameter is sought for definiteness of the system. As no con-
vergence rules actually exist for ill-posed, discrete inverse
problems, an alternative view is proposed based on the formation

-
o
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o
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40 4

20 A

Surface Heat Flux, q"(0,t) (W/cmz)

Time, t (s)

Fig. 5. Raw time history of surface (net) heat flux retaining some lead data as
estimated by the procedure described in Ref. [12] for Case 1 described in Table 1
(tmax = 14's, f=20 Hz).
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Fig. 6. Estimation of the sample’s surface (positional) temperature and measured
in-depth thermocouple (not positional) temperature.

of a pattern. With this said, it is important to realize that in all
inverse problems, the error in the desired function decreases to
some minimal value and then rises again as a function of regular-
ization parameter. This is the hallmark of an ill-posed problem.

A physics based rule set is proposed based on understanding
how information is propagated from the in-depth sensor to the
surface. As all data are propagated through the linear heat opera-

tor, H givenas H&1 2 — % this suggests that the controlling fac-
tor is associated with the time derivative (whether it is
temperature or heat flux). The one-dimensional, constant property
heat equation can be expressed in terms of temperature or heat
flux and they both possess the identical heat operator, H. With that
said, a physics based rule is suggested using the thermal phase
plane and cross correlation. The thermal phase plane [24,25] is
analogous to the mechanical/dynamic phase plane involving dis-
placement and velocity where time is parameterized. The phase
plane provides insightful qualitative behavior while cross correla-
tion provides a quantitative metric.

As we seek  the impulse

response function,

K §(t), i= 1,2,..,N—mM;, m=1,2,...M which is analogous
to heat flux (when resolving the inverse heat conduction problem),
the phase plane in this context should contain the time-rate of
change of the impulse response kernel. Fig. 8a-d present the corre-
sponding phase planes associated with Fig. 7a-d.

From Fig. 8a-d, a clear pattern in the parameterized space is
occurring. Fig. 8a displays instability while Fig. 8c displays the
onset of a pattern (compare Fig. 8c and d) and defines the “cusp”
of stability. In fact, Fig. 8c displays the optimal value for the pre-
sent conditions. Often, a single metric is desired by many
researchers. For this work, a cross-correlation coefficient (nor-
malized, i.e.,, <1) phase plane can be developed analogous to
the previous phase plane. Cross correlation is also known as a
sliding dot product [24]| owing to it analogous behavior describ-
ing orthogonality of functions. The equations for the normalized
cross-correlation coefficient are defined in Refs. [24,25] and
given as

o N-(ma1My o
Rk e o Yo K 5(t)Ks | 5(6)

ks

/ﬁﬂ'N)i - ——
N—(m+1)M; /=~ 2 IN-(m+1)M; 2
> (K oxm(t) > K /()
=0 /m =0 m+1

(15a)

)
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(15b)

For the present study, phase shifting is not included as its
rational for omission is described in Ref. [25]. The phase-plane
and cross correlation analyzes are presented to close the optimal
approximation process. As such, the entire methodology is avail-
able for immediate implementation by the reader.

Fig. 9 and Table 2 contain detailed metric information on both
behavior and quantification. Fig. 9 displays the resulting impulse
response kernel cross-correlation phase plane (time derivatives
are estimated using central difference approximations for interior
points; and, simple forward and backward for the end points).
The data sequences correlate as the cross-correlation coefficient
approaches unity. A zero implies uncorrelated (orthogonal). Fig. 9

shows that the cross-correlation coefficient for RK(IA(:__N,I?? 1-N)

