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Abstract—The rowhammer bug belongs to software-induced
hardware faults, and has been exploited to form a wide range
of powerful rowhammer attacks. Yet, how to effectively detect
such attacks remains a challenging problem. In this paper, we
propose a novel approach named RADAR (Rowhammer Attack
Detection via A Radio) that leverages certain electromagnetic
(EM) signals to detect rowhammer attacks. In particular, we
have found that there are recognizable hammering-correlated
sideband patterns in the spectrum of the DRAM clock signal. As
such patterns are inevitable physical side effects of hammering
the DRAM, they can “expose” any potential rowhammer attacks
including the extremely elusive ones hidden inside encrypted
and isolated environments like Intel SGX enclaves. However, the
patterns of interest may become unapparent due to the common
use of spread-spectrum clocking (SSC) in computer systems.
We propose a de-spreading method that can reassemble the
hammering-correlated sideband patterns scattered by SSC. Using
a common classification technique, we can achieve both effective
and robust detection-based defense against rowhammer attacks,
as evaluated on a RADAR prototype under various scenarios. In
addition, our RADAR does not impose any performance overhead
on the protected system. There has been little prior work that
uses physical side-channel information to perform rowhammer
defenses, and to the best of our knowledge, this is the first
investigation on leveraging EM side-channel information for this
purpose.

I. INTRODUCTION

As a fundamental requirement for implementing security

measures, memory protection prevents a process from modify-

ing memory it does not own. However, this essential protection

becomes at stake due to the discovery of a vulnerability,

known as the rowhammer bug [34], in the underlying dynamic

random-access memory (DRAM). The rowhammer bug be-

longs to the class of software-induced hardware faults, which

makes unauthorized data modifications possible.

The existence of the rowhammer bug has been reported

in numerous DRAM chips of DDR3 and DDR4 [34], [39].

Since its discovery, this hardware vulnerability has been

continuously exploited to form a wide range of powerful

rowhammer attacks. Examples of such attacks include sandbox

escaping [26], [49], [54], privilege escalation [8], [25], [26],

[54], [61], [64], cryptography subversion [7], [51], denial-

of-service [33], [42], [66], and even confidentiality breach-

ing [38]. Furthermore, rowhammer attacks have been effec-

tively demonstrated in the presence of ECC mechanism [16]

as well as in the context of only sending network packets [42],

[60].

In response, many defense techniques against rowhammer

attacks have been proposed in recent years, including sev-

eral detection-based approaches [4], [27], [30], [32], [46].

Unfortunately, as more sophisticated rowhammer attacks are

developed, the effectiveness of detection-based rowhammer

defenses becomes questionable. As demonstrated in [25], all

of the practical rowhammer attack detection approaches can

be circumvented. In particular, by abusing the Intel SGX tech-

nology and closed-page memory controller policy, rowhammer

attack detection based on either static analysis [32] or dynamic

monitoring [4], [27], [30], [46] will become ineffective.

In this paper, we introduce a new direction to addressing

the problem of rowhammer attack detection. Specifically, we

propose to leverage certain electromagnetic (EM) emanations

to effectively and robustly detect rowhammer attacks. EM side-

channel information is capable of revealing much knowledge

about the ongoing activity in a computing device, and it has

been extensively exploited to breach confidentiality [2], [3],

[18], [20]–[23], [31], [37], [50]. However, it has been realized

that, as a double-edged sword, such side-channel information

can also be used to help build security defenses [28], [45].

Following this line, for the first time, we utilize EM side-

channel information to our advantage for rowhammer attack

detection. Because EM emanations are inevitably issued dur-

ing any computation and can be hardly suppressed by outside

adversaries, our proposed approach can detect any potential

rowhammer attacks including the extremely elusive ones that

are hidden inside attacker-controlled SGX enclaves. Moreover,

our detection approach does not degrade the performance or

resource utilization of the system under protection.

The main contributions of this paper are as follows:

• We study the correlation between certain EM emanations

and rowhammer attacks, based on which we propose a

systematic rowhammer attack detection approach named

RADAR (Rowhammer Attack Detection via A Radio).

• We propose the first approach to reversing the scattering

effect of spread-spectrum clocking on EM side-channel

information issued from high-frequency clocks in a com-

puting device.

• We have implemented a RADAR prototype using a $299

software-defined radio device, and we evaluate the ef-

fectiveness and robustness of our EM-based rowhammer

attack detection under different scenarios.

There has been little prior work that uses physical side-channel
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information to perform rowhammer defenses, and to the best

of our knowledge, this is the first investigation on leveraging

EM side-channel information for this purpose.

The rest of this paper is organized as follows: Section II

briefly sets the background; Section III formulates the threat

model; Section IV presents a new direction to rowhammer

attack detection; Section V studies the correlation between EM

side-channel information and rowhammer attacks; Section VI

proposes our RADAR system, which can achieve rowhammer

attack detection in a non-intrusive manner; Section VII eval-

uates the proposed RADAR system; Section VIII gives the

related work; and Section IX concludes this paper.

II. BACKGROUND

In this section, we provide some background information

on DRAM organization, the rowhammer bug, and rowhammer

attacks. Moreover, we briefly present the physical side effects

leveraged in this paper, namely the EM emanations.

A. DRAM Organization

Modern computing devices use DRAM as the main memory.

For better memory bandwidth, DRAM is often partitioned

into multiple channels. Each channel may be associated with

multiple dual in-line memory modules (DIMMs). Each DIMM

has one or more ranks (e.g., modern DIMMs can be single-

/dual-/quad-/octal-rank), and each rank has multiple banks

(e.g., normally there are 8 banks for DDR3 and 16 banks for

DDR4). As depicted in Fig. 1, each bank can be viewed as

a two-dimensional array of memory words, organized in rows

and columns. The size of the memory word depends on the

data bus width, and decides how many cells are needed to store

its content (e.g., 64 cells are needed to store a 64-bit memory

word). Each cell consists of a capacitor and a transistor, where

the capacitor is either charged or uncharged to represent a

binary value1, and the transistor is used to access the capacitor.

In each bank, there is also a row buffer, which can hold the

contents of a single row. To access a cell, the corresponding

row has to be activated first to put the contents of the row

into the row buffer, and then the access is served from the row

buffer. An activated row remains in the row buffer until being

closed by the memory controller, and before then, consecutive

accesses to that row will be served directly from the row buffer.

Depending on what memory controller policy is being used,

an active row can be closed due to different reasons: If the

memory controller uses an open-page policy, the active row

will not be closed until a different row in the same bank is

accessed; and such a causal event is often called a row conflict.

On the other hand, if a closed-page policy is employed, the

memory controller will proactively close the row [25], [42].

Note that a DRAM cell can only keep its charged state for a

short period of time, as its capacitor leaks its charge over time.

In order to prevent any data loss, the cells must be refreshed

regularly. DDR3 and DDR4 specifications require that the

1Depending on the implementation, some cells use the charged state to
represent ‘1’, while other cells use the charged state to represent ‘0’.
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Fig. 1. A representative DRAM architecture (two channels and four dual-rank
DIMMs). A rank consists of all the chips on the same side (front or back) of
a DIMM.

refresh interval must not be longer than 64ms. Normally, the

refresh interval is between 32ms to 64ms.

B. The Rowhammer Bug and Hammering

As DRAM becomes denser, the capacitor in a cell becomes

smaller and the voltage margin separating ‘0’ and ‘1’ be-

comes lower, which unfortunately have reduced the overall

DRAM reliability [44]. First thoroughly studied in [34], the

rowhammer bug has become a well-known DRAM reliability

issue: When a DRAM row is repeatedly activated and closed

(namely, the row is hammered) enough times within a refresh

interval, one or more bits in its physically adjacent rows can be

flipped to the opposite value2. Usually, a row that is hammered

is referred to as an aggressor row, and a row that has flipped

bits is called a victim row.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(A)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(B)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(C)

Fig. 2. Three possible hammering techniques in the literature: (A) single-
sided hammering [34]; (B) double-sided hammering [54]; and (C) one-location
hammering [25].

Since many of the memory controllers use an open-page

policy, to trigger the rowhammer bug on such systems, two

aggressor rows in the same bank need to be alternately

activated. Consequently, the row buffer of that bank will

alternately hold the contents of these two aggressor rows. If the

two aggressor rows are not intentionally chosen to “sandwich”

a row, it is termed as single-sided hammering, as shown in

Fig. 2 (A). On the other hand, if the two aggressor rows are

selected to specifically lie on both sides of another row, it

is called double-sided hammering, as shown in Fig. 2 (B).

As demonstrated in practice, double-sided hammering is much

more effective and efficient than single-sided hammering [54].

