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Abstract—With the increasing penetration of non-synchronous
variable renewable energy sources (RES) in power grids, the
system’s inertia decreases and varies over time, affecting the
capability of current control schemes to handle frequency regu-
lation. Providing virtual inertia to power systems has become an
interesting topic of research, since it may provide a reasonable
solution to address this new issue. However, power dynamics
are usually modeled as time-invariant, without including the
effect of varying inertia due to the presence of RES. This paper
presents a framework to design a fixed learned controller based
on datasets of optimal time-varying LQR controllers. In our
scheme, we model power dynamics as a hybrid system with
discrete modes representing different rotational inertia regimes
of the grid. We test the performance of our controller in a twelve-
bus system using different fixed inertia modes. We also study our
learned controller as the inertia changes over time. By adding
virtual inertia we can guarantee stability of high-renewable (low-
inertia) modes. The novelty of our work is to propose a design
framework for a stable controller with fixed gains for time-
varying power dynamics. This is relevant because it would be
simpler to implement a proportional controller with fixed gains
compared to a time-varying control.

Index Terms—Frequency Regulation, Renewable Energy, Data-
Driven Controllers, Virtual Inertia Placement, Hybrid Systems.

I. INTRODUCTION

A mismatch between electricity generation and demand in
a power system provokes a deviation in frequency from its
nominal value. Different mechanisms exist in power systems
to prevent or mitigate frequency excursions. The immedi-
ate response to frequency deviation comes from the inertial
response of the grid. This inertial response originates from
the kinetic energy supplied to the grid by the synchronous
generators currently connected to it. This inertia (present in
rotating masses of generators and turbines) determines the
instantaneous change in frequency when imbalances of active
power take place. More inertia in the system entails a slower
rate of change of the frequency. Droop or governor response
is the second mechanism that counteracts frequency deviations
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[1]. Droop control is an automatic control proportional to
the deviation in frequency. Slower mechanisms (e.g. spinning
reserves) also participate to restore frequency to its nominal
value [1].

Many countries have set ambitious goals to generate more
electricity using renewable energy sources (RES) [2] and/or
reduce their CO2 emissions. This global trend will transform
power systems from being fossil fuel dominated to being
dominated by RES [3]. In this scenario, renewable sources,
such as wind and solar, are usually connected to the grid
through inverters, which decouple their rotational inertia (if
existing) from the grid. Additionally, RES incorporate more
uncertainty in electricity generation. This uncertainty can en-
hance the challenge of mitigating the mismatch between power
generation and consumption, which increases the complexity
of providing frequency regulation [4].

Generally, inverters do not provide inertial response to
power systems. As the penetration of RES increases, the
global inertia decreases and becomes strongly time-varying.
This increases the variation of frequency under abrupt changes
in generation and demand. This can lead to cases in which
classical frequency control schemes are too slow to mitigate
arising contingencies [5].

A possible solution for systems with low inertia is to use
RES inverters or large scale storage to provide inertia. This
can be done by operating the RES or storage’s inverters
as virtual inertia (control proportional to the derivative of
the frequency), that could allow large penetration of RES
without jeopardizing the system’s stability [6]. Previous work
studying virtual inertia can be found in the literature [7], [8],
[9], [10], [11], and [12]. The literature around virtual inertia
has focused on the effects on power systems with fixed low
inertia over time and on the optimal allocation of virtual
inertia controllers. Our earlier work [13], introduces a new
modeling framework for power system dynamics to simulate
a time-varying evolution of rotational inertia coefficients in the
network. To do this, power dynamics are modeled as a hybrid
system in which each mode corresponds to a rotational inertia
regime. The novelty of this paper is the design of a fixed and
stable frequency controller under a paradigm of time-varying
inertia. We choose a fixed controller because it is simpler to
implement (compared to a time dependent controller) given the
existing droop control in the grid. In addition, the controller we
propose does not require information about the current hybrid
mode of the system or its uncertainty. Thus, our contributions
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are the following:
• In the time-varying framework for power dynamics, we

design a controller with fixed gains, proportional to the
system’s states (angles and frequencies). We design the
controller by learning its parameters from the optimal
control solution of a hybrid systems linear-quadratic
regulator (LQR) formulation of power dynamics.

• For each mode of the hybrid system, we test the per-
formance of the learned controller against the optimal
time-varying controller from the LQR formulation.

• We add virtual inertia control (linear on the derivative of
the frequency) to guarantee stability for all modes of the
hybrid system when using the learned controller.

We conclude that for the hybrid power dynamics formula-
tion it is possible to design, through learning, a static frequency
controller proportional to the system’s states that performs
similarly to the optimal time-varying controller from LQR. It
is possible to guarantee stability for the hybrid system when
we add virtual inertia to the learned control.

