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Abstract— Microgrids must be able to restore voltage and
frequency to their reference values during transient events;
inverters are used as part of a microgrid’s hierarchical control
for maintaining power quality. Reviewed methods either do
not allow for intuitive trade-off tuning between the objectives
of synchronous state restoration, local reference tracking, and
disturbance rejection, or do not consider all of these objectives.
In this paper, we address all of these objectives for voltage
restoration in droop-controlled inverter-based islanded micro-
grids. By using distributed model predictive control (DMPC)
in series with an unscented Kalman Filter (UKF), we design
a secondary voltage controller to restore the voltage to the
reference in finite time. The DMPC solves a reference tracking
problem while rejecting reactive power disturbances in a noisy
system. The method we present accounts for non-zero mean
disturbances by design of a random-walk estimator. We validate
the method’s ability to restore the voltage in finite time via
modeling a multi-node microgrid in Simulink.

I. INTRODUCTION

A microgrid (MG) operating in islanded mode must be
able to maintain the power quality of the system, including
restoring voltage and frequency to the nominal values [1],
[2]. The restoration is necessary as changes in load cause
steady-state offsets. In the case of inverter-based microgrids,
the inverters provide the control action for maintaining
power quality [3]. Inverter-based microgrids have at least
one inverter in grid-forming mode. Inverters are grid-forming
when they supply the signal for the frequency and voltage. A
grid-forming inverter is known as a voltage source inverter
(VSI). Multiple VSIs can be paralleled in one MG and any
remaining inverters will be in a mode such that they follow
the grid signal [4]. Under transient conditions, voltage and
frequency must be restored to the nominal value and kept
within specific operating bounds. As a nodal network –
where an inverter represents a node – the problem becomes
how to restore the states, namely the voltage and frequency
at each node, to the references. Stability is defined here
as the ability of the (controlled) system to remain within
operating bounds after being subjected to disturbances [5].
For instance, voltage must be maintained within specified
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limits despite reactive power disturbances. The networked
system presents a challenge to control because the dynamical
coupling between the states dictates that not just the local
state must be considered, but neighboring states as well.

In microgrids, the control hierarchy consists of three
layers [6]–[8]. Primary control is the fastest control and
is traditionally a proportional control. Secondary control
encompasses restoring states to their nominal values and can
include finding setpoints for primary control. Last, tertiary
control generally solves economic dispatch problems and
chooses control setpoints for the lower layers.

Secondary and tertiary control use a spectrum of cen-
tralized, decentralized, and distributed methods. Centralized
methods use a central controller that has knowledge of
every node [9]. Due to the full knowledge of the system,
centralized methods are able to achieve the global optimum
in optimal control formulations. Drawbacks include a single
point of failure, large communication requirements, and lack
of modularity [10].

In fully decentralized approaches, the control is local-
ized and the individual systems are taken to be decoupled
dynamically [11]–[13]. The interaction between nodes is
characterized as disturbances to the individual systems. In
[11], an effective decentralized control method is proposed
for distribution grids. While effective in some power systems,
local controllers are not always robust, leading to cascading
divergence of the local states across a network [1].

Distributed methods only have computation at each node
and communicate with the respective neighbors [14]. Un-
like centralized approaches, these do not necessarily lead
to a globally optimal solution with respect to a defined
cost function (i.e. transient response time, power sharing,
synchronicity). While distributed approaches are more robust
to failures due to the distributed computation and control
as well as more adaptability to network changes, issues of
convergence, stability, and communication requirements are
prevalent [15], [16]. A method known as distributed model
predictive control (DMPC) solves an optimal control problem
at each node [17]. The problem at each node is solved as a
finite horizon control problem in a receding horizon while
communicating with neighboring nodes in the network at a
specified sampling rate [18]. DMPC is shown to reduce com-
putational complexity relative to centralized control while
generally ensuring better robustness to neighbors’ deviations
from nominal in comparison with decentralized control [14],
[19].