2The large current coupled with toggling the activation of a row repeatedly
and rapidly accelerates the discharge rate of cells in the physically adjacent
rows. Before the next refresh, if too much charge in a cell has been leaked,
the stored bit information will be lost, namely the bit is flipped from 1 to 0
or from 0 to 1, depending on whether 1 or 0 is represented by the charged
state.
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Some new memory controllers may use a closed-page (or

hybrid) policy, and in such cases even one aggressor row is

sufficient to induce bit flips around the row, which is called

one-location hammering [25], as shown in Fig. 2 (C).

C. Rowhammer Attacks

Because the rowhammer bug allows one to modify the

contents of a DRAM row without explicit permission, severe

security risks are posed. Since the discovery of this devastating

hardware vulnerability, many powerful attack vectors have

been developed by exploiting the rowhammer bug to compro-

mise the security defenses of a system. Usually, a rowhammer

attack consists of three basic phases:

1) Exploration phase. In the first phase, the attacker inten-

sively hammers the DRAM and searches for exploitable

bit flips. The prerequisite for performing this phase is to

design approaches used to trigger the rowhammer bug

on the targeted system. More details will be described

below.

2) Manipulation phase. In the second phase, the at-

tacker steers the targeted security-critical data to the

vulnerable memory location that has the exploitable

bit flips found in the first phase. There are several

approaches developed for this specific task, including

memory spraying [54], memory grooming [61], memory

waylaying [25], and memory ambush [13].

3) Exploitation phase. Once the security-critical data has

been placed at the vulnerable location, in the third phase,

the attacker triggers the rowhammer bug again to flip the

bit(s), which achieves the final compromise.

When designing an approach to triggering the rowhammer

bug on the targeted system, several technical challenges need

to be overcome. One challenge is the lack of address mapping

information, including both virtual-to-physical and physical-

to-DRAM, which leads to some approaches using inefficient

random testing [49], [54]. While memory deduplication can

be exploited to ease this challenge [8], attackers have tried to

recover such mapping information, especially by reverse en-

gineering the physical-to-DRAM address mapping [47], [59],

[64], for more efficient and effective double-sided hammering.

Interconnect (an aggregate view of different buses)

Cache

Core

Processor

GPU

Memory Controller

DRAM

I/O Devices
e.g. NIC

DRAM Bus

(1)(2)
(3)

(4)

Fig. 3. Different types of techniques for rapidly and repeatedly access the
same locations in DRAM.

The other challenge is how to access the underlying DRAM

quickly enough. To trigger the rowhammer bug, the same

location in DRAM has to be accessed rapidly; otherwise, even

if the DRAM were extremely vulnerable to hammering, one

would still not be able to exploit the bug for a successful

rowhammer attack. However, due to the presence of the

caches, most of the memory accesses to the same location can

hardly reach the DRAM. (This is why the rowhammer bug

is seldom triggered during the ordinary use of a computing

device, even though the underlying DRAM might be extremely

vulnerable.) Over the past few years, several techniques have

been developed to overcome this challenge (e.g., to circumvent

the effect of the caches). Fig. 3 shows a typical computing

platform, and each of the dashed lines in the figure represents

a possible path taken to enable fast access to the same location

in DRAM: (1) flushing or evicting CPU caches [1], [4], [26],

[34]; (2) bypassing CPU caches [49], [61]; (3) evicting GPU

caches [19]; and (4) maneuvering DMA buffers from I/O

devices [60].

D. EM Emanations

Because the electric current in the circuitry of a computing

device varies with time, EM emanations arise. As inevitable

physical side effects, EM emanations carry information about

the underlying electronic activities, which can be linked with

certain high-level activities such as which instructions or

loops are being executed. Thus, this information leakage

has been exploited to facilitate certain attacks, e.g., stealing

cryptographic keys [3], [21]–[23], or inferring privacy [18],

[37]. Yet, other than being exploited for side-channel attacks,

EM emanations have also been used to track code execution

for ensuring control-flow integrity [28], [45] or profiling [10],

[56].

The generated EM emanations are distributed widely on the

spectrum. Although the sources of many of these emanations

are unknown, a few of them are in fact easy to determine, e.g.,

the ones created by well-known periodic activities like clock-

ing and DRAM refreshing. The EM-emanated signals created

by these periodic activities are also strong and can propagate

far. Interestingly, some of these signals may be unintentionally

modulated by other activities in the form of amplitude mod-

ulation (AM) or frequency modulation (FM) [12], [48]. For

example, signals emanated from switching voltage regulators

may be AM-modulated by activities in the circuits they power,

and signals generated by periodic DRAM refreshes may be

AM-modulated by memory access activities [12]. Therefore,

these signals act as carrier signals that convey information

about the modulating activities.

III. THREAT MODEL

Assume an attacker has access to a system equipped with

DDR3 or DDR4 memory modules. The attacker attempts to

find out whether the DRAM of the system has the rowhammer

bug, and if so, the attacker also scans for exploitable bit flips

for a subsequent attack. Given the very low probability that

exploitable bit flips can be found in the first few trials, the
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attacker needs to intensively hammer the DRAM for such

bit flips. In this paper, we assume that the attacker will

either utilize special instructions such as clflush (namely

flushing the cache) or movnti (namely bypassing the cache),

or constantly evict the corresponding cache lines, to achieve

either double-sided, single-sided, or one-location hammering.

To circumvent simple detections, the attacker may manipulate

the system to run an SGX enclave, inside which the malicious

activities are performed.

In this paper, we mainly focus on computing platforms that

use DDR (instead of low-power DDR) and are seldom moved

on a daily basis, such as personal computers and workstations.

Although mobile/embedded systems are excluded, this actually

includes most of the currently vulnerable systems that have a

much wider rowhammer attack surface than mobile/embedded

systems and are harder to protect [19], [61], [62].

Another assumption is that the attacker is not able to

physically interfere with the EM emanations generated by the

system, e.g., she cannot place a high-power radio transmitter

nearby the target system and use it to jam the frequency band

of interest. Note, however, that this assumption does not limit

the applicability of our proposed method at all, due to the fact

that rowhammer attackers rarely need or have physical access

to the target systems.

IV. NEW DIRECTION TO ROWHAMMER DETECTION

Under the stated threat model, developing effective

detection-based defense techniques against the possible

rowhammer attacks remains an open research problem [13],

[25], [59]. In this section, we discuss why leveraging physical

side-channel information, EM emanations in particular, can

provide a feasible solution to this problem.

As we know, to effectively and robustly detect any type

of attacks, we need to discover and rely on information that

has a strong correlation with these attacks but can hardly be

tampered or concealed by any attacker-controllable running

program. Since physical side-channel information leaks much

fine-grained knowledge about system activities and can hardly

be corrupted by remote adversaries in reality, we can leverage

such information to help detect anomalies, including rowham-

mer attacks.

A variety of physical side effects are inevitably generated

during any activity of a computer system. For instance, power

is consumed, heat is issued, EM signals are radiated, and

even sound or light may be produced. Some of these side

effects may have strong correlations with the operations of

certain hardware components. As we can observe from Fig. 3,

the memory controller, memory bus, and DRAM modules are

the three hardware components that are always involved in a

rowhammer attack, no matter which technique is employed to

hammer the DRAM. Thus, we should primarily consider the

physical side-channel information that is strongly correlated

with the operations of these three hardware components. In

this paper, we argue that we can leverage EM side-channel

information for this purpose.

The rationale for leveraging EM side-channel information

to detect rowhammer attacks lies in the following facts:

• As mentioned in Section II, EM emanations are inevitable

physical side effects during any computation, issued both

intentionally and unintentionally [2], [12], [48], [65].

• EM emanations can be measured in a contactless manner

(e.g., via a radio device). This removes the need for un-

realistic hardware modifications to guarantee practicality.

• Compared to other physical side-channel information like

power consumption, EM emanations can provide more

fine-grained and niche-targeting insight into an activity.

• Most importantly, as illustrated in [11], [12], [48], [65],

rich information about memory activities can be found in

some EM emanations.

In the following, we will present our investigation on finding

information correlated with a potential rowhammer attack in

EM emanations. Additionally, we will describe our system de-

sign that uses simple and affordable measurements to achieve

an effective detection-based rowhammer attack defense. In the

course of our discussion, we will use EM emanations and EM-

emanated signals interchangeably.

V. FINDING HAMMERING INFORMATION IN EM

SIDE-CHANNEL EMANATIONS

As mentioned in Section II, rowhammer attacks need a

hammering process to tentatively trigger the rowhammer bug,

and then search for exploitable bit flips. The whole hammering

process consists of many hammering attempts, each of which

requires a large amount of toggling the activation of aggressor

row(s) within a short period of time. In the following discus-

sion, we will call such an activation toggling as a hammering

iteration. Therefore, there is a fast and nearly-regular switching

behavior in rowhammer attacks in nature. As a consequence,

when the three aforementioned hardware components (namely,

the memory controller, memory bus, and DRAM modules) are

stressed by hammering, the information about the hammering

activity is very likely carried by some EM-emanated signals

at certain frequencies.

