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a b s t r a c t

A modern vehicle can be viewed as a complex cyber–physical system (CPS) where the

vehicle dynamics interact with the software control systems. Adaptive cruise control

(ACC) and lane keeping control (LKC), in particular, are foundational features for semi-

autonomous and autonomous driving. Safety analysis of such systems is extremely

important for realizing vehicle autonomy. Ensuring safety in such complex CPS is very

challenging, especially in the presence of interactions between multiple subsystems,

nonlinearities, hybrid dynamics, and disturbances. This paper presents an approach

for safety analysis of automotive control systems using multi-modal port-Hamiltonian

systems. The approach uses the Hamiltonian function as a barrier between the energy

levels of the safe and unsafe states and employs passivity to prove that trajectories

cannot cross this barrier. The approach is applied to the safety analysis of a vehicle

dynamics composed with ACC and LKC. The goal is to ensure that the host vehicle will

not collide with a lead vehicle and will not skid off of the road. The control design

is implemented and evaluated using a hardware-in-the-loop simulation platform. The

experimental results demonstrate the safety analysis approach including the impact of

implementation effects such as discretization and quantization.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

An autonomous or semi-autonomous vehicle is an example of a complex cyber–physical system (CPS) with behavior

emerging from interaction between the physical dynamics and control systems controlling the speed and steering of the

vehicle [1]. An adaptive cruise control (ACC) system controls the speed of the vehicle, and can be viewed as a hybrid

system operating in two modes, throttle control mode where the throttle angle is determined and brake control mode

where the brake pressure is determined. A lane keeping control (LKC) system controls the angle of the steering wheel

in order to maintain a desired position on the road. Safety analysis of such systems is extremely important for realizing

vehicle autonomy.

The design of the ACC and LKC systems must ensure that the host vehicle can drive safely. The appearance of a lead

vehicle provides an additional constraint for the ACC in that the host vehicle must maintain a desired speed depending

on the behavior of the lead vehicle. A lead vehicle which suddenly decelerates may create a safety problem for the host

vehicle. The ACC design on the host vehicle must guarantee that the distance between the lead and host vehicle stay
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above a minimum threshold. Turns and curves provide constraints for the LKC in that the host vehicle must maintain

a position in the center of the lane. Large road curvatures create skidding problems. The control design must guarantee

that the lateral acceleration does not exceed a maximum threshold. The behavior of the vehicle is affected by interactions

between the longitudinal and lateral dynamics that must be taken into consideration for analyzing safety. The challenge

considered in this paper is to prove the safety of an integrated ACC and LKC system despite the subsystem interactions,

nonlinearities, hybrid dynamics, disturbances from the environment, and implementation effects.

The first contribution of this paper is an approach for safety analysis of CPS such as automotive control systems.

The dynamics of the vehicle and the control systems are described using multi-modal port-Hamiltonian systems (PHS).

PHS represent a modeling paradigm for modeling complex dynamical systems by composition using power-preserving

interconnections (ports) and emphasizing the Hamiltonian function (total stored energy) [2,3]. Multi-modal PHS represent

an extension of the modeling paradigm to model hybrid systems with dynamics that depend on discrete states or

modes [3] and are briefly described in Section 2.1. The safety analysis approach characterizes the safe states of the system

using a bounded from above energy level of the Hamiltonian function. Similarly, the unsafe states of the system are

represented using a bounded from below energy level of the Hamiltonian function. Passivity is used to prove that as long

as the safe and unsafe energy regions do not overlap, trajectories that begin within a lower energy level (safe states)

cannot terminate within a higher energy level (unsafe states).

Although the approach can be applied to any system described as a multi-modal PHS, the paper focuses on its

application to a vehicle equipped with ACC and LKC. We consider the interactions between the longitudinal dynamics,

lateral dynamics, ACC, and LKC. We derive safety conditions for the ACC and LKC which ensure that the host vehicle does

not collide with a lead vehicle and skid off the road. We use the vehicle parameters, disturbances, and safety conditions

to select control parameters so that the closed-loop system is safe. The proposed approach is based on a compositional

modeling framework using PHS which allows the composition of lane keeping and adaptive cruise control. Safety analysis

utilizes energy functions based on the Hamiltonian of the model to prove that trajectories of the composed system will not

enter a specified unsafe region. The main feature of the approach is that these energy functions can be easily constructed

using the model in a compositional manner which means that the approach is applicable if additional driving assistance

modules are integrated in the system and modeled using multi-modal PHS. Another significant advantage of the proposed

approach is that by using passivity it provides well-defined methods for discretization and quantization that are required

for the software implementation of the controllers.

In order to evaluate and validate the approach, the control design is implemented and tested in a hardware-in-the-loop

(HIL) simulation platform. The HIL platform consists of multiple electronic control units (ECUs) communicating with a real-

time simulation of the vehicle dynamics using the simulation tool CarSim [4]. The communication is realized using the

time-triggered network TTEthernet [5]. A model-based design methodology is used to implement the control software. An

important consideration is to analyze how implementation effects such as discretization and quantization affect safety. We

present results obtained for various sampling rates using the HIL platform and we compare these results with continuous-

time simulation results obtained using CarSim and Simulink [6]. Our HIL simulation results demonstrate that the system is

safe under various scenarios with different behaviors for the lead vehicle, slope of the road, turns, and wind disturbances.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 presents the energy-

based safety analysis approach applied to multi-modal PHS. Section 4 applies the safety analysis approach to a vehicle

dynamics model composed with ACC and LKC systems. Section 5 describes the implementation of the control design in a

HIL platform and the simulation results that demonstrate the safety analysis approach. The paper is concluded in Section 6.

2. Background and related work

This section presents the background required for the proposed approach including multi-modal port-Hamiltonian

systems and canonical coordinated transforms that are used for safety analysis. Barrier control functions that have been

used in the literature for safety analysis of adaptive control are also discussed. We conclude the section with reviewing

additional related approaches proposed for safety analysis of adaptive cruise and lane keeping control.

2.1. Multi-modal Port-Hamiltonian systems

The theory of PHS is presented in detail in [7]. A PHS consists of a set of ports (control, interaction, resistive, and

storage) interconnected through a power-conserving Dirac structure [2]. PHS have significant implications for passivity,

which has been studied extensively for control design and analysis of nonlinear systems [8]. A key component of PHS is

the Hamiltonian function, which is derived from the equations of the storage elements of the system. Fig. 1 provides a

diagram of a generic multi-modal PHS composed of a plant connected to a controller via a power port that models the

exchange of energy.

