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Abstract— Inertia from rotating masses of generators in
power systems influence the instantaneous frequency change
when an imbalance between electrical and mechanical power
occurs. Renewable energy sources (RES), such as solar and
wind power, are connected to the grid via electronic converters.
RES connected through converters affect the system’s inertia
by decreasing it and making it time-varying. This new setting
challenges the ability of current control schemes to maintain
frequency stability. Proposing adequate controllers for this new
paradigm is key for the performance and stability of future
power grids. The contribution of this paper is a framework to
learn sparse time-invariant frequency controllers in a power
system network with a time-varying evolution of rotational
inertia. We model power dynamics using a Switched-Affine
hybrid system to consider different modes corresponding to
different inertia coefficients. We design a controller that uses
as features, i.e. input, the systems states. In other words, we
design a control proportional to the angles and frequencies. We
include virtual inertia in the controllers to ensure stability. One
of our findings is that it is possible to restrict communication
between the nodes by reducing the number of features in the
controller (from 22 to 10 in our case study) without disrupting
performance and stability. Furthermore, once communication
between nodes has reached a threshold, increasing it beyond
this threshold does not improve performance or stability. We
find a correlation between optimal feature selection in sparse
controllers and the topology of the network.

I. INTRODUCTION

As renewable energy resources (RES) continue to in-
crease their participation in power systems [1], [2], different
challenges arise. For example, solar and wind power show
variability and uncertainty in their electricity generation [3],
making optimal power flow a more complex task for system
operators. In the case of power system dynamics, voltage
and frequency control can become an issue due to high
penetration of solar power [4] and increasing participation
of inverter connected RES [5] respectively.

Frequency deviation from its nominal value occurs when
there is an instantaneous mismatch between electricity gen-
eration and demand. The first response to this frequency
excursion comes from the inertia of the power system. This
inertial response originates from the kinetic energy supplied
to the grid by the synchronous generators currently connected
to it. Droop or governor response is the second mechanism
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that addresses frequency deviations [6]. Droop control is an
automatic control proportional to the deviation in frequency.
Slower mechanisms (e.g. spinning reserves) also participate
to restore frequency to its nominal value [6].

RES connected to the grid, such as solar and wind
power, use inverters. In general, inverters do not provide
any inertia to the power system, which results in a lower
and time-varying system-wide inertia. Therefore, a grid with
increasing penetration of RES will result in a less effective
inertial response to frequency deviations. This increases the
variation of frequency under abrupt imbalances in generation
and demand. The aforementioned can lead to cases in which
classical frequency control schemes are not fast enough to
contain contingencies [7].

A solution that has been studied for systems with low
inertia is to use inverters and storage to provide inertia.
This is generally referred to as virtual inertia: a controller
proportional to the derivative of the frequency. Previous work
studying virtual inertia can be found in the literature [8]–
[14]. Our previous publication [15], proposes for the first
time a new modeling framework for power system dynamics
to simulate a time-varying evolution of inertia in the network
due to the time dependent participation of RES. We model
power dynamics using a Switched-Affine hybrid system to
consider different modes corresponding to different inertia
coefficients. Time-varying power system dynamics pose a
new set of challenges for frequency control. Now control
design must take into account the time dependence of the
dynamical model.

In recent years, techniques from machine learning have
become popular in the field of control design [16], [17].
Interesting applications have been developed for distributed
control of power flow in power systems [18], [19]. In [20]
we design a fixed and stable frequency controller under the
paradigm of time-varying inertia. We use angles, frequencies
and derivatives of the frequencies as features or input for
the controllers. An interesting question that stems from this
work is the potential trade-off of restricting communication
between controllers. Information availability between nodes
entails a cost (sensing and broadcasting), thus designing
communication restricted control schemes, i.e. sparse con-
trollers, is of particular interest in power systems. In a
similar line of thought, [21] studies from an information
theoretic approach, the trade-off between performance and
communication between control agents.

In this paper we study how sparsity can be induced in a
time-invariant learned controller for a time-varying dynami-
cal system. This application is of particular interest because
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of its potential for aiding safe RES integration. Additionally,
power system dynamics are a relevant application for this
control research question thanks to the added complexity
of operating on a graph (transmission network). Finally,
information availability between nodes entails a cost (sensing
and broadcasting), thus designing communication-restricted
control schemes is of particular interest in power systems.