153 154 155 156 157 158 173 174 175 176 177 178 179 319 320 321 322 323 324 325

Time(ns)

0
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movnti
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Fig. 4. The timing distributions of 10,000 hammering iterations in terms of
approaches using clflush, movnti, and eviction.

Theoretically, such signals can be in any place of the EM

spectrum, but most likely, they should be correlated with the

frequency of the switching behavior. However, we do not

specifically know the switching frequency, because there can

be multiple approaches to triggering the rowhammer bug on
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the same machine, each of which may have different computa-

tional overhead in its hammering iteration. Moreover, the time

consumed in each hammering iteration can hardly be identical,

which will result in a small range of switching frequencies in

the context of a single hammering attempt. For example, for

each of the three most commonly used approaches, which are

flushing the cache, bypassing the cache, and evicting the cache,

Fig. 4 shows the corresponding timing distribution of 10,000

hammering iterations. The timing measurements are performed

on a platform equipped with an Intel Haswell G3258 processor

and 8 GiB DDR3-1333 DRAM. In the rest of this paper, unless

stated otherwise, this is the platform used in the examples.

Nevertheless, the possible frequencies of this switching

behavior are bounded to some extent. Because the rowhammer

bug cannot be triggered if there are not enough times of

hammering iterations in between two refreshes, the frequency

has a lower bound. Obviously, the frequency must also have an

upper bound, because memory accesses cannot be arbitrarily

fast. (In effect, if the memory controller uses an open-page

policy, there exists an even tighter upper bound due to row

conflicts.)

A. Direct EM Emanations

Given the fast switching behavior in a hammering attempt

(e.g., the row buffer in a bank is repeatedly opened and closed

along with discharging and charging the aggressor rows), we

conjecture that there should be clear EM-emanated signals at

the possible switching frequencies. Therefore, we are tempted

to identify these signals directly.

However, there are some challenges and concerns in mea-

suring such direct EM emanations, even though their existence

is plausible: First, the switching periods are normally in the

range of one hundred to several hundreds of nanoseconds,

and therefore the corresponding frequencies are in a rather

low spectral range, where much noise exists due to radio

stations, appliances, and other sources. Second, these signals

may be very weak, and measuring such long wavelength weak

signals may require a physically large antenna or a special

antenna whose return loss is minimal around the frequencies

of interest.

In our experiments, we did not observe any EM-emanated

signal that is strongly correlated with the hammering switching

behavior in the frequency range of interest. Granted, we used

only a software-defined radio with a telescopic whip antenna

to try to capture such signals. Therefore, it may be possible

to find some signals of interest if using some lab-grade

instruments and carefully placing some customized EM probes

close to the chips. However, if such equipment is required,

the practicality of our detection approach will be decreased.

For our purposes, we need to leverage other possible EM

emanations containing hammering attempt information that

can also be easily measured.

B. AM-Modulated EM Emanations

As we know, many system modules like clocks and voltage

regulators intrinsically create EM-emanated periodic signals.

According to the study in [12], some of these periodic signals

will be AM-modulated by certain types of activities, and thus

information about the corresponding activities can be found in

those modulated signals. Moreover, such signals are relatively

strong and can propagate far, which lowers the requirements

for measuring them. Inspired by this study, we investigate

whether it is possible to find information about hammering

attempts in some of such AM-modulated signals. As an

educated guess, the hammering activity most likely modulates

some periodic carrier signals generated in the aforementioned

three hardware components.

As illustrated in [12], the strength of the EM emanations

generated by the DRAM clock varies when the amount of

activities driven by the clock changes, namely the emanations

at the DRAM clock frequency will be AM-modulated by the

DRAM activities. Therefore, our investigation will focus on

finding hammering attempt information in the AM-modulated

DRAM clock signals.

AM-modulation has a long history and is well understood.

We know that when a carrier signal is AM-modulated, there

are sidebands appearing on both sides of the carrier frequency

in the spectrum, and each sideband is a mirror-image of the

other relative to the carrier. These upper and lower sidebands

correspond to the spectrum of the modulating activity, namely

each modulating frequency will be present in each sideband.

Since nearly-regular and lasting switching behavior is asso-

ciated with a hammering attempt, if the DRAM clock signal

carries such hammering attempt information through AM-

modulation, we expect to identify that information via some

distinctive frequency patterns in the upper and lower sidebands

of the modulated DRAM clock signal. We have conducted a

large number of experiments that have verified the feasibility

of this idea. For instance, Fig. 5 shows the power spectra of

the DRAM clock signal measured using a software-defined

radio under six scenarios: The first scenario (A) is the simplest

one, in which only the system background tasks are running.

The following two scenarios represent some common uses

of a computer system, which are (B) playing a video and

(C) browsing web pages. The last three scenarios are to

(single-sided) hammer the underlying DRAM by means of the

three most commonly used approaches: (D) using clflush

instruction to flush the cache, (E) using non-temporal store

movnti instruction to bypass the cache, and (F) loading from

congruent addresses to evict the cache.

Given that DDR3-1333 memory modules are used in this ex-

ample, the DRAM clock frequency is around 666∼668 MHz.

On our platform, it is at 667.85 MHz, which corresponds to the

tallest central spike in each spectrum of Fig. 5. Note that, to

avoid a cluttered discussion, we turned off the spread spectrum

clocking feature in the BIOS for now (the motherboard used

in this example is ASUS Z87-A), and the problem caused by

this feature as well as our solution will be discussed later.

From Fig. 5, we can observe distinguishable sideband

patterns in the spectra when the underlying DRAM is being

hammered, namely there are noticeable “bumps” located on

both left and right sides of the central spike, which are circled
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Fig. 5. The power spectra under six scenarios. Note that the vertical axis is on a logarithmic dB scale. Each spectrum is derived by averaging 78 FFTs of
16,384 values with 50% overlap sampled in 25 MHz over 32 ms.

and pointed to by arrows in Fig. 5 (D), (E), and (F). By

referring to Fig. 4, we can actually find the relation between

the times spent in hammering iterations and the frequencies

where the sideband patterns of interest are located. Take

the approach using movnti for an example. From Fig. 4,

we can see the dominant period of hammering iterations is

around 156 ns. As shown in Fig. 5 (E), the circled lower

sideband patterns are at about 661.4 MHz (i.e., 667.85 MHz -

1000/156 MHz), and the circled upper ones are at about 674.3

MHz (i.e., 667.85 MHz + 1000/156 MHz). These hammering-

correlated sideband patterns conform to the effect of AM-

modulation, which illustrates that we can find hammering

attempt information in the modulated DRAM clock signal.

Furthermore, we can notice that the “bumps” in Fig. 5 (D) and

(F) are slightly wider than that in Fig. 5 (E). This is because

the timing variances when using clflush and eviction are

larger than that when using movnti, as shown in Fig. 4.

Note that, since multimedia like videos is non-temporal data

(namely data needed in the near future is not in the cache),

there is a large number of DRAM accesses in the scenario

(B). However, as shown in Fig. 5 (B), no obvious patterns of

interest arise. Thus, it indicates that the presence of massive

cache misses or DRAM accesses is only a necessary but not

a sufficient condition for generating hammering-correlated

sideband patterns. Normally, it is rare that a benign program

generates high rate and periodic cache misses for more than

30 ms.

Furthermore, we can still observe these sideband patterns

even after introducing some disturbance into the periodic be-

havior of a hammering attempt. (In such a case, the variance of

hammering period is increased, so the “bumps” become wider

and lower.) In other words, it is hard to conceal such patterns

while maintaining sufficiently fast toggling rate of aggressor

rows to trigger the rowhammer bug. In Section VII-D, we

will illustrate some of the experimental results related to this

random delay addition.

C. Spread-Spectrum Clocking

One major difficulty in robustly detecting hammering-

correlated sideband patterns is created by spread spectrum

clocking (SSC), which has been commonly used in electronic

products like computer systems for meeting electromagnetic

compatibility (EMC) regulations. EMC standards impose al-

lowable limits on the EM-emanated signal energy at any

frequency above 30 MHz, and many high-frequency clock

signals in a computer system (e.g., the DRAM clock) are

strong enough to violate such legal limits. To achieve EMC,

SSC uses FM-modulation to vary the clock frequency over a

range so that the time spent by the clock signal at a particular

frequency is reduced and the energy is spread over that range

of frequencies [29].