PHS can be used to describe hybrid systems using a framework known as multi-modal PHS [3]. The plant and the

controller are, in general, multi-modal PHS and include disturbances from the environment that are shown as external

power ports. Given a plant system with a Hamiltonian function Hp(xp), continuous states xp ∈ Xp ⊆ R
np , discrete states

sp ∈ Sp, disturbances δ ∈ R
o, and a control system with a Hamiltonian function Hc(xc), continuous states xc ∈ Xc ⊆ R

nc ,
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Fig. 1. Generic plant system (with disturbances) and control system.

and discrete states sc ∈ Sc , where {np, nc, o} ⊂ N, we can write the set of dynamic equations of the closed-loop

system as an input-state-output multi-modal PHS with Hamiltonian function H(x) = Hp(xp) + Hc(xc), continuous states

x =
[

xp xc
]

T ∈ X = Xp ×Xc , discrete states s =
[

sp sc
]

T ∈ S = Sp ×Sc , and initial states X0 = Xp0 ×Sp0 ×Xc0 ×Sc0. The

discrete transitions are described by (s, s′) ∈ T ⊂ S × S and each transition is associated with a guard condition defined

as Guard(s, s′) : T → 2X .
⎧

⎨

⎩

ẋ = [J(x, s) − R(x, s)] ∂H
∂x

+

[

Lp(xp, sp)

0

]

δ

ζ =
[

Lp
T(xp, sp) 0

]

∂H
∂x

(1)

J(x, s) =

[

Jp(xp, sp) −Gp(xp, sp)Gc
T(xc, sc)

Gc(xc, sc)Gp
T(xp, sp) Jc(xc, sc)

]

,

R(x, s) =

[

Rp(xp, sp) 0

0 Rc(xc, sc)

]

,

where Jp(xp, sp) ∈ R
np×np and Jc(xc, sc) ∈ R

nc×nc are skew-symmetric interconnection matrices, Rp(xp, sp) ∈ R
np×np

and Rc(xc, sc) ∈ R
nc×nc are symmetric positive semi-definite damping matrices, Gp(xp, sp) ∈ R

np×m, Gc(xc, sc) ∈ R
nc×m,

Lp(xp, sp) ∈ R
np×o, and (δ, ζ ) are the input–output pairs corresponding to the disturbance port.

2.2. Canonical coordinate transform

The canonical coordinate transform method is used extensively in classical mechanics for analyzing the dynamical

equations of physical systems [9]. These transformations preserve the Hamiltonian structure of the system and important

system properties such as losslessness and passivity. Consider a PHS, shown in (2), written in input-state-output

representation. For simplicity, we omit the disturbance δ and the associated matrix L(x).
{

ẋ = [J(x) − R(x)] ∂H
∂x

+ G(x)u

y = G T(x) ∂H
∂x

(2)

where x ∈ R
n, u ∈ R

m, y ∈ R
m, J(x) ∈ R

n×n is skew-symmetric, R(x) ∈ R
n×n is positive symmetric, and G(x) ∈ R

n×m.

Consider a time-invariant coordinate transformation defined by x = Φ(x), then the dynamic equations can be written as

ẋ = ∂Φ

∂x
Tẋ

= ∂Φ

∂x
T[J(x) − R(x)] ∂H

∂x
+ ∂Φ

∂x
TG(x)u

= ∂Φ

∂x
T[J(x) − R(x)] ∂Φ

∂x

∂H(Φ−1(x))

∂x
+ ∂Φ

∂x
TG(x)u

(3)

and the output equation becomes

y = G T(x)
∂Φ

∂x

∂H(Φ−1(x))

∂x
.

The matrices ∂Φ

∂x
TJ(x) ∂Φ

∂x
and ∂Φ

∂x
TR(x) ∂Φ

∂x
are skew-symmetric and positive symmetric, respectively, which means that the

coordinate transformed system is also a PHS and the new Hamiltonian function is H(Φ−1(x)). The canonical coordinate

transform is used in our work to show how the Hamiltonian function can be used as a barrier function to ensure safety.

2.3. Barrier certificates

Barrier certificates, which are similar in structure to Lyapunov functions, are typically used for the purpose of analyzing

nonlinear systems with uncertainties [10] including differential–algebraic systems with uncertain inputs [11]. Barrier
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certificates are functions which denote that there are no state trajectories starting from a given set of initial conditions

that end up in an unsafe region [12].

Barrier certificates can be used to analyze safety of hybrid systems [13]. These barrier certificates are functions of both

continuous and discrete states. Computation of barrier certificates is challenging and computationally expensive [14]. If

the dynamic equations of the system are described as polynomial functions, a sum of squares programming method can be

used to approximate the barrier certificates by characterizing state regions as semi-algebraic sets and using semi-definite

programming to obtain the optimal solution [15].

The approach presented in this paper is based on barrier certificates, using the Hamiltonian function as a barrier

between safe and unsafe states. Compared to the barrier certificate, the Hamiltonian function is derived directly from

the model. Similar to safety analysis using barrier certificates, this paper shows that trajectories beginning from the safe

region cannot reach the unsafe region. However, the barrier certificate typically separates the initial and unsafe states

using its zero level set, while the Hamiltonian function characterizes the initial and unsafe states using two energy levels.

Passivity conditions can be used to prevent trajectories starting in the safe region from reaching the unsafe region.

2.4. Safety of Adaptive Cruise Control

As the number of control features added to automobiles increase, automotive CPS become more complex and rigorous

engineering methods are needed to ensure safety [16]. Designing of ACC is especially challenging because of the need to

satisfy the requirements and constraints in the real world [17].

A method based on control barrier functions for safety analysis of ACC is developed in [18]. The approach balances the

objectives of maintaining a desired host vehicle velocity and a relative distance greater than a minimum threshold. The

work is extended in [19] to address the simultaneous operation of lane keeping and adaptive cruise control. Control barrier

functions are used to design controllers that ensure safety. The barrier functions are synthesized through a combination

of sum-of-squares program and physics-based modeling and optimization.

In contrast, our approach is based on a compositional modeling framework based on PHS which allows the composition

of lane keeping and adaptive cruise control. Instead of control barrier functions, our method utilizes energy functions based

on the Hamiltonian of the model to prove that trajectories of the composed system will not enter a specified unsafe region.

The main feature of our approach is that these energy functions can be easily constructed by the model in a compositional

manner which means that the approach is applicable even if additional driving assistance modules are integrated in the

system assuming that they can be modeled using multi-modal port-Hamiltonian systems.

Composing controllers designed for interacting subsystems while preserving safety guarantees is a very challenging

task. Synthesizing safety controllers for linear parameter-varying interdependent subsystems has been considered in [20].

This work proposes a method for synthesis of controlled invariant sets and associated controllers that is robust against

affine parametric uncertainties. The method is applied for synthesis of lane keeping and adaptive cruise control in a

compositional way. Our approach follows a similar compositional control design approach with guarantees the safety

specifications of the controllers by taking into account the nonlinear hybrid dynamics captured in the multi-modal

port-Hamiltonian system.