The contribution of this paper is the design of a sparse
and guaranteed stable time-invariant frequency controller for
time-varying power dynamics. We also test the improvement
in performance metrics and stability of introducing more
features to the controller than the minimum identified. Our
work can be summarized as follows:
• In the time-varying framework for power dynamics, we

design a controller with fixed gains, proportional to the
system’s states (angles and frequencies). We design the
controller by learning its parameters from a training set
generated by optimally solving a Model Predictive Con-
trol (MPC) problem for different scenarios of frequency
regulation. We add virtual inertia to the controller to
guarantee stability in all inertia modes [20].

• To test how sparse our learned controller can be and
to investigate the trade-off between communication re-
quirements and performance/stability we use a Lasso
regression [22] for the controller at each node. We
vary widely the sensitivity parameter associated to the
regularization term in the learning problem.

• We shed light on the relevance of graph topology and
optimal feature selection for the learned controller at
each node.

• We show for some cases that it is not possible for the
learned controller to steer frequency deviation back to
zero when facing inertia coefficients that are not in-
cluded in the training set. This validates the importance
of controller design taking into account time-varying
power dynamics.

We conclude that it is possible to design via learning a
sparse, time-invariant and stable controller for the hybrid
power dynamics formulation. Furthermore, we show that it
is possible to reduce the number of features in the controller
(from 22 to 10 in our case study) without disrupting perfor-
mance and stability. Additionally, we depict how enabling
more communication beyond a threshold does not improve
performance or stability.

The rest of the paper is organized as follows: Section II
presents the problem formulation, Section III covers simu-
lations, performance and stability analyses, and Section IV
concludes with our main findings and future work.

II. PROBLEM FORMULATION
A. Power system dynamics as a hybrid system

We model an electric power system network as a graph
with n nodes and n(n−1)/2 possible edges. Using the direct
current approximation for power flow, we can write the swing
equation [14] as

miθ̈i +diθ̇i = pi− ∑
j∈Ni

bi j(θi−θ j), i ∈ {1, . . . ,N} (1)

where mi corresponds to the equivalent rotational inertia
in node i, di is the droop control or frequency damping
coefficient, pi represents net power injection at node i, Ni
is set of nodes connected by an edge to node i, bi j is the
susceptance of the transmission line between nodes i and j,
and θi is the voltage phase angle at node i. The state space
representation of the model can be written as[

θ̇

ω̇

]
=

[
0 I

−M−1L −M−1D

][
θ

ω

]
+

[
0

M−1

]
pin (2)

where the states correspond to the stacked vector of an-
gles and frequencies at each node (θ>,ω>)> ∈ R2n, the
frequency, ω , is the derivative of the angle, i.e. ω = θ̇ ,
M = diag(mi) is a diagonal matrix with rotational inertia
coefficients, D = diag(di) is a diagonal matrix with droop
control coefficients, I is the n×n identity matrix, pin corre-
sponds to the power input, and L ∈Rn×n is the Laplacian of
the network. The network Laplacian is defined as `i j =−bi j
when i 6= j, and `ii = ∑ j∈Ni bi j.

Traditionally, the equivalent rotational inertia of a power
system has been modeled as a constant over time due to
the predominance of thermal generators. Nonetheless, the
increasing penetration of RES has lowered and transformed
its nature into a time-varying coefficient [7], [23]. This
study uses the modeling framework first introduced in [15]
to represent the time dependence in inertia at each node.
Frequency dynamics are modeled as a Switched-Affine hy-
brid system, where each mode has a predetermined set of
values of equivalent inertia mi at each node. The evolution
of the inertia on the system depends on the current online
generators and the connected power electronics converters.
In this paper, the inertia at each time step t evolves as an
exogenous input. Thus, power dynamics are given by[

θ̇

ω̇

]
=

[
0 I

−M−1
q(t)L −M−1

q(t)D

]
︸ ︷︷ ︸

Âq(t)

[
θ

ω

]
+

[
0

M−1
q(t)

]
︸ ︷︷ ︸

B̂q(t)

pin (3)

where Mq(t) represents the inertia matrix in the mode q(t) ∈
{1, . . . ,m}. Using a zero-order hold discretization with time
step Ts, we obtain the discretized time-varying dynamics

xt+1 = Aq(t)xt +Bq(t)ut (4)

where xt is the stacked vector of discretized angles and
frequencies, (θ>t ,ω>t )>, ut is the discretized control action
by generators and converters, Aq(t) = exp(Âq(t)Ts) and Bq(t) =∫ Ts

0 exp(Âq(t)τ)B̂q(t)dτ .