Under the situation in which the underlying DRAM is being

hammered, Fig. 6 (A) demonstrates the problem when SSC is
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Fig. 6. The power spectra under hammering by means of clflush before and after de-spreading. Each spectrum is derived by averaging 78 FFTs of 16,384
values with 50% overlap sampled in 25 MHz over 32 ms.

turned on (which is the default option in most BIOSes). As

we can observe in the spectrum, instead of a single spike at

667.85 MHz, the clock frequency now ranges from 664.85

MHz to 667.85 MHz as a consequence of SSC. Compared

with the SSC-off clock signal power, when SSC is turned on,

the signal power is indeed significantly reduced (more than 15

dB in the given example). However, we find that the frequency

patterns of interest to our rowhammer attack detection are also

attenuated due to SSC, such that the hammering-correlated

sideband patterns become unrecognizable.

To overcome this problem, we need to de-spread the energy

in the signal. The details of our de-spreading process will

be described in the next section. Here, our aim is to show

that hammering attempt information can be found in the

EM-emanated DRAM clock signal. Fig. 6 (B) shows the

power spectrum of the measured signal after de-spreading.

Compared with Fig. 6 (A) which shows the spectrum of the

original signal without de-spreading, we can clearly notice that

the sideband patterns used for rowhammer attack detection

reappear. Therefore, we conclude that information correlated

with a potential rowhammer attack can be effectively found in

certain EM emanations.

VI. ROWHAMMER ATTACK DETECTION VIA A RADIO

In this section, we propose a rowhammer attack detection

system named RADAR (Rowhammer Attack Detection via A

Radio), which detects potential rowhammer attacks by iden-

tifying hammering-correlated sideband patterns in the AM-

modulated DRAM clock signal. The diagram of the proposed

RADAR system is depicted in Fig. 7. In the following, we

describe each component of our RADAR system.
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Fig. 7. RADAR system illustration.

A. Measurement Component

In the first step, we use a measurement device to capture

the EM-emanated DRAM clock signal. As the time spent in

each hammering iteration could be as low as one hundred

nanoseconds (e.g., when using one-location hammering on a

high-performance platform), to capture both upper and lower

hammering-correlated sideband patterns, the measurement de-

vice utilizing quadrature sampling should be able to support at

least 20 MHz instantaneous bandwidth. Moreover, the clock

frequency of interest may be as low as 400 MHz (e.g., DDR3-

800) or as high as 1600 MHz (e.g., DDR4-3200), and thus it is

more flexible to have a measurement device that can be tuned

to all of the possible frequencies. Fortunately, inexpensive and

reliable instruments exist. For simplicity and convenience, in

our prototype, we use a software-defined radio for this task.

Because a clock signal is a square wave, there is an infinite

number of harmonics in the frequency domain. Here we only

consider the first harmonic. If there is too much noise around

the fundamental frequency, we may try to rely on some higher-

order harmonics.

The antenna used in our system should match the frequency

range of interest. Given the possible DRAM clock frequencies,

there are many antenna choices. Through experiments, we find

that a cheap whip antenna (e.g., a telescopic one or just a piece

of wire) suffices. The antenna can be placed inside or outside

the case of the computer being monitored, but its position and

orientation may need to be fine-tuned for the best performance.

B. De-Spreading Component

As aforementioned, to robustly detect hammering-correlated

sideband patterns, we need to counter the effect of SSC by

de-spreading the energy in the measured clock signal. Given a

clock signal whose frequency is fc, SSC uses FM-modulation

to vary the clock frequency in accordance with a signal fm(t)
that is generated in the SSC hardware chip but undocumented.

At time t, the instantaneous frequency fi(t) of the clock signal

becomes:

fi(t) = fc +Kfm(t) , (1)

where K is some proportionality constant. In an analytic form,

the effect of SSC is equivalent to multiplying the clock signal

by a complex exponential function θ(t), which is defined as:

θ(t) = ej2π
∫

t

0
Kfm(t)dt , (2)

where j denotes
√
−1. If the DRAM is hammered when SSC

is on, by reason of AM-modulation, the frequency patterns of
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interest in the sidebands are also shifted by Kfm(t) at time

t. Hence, for the purpose of de-spreading, we just need to

estimate θ(t) and multiply the measured signal by θ−1(t).
Although the exact mathematical expression of fm(t) is not

available, since we deal with sampled values in the system, as

far as we are concerned, only the discrete values of θ(t) at the

points of sampling are needed for de-spreading. We leverage

quadrature sampling to measure the SSC-affected clock signal

which also centers its spectrum at zero Hz. Let vk denote the

kth sample corresponding to the clock signal at a specific time

τ , namely

vk = |vk|ejφk , (3)

where |vk| is the magnitude of vk and φk is the phase angle

of vk. Using FM-demodulation, we can acquire:

dφk

dt
= 2πKfm(τ) (4)

Therefore, at time τ , the instantaneous value of θ(t) is derived:

θ(τ) = ej2π
∫

τ

0
Kfm(t)dt = ej(φk+Θ) = ejφkejΘ , (5)

where Θ is a constant phase angle. Although we do not know

the exact value of Θ, we may simply assume it is 0, because a

non-zero constant phase angle only shifts the signal in the time

domain by a constant but does not affect our analysis in the

frequency domain at all. Thus, we can simplify Eq. 5 to have

it rely on only the values acquired by quadrature sampling:

θ(τ) =
vk
|vk|

= ejφk (6)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sample

0

Fig. 8. The phase difference φk − φk 1 between successive samples, where
1 ≤ k ≤ 10, 000. Many of the apparent spikes above 0 are actually caused
by phase wrapping, i.e., any negative difference in the range of −π > ∆φ ≥
−2π will be converted to an angle in the range of 0 < ∆φ ≤ π.

To de-spread each sampled value of the SSC-affected signal,

the need for deriving the value of θ(t) at that point in time is

not desirable, since it is better to derive such values when the

amount of DRAM activities is little for less noise. Fortunately,

it is known that fm(t) is a periodic function [29], namely we

have fm(t) = fm(t+ Tm) where Tm is the period of fm(t).
Therefore, even though the sequence of the discrete θ(t) values

may not be periodic3, its phase difference sequence, which is

equivalent to FM-demodulation, must be periodic over Tm. In

other words, given a sampling frequency fs, we have:

φk − φk 1 ≈ φl − φl 1 , where l = k + �Tmfs� (7)

For example, in terms of the platform used in Section V, Fig. 8

shows the phase difference sequence of 10,000 values of θ(t)

3If the integration of Kfm(t) over Tm is an integer, θ(t) is periodic over
Tm. If it is not an integer but a rational value, θ(t) is still periodic. If the
integration is an irrational value, θ(t) is aperiodic.

over 0.4 ms (i.e., the sampling frequency is 25 MHz). Due to

random noises, we can observe singular jumps, although the

periodicity is obvious. By averaging the corresponding values,

we can effectively remove the noise.

Let ∆[0 . . . N−1] denote the phase difference sequence over

a Tm, where N = �Tmfs�. Note that we only need to derive ∆
once for each hardware platform, as it is software-independent.

When sampling the clock signal for ∆ derivation, we do not

have user processes running on the target system, and we also

use a bandpass filter to attenuate frequencies outside the range

of possible clock frequencies. The sampling frequency should

be the same as the one used during detection.

To use ∆ for de-spreading during detection, we first need to

achieve ∆ alignment, which is to find a point p in the stream

S of the sampled values such that the phase of θ(t) varies by

∆[0] between S[p + 1] and S[p], by ∆[1] between S[p + 2]
and S[p+ 1], and so forth. It is straightforward to see that ∆
alignment is periodic, namely if S[p] aligns with ∆, S[p+kN ]
will also align with ∆. (Because it is very likely that Tmfs is

not an integer, strictly speaking, ∆ alignment is quasiperiodic.)