Energy is ubiquitous across multiple domains and nonlinear control design has been used to optimize the energy

usage of vehicle control systems. An approach for energy-optimal adaptive cruise control is presented [21]. Dynamic

programming is used for computing an energy-optimal speed trajectory and model predictive control is used to track

the energy-optimal speed trajectory. Model predictive control is furthermore used to maintain the safety distance and

simulations are used to evaluate the safety specifications. The problem of following a vehicle with varying acceleration in

a comfortable and safe manner has been addressed also in [22]. This architecture consists of a nominal controller using

model predictive control and a safety controller. The model predictive control attempts to keep a safe distance, however,

it cannot formally guarantee it, due to the assumptions on the behavior of the leading vehicle. A separate formally verified

safety controller is used for safety maneuvers.

Safety verification based on model predictive control methods for ACC design has been presented in [23]. An approach

based on formal methods for reachability analysis in the presence of disturbances is presented in [24]. Computational

tools for safety control based on abstractions instead of detailed vehicle models in order to simplify the computation of

the reachable sets have been presented in [25].

3. Safety analysis

We consider the plant and controller dynamics described by a multi-modal PHS. Fig. 2 illustrates the main idea of the

safety analysis method. We characterize the initial and unsafe regions using the energy of the Hamiltonian function and

show that the system trajectory cannot enter the unsafe region. The method is based on using energy levels of the system

as bounds in order to prove the safety. As illustrated by Fig. 2, our analysis implies a sufficient condition for safety. The

theoretical analysis is based on passivity and the storage functions of PHS. Specifically, the upper bound of the Hamiltonian

function prevents trajectories from reaching the unsafe set. However, additional trajectories that will not enter the unsafe

set may be constrained. If the system is safe, then there exists a barrier function that prevents unsafe trajectories, however,

this function may not be computable. Typical safety analysis methods assume a particular form for these barrier functions
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Fig. 2. The Hamiltonian function prevents the trajectory from reaching the unsafe set Xu .

which are conservative approximations. The theoretical analysis presented in this paper is based on the Hamiltonian of
the multi-modal PHS model and synthesizes controllers to derive the appropriate bounds. It should be noted that using
the Hamiltonian for bounding the trajectories is general across physical domains. Evaluation of how conservative are the
conditions relies on the performance of the control design that satisfies the conditions using simulations and testing. Of
course, performance also depends on the values of the various control gains and the other system parameters used in the
control implementation.

Given a multi-modal PHS represented as (1) with Hamiltonian function H(x) and bounded disturbances, the safety
problem is to show that there are no trajectories that reach an unsafe region of the state space.

Definition 1. Given a multi-modal PHS (1) and H(x) with continuous states X = Xp × Xc ⊆ R
np+nc , discrete states

S = Sp × Sc , initial states Xp0 × Xc0 × Sp0 × Sc0 ⊆ X × S, unsafe states Xpu × Xcu × Spu × Scu ⊆ X × S, initial continuous
states for each discrete state and disturbances ∆ ⊂ R

o. For each discrete state s ∈ S, the initial continuous states
are defined as Init(s) = {x ∈ X : (x, s) ∈ Xp0 × Xc0 × Sp0 × Sc0} and the unsafe continuous states are defined as
Unsafe(s) = {x ∈ X : (x, s) ∈ Xpu × Xcu × Spu × Scu}. A system trajectory Γ (x(t), s(t)) : [0, T ] → X × S is unsafe if
there exists a positive time instant T and a finite sequence of discrete transitions (s, s′) at times 0 ≤ t1 ≤ · · · ≤ tN ≤ T
such that Γ (x(0), s(0)) ∈ Init(s) and Γ (x(T ), s(T )) ∈ Unsafe(s). The system is safe if there are no unsafe state trajectories.

Theorem 1 describes the safety conditions:

Theorem 1. A multi-modal PHS described by (1) and H(x), with continuous states x ∈ X, discrete states s ∈ S, initial states
Init(s), unsafe states Unsafe(s), and bounded disturbances δ ∈ ∆ is safe if the canonical coordinate transformation x = Φ(x)
and transformed Hamiltonian function H(Φ−1(x)) satisfy the following four conditions with α ≤ β

1. H(Φ−1(x)) ≤ α, ∀x ∈ Init(s)

2. H(Φ−1(x)) > β,∀x ∈ Unsafe(s)

3. ζ Tδ ≤
∂H(Φ−1(x))

∂x
TR(x, s)

∂H(Φ−1(x))

∂x
, ∀{x, δ} ∈ X × ∆

4. H(Φ−1(x)) ≤ α, ∀(s, s′)

Proof. Suppose that the Hamiltonian function H(x) satisfy the four conditions in Theorem 1, yet there exists a time T ≥ 0,
an input δ, and initial states Init(s), and a trajectory Γ (x(t), s(t)) such that Γ (x(T ), s(T )) ∈ Unsafe(s). We show that the
Hamiltonian function cannot simultaneously satisfy the four conditions and reach the unsafe region, thus proving safety
by contradiction. The time derivative of the Hamiltonian functions dH

dt
can be written as:

∂H(x)

∂x
Tẋ =

∂H(x)

∂x
T[J(x, s) − R(x, s)]

∂H(x)

∂x
+

∂H(x)

∂x
TL(x, s)δ

=
∂H(Φ−1(x))

∂x
T[J(x, s) − R(x, s)]

∂H(Φ−1(x))

∂x
+

∂H(Φ−1(x))

∂x
TL(x, s)δ

= −
∂H(Φ−1(x))

∂x
TR(x, s)

∂H(Φ−1(x))

∂x
+ ζ δ

J(x, s) =
∂Φ

∂x
J(x, s)

∂Φ

∂x

T

⏐

⏐

⏐

⏐

x=Φ−1(x)

R(x, s) =
∂Φ

∂x
R(x, s)

∂Φ

∂x

T

⏐

⏐

⏐

⏐

x=Φ−1(x)

L(x, s) =
∂Φ

∂x
L(x, s)

⏐

⏐

⏐

⏐

x=Φ−1(x)
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Fig. 3. The host vehicle follows a lead vehicle on a curved road.

Condition (3) shows that the system trajectory on the time interval of [0, T ] is non-increasing, which indicates that

H(x(T )) ≤ H(x(0)). Additionally, condition (4) asserts that during a discrete transition, the Hamiltonian function will

not jump to an increasing value. These statements, however, contradict the original assumption that the system states

start at Init(s) and end at Unsafe(s). As a result, we can conclude that the system is safe. □

4. Collision and skidding avoidance

In this section, we consider the safety problem of a vehicle equipped with both ACC and LKC following a lead car

on a curved road (Fig. 3). The host vehicle must maintain a safe distance between itself and the lead vehicle, and also

maintain a safe lateral acceleration in order to not skid off the road. Of course, the lateral acceleration is affected by the

interactions between the lateral and longitudinal dynamics that need to be modeled. First, we model the longitudinal and

lateral vehicle dynamics as PHS, including their interaction structure and disturbances. Then, we model the ACC and LKC

systems as PHS and compose them with the vehicle dynamics. We use the Hamiltonian functions of all of the subsystems

to derive the Hamiltonian function of the closed-loop system. In the final step, we characterize the unsafe regions of the

state space using the energy of the Hamiltonian and show that the host vehicle will not collide with the lead vehicle or

skid off the road.