A number of distributed methods for secondary voltage
and frequency control of islanded, inverter-based microgrids
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has been proposed [10], [20]–[22]. As this work focuses
on secondary voltage control, we omit review of secondary
frequency control. While each work takes a unique approach,
they are all working with the same underlying physical
dynamics. A key differentiating feature between these works
is whether the dynamics model used directly considers
the dynamical coupling with neighboring nodes. In [20],
a continuous-time secondary voltage controller is designed
such that the input does not depend on the neighbors’
voltages. While the analysis indicates that this is stable in the
sense of Lyapunov, the neighbors’ states are not explicitly
included and thus the restoration of the voltages is not
necessarily synchronized nor optimal. The work presented
in [21] uses a nonlinear controller that minimizes the local
voltage neighborhood tracking error; the premise is that only
one node of the network has knowledge of the voltage
reference. A model with explicit dynamical coupling is used
in the controller to restore the voltage at each node in finite
time. While effective, tuning the gains in this nonlinear
controller for transient response performance is non-intuitive.
A DMPC approach is presented in [22]. As in [21], the
voltage reference is only known at one node in the network.
The method synchronously restores the voltage in finite
time. However, the model does not explicitly account for
the dynamical coupling. This type of model-mismatch often
results in steady-state error in MPC formulations without
integral action. The relevance of dynamic coupling of sub-
systems when used in DMPC is shown in [23]. Lastly, in
[10], a sliding mode cooperative controller is proposed. This
addresses voltage restoration synchronization but mainly
focuses on robust control; this is included as a relevant
distributed method although the dynamical modeling of the
system is quite different.

In this paper, we develop a DMPC that simultaneously
takes into account dynamical coupling (enabling synchro-
nized restoration), finite time voltage restoration, and the
presence of noisy disturbances. We start by modeling the
voltage dynamics as a first order system with dynami-
cal coupling between nodes. The continuous dynamics are
discretized for the purposes of the DMPC. The DMPC
cost function allows for intuitive transient response tuning
and trade-off between local voltage restoration, synchronous
restoration, and input control action. In order to address
model-mismatch, we design a distributed state estimator so
that noisy, non-zero mean disturbances can be rejected. The
integral action is not inherent to the DMPC and must be
introduced by solving for the reference input control. This
can be solved analytically for the given dynamics instead of
having to solve a least squares problem.

The contributions of this work are two-fold:
1) We present an MPC scheme for secondary control that

uses the nonlinear voltage dynamics not previously used in
DMPC; only secondary voltage control is addressed. The
chosen dynamics model allows for the network’s states to
converge synchronously. By introducing a novel method to
compute the state and input reference, offset-free tracking
is provided; this functions in conjunction with a distributed

estimator.
2) We design a distributed state estimator that estimates

the local voltage and an unknown noisy reactive power
disturbance. The disturbance estimate evolves as a random
walk to provide a non-zero mean estimate of the true dis-
turbance. The disturbance could be a biased measurement of
the reactive load or an unaccounted-for device with reactive
power injection/consumption.

II. MICROGRID MODELING

A. Network Model

1) Graph Theory and Power System Network: The net-
work of a multi-agent system can be described as an un-
directed graph G = (V, E , A) where V = {1, .., N} is a non-
empty set of N nodes that generally may have distributed
generation (DG), E is the set of edges representing the line
impedances, and A is the adjacency matrix where am,m = 0
and am,n = 1 for all connected nodes m 6= n. In alignment
with convention, we represent the line impedances, Z, as the
admittance matrix Y (Z = Y −1) where Y m,n = Gm,n +
jBm,n ∀(m,n) where j =

√
−1 [24]. The diagonal degree

matrix, D, can then be defined as dm,m =
∑

n∈Nm
am,n

where Nm := {n|(m,n) ∈ E}. Here Nm denotes the elec-
trically connected neighborhood of the node m. In general,
there exists a communication neighborhood, NCm , which
indicates node-to-node communication ability. For this work,
we take the communication and electrically connected neigh-
borhoods to be the same. The self-susceptances are defined
to be Bm,m =

∑
n∈Nm

Bm,n [21]. Finally, the Laplacian
matrix is defined to be L = D − A. The adjacency and
Laplacian matrices can be used for representing the general
connectivity of the subsystems. In the distributed context, the
adjacency matrix is useful for encoding information matrix-
wise; however, the entire matrix will not be used at one node
if the communication neighborhood does not equal the full
set of the nodes.

The canonical equations describing power injection at a
node m, [24] are:

P̂m =
∑

n∈Nm

V mV n|Y m,n|cos(θm,n + δn − δm), (1)

Q̂m = −
∑

n∈Nm

V mV n|Y m,n|sin(θm,n + δn − δm), (2)

where P̂m, Q̂m are the real and reactive power injected at
node m and δm is the voltage phase angle of the m-th
DG. θm,n is the admittance angle. V m is the local voltage
magnitude and V n is a neighboring voltage magnitude.