Our solution to this problem is based on the fact that a correct

alignment leads to the maximum cross-correlation between the

entries of ∆ and the phase changes of N successive sampled

values, which implies the maximum cross-correlation between

the sums of the first 1 ≤ m ≤ N entries of ∆ and the phase

changes of the mth point relative to the first point. Therefore,

given a point q, we use the following equation to calculate the

cross-correlation:

ρ(q) =

∣

∣
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∣

∣
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∣

(8)

Using Eq. 8, we can start at an arbitrary point q and compute

ρ(q + k(N + 1)) in the (k + 1)st round, where k ≥ 0, until

the cross-correlation reaches a spike, which signifies we have

found ∆ alignment in that round. (Again, if Tmfs is an integer,

we will need at most N rounds to find ∆ alignment. However,

it is very likely that Tmfs is not an integer, and we may need

more than N rounds.) As an example, Fig. 9 shows the cross-

correlation results in the first 800 rounds with respect to the

example given in Fig. 6, and we can clearly see that the initial

∆ alignment is found in the 266th round.
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Fig. 9. Using cross-correlation to achieve the initial ∆ alignment.
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After we have found the initial ∆ alignment, say, S[p] aligns

with ∆, for each of the next i ≥ 1 values after S[p], we use

the following process to obtain the de-spread sequence D:

D[p+ i] = S[p+ i]e−jϕp+i , where

ϕp+i = ϕp+i 1 +∆[(i− 1) mod N ] , and ϕp = 0
(9)

As the rounding error introduced by �Tmfs� when Tmfs is not

an integer will slowly make the alignment drift away, we need

to periodically calibrate the alignment. Since the floor is taken,

the accumulated error will reach a point where S[p+kN +1]
aligns with ∆, instead of S[p+kN ]. We solve this problem by

computing two cross-correlations ρ(p+kN) and ρ(p+kN+1)
together, where k ≥ 0, on the fly in the de-spreading process,

and introduce a delay to ∆ if ρ(p+ kN + 1) is larger, which

means performing a right circular shift on ∆ by one position,

namely, we derive and use a new ∆ as follows:

1 if ρ(p+ kN + 1) > ρ(p+ kN) then

2 for j = 0; j < N ; j = j + 1 do

3 ∆new[(j + 1) mod N ] = ∆[j];

Interestingly, de-spreading will inadvertently help reduce

background noise unrelated to the EM emanations of interest.

This effect is due to the fact that de-spreading will act like SSC

on such noise, whose energy will be scattered over a range of

frequencies. Because of this, the robustness of the proposed

system is increased, as later shown in Section VII-C.

C. Classification Component

Having the stream of samples that are processed according

to Eq. 9, we continuously perform FFTs to obtain a sequence

of spectra. Each spectrum is treated as a feature vector that is

fed into a classifier. Since the hammering-correlated sideband

patterns are relatively easy to recognize, it is not hard to train

an appropriate model to achieve accurate binary classification.

However, if we predict there is a potential rowhammer attack

as soon as certain hammering-correlated sideband patterns are

identified in a single spectrum, the false positive rate may be

high because similar patterns may transiently arise due to some

factors like noise.

Recall that a hammering attempt lasts for a period of time,

usually tens of milliseconds, which means that the hammering-

correlated sideband patterns are very likely present in each

spectrum derived within that period of time. On the other hand,

if some similar sideband patterns appear in a spectrum, but not

due to hammering, they may disappear in the next few spectra.

Therefore, we can rely on this temporal dependency to achieve

more accurate classification.

The sideband patterns of interest and temporal dependency

imply that vertical lines are probably in the spectrogram if

some hammering attempts are ongoing. For instance, Fig. 10

shows two spectrograms over 40 ms under two scenarios, and

we can clearly observe two vertical stripes in the spectrogram,

symmetric about the DRAM clock frequency (represented by

the central red stripe), when using clflush to hammer the

(a) Playing a video

(b) Hammering the DRAM (clflush)

Fig. 10. Spectrogram patterns of different activities.

DRAM. In contrast, no such vertical stripes appear in the

spectrogram corresponding to the video playing scenario.

Since such patterns are local and share the property of space

invariance, we decide to use convolutional neural network

(CNN) that can automatically extract these local features and

perform classification on the basis of them. The input to

CNN is a magnitude spectrogram that is a sequence of w
magnitude spectra. The output from CNN is the probability

of the input being in the hammering class after applying a

softmax function. We use a sliding window of size w, whose

stride is s to successively feed the inputs. Note that w and

s depend on several factors including sampling frequency,

computational capacity, and classification accuracy. The values

used in our RADAR prototype are described in Section VII-A.

We find that it is important to normalize the magnitude

of each point in the spectrogram prior to training and clas-

sification. For each point, we normalize its magnitude by

subtracting the mean and dividing by the standard deviation

of the magnitudes of all the points in that spectrogram (i.e.,

using instance normalization). Note that we simply set the

magnitudes of the points within ±0.05 MHz of the clock

frequency to zero, namely, we zero out the central red stripes in

Fig. 10. The rationale behind this is twofold. First, the power

levels around the DRAM clock frequency totally dominate

(e.g., more than 20 or even 40 dB as shown in Fig. 5), which

can significantly affect the results of normalization. Second,

we do not lose any useful information for our detection

purpose, because the sideband patterns of interest induced by

actual hammering attempts will not fall in this range; otherwise

it will be too slow to trigger the rowhammer bug.

D. Discussion on the Use of Detection Information

When suspicious sideband patterns are recognized, the

detector will notify the system under watch that a rowhammer

attack may be ongoing. To this end, the detector should be

connected to the system through some standard communica-

tion interface like USB, and will send notification messages

when potential hammering attempts are detected.

Upon receiving such a message, we may try to prevent the

system from being compromised in a very simple fashion,

which is to terminate all of the untrusted processes or the

processes belonging to untrusted users. Although this approach

can promptly thwart potential rowhammer attacks, it is overly
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conservative, since many non-malicious processes are also

terminated. Alternatively, we may leverage the scheduling

information to narrow down the list of suspicious processes

(e.g., we can select the untrusted processes that were scheduled

to run in the last 100 ms as suspicious ones).

As a matter of fact, it is very likely that tens of (or even

hundreds of) hammering attempts are needed before finding

some exploitable bit flips, especially if the underlying DRAM

modules are not overly vulnerable (e.g., the number of bit

flips is below a threshold during some test). In such scenarios,

we can try to pinpoint the malicious process by individually

scheduling each suspicious process to see which one can raise

the alarm again. Of course, if the system under watch is

very security-sensitive and/or the underlying DRAM is very

vulnerable, we may wish to terminate all of the untrusted

running processes as soon as a notification message from the

detector is received.

VII. EVALUATION

We have implemented a RADAR prototype to demonstrate

its practicality, and have evaluated it on four platforms that

are summarized in Tab. I. As stated in Section III, an attacker

has various choices of hammering techniques for rowhammer

attacks. We show that our approach can protect a system from

all these possible techniques. Before presenting the evaluation

results, we will first describe our prototype in more detail.

TABLE I
Platforms on which our prototype is evaluated.

Platform Motherboard CPU Memory

A Asus Z87-A Intel G3258 8 GiB Hynix DDR3-1333

B Dell OptiPlex 990 Intel i7-2600K 8 GiB Samsung DDR3-1333

C Alienware Aurora R7 Intel i7-8700K 16 GiB Micron DDR4-2666

D Asus ROG Strix B350-F AMD Ryzen 7 1800X 32 GiB Samsung DDR4-2133

A. Prototype of RADAR

We use a software-defined radio, LimeSDR, to acquire the

EM-emanated DRAM clock signal data. The bandwidth we

need is 25 MHz, and LimeSDR can provide 61.44 MHz RF

bandwidth in the frequency range of 100 kHz – 3.8 GHz [41],

which is more than sufficient for our needs. A LimeSDR costs

$299. In fact, we need only an RF receiver instead of a full-

duplex SDR, and thus a customized device can even be much

cheaper. We simply use a 20 cm telescopic antenna or a self-

built one from two pieces of 7.5 cm wire that can be easily

placed inside a computer case. (Appendix B gives more details

on antennas as well as their placement.)

For rapid prototyping, we use a dedicated computer to serve

as the detector, on which the de-spreading and classification

components run. The de-spreading component is implemented

as a module of the GNU radio framework. The classification

component is implemented under the PyTorch framework and

integrated into the GNU radio using the C++ interface. (Note

that using a dedicated computer is only for proof-of-concept.

The whole detector can be implemented on an FPGA, which

will be our future work.) The detector is connected to the

system under watch via the USB interface4.

We train a 3-layer CNN model using the positive and nega-

tive examples collected from the four platforms listed in Tab. I.

Each platform contributes 5,000 positive examples as well as

5,000 negative ones. A standalone program is used to generate

positive examples, which randomly selects aggressor rows and

hammers 1/3 of them using clflush, another 1/3 of them

using movnti, and the rest of them using eviction; and the

negative examples are collected at random during the daily use

of these platforms (e.g., browsing some web pages). Although

not thoroughly investigated in this paper, we conjecture that

there can be a generic model, which is trained using data from

some representative platforms having different factors like case

sizes and DRAM clock speeds. To preliminarily prove this,

we evaluate the trained model on several additional platforms,

whose data has never participated in the original training. The

results are reported in Appendix C, which show that reliable

detection can still be achieved on these unseen platforms. We

leave the comprehensive study to our future work.

Given the 25 MHz sampling frequency5, we perform 8192-

point FFTs that can provide about 3 KHz frequency resolution

and spans only 327.68 μs. The FFT overlap we use is 50%, and

it means an FFT is performed with 4096 new points and 4096

previous points. To overcome noise, we average 20 spectra to

derive a single spectrum, i.e., each averaged spectrum spans

about 3.3 ms. For classification, we set the sliding window size

to 12 and the stride to 1. In other words, the classification runs

every 3.3 ms on the spectrogram of the last 40 ms.