4.1. Multi-modal PHS model

Fig. 4 shows the multi-modal PHS of the vehicle dynamics connected to the ACC and LKC systems via power ports.

These power ports consist of power conjugate variables whose product is power [3]. For example, the pairs (dx, zx) and

(dl, zl) represent the force and the power-conjugate velocity that capture the interactions between the longitudinal and

lateral dynamics (explained in detail in 4.1.3). Disturbances from wind are modeled as ports attached to the longitudinal

and lateral dynamics, while the disturbance due to the slope of the road is modeled as a port of the longitudinal dynamics.

4.1.1. Longitudinal dynamics

The longitudinal dynamics have state variables of longitudinal momentum px and longitudinal displacement qx and

two control ports (Ta, y1) and (Tb, y2). The longitudinal input force from the throttle, Ta, is a function of the throttle

valve angle θa, Ta = Caθa, where Ca is the experimental throttle constant. The longitudinal input force from the brakes,

Tb, is a function of the braking pressure Pb, Tb = CbPb, where Cb is the experimental braking constant. The outputs of

the control ports y1 and y2 are the longitudinal speed Vx and −Vx, respectively. The longitudinal dynamics contain two

disturbance ports whose inputs, δg and δwx are the disturbance forces resulting from the slope of the road and longitudinal

wind, respectively. The outputs of the disturbance ports, ζg and ζwx, are the corresponding power conjugate values. The
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Fig. 4. Closed-loop system.

Hamiltonian function of the longitudinal dynamics is:

Hx(qx, px) =
1

2m
p2x + Ux(qx),

where m represents the mass of the vehicle and Ux(qx) represents the potential energy. The longitudinal dynamics can

be represented as a PHS with continuous states {qx, px} ∈ Xk ⊆ R
2, initial states Xk0 ⊆ Xk, inputs ux =

[

Ta Tb
]

T, and

disturbances
[

δg δwx

]

T:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

q̇x

ṗx

]

=

[

0 1

−1 −Rx

]

⎡

⎣

∂Hx

∂qx

∂Hx

∂px

⎤

⎦ +

[

0

Gx

]

ux +

[

0

1

]

dx +

[

0 0

1 1

][

δg

δwx

]

yx =
[

0 Gx
T
]

[

∂Hx

∂qx

∂Hx

∂px

]

T

zx =
[

0 1
]

[

∂Hx

∂qx

∂Hx

∂px

]

T

[

ζg
ζwx

]

=

[

0 1

0 1

]

[

∂Hx

∂qx

∂Hx

∂px

]

T

(4)

where Gx =
[

1 −1
]

, Rx = a +
bpx
m

+ cm
px
, a represents the tire rolling friction constant, b represents the air resistance

constant, c represents the static friction constant, and (dx, zx) represents the interaction port to the lateral dynamics.

4.1.2. Lateral dynamics

The lateral dynamics have state variables ql =
[

qy qr
]

T and pl =
[

py pr
]

T, where py is the lateral momentum, pr
is the angular momentum, qy is the lateral displacement, and qr is the angular displacement. The lateral velocity and yaw

rate (which is the angular velocity of the rotation of the vehicle along the z axis) are represented by Vy and r respectively.

The lateral dynamics contain a control port (Tl, yl), where the output of the control port yl is Vy + lf r (lf represents the

length of the vehicle center to the front wheels). The lateral input force from the steering, Tl, is a function of the steering

angle θs, Tl = 2Cf θs, where Cf is the cornering stiffness of the front wheels. The lateral dynamics contains a disturbance

port whose input, δwy, represents a disturbance force resulting from lateral wind. The output of the disturbance ports,

ζwy, is the corresponding power conjugate value. The Hamiltonian function of the lateral dynamics is:

Hl(qy, qr , py, pr ) =
1

2m
p2y +

1

2I
p2r + Ul(qy, qr ),
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Fig. 5. Free-body diagram of the vehicle dynamics.

where I represents the moment of inertia of the vehicle and Ul(qy, qr ) represents the potential energy. The lateral dynamics

can be represented as a PHS with continuous states {ql, pl} ∈ Xl ⊆ R
4, initial states Xl0 ⊆ Xl, input Tl, and disturbance δwy:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

q̇l

ṗl

]

=

[

0 I

−I −Rl

]

[

∂Hl

∂ql

∂Hl

∂pl

]

+

[

0

Gl

]

Tl +

[

0

Kl

]

dl +

[

0

Ll

]

δwl

yl =
[

0 Gl
T
]

[

∂Hl

∂ql

∂Hl

∂pl

]

T

zl =
[

0 Kl
T
]

[

∂Hl

∂ql

∂Hl

∂pl

]

T

ζwl =
[

0 Ll
T
]

[

∂Hl

∂ql

∂Hl

∂pl

]

T

(5)

Rl =

[

W1

Vx

W2

Vx

W2

Vx

W3

Vx

]

,

where Gl =
[

1 lf
]

T, Ll =
[

1 0
]

T, and Kl =
[

1 0
]

T. The parameters of Rl are W1 = 2Cf + 2Cr , W2 = 2Cf lf − 2Cr lr ,

and W3 = 2Cf l
2
f + 2Cr l

2
r , where Cr is the cornering stiffness of the rear wheels and lr is the length of the vehicle center to

the rear wheels, and (dl, zl) represents the interaction port to the longitudinal dynamics.

4.1.3. Interaction between longitudinal and lateral dynamics

Interactions between the longitudinal and lateral dynamics are a result of the vehicle heading angle being affected by

the longitudinal velocity and can be derived by analysis of the free-body diagram in Fig. 5 [16]. The x-component of the

lateral force affecting the longitudinal motion is represented by dx and its power-conjugate velocity is represented by

zx. The y-component of the longitudinal force affecting the lateral motion is represented by dl and its power-conjugate

velocity is represented by zl. The interaction between the longitudinal and lateral dynamics is a mapping of velocity to

force, which indicates a gyrator relationship. The gyrator ratio has units of kg/s which is represented by multiplying the

mass of the vehicle with the yaw rate. The interaction structure is modeled as a Dirac structure modulated by the yaw

momentum pr :
[

dx
dl

]

=

[

0 −
mpr
I

mpr
I

0

][

zx
zl

]

. (6)

4.1.4. Adaptive Cruise Control design

The ACC is connected to the longitudinal vehicle dynamics through the control ports for controlling Ta and Tb. The

objective of the ACC is to maintain a desired speed depending on the lead vehicle velocity Vl, which is modeled as a

disturbance. If a lead vehicle is not detected, the desired vehicle velocity is the driver’s set speed which makes the system

behave as a conventional cruise control system. Assuming that there is a lead vehicle, the host vehicle’s radar system

determines the speed of the lead vehicle and the displacement between the vehicles.