Remark 1: We assume the power lines in this microgrid
are lossless as in [21] such that the line resistance is zero
(Gm,n = 0). The work in [25] demonstrates how this
assumption holds in microgrids; the basic argument is that
while the resistance is non-negligible in medium and low
voltage grids, the inverter output impedance is inductive
enough to cause the resistance to be relatively small enough.
This reduces the line impedances, Y m,n = Gm,n + jBm,n,
to Y m,n = jBm,n.
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As a result, the equations of state, (1) and (2), reduce to:

P̂m =
∑

n∈Nm

V mV n|Bm,n|sin(δm − δn) (3)

Q̂m = (V m)2
∑

n∈Nm

|Bm,n|

−
∑

n∈Nm

V mV n|Bm,n|cos(δm − δn) (4)

For tractability, we take (δm − δn) to be very small such
that the trigonometric small-angle approximations hold. The
simplified power injection at a node is given as:

P̂m =
∑

n∈Nm

V mV n|Bm,n|(δm − δn) (5)

Q̂m = (V m)2
∑

n∈Nm

|Bm,n| −
∑

n∈Nm

V mV n|Bm,n| (6)

B. Primary Control

The control of electric power systems is traditionally
divided into three levels operating on different time scales.
Droop-control is the classical primary controller, which op-
erates on the fastest timescales and without communication
requirements at each generation node in a network. Droop
control uses a proportional gain acting on the real or reactive
power to regulate the frequency or voltage, respectively.
Namely, at the m-th DG:

δ̇m = ωref − nPm(P gen,m − P ref,m) (7)

V̇ m = V ref − nQm(Qgen,m −Qref,m) (8)

where (∗)ref is the target for the variable (i.e. frequency,
voltage, real and reactive power). The generation terms,
(∗)gen, are then expanded to represent the loads, (∗)L,m,
and injected power, ˆ(∗)

m
:

P gen,m = PL,m + P̂m (9)

Qgen,m = QL,m + Q̂m (10)

C. Secondary Control

Secondary control operates on a slower timescale to re-
store the voltage and frequency in a network to the refer-
ences. Voltage and frequency regulation are necessary com-
ponents of secondary control in any electric power system
but must be taken into particular consideration in scenarios
with grid-forming inverters. In an autonomous microgrid, at
least one inverter is grid-forming; in this paper, we make all
of the inverters grid-forming. Steady-state deviations from
the reference occur without secondary control [20], [22].

The proportional controller illustrated in (7) deviates from
the references since it has no integral action. In order to
compensate for this, secondary controllers provide integral
action to drive the quantities to their respective references;
this must be achieved in finite time and the voltages, as local
quantities, must be synchronized. In the distributed context,
the necessity of information exchange between nodes is
based on the latter requirement. The grid-forming inverter’s
internal voltage and virtual impedance drive the secondary
voltage control input, as detailed in [26]. In consideration of

space, we leave out further frequency-real power equations:
we do not address frequency-real power in this work. The
equation governing voltage is derived from (5), (7):

τQm ˙V m =− V m + V m,ref + uV,m

− nQm

(
QL,m + (V m)2

∑
n∈Nm

|Bm,n| −

∑
n∈Nm

V mV n|Bm,n| −Qref,m
)
,

(11)

where τQm
is the time constant associated with the voltage

dynamics and uV,m is the secondary voltage control input,
which comes from the VSI. In order to run this on a digital
system, we discretize (11). A one-step Euler discretization,
with sample time Ts, gives the following result and we
subsume the voltage reference by the secondary control
input:

V m
k+1 =V m

k + Ts

(
− V m

k + uV,mk

− nQm

(
QL,m

k + (V m
k )2

∑
n∈Nm

|Bm,n|

−
∑

n∈Nm

V m
k V n

k |Bm,n| −Qref,m
))

(12)

Due to imperfect knowledge of the system dynamics, par-
ticularly in the reactive power as a time-varying parameter,
for now we introduce a known disturbance (found in Section
IV) to the dynamics, dk, giving:

V m
k+1 =V m

k + Ts

(
− V m

k + uV,mk

− nQm

(
QL,m

k + (V m
k )2

∑
n∈Nm

|Bm,n|

−
∑

n∈Nm

V m
k V n

k |Bm,n| −Qref,m
k + dk

))
(13)

dk+1 = dk (14)
V n
k+1 = V n

k , ∀n ∈ NCm
(15)

We introduce (15) because the evolution of the neighbors’
dynamics are difficult to model due to dynamical coupling;
as such, we allow them to remain constant for the prediction
horizon. Similarly, we consider (14) constant for the predic-
tion horizon as the disturbance dynamics are unknown for
now; various models can be used to model these quantities
including momentum-based and distribution-based methods.
These are left for future work.