Due to the tight timing constraints, we need to minimize the

performance overhead incurred by de-spreading and classifi-

cation. To achieve this, we optimize them by taking advantage

of data-level parallelism. When implementing the de-spreading

component, we use the AVX-256 SIMD instructions, whenever

possible, to process multiple sampled values at a time. In terms

of classification, we fall our back on GPU to provide sufficient

acceleration. As mentioned before, these two components can

be implemented on an FPGA, since FPGAs are truly parallel

in nature. Our future work includes implementing the whole

detector on the FPGA of LimeSDR.

B. Effectiveness of RADAR

mov (X), %0

mov (Y), %0

clflush (X)

clflush (Y)

mfence

mov (X), %0

mov (Y), %0

clflush (X)

clflush (Y)

movnti %0, (X)

movnti %0, (Y)

mov (X), %0

mov (Y), %0

mfence

movnti %0, (X)

movnti %0, (Y)

mov (X), %0

mov (Y), %0

evict (X)

evict (Y)

mov (X), %0

mov (Y), %0

mov (X), %0

clflush (X)

(I) (II) (III) (IV) (V) (VI)

Fig. 11. Different hammering loop bodies.

We first evaluate whether our RADAR system can ef-

fectively detect potential rowhammer attacks under simple

situations, in which no memory-intensive tasks are running.

The evaluation is performed in a normal working environment,

4A crossover USB cable having an embedded bridge controller is needed to
connect two USB hosts. We use such a cable with a PL-2301 bridge controller.

5Since quadrature sampling is used, it provides 25 MHz bandwidth.
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Fig. 12. The detection results in the form of the probability of hammering.

where computers with the same DRAM clock frequency are

present but no closer than 1.8 m (note that later we will show

the distance can be as close as 0 m), and the antenna stands

outside on the metal case using a magnetic mount.

The effectiveness of our RADAR system is evaluated

against the hammering methods illustrated in Fig. 11. The first

five ones (I)–(V) use two addresses to perform single-/double-

sided hammering via clflush, movnti, or eviction, and the

last one (VI) tests one-location hammering following the tool

flipfloyd [25]. We also evaluate the effects of a memory barrier

mfence using (I) and (III). We note that it does not matter if

single-sided or double-sided hammering is used with respect to

the generation of hammering-correlated sideband patterns, and

thus we use double-sided hammering on platforms A (Haswell)

and B (Sandy Bridge) as their DRAM address mappings are

available [47], [59], [64], and use single-sided hammering on

platforms C and D.

We run each hammering executable for about 3 seconds in

the order given by Fig. 11, and then we run three legitimate

applications for about 3 seconds. The three applications are:

(1) randomly accessing a large array of size 256 MiB, which

will miss the caches and access the memory very often; (2)

playing a video, which will continuously use non-temporal

instructions to access the video; (3) using gcc to compile a

Linux kernel, which will generate a large amount of processor-

memory-storage traffic. Fig. 12 shows the detection results.

From the results, we can observe that malicious hammering

attempts can be effectively detected for each platform under

each scenario (that are represented by the red dots in the

figure), and there are no false positives if the classification

probability threshold is chosen sufficiently high (e.g., we

simply use 0.85). We also notice some interesting phenomena

when conducting these experiments. First, we find that not

every hammering attempt can induce the sideband patterns

of interest, although most of the attempts will. This is why

the detector sometimes gives a probability output less than

the threshold even during hammering. Second, compared to

flushing or bypassing the cache, the patterns induced by

eviction are less obvious, as indicated by the first row of

Tab. II. Yet, they are still recognizable. Third, the use of

memory barriers seems irrelevant to the appearance of such

sideband patterns, although it ensures that all memory accesses

reach the DRAM.

In addition, as studied in [25], rowhammer attacks may be

hidden inside malicious SGX enclaves. Our conjecture is that,

regardless of whether or not hammering is performed inside

an SGX enclave, there should be no difference with respect

to its characteristics in the DRAM clock spectrum. We have

verified this speculation by evaluating our RADAR system

against malicious SGX enclaves on platform C, as illustrated

in Fig. 12. Thus, the proposed RADAR can effectively detect

elusive rowhammer attacks.

The effectiveness of our RADAR system has also been

evaluated against three well-known tools that are publicly

available for demonstrating rowhammer attacks: (1) Google’s

rowhammer-test6 [54], which uses a probabilistic approach to

perform single-sided hammering, or takes advantage of the

/proc/self/pagemap interface to acquire physical addresses

for double-sided hammering; (2) Tatar’s hammertime7 [59],

which can achieve more effective double-sided hammering by

considering the detailed information about end-to-end address

translation; and, (3) Gruss’s flipfloyd8 [25], which has a tool

for testing one-location hammering.

Fig. 13. The detection results on platform A w.r.t. three well-known tools.

We run each tool as is, and Fig. 13 shows the detection

results when these tools are executed on platform A. We just

use platform A as the example, because (1) platform A is

very vulnerable to hammering; (2) hammertime only has the

detailed address translation model for the platforms A and

B; and (3) the detection results for other platforms are very

similar to that for A. From the results, we can observe that

our RADAR can effectively detect hammering attempts.

When running hammertime on platform A, on average there

are 6.6 bit flips per second reported. (Both rowhammer-test

and flipfloyd do not report any bit flip.) We implement a

kernel module that “kills” all of the processes belonging to

untrusted users upon receiving a message from the detector,

and execute hammertime for 100 times. In each of the 100

trials, the hammering behavior was always detected as soon

as it merely started. We have not observed any bit flip

before hammertime is detected and terminated, namely if

only considering prevention of bit flips, the false negative

6https://github.com/google/rowhammer-test
7https://github.com/vusec/hammertime
8https://github.com/IAIK/flipfloyd
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rate in this case is 0%. The DRAMs on other platforms are

originally less vulnerable, and when our RADAR is on, we

have not observed any bit flip before any hammering tool is

detected and terminated.

On the other hand, the false positive rate of our RADAR

detection is also extremely low. As studied in [4], gcc induces

many false positives under ANVIL; yet, from Fig. 12, we can

observe that gcc introduces no false positives under RADAR.

We also evaluate other SPEC 2006 benchmarks and Apache

HTTP server on platform A. For SPEC benchmarks, we use

their reference inputs, and for Apache server, we use the tool

ab to generate heavy workloads. The representative results are

shown in Fig. 14, and the results for other SPEC benchmarks

are similar to bzip2 (integer) and lbm (floating-point). From

Fig. 14, we can clearly see that no false positives arise. Note

that no floating-point SPEC benchmarks are used in [4], but we

argue that these benchmarks should be included for evaluation

due to their pervasive manipulation on very large matrices.

Fig. 14. The detection results on platform A w.r.t. SPEC integer and floating-
point benchmarks as well as Apache HTTP server.

Since these benchmarks represent normal applications well,

the results signify the aforementioned argument that a benign

program barely has a behavior generating a high rate as well

as periodic DRAM accesses for a long period of time (e.g.,

more than 30 ms) to trigger the alarm. (In fact, as indicated by

the results of continuous accesses to a large array in a random

way in Fig. 12, we argue that it is the same bank(s) that should

be periodically accessed rather than just DRAM, which means

it is even more difficult to find the alarm-triggering behavior in

a benign program.) Note that although the result for zeusmp

appears singular in contrast with others, we do not observe any

false positive even when running its four instances in parallel.

It shows that the possibility of synthesizing symmetric vertical

stripes in the spectrogram by multiple simultaneously running

benign programs is very low.

C. Robustness of RADAR

There are two types of noise that may affect the operation of

RADAR. The first type of noise is generated internally, due

to a legitimate use of the computer system which changes the

power of the DRAM clock signal constantly. To create such

noise, we run different applications to impose loads on the

memory system. To quantify the obviousness of the sideband

patterns, we measure how relatively “tall” the patterns of inter-

est are, namely the power difference between the patterns and

their neighboring frequency components. The measurements

are in dB and shown in Tab. II for sideband patterns caused

by clflush, movnti, and eviction. Note that Tab. II only

shows the first one that is recognizable for each case.

The first row of Tab. II lists the baseline values for each

platform having the minimum workload. As we can observe

TABLE II
The relative power (measured in dB) of the hammering-correlated sideband

patterns caused by clflush, movnti, and eviction respectively.