B. Generation of training set from optimal frequency control
In order to learn a time-invariant controller, we generate a

training set from solving an MPC formulation. We minimize
an objective function where the states and controllers are
decision variables

min
x,u

T

∑
t=0

x>t Qxt +u>t Rut

s.t. x0 = x(0)

xt+1 = Aq(t)xt +Bq(t)ut , t ∈ {0,T −1}

(5)
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Q ∈ R2n×2n is a positive semidefinite matrix, R ∈ Rn×n is
a positive definite matrix, x(0) is the initial state, and T is
the time horizon. Depending on the modeling goal, matrices
Q and R can be modified to promote a specific behavior.
This is a Quadratic Programming problem that can be solved
directly, using for example CVX [24]. We describe the
specifications for the simulations of this work in III-A.

C. Learned controller enhancing sparsity

In the setting of hybrid power dynamics with variable
inertia, our control design via learning has two objectives:
• Learn a time-invariant frequency controller of the form

ut = KLxt , where KL is a constant matrix.
• Explore to what extent communication between nodes

can be restricted to design a stable frequency controller.
Communication between nodes i and j has to occur
when the (i, j) entry of KL is nonzero.

To accomplish these objectives we use a Lasso regression
[22], [25] to learn optimal controllers at each node. The
training set (x(s),u(s)) we utilize comes from the optimal
solution to (5) under different initial states. Each trajectory
or optimal solution (x(s),u(s)) for a given initial state defines
a scenario s, with s= {1, . . . ,S}. We solve a Lasso regression
for each node i as an independent controller ui,t = β>i xt ,
where β>i ∈ R1×2n is a row vector that has as components
the gains of the controller at node i (i.e. KL =

[
β1 . . .βn

]>):

min
βi

S

∑
s=1

T

∑
t=1

∣∣∣∣∣∣u(s)i,t −β
>
i x(s)t

∣∣∣∣∣∣2
2
+λ ||βi||1 (6)

The states that multiply the resulting nonzero components
of the vector β>i correspond to the features that node i uses
for its controller ui,t . We solve (6) for each node for a range
of the regularization sensitivity parameter λ using cross-
validation. We vary the sensitivity parameter λ from zero
(Least-Squares, i.e. using all possible 2n states as features)
up to a value that would result in only one nonzero coefficient
in the vector βi.

D. Incorporating virtual inertia in the control

As we show in [20], to guarantee stability of a learned
controller for hybrid power dynamics with variable inertia
we include virtual inertia: a controller proportional to the
derivative of the frequency, KVω̇ . To provide some intuition,
consider a fixed inertia continuous time system and assume
a controller of the form

u = KL(θ
>,ω>)>+KVω̇ = KLx+ K̃Vẋ (7)

where K̃V = [0 KV], then:

ẋ =
[

0 I
−M−1L −M−1D

]
x+
[

0
M−1

]
(KLx+ K̃Vẋ) (8)

Rearranging terms the system can be written as

ẋ = (I− B̂q(t)K̃V )
−1(Âq(t)+ B̂q(t)KL)x

=

[
I 0
0 I−M−1

q(t)KV

]−1

TABLE I
PARAMETERS FOR THE TWELVE-BUS THREE-REGION CASE STUDY [13],

[15] AND [26].

Parameter Value
Transformer reactance 0.15 p.u.

Line impedance (0.0001 + 0.001j) p.u./km
Base voltage 230 kV
Base power 100 MVA

Droop control 1.5 %/%

×
[

0 I
−M−1

q(t)(L−KL,θ ) −M−1
q(t)(D−KL,ω)

]
x

=

[
0 I

−M̃−1
q(t)(L−KL,θ ) −M̃−1

q(t)(D−KL,ω)

]
x

where M̃q(t) = Mq(t)(I −M−1
q(t)KV) = Mq(t) −KV provides a

new system wide equivalent inertia due to the virtual inertia
controller KV. To determine a proper KV we utilize a heuristic
using a bisection method. We assume KV of the form KV =
kvIn×n. We iterate over kv until the closed loop system for
each inertia mode has all its eigenvalues with negative real
part, stabilizing the system’s dynamics.