III. DISTRIBUTED SECONDARY CONTROL FOR VOLTAGE
RESTORATION

We formulate the secondary voltage controller as a dis-
tributed nonlinear model predictive control (DNMPC) track-
ing problem, Pm, where the problem is solved at each node
with access to only its neighbors’ voltage magnitudes and
its own. For this work, the low level control anticipates
new lower level control strategies that are distributed; this
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distributed voltage controller would be implemented with a
distributed frequency controller. The dynamics are left in
the nonlinear form (13) in order to minimize the model
mismatch. The distributed controller comes from the reliance
on neighbors’ state information, particularly V n, ∀n ∈ Nm

where for simplicity Nm = NCm
. Thus, at every time step a

node must communicate its current state to its neighbors.
The hierarchical control consists of the low-level droop
(proportional) control with a linear state feedback law that
has implicit integral action for disturbance rejection. This
optimization problem is an MPC formulation with some
control horizon, Hu, and a prediction horizon Hp. Because
modeling the neighbors’ dynamical evolution is challeng-
ing due to dynamical coupling, we choose a fairly short
prediction horizon (here we choose Hp = 2). The benefit
of increasing Hp is small as the neighbors are modeled to
be constant within Hp. The control horizon is chosen as
Hu = 1. The controlled state is the local voltage.

We define the constraints for the problem as simply box
constraints on the state as well as the initialization condition
common to most MPC formulations. An input constraint is
left off here as it is generally inactive for this problem. In
particular, the network voltage is bounded above and below
by acceptable limits. A common standard (ANSI C84.1)
dictates staying within five percent of nominal:

0.95V ref ≤ V m
k ≤ 1.05V ref (16)

Given these constraints, define:

Pm = min
um
t+k|t

Hp∑
k=0

∥∥L(m, :)Vt+k|t
∥∥2
Q

+
∥∥∥V m

t+k|t − V
ref,m
t+k|t

∥∥∥2
W

+

Hp−1∑
k=0

∥∥∥umt+k|t − u
ref,m
t+k|t

∥∥∥2
R

(17)
s.t. (13)-(16) (18)

Vt|t = V(t) (19)

Here, let ‖∗‖2M = (∗)TM(∗). The notation V m
t+k|t denotes

“the state at time t+k predicted at time t” and umt+k|t denotes
“the input at time t+ k computed at time t” [27]. The cost
function of the DNMPC formulation is quadratic in three
terms. The first term penalizes the difference between the
local voltage and the neighbors’ voltages. We express this
as the inner product of the m-th row of the Laplacian, L,
and the voltage vector, Vk+1, letting unknown voltages be
zero. This enables voltage synchronization. As a dynamically
coupled state, the voltages should restore synchronously
in order to avoid noisy transient responses (e.g. restoring
one node’s voltage asynchronously will result in readjusting
when another node restores its voltage asynchronously).
The second term penalizes the difference between the local
voltage and the reference. The third term drives the control
input towards the reference secondary voltage input. We take
the terminal cost to be quadratic and of the same weight as
prior costs such that it is included in the cost summation over

Hp. Generally speaking, for linear systems, the references,
(∗)ref , can be found via least squares [27].