approaches unity faster than R (K5 7, Iﬁ<}_

my

Further, time derivatives of noisy (non-ideal) data should impede

) approaching unity.
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ljig. 7. Transient impylse response kernels, Eim-ﬁ(ti>’ i= ]AZ,,A.,IKJ—ﬁl\i/If, m=6—9 using various future-time (FT) parameters: (a) Vmes = 1.58; (b) 7,,_, =1.75s; (c)
Vmg = 2.0s; and, (d) y7;_q = 2.25s when the sampling frequency is 20 Hz.
and < -
this movement toward unity. In fact, driving R.(K; 5.K; ) to
Vm Imi1
. . N—(n’mn@lfl:(‘ ) t); @) unity makes little sense 1f any noise is present in the system.
R (K. - K _ 2o 75_1\:(1 7M,N() Table 2 further helps clarify the situation. Table 2 shows that
K TN e N T T - 2 [ - 2’ = =
N—(m+1)M; (= N—(m+1)M; (= - - . . J. .
J Z% <K7m_n(fj)> \} Z% <I<7m,-ﬁ(tf)> RK(K%N, K%]_N) is the key player for identifying the proper choice
= J= P 5
of the regularization parameter, .. Table 2 strongly suggests that

the instability-stability “cusp” occurs at y5 = 2's. A clear formation
of a pattern begins as (m, m+1) — (7,8) which describes the
effect of smoothing as demonstrated through stability of the time
derivative in the impulse response kernel. In this pairing, often
the smaller m value is used to retain higher frequencies for heat
flux [25]. However, reviewing the jump from the lower left side
toward the upper right side; and, considering Figs. 7c, d and 8c, d
suggest choosing 5 = 2s. Some art and science experience are
required similar to digital filtering studies. Departure from drawn
tangent line starting at the over-smoothed pairings shown in
Fig. 9 provides a visual reference guide.

It was noted earlier (via Eq. (11)) that using the measured
surface heat flux from the calibration source and the impulse

response kernel, Ih<7_ﬂ(t) over the 7. spectrum does not assure

the best estimate of the regularization parameter when recon-
structing the in-depth temperature. This is partially indicated in
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Fig. 8. Transient impulse response kernel phase plane using various future-time (FT) parameters: (a) y,_¢ = 1.5s; (b) 7,_, = 1.755s; (c) 7,,_¢ = 2.0s; and, (d) y,,_ = 2.255s

when the sampling frequency is 20 Hz.

Table 3. The root-mean square difference (RMSD) calculation sug-

gests that the minimum occurs at 7., which is incorrect

= ﬁ;m,opt
(see Fig. 7b or Fig. 8b). The best regularization parameter should

be developed based on the desired quantity of interest, i.e.,
Iﬁgﬁﬁ(t) and its corresponding time derivative (controlling factor).

It is interesting to note that graphically y,, y, produce similar
reconstruction plots of the in-depth (x = b) temperature histories.

Before concluding this paper, let us revisit Case 1 but increase
the sampling rate to 53.3 Hz (now Case 4 in Table 1). The surface
heat flux estimated by the heater analysis is displayed in Fig. 10a
while the estimated reduced surface temperature, via Eq. (14),
and in-depth thermocouple reduced temperature are indicated in
Fig. 10b.

Fig. 11 displays the resulting impulse response kernels using
four different values of the regularization parameter, y.. A similar
graphical sequencing to that of Fig. 7 is displayed. However, as
sampling refinement is used, a smaller optimal regularization

parameter is produced; namely, =1.5s (note that

At=1/53.35).

Increasing the sampling frequency can impact the time differ-
entiation operations. Fig. 12 presents the corresponding phase
plane illustrating a similar feature to that of Fig. 8. From the qual-
itative information provided by Fig. 12, the optimal regularization

ym‘opt

parameter appears to be 7, ., =1.5s. Following the previous
discussion, the cross-correlation coefficient analysis confirms this
value for the optimal future-time parameter as shown in Fig. 13.
Finally, overlaying Fig. 7c onto Fig. 11c (not shown) indicates
excellent agreement in the reconstruction of the impulse response
function at the probe site.