III. SIMULATIONS AND ANALYSIS

A. Data and simulation description

We use MATLAB R© to model a twelve-bus three-region
network that has also been used in [13], [14], [15], and [20]
and [26]. Each node has two states (angle and frequency).
Table I shows the parameters of the network. Notice bus 11
is directly connected to 12, thus we are effectively simulating
an n = 11 node network.

10

25 km10 km110 km10 km25 km
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25 km
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719 MW
133 MVar
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69 MVar
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V
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V
ar

110 km

11
0 

km 490 MW

Fig. 1. Case study: Twelve-bus three-region network from [13], [14], [15],
[20] and [26].

We assume the same rotational inertia in all buses for a
given time step t (mi(t) = m(t) for all i). This implies a
similar fraction of renewable energy generation for all nodes,
but this assumption can be easily extended. Each mode of
the hybrid system is given by one value of inertia. For
the study case we predefined possible inertia values for the
system: mq ∈ {0.2,0.5,1,1.5,2,2.5,3,3.5,5,9}. The average
of this set of possible inertia values is 2.8 seconds, which is
equivalent to having 28 percent of thermal generation (10 s
of inertia) and 72 percent of RES with zero inertia.

To generate the training set from (5) in II-B, each scenario
s starts with 2 seconds of inertia, and from there– based
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on a uniform distribution draw– the inertia (hybrid mode)
of the system at time t + 1 will remain the same, increase,
or decrease. We assume that power electronics converters
and batteries exist at every node as control agents to pro-
vide/absorb power. The time interval Ts we use is 0.01
seconds and the time horizon T is 400, equivalent to 4
seconds. For each scenario s, the initial states are drawn
randomly from a normal distribution with zero mean and
1.3Hz of variance to represent different perturbations in the
system. We simulate S = 400 scenarios.

To learn the controllers, we optimize (6) for each node
using 100 possible values for the regularization parameter λ

and a 10-fold cross-validation. This allows us to obtain 100
different controllers for each node. These controllers show
decreasing number of features as λ increases, ranging from
all 22 (2n) states down to zero. In order to analyze results
we choose to study the performance, stability and feature
selection of a subset of controllers. We group controllers by
the number of features used, i.e. number of nonzero elements
in βi. Specifically, we choose a control design where all
nodes use at most the following number of features: 4, 5,
6, 10, 14, 17, and all 22 states. To all the learned controllers
we add virtual inertia as we describe in II-D. For the rest of
the manuscript, each time we mention the learned controllers
they also include virtual inertia.

B. Performance

In this section we explore the performance of the proposed
learned controllers under different inertia modes for the
hybrid system. Fig. 2 shows the box plot of the mean
squared error (MSE) from training those controllers using
cross-validation. As expected, the usage of more features
allows to obtain a controller with reduced MSE in the
training exercise. Nevertheless, the MSE does not signifi-
cantly decrease beyond using 10 features. This sheds light
on the possibility to substantially reduce the usage of features
without losing significant performance. To show this we
explore two performance metrics. One metric is the total
absolute value of the control input and the other metric is
the total absolute value of frequency deviation:

〈u〉=
∫ T

0

n

∑
i=1
|ui(t)|dt, 〈ω〉=

∫ T

0

n

∑
i=1
|ωi(t)|dt

Table II shows the performance of the learned controllers
with different numbers of features. We simulate the con-
trollers on systems, different than the training set, with fixed
low inertia (m = 0.2s) and fixed high inertia (m = 9s). In
all simulations we consider an initial condition of −0.15Hz
of frequency deviation at each node. Results in Table II
show similar performance for the controllers with 10 or
more features. The controllers with 6 and 5 features still
perform well to steer the frequency deviation to zero, but they
require more energy usage to achieve this. Fig. 3 depicts the
frequency deviation evolution using the learned controllers
for a system with inertia m = 0.2s. In the next section III-
C we explore stability of the closed loop system with the

4 5 6 10 14 17 22

Number of features
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Fig. 2. Mean Squared Error (MSE) from training and cross-validating
controllers with different numbers of features.

TABLE II
PERFORMANCE METRICS FOR LEARNED CONTROLLER UNDER

DIFFERENT INERTIA SYSTEMS.

〈u〉= ∫ T
0 ∑

n
i=1 |ui(t)|dt 〈ω〉= ∫ T

0 ∑
n
i=1 |ωi(t)|dt

Number of features m = 0.2s m = 9 s m = 0.2s m = 9s
22 47.75 227.67 10.51 16.9
17 48.77 222.13 10.50 16.39
14 49.88 215.45 10.49 15.79
10 51.15 213.57 10.48 15.32
6 61.50 246.90 10.50 15.24
5 463.46 951.28 16.94 22.78
4 unstable unstable unstable unstable

proposed controllers, since, as observed in Table II, the
learned controller with only 4 features is not stable.