A. Reference Computation

In order to compute the reference (or target) values,
uref,mt+k|t and V ref,m

t+k|t , for this nonlinear system, we extend
the method for linear systems in [27] under stated assump-
tions. Let x(t)m generally denote the local state of the
digital control system outside of the MPC. Consider the
nonlinear system given in (13), written more generally as
x(t+ 1)m = g(x(t)m, u(t)m, d(t)m), with input u(t)m and
disturbance d(t)m, and measurement z(t)m = h(x(t)m).
Suppose the observer of the stochastic process x̂(t+ 1)m =
g(x̂(t)m, u(t)m, v(t)m, d̂(t)m), z(t)m = h(x(t)m, w(t)m),
with process noise v(t)m and measurement noise w(t)m, is
stable. For now, let w(t)m, v(t)m, and d(t)m be known. In
Section IV, these values will be determined. Furthermore,
the number of outputs equals the dimension of the constant
disturbance. Then, the steady-state observer, where (∗)∞
denotes steady-state, satisfies,

x̂m∞ = g(x̂m∞, u
m
∞, v

m
∞, d̂

m
∞) (20)

zm∞ = h(x̂m∞, w
m
∞) (21)

This suggests that, if zm∞ = zref,m:

x̂ref,m∞ = g(x̂ref,m∞ , uref,m∞ , vm∞, d̂
m
∞) (22)

zref,m = h(x̂ref,m∞ , wm
∞) (23)

At steady-state, uref,m∞ and x̂ref,m∞ can be found by solv-
ing the system of equations in (22), (23). If the closed-loop
system converges to xref,m∞ , dm∞, z

ref,m, then the intuitive
argument is that, u(t)ref,m can be found at steady-state
since x(t + 1)ref,m = x(t)ref,m. Then, in the region of
the reference, x̄(t)ref,m := x(t+ 1)ref,m ≈ x(t)ref,m such
that:

x̄(t)ref,m = g(x̄(t)ref,m, uref,m(t), v(t)m, d(t)m) (24)

z(t)m = h(x̄(t)ref,m, w(t)m) (25)

Then, as z(t)m → zm∞ = zref,m and x(t) → xref,m∞ ,
uref,m(t)→ uref,m∞ as t→∞.

Note the reference input for step k in the prediction
horizon Hp is time-invariant since the neighbors’ states and
the local disturbance are constant as well. For the dynamics
in this work, the targets are computed under the assumption
that ∃(uref,m, x̂ref,m) satisfying (20). This assumption holds
under the test conditions because the MPC is persistently
feasible–without this, the references can still be computed
under nonlinear least squares methods such as Newton-
Gauss iteration. The steady-state form of the observer for
this problem’s dynamics (12) suggests the targets can be
computed analytically. In particular, the observer at steady-
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state yields:

V̂ ref,m
∞ =V̂ ref,m

∞ + Ts

(
− V̂ ref,m
∞ + uref,m∞

− nQm

(
QL,m
∞ + (V̂ ref,m

∞ )2
∑

n∈Nm

|Bm,n|

−
∑

n∈Nm

V̂ ref,m
∞ V̂ n

∞|Bm,n| −Qref,m
∞

+ d̂∞ + vm∞,1

))
zref,m∞ =V̂ ref,m

∞

(26)

We solve this for input reference, uref,m∞ . Trivially, V ref,m
∞

is the measured value. This can be extended for all time, t,
such that:

u(t)ref,m =V̂ (t)ref,m + nQm

(
Q(t)L,m

+ (V̂ (t)ref,m)2
∑

n∈Nm

|Bm,n|

−
∑

n∈Nm

V̂ (t)ref,mV̂ (t)n|Bm,n|

−Q(t)ref,m + d̂(t)
)

(27)

Again, the state reference is just V (t)ref,m, the desired
nominal value. This target computation, with knowledge
of the disturbances, results in Pm tracking the voltage
references without offset as the system approaches steady-
state and umt+k|t → uref,mt+k|t . While this is the computation of
the reference input and not the input itself, the actual input
takes this form as it reaches steady state.

IV. DISTRIBUTED STATE ESTIMATION

Given Pm, we must solve the practical problem of finding
dt|t. We propose an unscented Kalman filter (UKF) to esti-
mate the disturbance to a given node. This observer allows
for the preservation of the nonlinear dynamics but lacks a
condition for stability. Define P est

noise as the process noise
covariance matrix and Mest

noise as the measurement noise
covariance matrix. The dynamics of the estimator with non-
additive process noise, v(t)ml ∈ N (0, P est

noise) l = 1, 2, and
measurement noise, w(t)m ∈ N (0,Mest

noise), then becomes:

V̂ (t+ 1)m =V̂ (t)m + Ts

(
− V̂ (t)m + u(t)V,m (28)