A couple analytical observations are available placing perspec-
tive in the prediction of the experimental impulse response kernel
using a non-perfect sensor. Recall that the present heat conduction
problem can be recast as

2
w1l [t e wmew
T(xvt)fTU:\/;E/Oq (Ovu)mduv
e —

(x,t) = 0, (16a)
and when evaluated at x = b > 0 produces
0(b,t) = T(b,t) — T 7\/&1 " 0 ef“?'z’wd £>0
0.0 =T0.0-T,=\Z¢ [ q0wS—=dau. >0
(16b)
or
t
O(b,t):/Oq”(O,u)Nl(b,tfu;k,cx)du., t>0, (16¢)
u=

where
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Table 2
Cross-correlation coefficients corresponding to Fig. 9.

m, m+1 Vivr Pinsr(S) RK(’}: K

7t Ko W) R (Ko m K5 )

1,2 0.25, 0.5 0.0428 0.101

23 0.5, 0.75 0.0323 -0.0109

3,4 0.75,1 0.0208 0.0395

4,5 1.0, 1.25 -0.0179 0.0341

5,6 1.25,1.5 0.00663 —0.00913

6,7 1.5,1.75 0.268 0.0961

78 1.75, 2.0 0.993 0.808

8,9 2.0, 2.25 0.995 0.950

9,10 225,25 0.994 0.969
Table 3

Root-mean-square deviation (RMSD) of the in-depth temperature for Case 1.

Root mean square deviation (RMSD) (°C)

3

Vi (5)

2 0.5 2.3 x 10%3
3 0.75 1.3 x 1074
4 1.0 1.1 x 10
5 1.25 1.4 x 10"
6 15 0.75

7 1.75 0.18

8 2.0 0.46

9 2.25 0.98

10 2.5 1.7

b2
s o1l e =ew
Nrk vi—u’
Eq. (16d) displays the ideal heat operator kernel or ideal
impulse response kernel. Further, the experimental arrangement
suggests that a first-order thermocouple model may be appropri-
ate if the correct positioning, b and time constant, T are known.

The combined first-order model (control volume about the bead
in the hole without consideration of conductive lead losses) yields

Ni(b,t —u;k, ) b>0 t—u=>=0. (16d)

d O

Tde

t
(b,t) + O (b, t) = / q'(0,u)Ny (b, t — u:k, 0)du, ¢ 0.
u=0
(17a)

If a calibration quality surface heat flux is known and in-depth
thermocouple data are present then both 7, b can be estimated by a
least-square method applied to Eq. (17a) when provided both k, o.
Often the question arises “How good is the thermocouple model?”.

Another important application to this study involves answering
this question. Case 3 in Table 1 is used to generate 7,b based on
Eq. (17a). The time derivative term was discretized by central dif-
ference for interior points and forward/backward for time 0 and
tmax, respectively. The thermophysical properties k,« were evalu-
ated at room temperature (300 K). The least-squares result for
these parameters are T =0.2 s, b =2.77 mm. The nominal value
for the probe’s axial position from the active side surface is
brominat = 3.175 mm. The least-squares prediction produces a value
that is within the nominal value of bomina id“ZD’f where the hole
diameter is 0.965 mm. Evaluating the properties at 100 °C and
replicating the least square calculation produces similar estimates.

Using an integrating factor, and after a straightforward series of
analytic manipulations, Eq. (17a) can be expressed in the funda-
mental form

t
O (b, t) = /70 q"(0,u)Ny(b,t —u;k, o, T)du, t >0, (17b)

where
_u & [we T it _b2 o feu)
Ny(b,t —u;k, o, 7)= e {e erfc( eI i T)
e’\%erfc< b2 _ g “—”)}

Ao (t-u) T
(17¢)
which can be shown to be a real function (here, i* = —1). It should

be noted that Eq. (17c) can directly be used to find 7, b in a least-
squares sense.