C. Stability analysis

We study stability in continuous time for the selected
controllers. To do this, we calculate the eigenvalues of the
closed loop system, derived from (5). We obtain

ẋ = (I− B̂q(t)K̃V )
−1(Âq(t)+ B̂q(t)KL)x = ACL(q(t))x (9)

Our dynamical system is a hybrid system, thus we cal-
culate eigenvalues for all possible inertia modes q. We find
that all controllers in all inertia modes are stable except for
the controller with 4 features. The controller with 4 features
is unstable for all inertia modes. The case of 9 seconds of
inertia is the closest case to being stable for the controller
with four features. Fig. 4 shows all eigenvalues for the seven
controllers in the 9 seconds inertia mode. We can observe
how all controllers show eigenvalues with negative real parts,
except the controller with 4 features which shows in black
triangles four eigenvalues close to zero but positive and one
eigenvalue equal to 0.93.

Fig. 5 plots the maximum among the real parts of the
eigenvalues for each controller under different inertia modes.
We choose the maximum real part of the eigenvalues as a
metric of stability. In Fig. 5, as we also observe in Fig. 4,
the controller with 4 features is unstable. The 9 seconds of
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Fig. 3. Frequency deviation evolution using learned controllers with an
initial deviation of −0.15Hz and a system’s inertia of 0.2 seconds.
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Fig. 4. Eigenvalues of all controllers j for the closed loop system with
inertia of 9 seconds.

inertia mode is the closest it gets to attaining a non positive
real part. As the system’s inertia decreases, the maximum
eigenvalue for this controller increases, potentially enhancing
faster frequency deviations (more abrupt instability due to a
faster exponential growth from the maximum positive real
part). The observation where an increase of inertia results
in a smaller maximum real part for the controller with 4
features cannot be observed for the other controllers. For
these, their maximum eigenvalue real part occurs when the
system shows it highest inertia (m = 9s). It is also relevant to
notice that allowing the controller to have 6 or more features
does not seem to impact the system’s stability because the
maximum real parts are similar.

D. Stability as a Switched-Affine hybrid system

In this section we study the stability of the hybrid system
under unconstrained switching between modes. In other
words, we are interested in studying the stability of the
system if we allow any adversarial switching strategy (and

4 5 6 10 14 17 22
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Inertia of 0.2s
Inertia of 2s
Inertia of 5s
Inertia of 9s

m
ax j

R
e{
λ
j
}

Fig. 5. Maximum eigenvalue real part for all controllers j under 0.2s (green
square), 2s (red cross), 5s (blue dot) and 9s of inertia (black asterisk).

possibly not realistic) for inertia modes. For example, it
would be possible to switch from m = 9s to m = 0.2s at any
moment. It is a well known result that for a Switched-Affine
hybrid system, even if all modes are stable independently, a
switching sequence could potentially be found to make the
hybrid system unstable [27].

A strategy to study stability of a hybrid system is to find a
common Lyapunov function that ensures global asymptotic
stability (in the sense of Lyapunov) over the set of all
switching signals (Th. 1, p. 564 in [28]). The stability of
a Switched-Affine hybrid system can be assessed by using a
Lyapunov function of the form V (x) = x>Px, and by posing
the following convex SDP problem:

max
P∈S2n,r∈R,t∈R

r+ t

s.t. P� rI2n×2n

A>CL(q)P+PACL(q) �−tI2n×2n, ∀q ∈ {1, . . . ,10}
Trace(P) = 1

where S2n denotes the vector space of symmetric matrices of
size 2n×2n. If the optimal solution yields r > 0 and t > 0,
then P� 0 and V̇ (x)< 0. This implies global asymptotically
stability of the system. We solve the previous problem using
CVX for all the proposed controllers. Results show that
controllers with only 10 or more features achieve a global
asymptotic stability for the hybrid system. This illustrates
that despite the fact our sparse controllers with 6 or 5 features
achieve stability on every inertia mode, under stressed cases
of fast varying inertia the system may be unstable. Future
work will explore realistic conditions for mode switching
that would preserve stability of the hybrid system using
our proposed controllers with 5 or 6 features. In particular,
we will explore the required dwelling time τd that would
guarantee stability (minimum time the system would have to
maintain the same inertia).
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Fig. 6. Heat map of learned controller for λ = 0, meaning each node uses
up to 22 features.