− nQm

(
Q(t)L,m + (V̂ (t)m)2

∑
n∈Nm

|Bm,n|

−
∑

n∈Nm

V̂ (t)mV (t)n|Bm,n|

−Q(t)ref,m + d̂(t) + v(t)m1

))
d̂(t+ 1) =d̂(t) + v(t)m2 (29)

V (t)meas,m =V̂ (t)m + w(t)m (30)

Here we denote the estimated states as ˆ(∗). The noises
have subscripts to indicate the element of the vector. The

random-walk disturbance estimation method was proposed
in [28]. By including the process noise disturbance with
the unmeasured disturbance (29), the evolution of the dis-
turbance is a random walk resulting in a non-zero mean
estimate of the disturbance. When considering whether this is
observable, the estimator was merely demonstrated to work
and mathematical proof of this for the nonlinear dynamics
is left for future work. However, we note that the linearized
system around the reference is observable.

The UKF allows for transient disturbances to be tracked
with some delay due to the continuity of a random walk
and potential step responses in the applied disturbances.
The UKF as an observer then interfaces with the DNMPC
where the state inputs to Pm become V̂ (t)m, d̂(t). Through
simulation, we demonstrate the observer to be stable under
tested conditions and the DNMPC is as well. Note the
UKF and DMPC are run in series instead of parallel, which
accounts for the stochasticity of the problem outside of the
MPC. The work in [29] also uses this series coupling such
that the evolution of each prediction horizon is deterministic.

V. SIMULATION

A. Simulation Environment

In order to test the methods discussed in Sections III, IV,
we create two simulation environments. Both environments
have a four node radial network as shown in Fig. 1. We
implement the same controller in both instances with just
the plant subsystem changing. We instantiate the DNMPC
in a fully-distributed sense so that the independence of the
subsystems is immediately clear. We encode the controller
as an Interpreted MATLAB Function containing (17) written
with YALMIP [30] using the solver GUROBI or IPOPT. We
use rate transition blocks (zero-order hold and inverse zero-
order hold throughout the network for interfacing continuous
and discrete time components). The stiff system requires the
use of the continuous time integrator ode23s.

1) Model perfect: We use Simulink blocks to create a
four-node network (Table I) in the first simulator. This shows
the applicability of (17) to a continuous-time dynamical
system. The first order ODE (11) is fully-represented with
non-additive process noise, measurement noise, and time-
varying and time-invariant disturbances.

The pure Simulink parameters are from [21] for a single
phase (Table I).

B. Simulation Results

The framework indicates the overall viability of the control
scheme. We include the test cases and parameters in Table
I, II. We tune the UKFs according to the test case with
the means, distributions, and covariance matrices generally
assumed to be known. We tabulate the specific values in
Table II. We leave the UKF parameters α, β, κ at the nominal
values indicated.

1) Test Case 1: The controller with UKF in series is
simulated (Fig. 2) for the model perfect simulator. The
resulting data (horizon truncated for visibility) indicates that
the closed-loop system is stable for the chosen parameters.
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Fig. 1. Four-node MG

TABLE I
SIMULINK PARAMETERS TO TEST THE CONTROLLER

Parameter DG1 DG2 DG3 DG4
Qref 1e4 1e4 1e4 1e4
Qload 1e4 1e4 1e4 1e4
nQm 4.24e-4 4.24e-4 4.24e-4 4.24e-4
dm -5e3 -2e3 -1e3 -3e3

Cost Q = 10I W = 5I R = 1I
B (Ω−1) B12 = 10 B23 = 10.67 B34 = 9.82
V ref 310V

τQm , Ts (sec) 0.016, 0.03

TABLE II
THE TEST PARAMETERS FOR THE TWO CASES.

Case Pnoise P est
noise Mnoise Mest

noise

1

[
1e-3 0

0 0

] [
1e-3 0

0 1e2

]
1e-1 1e-1

2

[
1e-1 0

0 0

] [
1e-1 0

0 1e3

]
1 1

UKF α = 1e-1 β = 2 (Gaussian) κ = 0

The step response at t = 30 seconds for the first simulator
indicates the secondary controller turning on in Fig. 2. The
primary controller begins at t = 0 seconds and provides
a stable system with offset. It can be seen that the UKF
(initialized at t = 0 seconds) estimates the disturbances
over time as the random walk allows the initial estimate
to evolve to the actual value. The rate at which the UKF
approaches the constant disturbance is a function of the
variance of the disturbance state in (28). Higher variances
increase the convergence rate but will increase the steady-
state error as the estimation will always be distributed around
the disturbance and never exactly at the constant disturbance.