Xr (t) =
∫ t

0
(Vl − Vx)dτ + Xr (0)

=
∫ t

0

(

Vl(τ ) − 1
m
px(τ )

)

dτ + Xr (0).

The state variables of the ACC are derived using the lead vehicle velocity and the desired relative distance Xd = hVl + S0,

where h is the time headway and S0 is the static distance constant. The desired velocity can be expressed as a function

of the normalized difference between the desired and actual relative distance as dV (Xr , Xd) = (1 + λ
Xr−Xd
Xd

)Vl where

λ < 1. We combine the state variables into a vector xa =
[

xat xab
]

T, where xat =
∫ t

0
((1 + λ

Xr−Xd
Xd

)Vl − Vx)dτ and

xab =
∫ t

0
(Vx − (1 + λ

Xr−Xd
Xd

)Vl)dτ .
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The ACC is a hybrid system with discrete modes that correspond to throttle control and brake control. Each mode is

described using two binary variables sa = {st , sb}, where st = 1 when throttle control is active and sb = 1 is when brake

control is active. We assume that the throttle control and brake control modes cannot be active simultaneously. We also

assume that the throttle control and brake control modes cannot be inactive simultaneously, in which case the vehicle

is manually operated. The guards of the discrete transitions are defined in (7), where h+ and h− are hysteresis constants

introduced to prevent the system from rapidly alternating between accelerating and decelerating:

({st , sb}, {s
′
t , s

′
b})

{

= ({0, 1}, {1, 0})if (1 + γ
Xr−Xd
Xd

)Vl − Vx ≥ 0, Xr ≥ h+Xd

= ({1, 0}, {0, 1})if (1 + γ
Xr−Xd
Xd

)Vl − Vx < 0, Xr < h−Xd

(7)

The standard feedback interconnection of the longitudinal vehicle dynamics with the ACC system is described using the

power-conserving interconnection ux = −ya and yx = ua. We design the ACC to have the following Hamiltonian function:

Ha(xa, s) =
1

2
(ktix

2
at + kbix

2
ab),

where kti and kbi are the gains of the Hamiltonian. The ACC system has continuous states xa ∈ Xa ⊆ R
2, discrete states

sa = {st , sb} ∈ Sa, initial states Xa0 × Sa0 ⊆ Xa × Sa, and transitions (sa, s
′
a) ∈ T ⊂ Sa × Sa with guard conditions

Guard(sa, s
′
a) : T → 2Xa . Its input-state-output PHS is described by:

{

ẋa = −Ra
∂Ha

∂xa
+ Gaua

ya = Ga
T ∂Ha

∂xa
+ Maua

(8)

where (ua, ya) are the input–output pairs corresponding to the control port. The parameter matrices are:

Ra =

[

stkt 0

0 sbkb

]

,Ga =

[

stP 0

0 sb

]

,Ma =

[

stktd 0

0 sbkbd

]

.

where kt and ktd are throttle control gains, and kb and kbd are brake control gains. P is a mapping of the ratio of the

acceleration force to Vx that is typically derived from the inverse engine map of the vehicle.

4.1.5. Lane Keeping Control design

The LKC connects with the lateral vehicle dynamics via the control port for controlling Tl. The objective of the LKC is to

maintain a desired lateral displacement qd. The LKC shares the control port with the lateral dynamics and its state variable

xb = qy − qd is derived using the desired lateral displacement. We design the LKC to have the following Hamiltonian

function:

Hb(xb) =
1

2
ksix

2
b,

where ksi is the gain of the Hamiltonian. The standard feedback interconnection of the lateral vehicle dynamics with the

LKC system is described using a power-conserving interconnection ul = −yb and yl = ub. The LKC system has continuous

states xb ∈ Xb ⊆ R and initial states Xb0, with dynamic equations as an input-state-output PHS with direct-feedthrough:
{

ẋb = ub

yb =
∂Hb

∂xb
+ ksdub,

(9)

where (ub, yb) are the input–output pairs corresponding to the control port and ksd is the gain associated with the steering

control.

4.1.6. Interaction between ACC and LKC

It can be seen from (4) and (5) that the inputs to the longitudinal dynamics (Ta and Tb) affect the lateral dynamics.

Similarly, the input to the lateral dynamics (Tl) affects the longitudinal dynamics. We connect the ACC and LKC using an

interaction structure, which alters (8) and (9), so that the state variables and outputs of the speed control are affected by

the state variable of the steering control, and vice versa.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋa = −Ra
∂Ha

∂xa
+ Gayx + Ka1da1

ux = Ga
T ∂Ha

∂xa
+ Mayx + Ka2da2

[

za1

za2

]

=

[

Ka1
T 0

0 Ka2
T

]

⎡

⎣

∂Ha

∂xa

yx

⎤

⎦

(10)
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋb = yl + db1

Tl =
∂Hb

∂xb
+ ksdyl + db2

[

zb1

zb2

]

=

[

1 0

0 1

]

⎡

⎣

∂Hb

∂xb

yl

⎤

⎦

(11)

The purpose of the interaction structure is to lower the speed of the vehicle in the event of a turn by transferring energy
from the ACC to the LKC. The interaction structure of the control system is represented by the following Dirac structure:

⎡

⎢

⎣

da1
da2
db1
db2

⎤

⎥

⎦
=

⎡

⎢

⎣

0 0 Jc 0

0 0 0 Mc

−Jc
T 0 0 0

0 −Mc
T 0 0

⎤

⎥

⎦

⎡

⎢

⎣

za1
za2
zb1
zb2

⎤

⎥

⎦
. (12)

The parameters Jc and Mc define how the speed control and the steering control interact.

4.1.7. Closed-loop system
In order to verify system safety, we must first derive the Hamiltonian function and dynamic equations of the closed-

loop system by combining (4), (5), (6), (10), (11), and (12). In order to derive the closed-loop system, we define the
variables q =

[

qx ql
]

T, p =
[

px pl
]

T, x =
[

xat xab xb
]

T, δ =
[

δg δwx δl
]

T, and ζ =
[

ζg ζwx ζl
]

T. The

closed-loop system has a Hamiltonian function H̃(q, p, z) = Hx + Hl + Ha + Hb, continuous states {q, p, x} ∈ X̃ , discrete

states sa ∈ Sa, initial states X̃0 = X̃p0 × X̃c0 × Sa, disturbances δ = {δg , δwx, δwy} ∈ ∆g × ∆wx × ∆wy, and transitions

(sa, s
′
a) ∈ T̃ ⊂ Sa × Sa with assigned guard conditions Guard(sa, s

′
a) : T̃ → 2X̃ .