Scenario
Platform A B C D

Baseline 21.97/23.57/9.63 31.06/32.99/27.42 25.22/20.17/13.55 30.83/30.01/19.78

stress -m 10 13.49/16.57/8.37 30.89/26.94/17.97 –/–/– –/–/–

Playing a video 21.39/22.85/9.97 33.61/29.83/27.20 21.10/18.65/14.11 29.02/25.24/12.89

Compiling kernel 21.30/22.78/8.92 32.86/27.32/26.99 23.20/16.60/13.35 28.27/29.21/15.01

from the other rows, except for platforms C and D under

stress, the patterns used for rowhammer attack detection are

still discernible in the spectrum when much noise is created.

Note that there are n high memory traffic threads spawned

by stress -m n. We find that, when running stress

-m 10 on platform C or D, all of the 10 threads can run

in parallel with the hammering process leading to memory

bandwidth exhaustion, so that up to five-fold time is spent in

a hammering iteration. By contrast, platform A has a dual-

core processor without SMT, which supports only 1 stress

thread simultaneously running with the hammering process;

hence, there is actually no difference between stress -m

1 and stress -m 10 on A, and the memory bandwidth is

sufficient for its traffic. Surprisingly, on platform B, 7 stress

threads can run in parallel with hammering, but our test shows

that they together impose only 1.7 GB/s traffic, which is

much less than the supported 20 GB/s bandwidth. (On other

platforms, one single stress thread can generate 4∼5 GB/s

traffic.) Note that, even with enough memory bandwidth, we

have observed that the rowhammer bug is much harder to

trigger while stress is running, let alone when bandwidth

is exhausted. For example, platform A is very vulnerable to

hammering, and on average 6.6 bit flips per second can be

observed without running stress, but only 0.85 bit flips

per second when running one stress thread. Therefore,

the disappearance of the patterns of interest under extreme

conditions is only a minor issue.

The second type of noise exists externally. In reality, there

may be some neighboring computer systems having the same

DRAM clock frequency as the one under RADAR’s watch.

To test whether our RADAR will become “confused”, we

settle platform A as the system under protection and observe

how other platforms using DDR3-1333 affect the operation of

RADAR.

TABLE III
The impacts of external noise on RADAR for platform A.

Scenario
Distance 1.5 m 1.0 m 0.5 m 0 m

B & antenna out none none none none

A* & antenna out none slight moderate† moderate/severe†

A* & antenna in none none none none

†These unfavorable impacts can be mitigated.

First, we gradually move platform B towards A starting from

1.5 meters away. The antenna stands outside on the metal case

of platform A. The operation of RADAR is not affected at

all, as shown in the first row of Tab. III. This is because, as

mentioned in Section VI-B, de-spreading will inadvertently

help reduce such noise. Recall that, for de-spreading, the
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hardware-dependent ∆ is aligned and used to modulate the

measured signal, and if the measured signal has components

unrelated to the used ∆, the energy of these components will

be spread. Since the ∆ of A is different from that of platform

B, when using the ∆ of A for de-spreading, the EM-emanated

DRAM clock signals of B are unrelated to the used ∆, and

their energy is scattered to become negligible noise.

A more interesting scenario arises from using identical

motherboards, as they have the same ∆. Thus, we move

another platform A*, which is the same as A, gradually

towards A starting from 1.5 meters away. The antenna still

stands outside on the metal case of A. When the distance is

reduced to about 1 m, we start observing “bumps” regularly

and symmetrically sweeping back and forth within ±3 MHz

around the DRAM clock frequency in the spectrum. This

phenomenon is due to the fact that the correct ∆ alignment

with the SSC-affected signal of A is most likely incorrect with

respect to that of A* (unless they coincidently have the same

SSC phase). As long as the antenna picks up the signal from

A more than the signal from A*, the ∆ remains aligned with

the SSC-affected signal of A. As A* gets closer to A, the

magnitudes of the sweeping “bumps” get increased, reaching

the same level as the hammering-correlated sideband patterns.

However, their impacts are moderate, because they have very

distinguishing features such as the spikes forming the bumps

are actually separated from each other by exactly 32 KHz (a

behavior of SSC) so that we can take them into account in the

classifier. The severe impacts come from the situation where

the antenna is too close to A* such that the correct ∆ alignment

is disrupted. We find that the severe impacts can be avoided

by carefully placing the antenna, e.g., on the other side of the

case of A when A* and A are side-by-side.

The same experiment using A* is performed again but with

the antenna placed inside the metal case of A. We use a very

simple self-built antenna, which consists of two pieces of 7.5

cm metal wire. This antenna can easily placed inside the case

of any computer, as shown in Appendix B. This time, no matter

how close A* gets to A, there are no impacts on the operation

of RADAR at all, as shown in the third row of Tab. III. The

reason is straightforward: On one hand, the case of A acts

as a EM shield, and on the other hand, the signal of A is

much stronger inside the case. Note that there may be apparent

reflection effects if the antenna is placed inside the case, but

we notice that many spots can be found where reflections are

not obvious and thus can be ignored.

D. Resilience to Adaptive Attacks

To demonstrate the effectiveness of our RADAR on certain

adaptive attacks, we create such a scenario where the adversary

tries to circumvent detection by deliberately introducing some

random delays into each hammering iteration of a hammering

attempt, as illustrated in Fig. 15. The outer loop in Fig. 15

denotes a hammering attempt that hammers the DRAM for

N iterations. Inside each iteration, we use an inner loop to

introduce some random delay, as its bound b is randomly

chosen in the range of 1 to M .

for i := 0 to N − 1 do

b := rand(M )

for j := 0 to b− 1 do

nop

mov (X), %0

mov (Y), %0

clflush (X)

clflush (Y)

mfence

Fig. 15. Add random delay to each iteration to disturb the hammering period.

Fig. 16 presents the detection results on platform D under

different M values. As we can observe from the figure, even

when M reaches 500, it still cannot circumvent the detection.

(Although theoretically we cannot prove that bit flips can be

prevented when M is 500, we do empirically notice that it

becomes much harder/impossible to trigger the rowhammer

bug on the evaluated platform when M reaches 300, and no

bit flips are induced when M is 500.) We also show the DRAM

clock spectra under different M values in Appendix A, from

which we can find the hammering-correlated sideband patterns

indeed well recognizable.

Fig. 16. The detection results on platform D w.r.t. different M values.

Compared to the (I) results on platform D in Fig. 12, some

of the results in Fig. 16 are even slightly better. As mentioned

before, not every hammering attempt can induce the sideband

patterns of interest, although most of the attempts will. Since

the aggressor rows are randomly selected, different pairs were

used in these two experiments, which caused a slight detection

difference.

VIII. RELATED WORK

In this section, we mainly concentrate on existing rowham-

mer defenses that do not require unrealistic hardware modifi-

cations. In addition, we describe some related work on using

physical side-channel information to bolster security defenses.

Since the activation of an aggressor row needs to be toggled

enough times within a refresh interval to successfully trigger

the rowhammer bug, a straightforward countermeasure is to

double the refresh rate [40]. However, as shown in several

tests [4], [39], this approach still cannot prevent the bug

from being triggered, especially if the double-sided hammering

technique is used [54]. Another straightforward defense is

to use ECC memory to correct or detect bit flips [34], but

it has been demonstrated that reliable rowhammer attacks in

presence of ECC memory are still highly possible [16], [38].

Due to the explicit use of some special instructions like

clflush in early rowhammer attacks, some mitigation tech-

niques simply prohibit the use of such instructions [49], [54],

but they cannot hinder eviction-based hammering [4], [26].

Given regularities found in various approaches to circum-

venting the effects of CPU caches, static code analysis has
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been used to identify suspicious binaries and estimate their

intention levels to perform rowhammer attacks [32]. However,

encryption and secure enclaves can be used to hide any

malicious intention from static analysis [25], [53].

Based on certain characteristics observed in many rowham-

mer attacks, several dynamic detection approaches are pro-

posed. Since a large number of last level cache misses are

usually incurred in the hammering process, some detection

techniques rely on hardware performance counters to capture

suspicious activities for further analysis [4], [30]. Nevertheless,

it is noticed that such cache misses will be concealed from

CPU performance counters, e.g., when an attack is running

inside an Intel SGX enclave [25], [53], which subverts the

assumption made for the detection. Due to the traditionally

used open-page policy in memory controllers, to trigger the

rowhammer bug, two aggressor rows in the same bank need

to be alternately activated. Consequently, some detection meth-

ods use such memory access patterns as an indication of

rowhammer attacks [4], [17]. However, on some platforms, the

memory controllers may be configured to use a closed-page

policy to proactively close a row. In such scenarios, even one

aggressor row is sufficient to induce bit flips around the row

(named as one-location hammering) [25], [42], which makes

access pattern based detection limited.