2) Test Case 2: Here, we increase the process and mea-
surement noise to observe the performance of the controller.
The closed-loop system remains stable and the disturbance
rejection is maintained. The effective integral action rejects
the disturbances insofar as the disturbance is properly esti-
mated; in Fig. 3, the estimator takes close to 180 seconds
to reach the disturbance value. As a result, the voltage
restoration can only reach the reference when the estimator
reaches the actual disturbance value. The resiliency of the
algorithm to noisy disturbances can be evaluated on the rela-
tive magnitude of the disturbance to expected reactive power,

Fig. 2. Constant disturbance rejection with random walk estimator. The
first subplot shows how the error goes to zero (with some transience due to
noise) as the estimator goes to the constant disturbance value. The subplot
of the disturbances shows how the estimator approaches the actual value
and has a significant step when the secondary controller turns on.

Qref ; here it is demonstrated with steady-state disturbances
of up to 50% of the expected and Gaussian noise of up to
1e-3% of the expected.

VI. CONCLUSION AND FUTURE WORK

We propose a distributed nonlinear model predictive con-
trol formulation in this work to restore voltages in an
inverter-based autonomous microgrid. Unlike previous work
in secondary voltage control via MPC, which use simplified
dynamics, the evolution of the local voltage is directly
influenced by the neighbors’ voltages, which allows for
the realization of the impact of the neighbors’ states. The
estimator and MPC in series is novel in this context for
estimating non-zero mean disturbances. In particular, unmea-
sured reactive power injection/consumption are estimated by
using a random walk model; previous work did not account
for model mismatch. From these estimates, we formulate a
novel integral action using the full dynamics that admits
an analytic solution instead of relying on least squares.
Via simulation, we demonstrate the ability of these novel
components to perform secondary control on the voltage.

By using the nonlinear form of the dynamics, model
mismatches are less likely–therefore allowing for more focus
to be on the estimation aspects of this work. For analysis
and mathematical proofs, we are working on linearizing
this approach. Benchmarks of the MPC formulation against
policies computed offline will be included to establish the
benefit of the receding horizon. Additionally, we can add
the dynamics of the neighbors with some assumptions about
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Fig. 3. High noise constant disturbance rejection with random walk
estimator. We inject relatively high reactive power noise in this second case
resulting in a noisy actual voltage, but the voltage still tracks the reference
with transient minor offsets.

knowledge of the network graph and the neighbors’ control
inputs. Lastly, we can include modeling and controlling the
frequency in future work.

REFERENCES

[1] M. Yazdanian and A. Mehrizi-Sani, “Distributed control techniques
in microgrids,” IEEE Transactions on Smart Grid, vol. 5, no. 6, pp.
2901–2909, Nov 2014.

[2] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control
strategies for microgrids islanded operation,” IEEE Transactions on
Power Systems, vol. 21, no. 2, pp. 916–924, May 2006.

[3] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and
testing of autonomous operation of an inverter-based microgrid,” IEEE
Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, March
2007.

[4] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel
connected inverters in standalone ac supply systems,” IEEE Transac-
tions on Industry Applications, vol. 29, no. 1, pp. 136–143, Jan 1993.

[5] M. Glavic, “Power system voltage stability: A short tutorial.”
[6] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids

control system,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp.
1963–1976, Dec 2012.

[7] T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, and
L. Vandevelde, “Microgrids: Hierarchical control and an overview
of the control and reserve management strategies,” IEEE Industrial
Electronics Magazine, vol. 7, no. 4, pp. 42–55, Dec 2013.

[8] A. Bidram, V. Nasirian, A. Davoudi, and F. L. Lewis, “Control
and modeling of microgrids,” in Cooperative Synchronization in
Distributed Microgrid Control. Springer, 2017, pp. 7–43.

[9] A. Kaur, J. Kaushal, and P. Basak, “A review on microgrid central
controller,” Renewable and Sustainable Energy Reviews, vol. 55, pp.
338–345, 2016.

[10] A. Pilloni, A. Pisano, and E. Usai, “Robust finite-time frequency
and voltage restoration of inverter-based microgrids via sliding-mode

cooperative control,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 1, pp. 907–917, Jan 2018.