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

q̇

ṗ

ẋ

⎤

⎦ =

⎡

⎣

0 I 0

−I J̃ − R̃ K̃

0 −K̃ T −Q̃

⎤

⎦

⎡

⎢

⎢

⎣

∂H̃
∂q

∂H̃
∂p

∂H̃
∂x

⎤

⎥

⎥

⎦

+

⎡

⎣

0

L̃

0

⎤

⎦ δ

ζ =
[

0 L̃ 0
]

[

∂H̃
∂q

∂H̃
∂p

∂H̃
∂x

]

T

(13)

where J̃ , L̃, R̃, K̃ , and Q̃ are defined as:

J̃ =

⎡

⎣

0
mpr
I

− Mc −lfMc

−
mpr
I

+ Mc 0 0

lfMc 0 0

⎤

⎦ ,

R̃ =

⎡

⎢

⎣

Rx + stktd + sbkbd 0 0

0
mW1

px
+ ksd

mW2

px
+ lf ksd

0
mW2

px
+ lf ksd

mW3

px
+ l2f ksd

⎤

⎥

⎦
,

K̃ =

[

stP sb 0

0 0 −1

0 0 −lf

]

, L̃ =

[

1 1 0

0 0 1

0 0 0

]

, Q̃ =

[

stkt 0 −Jc
0 sbkb 0

Jc 0 0

]

.

4.2. Safety problem

The control gains can be selected to stabilize the host vehicle velocity to Vl + λ
(Xr−Xd)Vl

Xd
and the lateral displacement

to qd [26]. However, stability does not imply safety and we need to show that the host vehicle behaves in a safe manner.
We consider a scenario in which a lead vehicle appears in front of the host vehicle driving slower than the host vehicle.
If the ACC does not react accordingly and slow the host vehicle to a reasonable speed, a collision may occur. The safety
condition for the longitudinal dynamics asserts that the relative distance between the two vehicles will never reach a
minimum distance qm. We do not consider the case in which a lead vehicle appears in front of the host vehicle driving
faster than or equal to the host vehicle set speed because since the controller stabilizes the host vehicle velocity to the set
speed indicating that the relative distance between the two vehicles will not be smaller than the initial relative distance.

We represent the set of unsafe host vehicle displacement as:

Xku =

{

qx ∈ R : qx ≥

∫ t

0

Vldτ + ql(0) + qm

}

, (14)

where ql(0) is the initial displacement value of the lead vehicle. The system is unsafe if the displacement of the host
vehicle exceeds that of the lead vehicle plus qm, which is indicative of an impending collision. The safety condition for the
closed-loop system must ensure that there are not state trajectories that can reach the unsafe region described by (14).
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Safety for the lateral acceleration depends on the interactions between the longitudinal and lateral dynamics. The

inputs to the longitudinal dynamics (Ta and Tb) affect the lateral dynamics. Similarly, the input to the lateral dynamics

(Tl) affects the longitudinal dynamics. In order for the vehicle to operate safely on the road, its lateral acceleration must

not exceed a maximum value Am. If the lateral acceleration exceeds Am, the vehicle will skid. The lateral acceleration is

affected by the yaw rate and longitudinal velocity of the vehicle. This interaction between lateral and longitudinal motion

results in an unsafe region characterized as:

Xlu = {px ∈ R, pr ∈ R : pxpr ≥ mIAm}. (15)

This safety condition indicates that longitudinal and lateral motion are bounded by a hyperbolic relationship. A large

longitudinal momentum results in small lateral and yaw momentum values, and vice versa. Therefore, we must verify

that the product of longitudinal momentum and yaw rate does not exceed a maximum threshold. Given (13) and H̃(q, p, z),

the safety condition ensures that there are not trajectories that can reach the unsafe region described by (14) and (15).

4.3. Safety analysis

A road can be divided into segments consisting of four types of road profiles: Straight road, decreasing curvature,

constant curvature, and increasing curvature. For the straight segments, we only need to account for the longitudinal

dynamics and the behavior of the lead vehicle because the lateral acceleration is effectively zero. In order to show safety,

we make the following assumptions for the lead and host vehicle. The first assumption is that the initial velocity of the

lead vehicle is less than a maximum velocity. The second assumption is that the initial relative distance between the

vehicles is greater than a minimum distance. If the initial velocity of the vehicle is large compared to the host vehicle

velocity, then the initial relative displacement can be low because the host vehicle does not need a large distance to react

to the lead vehicle velocity. However, if the initial velocity of the vehicle is low compared to the host vehicle velocity,

then the initial relative displacement must be high because the host vehicle needs a larger distance to react to the low

lead vehicle velocity. The relationship between the initial relative distance and the initial vehicle velocities is described

in (16).

Xr (0) =
V 2
l (0)

2al
−

V 2
x (0)

2V̇x

. (16)

In order to safely navigate a curved section of the road, the vehicle must avoid the unsafe regions of Xku and Xlu. Given

a road curvature of ρd, the yaw momentum required is pr =
px
ρd
, which shows the direct relationship between the yaw

momentum and the longitudinal momentum. Additionally, the road curvature is related to the vehicle slip angle ω and

steering angle θs:

ρd =
cos(ω) tan(θs)

lf + lr
, ω = arctan

(

lr

lf + lr
tan(θs)

)

.

The lateral momentum depends on the longitudinal momentum, the yaw momentum, and the vehicle slip angle:

py = px sin

(pr

I
+ ω

)

.

We need the following definitions for initial states, unsafe states, and guards. For each discrete state sa ∈ Sa, the initial

continuous states are defined as Init(sa) = {(q, p, x) ∈ X̃ : (q, p, x, sa) ∈ X̃0} and the unsafe continuous states are defined

as Unsafe(sa) = {(q, p, x) ∈ X̃ : (qx, px, pr ) ∈ Xku × Xlu}. We restrict the system to having just two modes, throttle control

mode or brake control mode. In the following analysis, we consider the following coordinate transformation Φ̃ for the

momentum variables [9].

⎡

⎣

px

py

pr

⎤

⎦ =

⎡

⎢

⎣

Φ̃x(px)

Φ̃y(py)

Φ̃r (pr )

⎤

⎥

⎦
=

⎡

⎢

⎣

px − m(1 + λ
Xr−Xd
Xd

)Vl − Mcxb

py + ksi(qy − qd) + Mc(xat + xab)

pr + ksi(qr −
qd
lf
) + Mc

xat+xab
lf

⎤

⎥

⎦
.

We apply Theorem 1 to the composed longitudinal dynamics, lateral dynamics, ACC, and LKC system. Given initial

conditions Init(sa), we derive the energy bound α̃ as a function of the initial host vehicle velocity Vx(0), initial relative

distance Xr (0), initial lead vehicle velocity Vl(0), and initial road curvature ρ(0). Consequently, we restate the first condition

of Theorem 1 as H̃(Φ̃−1(p)) ≤ α̃, ∀(q, p, x) ∈ Init(sa), where

α̃ = m
ktd+kbd

2
(Vx(0) − (1 + λ

Xr (0)−hVl(0)−S0
hVl(0)+S0

)Vl(0))
2

+ m
2
V 2
x (0) sin

2(ρ(0)Vx(0) + ω(0)) + I
2
ρ2(0)V 2

x (0).