The rest of the paper is organized as follows: Section
II presents the problem formulation, Section III analyses
stability of the hybrid system and shows the performance
of the controller in different settings, and finally Section IV
concludes with our main findings.

II. PROBLEM FORMULATION

A. Power grid dynamics as a hybrid system

We consider an electric power grid modeled as a graph
with n nodes and n(n − 1)/2 possible edges connecting
them. The swing equation model, based on the direct current
approximation [12], used for the network is given by

miθ̈i + diθ̇ = pin,i −
∑
j∈Ni

bij(θi − θj), i ∈ {1, . . . , N} (1)

where mi corresponds to the equivalent rotational inertia in
node i, di is the droop control, pin,i represents power mismatch
at node i, Ni is set of nodes connected by an edge to node i,
bij is the susceptance of the transmission line between nodes
i and j, and θi is the voltage phase angle at node i. The state
space representation of the model can be written as[

θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

] [
θ
ω

]
+

[
0

M−1

]
pin (2)

where the states correspond to the stacked vector of angles and
frequencies at each node (θ>, ω>)> ∈ R2n, M = diag(mi)
is a diagonal matrix with rotational inertia coefficients, D =
diag(di) is a diagonal matrix with droop control coefficients,
I is the n × n identity matrix, pin corresponds to the power
input, and L ∈ Rn,n is the Laplacian of the network. The
network Laplacian is defined as `ij = −bij when i 6= j, and
`ii =

∑
j∈Ni

bij .
Thermal generators are predominant in the traditional

paradigm of power systems. In this setting, the equivalent
inertia can be considered as constant over time. However, due
to the increasing penetration of RES, the equivalent rotational
inertia has become lower and time-varying [5], [14]. This work

uses the modeling framework first introduced in [13] to rep-
resent the time dependence in inertia at each node. Frequency
dynamics are modeled as a Switched-Affine hybrid system
[15], where each mode has a predetermined set of values of
equivalent inertia mi at each node [13]. The evolution of the
inertia on the system depends on the current online generators
and the connected power electronics converter. In this paper,
the inertia at each time step t evolves as an exogenous input
over different modes. Thus, the power dynamics are given by[

θ̇
ω̇

]
=

[
0 I

−M−1q(t)L −M−1q(t)D

]
︸ ︷︷ ︸

Âq(t)

[
θ
ω

]
+

[
0

M−1q(t)

]
︸ ︷︷ ︸
B̂q(t)

pin (3)

where Mq(t) represents the inertia matrix in the mode q(t) ∈
{1, . . . ,m}. Using a zero-order hold discretization with time
step Ts, we obtain the discretized time-varying dynamics

xt+1 = Aq(t)xt +Bq(t)ut (4)

where xt is the stacked vector of discretized angles and
frequencies, (θ>t , ω

>
t )
>, ut is the control action by gener-

ators and converters, Aq(t) = exp(Âq(t)Ts) and Bq(t) =∫ Ts

0
exp(Âq(t)τ)B̂q(t)dτ .

In this paper, the switching between modes occurs between
each time step, and it is given by a uniform distribution
with the following possible outcomes: no change of inertia,
increase of inertia, or decrease of inertia. For simplicity, for
a given mode q we assume the same inertia coefficient for
all nodes Mq = mqIn×n. Using an LQR formulation we
study the problem of returning to a steady-state configuration
xss, assuming a perturbed initial condition x0 6= xss due to a
contingency.

B. Optimal frequency control for low and time-varying rota-
tional inertia coefficients

To minimize an objective function where the states and
controllers are decision variables we consider the LQR for-
mulation

min
x,u

T∑
t=0

x>t Qxt + u>t Rut

s.t. x0 = x(0)

xt+1 = Aq(t)xt +Bq(t)ut, t ∈ {0, T − 1}

(5)

where Q is a positive semidefinite matrix, R is a positive
definite matrix, and x(0) is the initial state. Depending on the
modeling goal, matrices Q and R can be modified to promote
a specific behavior. The optimal solution of (5) for a fixed
mode q in the entire time horizon (i.e. a linear time-invariant
system) and with T →∞, can be found via the discrete time
algebraic Ricatti equation [15]:

Pq = A>q PqAq −A>q PqBq(R+B>q PqBq)
−1B>PqAq +Q

Kq = (R+B>q PqBq)
−1B>q PqAq (6)

ut = −Kqxt
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For a hybrid system with time-varying inertia, (5) is a
Quadratic Programming problem that can be solved directly,
using for example CVX [16]. We use the solution of (5) as a
benchmark of an optimal controller for our problem.