E. Optimal feature selection

In this section we explore which features are selected
when we enhance sparsity in the learned controllers. Each
controller (at each node) is allowed to use information of
frequency and angles of any node in the system. This would
require phasor measurement units (PMU) and instantaneous
communication.

Fig. 6 depicts the heat map of the absolute value of the
coefficients of the learned controller from the least-squares
regression (i.e. λ = 0). The controllers prefer to use higher
coefficients or gains in the angles than in frequency. It is
important to notice that knowing the angles over time can
be used to estimate changes of frequency as we show in
equation (2). This explains the importance of angle states
in feedback controllers. Nevertheless, a droop coefficient,
related to their own local frequency, plays an important
role in the stability of the closed loop system and is still
considered critical in the regression. Feature selection in the
learned controller with 4 features lacks coefficients on the
frequencies (not pictured). This results in instability as we
discuss in III-B and III-C.

In comparison, Fig. 7, depicts the heat map of the absolute
value of the coefficients of the learned controller from the
Lasso regression, with at most 5 features per node. In this
case we can observe that a node’s own angle and frequency
tends to be critical to ensure stability of the system (except
for node 11). However, information from other nodes is also
required. In particular, voltage angles of connected nodes
have an important role. For example, node 1 has an important
coefficient in θ3, that is the node connected to node 1
via a transformer. Similarly, node 3 uses information from
θ1,θ2 and θ4, which are connected via lines or transformers
to that node (see Fig. 1). This shows the importance of
the network connectivity to understand which features have
crucial roles in the stability of the system. For future work,
we are interested to study how topology and size of different
networks can affect the selection of features.
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Fig. 7. Heat map of learned controller with λ -values tuned such that each
node uses up to 5 features.

F. Learning controllers from training sets with fixed inertia

To illustrate the importance of creating training sets from
time-varying dynamics, we generate a separate training set
using fixed inertia of m = 0.2s. We then train the controllers
with this set and test the performance of the controllers with
22 features in a system with inertia m = 0.2s and m = 9s,
and an initial frequency deviation. The controllers are able
to stabilize frequency deviation around zero for both inertia
regimes. However, when m = 9s they do not perform as
well as the controllers learned from the time-varying inertia
coefficients that we show in III-B.

We generate another separate training set using fixed
inertia of m = 9s. We then train the controllers with this set
and test the performance of the controllers with 22 features
in a system with inertia m = 0.2s and m = 9. In this case, the
controllers are able to stabilize frequency deviation around
zero in the setting with m = 9s, but they are not able to steer
it back to zero in the low inertia case (m = 0.2s).

From this exercise, we validate the importance of gener-
ating a training set with time-varying inertia. Training with
these scenarios allows the learned controllers to be able to
perform under different inertia regimes.

IV. CONCLUSIONS

In this paper we study how restricting communication
between nodes affects the performance and stability of a
time-invariant controller designed for time-varying power
system dynamics due to RES. To do this, we generate a
training set by solving an MPC formulation for different
scenarios of frequency control. We design controllers with
different numbers of features (states) via Lasso regressions.
We add virtual inertia to these controllers to guarantee
stability. For the 11-bus test system we study, we are able
to show that it is possible to reduce the number of features
in the controller (to 5 in our case study) without negatively
impacting performance and stability for any fixed inertia of
the system. We also show how increasing information avail-
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ability beyond a threshold (10 features) does not enhance
performance or stability metrics. We are able to show global
asymptotic stability for the hybrid system using controllers
with 10 features or more. Finally, by analyzing optimal
feature selection for sparse controllers, we find a positive
correlation between feature selection and connectivity of the
nodes. For future work, we are interested to study how our
results hold for different topologies and sizes of different
networks.

Our work lies at the intersection of three control theory
topics: time-invariant controllers for time-varying dynamics,
information availability between control agents, and control
design via learning. In this paper we are able to test per-
formance and safety (stability) of a controller using this
intersection of areas. However, safety is approached as a
posterior analysis after the controller is designed. More inte-
resting would be to design a controller with safety guarantees
already built-in. This motivates our future work where we
aim to develop a mathematical framework to design sparse
time-invariant controllers via learning while at the same time
guaranteeing stability of the closed loop system.
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