Given the unsafe states Unsafe(sa), we derive the energy bound β̃ as a function of host vehicle velocity Vx, relative distance

Xr , lead vehicle velocity Vl, and road curvature ρ. The energy of the transformed Hamiltonian function has a maximum
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Fig. 6. HIL simulator architecture [29].

value which indicates that the maximum lateral acceleration has been reached. Consequently, we restate the second

condition of Theorem 1 as H̃(Φ̃−1(p)) > β̃, ∀(q, p, x) ∈ Unsafe(sa), where

β̃ = m
ktd+kbd

2
(Vx − (1 − λ)Vl −

Mc

m
(qy − qd))

2

+ m
2
(Vx sin(ρVx + ω) + ksi(qy − qd))

2 + I
2
(ρVx + ksi(qy −

qd
lf
))2.

Given the disturbances {δg , δwx, δwy} ∈ ∆, we must guarantee that the system trajectory will never begin in Init(sa) and

end in Unsafe(sa). Consequently, we restate the third condition of Theorem 1 as

ζgδg + ζwxδwx + ζwyδwy ≤
∂H̃(Φ̃−1(p))

∂(q,p)
T ∂Φ̃

∂p
R̃(Φ̃−1(p)) ∂Φ̃

∂p
T ∂H̃(Φ̃−1(p))

∂(q,p)
,

∀(q, p, x, δg , δwx, δwy) ∈ X̃ × ∆̃.

Discrete transitions between the throttle and brake control modes must also be taken into account in order to guarantee
that the system will not transition into Unsafe(sa). Consequently, we restate the fourth condition of Theorem 1 as

H̃(Φ̃−1(p)) ≤ α̃, ∀({0, 1}, {1, 0}) ∪ ({1, 0}, {0, 1}). In Section 5.5, the ACC and LKC are designed by selecting control
parameters that satisfy these safety conditions.

5. Evaluation and validation

Although continuous-time control design is useful for the early stages of design, evaluation and validation require
implementation and deployment of the control system on a realistic computing platform. Experimentation using a realistic
HIL platform is important in order to investigate the impact of real-time constraints as well as uncertainties such as
network delays and jitters in the performance of the control solution. Since the safety approach is based on passivity
and passivity may not be preserved because of discretization and quantization [27], this section presents an experimental
evaluation and validation of the integrated ACC and LKC using a hardware-in-the-loop (HIL) simulation platform. The
main idea of the implementation is to ‘‘build enough passivity into the system’’ so that it will still be passive and safe
after discretization and quantization.

The section first presents the HIL platform which consists of computing devices and networks that are typical in an
automotive system. We also present the details of the discretization, quantization, and control design methods including
the system parameters used in our experiments. Finally, we present simulation results for different sampling periods and
we compare the results from the HIL platform to simulation results obtained using a continuous-time model presented
in [28]. The results demonstrate that passivity is preserved in the implementation of the ACC and LKC and the safety of
the control architecture.

5.1. Hardware-in-the-loop simulation platform

Fig. 6 shows the HIL simulation platform used for our experiments [29]. The vehicle dynamics are modeled in CarSim
and the model is deployed and executed as a real-time process executing in a server with a real-time operating system
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(RT-Target in Fig. 6.) The HIL platform has three ECUs which are connected to an 8-port 100 Mbps TTEthernet switch

from TTTech [5] to form a time-triggered network. Each ECU is an IBX-530 W box with an Intel Atom processor running a

RT-Linux operating system and is integrated with a TTEthernet Linux driver, which is a software-based implementation of

the TTEthernet protocol in order to enable communication with the other systems in a TTEthernet network. The RT-target

is also connected to the time-triggered networks using a TTTech PCIe-XMC card which enables the seamless integration

and communication between the ECUs and the vehicle dynamics. The automotive control software is distributed over the

ECUs and the tasks execute in the kernel space of RT-Linux which can utilize the synchronized time base off the TTEthernet

communication. The ACC and LKC are deployed on ECU1 and communicate with the RT-Target via the TTEthernet network

which provides a synchronized time base for computation and communication. The platform also employs two static

schedule tables for executing the control tasks and communicating network messages [30].

5.2. Discretization

Initially, the continuous-time PHS is represented using block diagrams in a continuous-time Simulink model. Trans-

formation of the continuous-time model into a discrete-time model is a procedure that involves bilinear transformations,

up-samplers, and down-samplers [31]. State variables and subsequent computations inside the controllers are linked

together through delays and adders. We discretize the PHS controllers using sampling periods of 10 ms, 30 ms, and

50 ms.

Passivity is a property that degrades under discretization [27]. Intuitively, the larger the sampling period, the greater

the degradation [32]. Further, even if the original continuous-time system is a passive PHS, its discretization is not

necessarily passive [33]. To circumvent this problem, we use the discretization approach developed in [34], in which

the discrete-time output is modified as

yd(k) =
1

ts

∫ (k+1)ts

kts

y(t)dt.

This discretization approach guarantees that the resulting discrete-time system is passive. However, the approach requires

a value of y(t) at (k+1)ts which can be obtained using the model but may not be possible to obtain especially if the system

is highly nonlinear. To address this problem, we discretize (13) using a sampling period that ensures the system satisfies

the discrete-time passivity inequality:

ts

N
∑

k=0

ud(k)
Tyd(k) ≥ µdts

N
∑

k=0






ud(k)







2

+ ρdts

N
∑

k=0






yd(k)







2

(17)

where N is a positive integer, µd is a real number, and ρd is a real number. In order to guarantee that the inequality

in (17) is satisfied, we have to ensure that the sampling period is chosen so that the discrete-time passivity indexes are

larger than zero given µd = µ− tsγ − tsγ
⏐

⏐ρ
⏐

⏐− t2s γ
2
⏐

⏐ρ
⏐

⏐ and ρd = ρ − tsγ
⏐

⏐ρ
⏐

⏐ [34]. By discretizing the system in this way,

we ensure that the passivity of the PHS is preserved when the controller is discretized for implementation onto the HIL

platform.

5.3. Quantization

The ECUs that we use to implement the control system require 32-bit fixed-point data types. In Simulink the

quantization process is done using MATLAB’s Fixed-Point Toolbox, in which the word lengths for all data are set as fixdt(1,

32, 16) for 32-bit data types [6]. Simulink’s quantizer is a uniform mid-tread quantizer, which is considered to be a passive

quantizer where the input v and output u mappings are bounded by two lines of slopes a and b, av2 ≤ uv ≤ bv2 [35].

However, even though the quantizer is passive, the quantized system may not be passive. In order to ensure passivity

for the quantized system, we implemented a passivity-preserving system introduced in [35]. It transforms the inputs

and outputs of the quantized using a two-by-two transformation M , consisting of the values of m11 = 2, m12 = −0.36,

m21 = 0, and m22 = 1, which are computed using the passivity indexes of the controllers. By quantizing the system in

this way, we also ensure that the passivity of the PHS is preserved when the controller is quantized for implementation

onto the HIL platform.