Usually, to successfully perform a rowhammer attack, an

adversary not only needs the ability to trigger the rowhammer

bug on the targeted system, but also needs to be capable

of steering targeted security-critical data to some vulnera-

ble rows for exploitation. Therefore, instead of detecting or

impeding triggering the rowhammer bug, some mitigation

techniques focus on hardening the system against rowhammer

bug exploitation. Since the two early approaches to exploiting

the rowhammer bug, memory spraying [54] and memory

grooming [61], need to allocate a large portion of memory,

prevention of memory exhaustion has been considered as a

feasible countermeasure [26], [61]. Moreover, in [9], CATT

is proposed to physically partition the main memory into

different security domains, and each domain is segregated

with one another by at least one unused DRAM row (i.e.,

a guard row), in which case, cross-domain bit flips become

impossible. Unfortunately, two new approaches to exploiting

the rowhammer bug, memory waylaying [25] and memory

ambush [13], have been developed lately, which defeat the

above-mentioned mitigation techniques.

Although CATT is no longer effective, the concept of guard

rows is still valid and effective for absorbing exploitable bit

flips. By using guard rows for fine-grained memory isolation,

GuardION and ALIS can make the DMA-related hammerable

area non-exploitable [60], [62]. To enable defenses against

more general rowhammer attacks, ZebRAM is proposed

in [36] to isolate all data rows with guard rows in a zebra

pattern. To avoid wasting half of the DRAM, the guard rows

in ZebRAM are used as an efficient swap space in memory.

However, much performance overhead may still be caused for

memory-intensive applications. On the contrary, our proposed

technique does not incur any performance overhead due to its

completely non-intrusive and passive nature.

There has been much research work on exploiting physical

side-channel information for attacks [2], [3], [5], [18], [20]–

[24], [31], [35], [37], [50], [52], [58]. Lately, many researchers

have also started examining how to leverage such side-channel

information to help defenses. For instance, power- or EM-

based code execution tracking has been proposed to check

whether the control flow integrity is violated [28], [43], [45].

Moreover, power or EM side-channel information has been

used in discovering malware and anomalies on embedded

devices [15], [55], [63], identifying the attacker ECU on in-

vehicle networks [14], detecting intellectual property theft [6],

[57], and so forth. Yet, there has been little prior work that

uses physical side-channel information to perform rowhammer

defenses, and to the best of our knowledge, only one very

recent proposal leverages features in power traces to detect

rowhammer attacks on embedded systems [63]. Our work is

the first one on leveraging EM side-channel information to

detect rowhammer attacks.

IX. CONCLUSION

In this paper, we have investigated how to leverage EM side-

channel information to detect rowhammer attacks. We have

found that there are distinguishable sideband patterns corre-

lated with hammering activities in the spectrum of the DRAM

clock signal. Based on this observation, we have proposed

and implemented a system named RADAR, which unveils and

recognizes hammering-correlated sideband patterns to help set

up defenses against even elusive next-generation rowhammer

attacks (e.g., the ones concealing themselves inside some SGX

enclaves). The effectiveness and robustness of RADAR have

been demonstrated under different scenarios. Besides, RADAR

does not degrade the performance or resource utilization of the

computer system under protection.

In the future, we plan to implement the entire detector part

of RADAR on an FPGA (e.g., the one on the used LimeSDR),

and perform large-scale experiments in, e.g., a data center. In

addition, we will conduct a thorough study on the possibility

of the existence of a generic model for classification as well

as investigate other properties of RADAR such as its power

consumption9.
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9Our conjecture is that RADAR can actually help save energy compared to
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and FPGAs used by RADAR normally consume much less power than CPU.
For example, the LMS7002M transceiver used by LimeSDR consumes only
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the overall power consumption.
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APPENDIX A

Section VII-D has introduced an adaptive attack which tries

to circumvent detection by adding some random delays into

each hammering iteration. The random delay varying range is

controlled by a parameter M . Fig. 17 shows the DRAM clock

spectra of platform D under different M values. (Note that the

experiments are performed under normal circumstances where

the SSC feature is always on.) As anticipated, when random

delays are introduced, the periodic behavior of hammering is

disrupted to some extent, and thus the hammering-correlated

sideband patterns become less prominent than those without

adding such delays. However, as illustrated in the figure, even

when M reaches 500, the patterns are still recognizable for

its use in detection.

From Fig. 17 (A) that corresponds to the normal situation

without adding random delays, we can observe three pairs of

“bumps” very clearly on both sides of the central spike, which

are circled and pointed to by arrows. They are located at about

1066 MHz ± k × 3.9 MHz in the spectrum, where k = 1, 2, 3.

The reason for this phenomenon is that the modulating signal

generated by the switching behavior of hammering on platform

D has strong second and third harmonics. Therefore, when

this signal AM-modulates the DRAM clock carrier signal,

the sideband patterns corresponding to the second and third

harmonics will arise noticeably. Nevertheless, this does not

cause any problem or difference for our detection method,

since there are still two vertical stripes symmetric about the

DRAM clock frequency in the spectrogram.
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Fig. 17. The power spectra under different M . In a hammering attempt, each hammering iteration will be delayed by a loop whose bound is randomly chosen
in the range of 1 to M . The larger M is, the more disturbance is added into the hammering period.

APPENDIX B

Each computer system under the watch of the proposed

RADAR will be equipped with an antenna and a detector.

The antenna used in our RADAR can be a very simple whip

antenna, such as a telescopic antenna or just a piece of wire.

Fig. 18 shows two antennas used in RADAR. The left one is a

telescopic antenna, which has a magnetic mount to make itself

easy to stand on the metal case of a computer. The right one

is a self-built antenna, which consists of two pieces of metal

wire connected to an antenna balun. The wire is coated with

plastic for isolation.

Fig. 18. Two antennas that have been used in RADAR. In both figures, the
used LimeSDR is also shown.

As evaluated in Section VII-C, when two identical platforms

are very close (e.g., right next to each other), we need to place

the antenna inside the metal case. We can generally manage to

place the telescopic antenna inside the mini tower (or bigger)

cases. By contrast, our self-built antenna can be easily placed

inside the case of any size (e.g., small form factor or server

chassis).

Fig. 19. Placing the self-built antenna inside the metal case of a SFF computer.

For example, Fig. 19 illustrates how to place our self-built

antenna inside a small form factor (SFF) computer of size 31.2

× 29.0 × 9.3 cm. The antenna is inserted into the computer

case through the holes on the backplate and taped on the power

supply, which can be seen from the left part of Fig. 19 (denoted

by the dashed line). We simply leave the antenna balun outside

the case, as shown in the right part of Fig. 19. This placement
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just took us several minutes. Even though it was possible to

spend longer time on placement in some situations, we argue

that it might just need to happen once and can remain fixed if

no significant changes need to be made on the hardware side

of the platform later on.

Fig. 20. Apparent hammering-correlated sideband patterns.

Given the aforementioned antenna placement, we execute a

program for hammering. As we can observe from Fig. 20, the

hammering-correlated sideband patterns are extremely clear.

Again, the SSC is always on and the spectrum is shown after

de-spreading.

APPENDIX C

To preliminarily demonstrate a specifically tailored model is

not necessary for classification, we evaluate our current CNN

model on two additional platforms, whose data has never been

used in the original training. These two platforms E and F are

listed in Tab. IV. We can find that platforms A, B, and E are

all equipped with DDR3-1333 modules, but their DRAM chip

vendors are different (c.f., Tab. I). Likewise, both platforms D

and F have DDR4-2133 modules, but their memory chips are

also from different vendors.

Furthermore, we change the memory modules of E and F to

form another two platforms E’ and F’. As listed in Tab. IV,

E’ uses DDR3-1600 and F’ uses DDR4-2400. Note that both

of these two DRAM speed types have never been involved in

the original model training. We conduct the experiments listed

in Fig. 11 on these four platforms.

Fig. 21. The detection results on additional platforms in the form of the probability of hammering. The CNN model for classification is the one trained in
Section. VII without any change.

TABLE IV
Additional platforms on which our prototype is further evaluated.

Platform Motherboard CPU Memory

E Dell OptiPlex 3020 Intel i5-4590 16 GiB Kingston DDR3-1333

E’ Dell OptiPlex 3020 Intel i5-4590 8 GiB Micron DDR3-1600

F Dell XPS 8920 Intel i7-7700K 16 GiB Hynix DDR4-2133

F’ Dell XPS 8920 Intel i7-7700K 16 GiB Hynix DDR4-2400

The detection results are presented in Fig. 21. From the

results we can observe that the model, trained using data

from platforms A, B, C, and D, works well for recognizing

potential attacks on platforms E, E’, F, and F’. Although

data in terms of DDR3-1600 and DDR4-2400 modules has

never been seen during the CNN model training, very good

generalization has been achieved, which is able to classify new

examples having symmetric vertical stripes in the spectrogram

as possible rowhammer attacks.
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