[11] O. Sondermeijer, R. Dobbe, D. Arnold, C. Tomlin, and T. Keviczky,
“Regression-based inverter control for decentralized optimal power
flow and voltage regulation,” 2015.

[12] R. Dobbe, D. Fridovich-Keil, and C. Tomlin, “Fully decentralized
policies for multi-agent systems: An information theoretic approach,”
in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 2941–2950.

[13] E. J. Davison and T. N. Chang, “Decentralized stabilization and
pole assignment for general proper systems,” IEEE Transactions on
Automatic Control, vol. 35, no. 6, pp. 652–664, 1990.

[14] P. D. Christofides, R. Scattolini, D. M. de la Pea, and J. Liu,
“Distributed model predictive control: A tutorial review and
future research directions,” Computers and Chemical Engineering,
vol. 51, pp. 21–41, 2013, cPC VIII. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0098135412001573

[15] J. M. Maestre and R. R. Negenborn, Distributed Model Predictive
Control Made Easy. Springer Publishing Company, Incorporated,
2013.

[16] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “Trading computation
for bandwidth: reducing communication in distributed control systems
using state estimators,” IEEE Transactions on Control Systems Tech-
nology, vol. 10, no. 4, pp. 503–518, Jul 2002.

[17] R. R. Negenborn and J. Maestre, “Distributed model predictive control:
An overview and roadmap of future research opportunities,” IEEE
Control Systems Magazine, vol. 34, no. 4, pp. 87–97, 2014.

[18] S. Roshany-Yamchi, M. Cychowski, R. R. Negenborn, B. D. Schutter,
K. Delaney, and J. Connell, “Kalman filter-based distributed predictive
control of large-scale multi-rate systems: Application to power net-
works,” IEEE Transactions on Control Systems Technology, vol. 21,
no. 1, pp. 27–39, Jan 2013.

[19] H. Almasalma, J. Engels, and G. Deconinck, “Peer-to-Peer Control of
Microgrids,” ArXiv e-prints, Nov. 2017.

[20] C. Gang and G. Zhijun, “Distributed secondary control for droop-
controlled autonomous microgrid,” in 2015 34th Chinese Control
Conference (CCC), July 2015, pp. 9008–9013.

[21] F. Guo, C. Wen, J. Mao, and Y. D. Song, “Distributed secondary
voltage and frequency restoration control of droop-controlled inverter-
based microgrids,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 7, pp. 4355–4364, July 2015.

[22] G. Lou, W. Gu, Y. Xu, M. Cheng, and W. Liu, “Distributed mpc-based
secondary voltage control scheme for autonomous droop-controlled
microgrids,” IEEE Transactions on Sustainable Energy, vol. 8, no. 2,
pp. 792–804, April 2017.

[23] M. N. Zeilinger, Y. Pu, S. Riverso, G. Ferrari-Trecate, and C. N.
Jones, “Plug and play distributed model predictive control based on
distributed invariance and optimization,” in 52nd IEEE Conference on
Decision and Control, Dec 2013, pp. 5770–5776.

[24] J. Grainger and W. Stevenson, Power System Analysis, ser.
McGraw-Hill series in electrical and computer engineering: Power
and energy. McGraw-Hill Education, 2016. [Online]. Available:
https://books.google.com/books?id=ddSAjwEACAAJ

[25] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions
for stability of droop-controlled inverter-based microgrids,” Automat-
ica, vol. 50, no. 10, pp. 2457–2469, 2014.

[26] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodrguez, “Control of power
converters in ac microgrids,” IEEE Transactions on Power Electronics,
vol. 27, no. 11, pp. 4734–4749, Nov 2012.

[27] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2011, pp. 251,
273–279.

[28] D.-W. Kim and C.-S. Park, “Application of kalman filter for
estimating a process disturbance in a building space,” Sustainability,
vol. 9, no. 10, 2017. [Online]. Available: http://www.mdpi.com/
2071-1050/9/10/1868

[29] H. Yu, J. Duan, S. Taheri, H. Cheng, and Z. Qi, “A model predictive
control approach combined unscented kalman filter vehicle state
estimation in intelligent vehicle trajectory tracking,” Advances in
Mechanical Engineering, vol. 7, no. 5, p. 1687814015578361, 2015.
[Online]. Available: https://doi.org/10.1177/1687814015578361
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