This procedure involves the Simulink Coder (previously called Real-Time Workshop) which automatically generates the

necessary C code using the number of available bits and the value ranges (Q format) [36]. The Simulink Coder generates

software according to the chosen fixdt. For our experiments, control models in Simulink models are used to generate

software code in C, which is then compiled and deployed on the platform.

5.4. System parameters

The proposed safety analysis is based on a PHS representation of the vehicle dynamics. Before the control implemen-

tation, it is necessary to identify the parameters in the PHS model and validate the analytical model. We use the CarSim

S-function of a mid-size sedan for performing the HIL simulations [4]. In order to validate the PHS representation of
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Table 1

Table of vehicle parameter values.

a b c Cr lr Cf lf

0.1 0.006 10 200 1.4 300 1.4

Fig. 7. Road trajectory is shown in black; the purple circle shows the location of the vehicle during the simulation time of 80–90 s.

this model, we use passivity indexes that allow a way to characterize a system by determining its excess or shortage of

passivity [37]. Passivity indexes are measures that quantify how passive a system is. A thorough coverage of the passivity

index literature may be found in [38]. By selecting the model parameters so that the passivity indexes of the analytical

model are similar to that of the CarSim model, we can approximate the actual vehicle dynamics with an analytical model

of a PHS.

The CarSim model has inherent bounds on its inputs [4]. The throttle angle valve (θf ) has a lower bound of 0 rad and

an upper bound of 1.5 rad. The brake pressure (Pb) has a lower bound of 0 and upper bound of 10 MPa. The steering angle

(δ) has a lower bound of −480 degrees and an upper bound of 480 degrees. Using these bounds, we derive that Ta has a

lower bound of 0 N and an upper bound of 3104 N, Tb has a lower bound of 0 N and an upper bound of 3715 N, and Tl
has a lower bound of −1200 N and an upper bound of 1200 N.

The model parameters for the vehicle model, shown in Table 1, are computed so that the passivity indexes of the

analytical model closely match that of the CarSim model. Evaluation of the passivity indexes is performed by executing

both models through twenty diverse scenarios and optimizing the passivity indexes values using the method presented

in [39]. In addition, according to the CarSim model, the vehicle has mass m = 1650 kg the inertia I = 3234 kg ·m2. Using

the techniques demonstrated in [40], we determine that the passivity indexes of the CarSim model (νc , ρc) are (181, 0.6).

We determine that the passivity indexes of the analytical model (νa, ρa) are (177, 0.6) indicating that the analytical model

is a valid approximation of the CarSim model.

Passivity-based control is used to select the parameters of the ACC and LKC by considering the total energy of the

closed-loop system. Specifically, we consider the dissipation of the system being the difference between the stored energy

and the incoming energy [41]. Using the experimental passivity index methods [40] and the experimental data of the

controllers, we compute the passivity indexes and L-2 gain of the controllers as (0.8, 5.6) and 2 respectively. We find that

the discretized system will be passive given a sampling period smaller than ts ≈ 65 ms. The gain values of the controllers

are verified to retain passivity given sampling periods of 10 ms, 30 ms, and 50 ms.

5.5. Simulation results

In this section, we present the simulation results to illustrate the safety analysis approach and to show that the system

remains safe. Table 2 shows the various scenarios that are used in the simulation. The trajectory shown in Fig. 7 is

encoded into the vehicle model in CarSim. The safety conditions derived in Section 4 are valid for vehicle velocities given a

maximum road decline angle of 15 degrees which corresponds to δg = 4200 N and a maximum lead vehicle deceleration

of 5 m/s2 which corresponds to a braking distance of 50 m from 80 km/hr to 0 km/hr. Table 3 shows the controller gains

used in the simulation.

Simulation of the closed-loop system consists of two minutes of running time in which the host vehicle follows a

lead vehicle on the road. As a baseline, we present simulation results obtained by integrating the CarSim model with
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Table 2

Table of simulation scenarios.

Scenario Time (s) Vl (km/hr) Slope (o) turns

1 0–40 65 0 3

2 40–52 65–77 0 1

3 52–60 77–85 −15 0

4 60–70 85 −15 1

5 70–90 85–50 −15 1

6 90–94 50 −15 0

7 94–103 50 0 1

8 103–120 50 15 1

Table 3

Table of controller gains.

kti kbi kt ktd kb kbd ksi ksd

0.05 0.01 0.1 0.02 0.2 0.02 40 15

Fig. 8. Relative distance for all cases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

a continuous-time Simulink model of the ACC and LKC [28]. We generate results using the HIL simulation platform for
sampling rates of 10, 30, and 50 ms (shown in the figures as the green, blue, and yellow lines) and we evaluate the safety
(comparing with the safety bounds shown with the magenta lines) and the performance of the systems (comparing with
the continuous-time results shown with the red lines). Fig. 8 shows the relative distance between the two vehicles for
all the cases for the full two minutes of simulation time. Fig. 9 shows the lateral acceleration of the host vehicles for all
the cases for the full two minutes of simulation time. The results indicate that although all of the systems are safe, the
discrete-time results are drastically different from the continuous-time results.

In order to compare the simulations results, we focus on the time between 80 and 90 s; as shown on the highlighted
circle in Fig. 7. Fig. 10 shows a comparison of the relative distance between the two vehicles under continuous-time
and various sampling periods on the top subplot and a comparison of the lateral acceleration of the host vehicle under
continuous-time and various sampling periods on the bottom subplot. The simulation results show that both safety
conditions on the relative distance and lateral acceleration are satisfied as the sampling period varies from 10 ms to
50 ms. It is also shown that as the sampling period decreases the trajectories obtained using the HIL platform approach
the ones obtained using simulation of the continuous-time control architecture. The best performance is obtained for a
sampling period of 10 ms which satisfies the real-time constraints for the execution of the control software.

6. Conclusion

The approach in this paper addresses the safety problem for multi-modal PHS given complex interactions, nonlineari-
ties, and hybrid dynamics. The approach ensures the safety of the system by characterizing safe and unsafe regions using
energy levels of the Hamiltonian function and deriving conditions on model and control parameters. We demonstrate
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Fig. 9. Lateral acceleration for all cases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 10. Relative distances and lateral accelerations between 80–90 s. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

the approach by analyzing the safety conditions of an automotive control system to prevent collision and skidding.

Simulation results from an automotive control system are recorded HIL platform and show the effectiveness of the safety

analysis approach. We conclude that even though the resulting discrete-time PHS is safe, there is a noticeable difference

in performance compared to the continuous-time PHS, which is attributed to the loss of passivity during the discretization

process. Future work could focus on an alternative discretization process for PHS which minimizes the loss of passivity

during discretization.
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