Fig. 144, b display the kernels for the (i) ideal thermocouple, Ny,
Eq. (16d); (ii) first-order model, N, Eq. (17c); and, (iii) recon-

structed kernel, I}?ﬁﬁ, Eq. (10). Again, Case 1 is presented owing

to its physical voltage input (and resulting heat flux) severity at
the 20 Hz sampling. Several observations are now noted. Recall
that the phase plane (Fig. 9) and cross-correlation coefficient

(Table 2) previously suggested y; =25 =7, ,,. Notice that this

prediction aligns well with the first-order thermocouple model
kernel, N,. This closeness to N, suggests that assuming the time
constant to be zero is not well informed. The early-time wave in
the reconstruction can be partial due to measured heat flux (see
Fig. 5. between 1 and 3 s) and/or other physical effects occurring
in the probe itself. Further, it suggest that classical inverse heat
conduction (“parameter required”) methods should consider the
effect of the transducer as it does introduce a secondary inverse
problem associated with the intrusiveness of the probe and instal-
lation procedure. For this investigation, the cross check suggests
that the thermocouple model has merit and the time constant of
7 = 0.2 s is highly reasonable based on our experimental experi-
ences and previous tests.

7. Conclusions

The primary contribution of this study involved establishing a
rigorous methodology for validating a thermocouple model
through the impulse response function as generated in a calibrated
heat flux test cell. To demonstrate this, a sample was prepared
where the thermocouple probe was installed parallel to the iso-
therm to minimize conductive lead losses in the probe. A thermo-
couple model is proposed and the parameters are experimentally
estimated via a parameter estimation method. By comparing the
impulse response function, which is based on the physical condi-
tion of the probe-sample assembly, the thermocouple model can
be validated and provide confidence in the modeling process. Fur-
ther, the positional temperature is recovered. It is well known that
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thermocouple merely measures its temperature while in many
incidences the true positional temperature is needed as defined
by the heat equation. This occurrence is especially noticeable in
short- time experimental campaigns where delay and attenuation
effect are observed due to the intrusiveness of the probe. As each
experiment depends on the choice of thermocouple type, gauge,
exposed bead (or enclosed), adhesive or welded, etc. a single “gen-
eral” metric is difficult to define. However, once

K S(t), i= 1,2,...,51—611\70 is established, the model kernel

Yoptimat:N
function (in this study, Eq. (17c)) should overlay well. If not then
extension of the thermocouple model is required.

This preliminary study suggests a procedure for reconstructing
an experimentally obtained impulse response function requiring a
minimal number of parameters to be determined. This reduction
leads to a simple numerical procedure and code. The phase plane
demonstrates a quick qualitative process for estimating the
optimal regularization parameter by visually removing unstable
and over-smoothed predictions. This qualitative viewpoint seeks
to indentify the jump condition between instability and a smooth-
ing trend while retaining as much of the signal’s higher frequencies
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as possible. Higher frequencies in the prediction are removed as
the regularization parameter, )_)51 increases; hence, producing a fil-
tering or smoothing action. The cross-correlation coefficient phase
plane and analysis represents a metric based calculation that
assists in identifying the optimal regularization parameter.
A practical implementation, using the concepts of this paper,
involves “thermocouple plugs” as implemented by aerospace and
material evaluation applications. Prior to installing the plug into
a test article, a campaign would be performed using a known heat
flux source on the plug (installed in a temporary plate) to validate
the temperature correction (i.e., measured temperature to posi-
tional temperature). The plug would then be removed from the test
cell and installed into the test article for further studies. Short-time
experiments will also greatly benefit as the temperature correction
would be established. In short-time experiments, the intrusive nat-
ure of the probe can produce observable delay and attenuation
effects. If the surface heat flux is desired then Eq. (5b) with

Occ(b, ) ~ Occ(b, ) and  K(t) =K. W), =12, N—mM,
optimal »

becomes available. Hence, both the in-depth positional tempera-
ture and the surface heat flux are calculable.
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