C. Data-driven based controller

In the presented framework of variable inertia we are
interested in learning a time-invariant controller of the form
ut = −KLxt where KL is a constant matrix. The training
dataset (x(k),u(k)) we use comes from the optimal solution
to (5) under different scenarios k = {1, . . . ,K}. The learning
algorithm we use is least-squares:

min
KL

K∑
k=1

T∑
t=1

∣∣∣∣∣∣u(k)t −KLx
(k)
t

∣∣∣∣∣∣2
2

(7)

It is interesting to notice that when we solve (5) for a single
mode q (in the entire time horizon) and a sufficiently long
time horizon T , least-squares returns the analytical solution
Kq from the LQR problem (6). This is because the optimal
controller from (5) is linear on the states, and with sufficient
training data (x(k),u(k)), (7) is a convex optimization pro-
gram that achieves Kq , and hence the optimal value is equal
to zero.

We assume a stressed case in which the equivalent inertia
can change rapidly over time. Thus, inertia is allowed to
change over time steps in each scenario. However, an equi-
valent training set can be generated by fixing the mode q
at each scenario k, and only changing the mode between
different scenarios. Each scenario in this training set would
represent, for instance, a different hour of the year. During an
hour, inertia could be considered fixed, and a different optimal
controller would be obtained for each scenario.

D. Incorporating virtual inertia in the system

Depending on how we generate the training set (x(k),u(k)),
the controller we propose may not be stable in modes where
the inertia is too low. The learned controller may not be fast
enough to compensate the rate of change of the frequency. As
an alternative, a controller that depends on the derivative of
the frequency, KVω̇, can be used as a virtual inertia resource
for the system. Indeed, consider the fixed inertia continuous
time system and assume a controller of the form

u = −KL(θ
>, ω>)> −KVω̇ = −KLx− K̃Vẋ (8)

where K̃V = [0 KV], then:

ẋ =

[
0 I

−M−1L −M−1D

]
x−

[
0

M−1

]
(KLx+ K̃Vẋ)

Rearranging terms the system can be written

ẋ = (I + B̂K̃V )
−1(Â− B̂KL)x

=

[
0 I

−M̃−1(L+KL,θ) −M̃−1(D +KL,ω)

]
x

where M̃ = M(I + M−1KV) = M + KV provides a
new system wide equivalent inertia due to the virtual inertia

TABLE I
PARAMETERS FOR THE TWELVE-BUS THREE-REGION CASE STUDY [11],

[13] AND [17].

Parameter Value
Transformer reactance 0.15 p.u.

Line impedance (0.0001 + 0.001j) p.u./km
Base voltage 230 kV
Base power 100 MVA

Droop control 1.5 %/%

controller KV. To determine a proper KV we develop a
heuristic using a bisection method. We assume KV of the form
KV = kvIn×n. Iterating over kv, and assuming that ẋ in the
right hand side of the discretized system can be approximated
by [xt − xt−1]T−1s , we modify kv until the discretized closed
loop system for the low inertia modes has all its eigenvalues
inside the unit circle, making it stable.

III. SIMULATIONS AND RESULTS

A. Data description

Using MATLAB R© we modeled a twelve-bus three-region
network that has also been used in [11], [12], [13] and [17].
Each node has two states (angle and frequency). Table I shows
the parameters of the network.
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Fig. 1. Case study: Twelve-bus three-region network from [11], [12], [13]
and [17].

We assume the same rotational inertia in all buses for a
given time step t (mi(t) = m(t) for all i). This implies a
similar fraction of renewable energy generation for all nodes,
but this assumption can be easily extended. Each mode of
the hybrid system is given by one value of inertia. For the
study case we predefined possible inertia values for the system:
mq ∈ {0.2, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5, 9}. The average of this
set of possible inertia values is 2.8 seconds, which is equivalent
to having 28 percent of thermal generation (10 s of inertia)
and 72 percent of RES with zero inertia. Each simulation starts
with 2 seconds of inertia (mode q5), and from there– based on
a uniform distribution draw– the inertia (hybrid mode) of the
system at time t+1 will remain the same, increase, or decrease.
In our simulations we only allow the possibility to change
modes every 1, 4 or 10 time steps. For all the simulations
we use a time step of Ts = 0.01s. We generate K = 400
scenarios of 7 seconds each (T = 700). The initial conditions
we use in (5) are randomly drawn from a normal distribution
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Fig. 2. Eigenvalue placement for the closed loop system in mode q1 using
the learned controller KL (crosses) and adding virtual inertia control KL+VI
(circles).

with zero mean and unitary variance. The training set we use
to learn the controller KL using (7) are the optimal solutions
(x(k),u(k)) from (5).

B. Stability analysis

The design of the controller KL through learning provides a
stable closed loop system Aq −BqKL for every mode except
for q1. To correct this issue we use an approximated virtual
inertia controller K̃V(xt−xt−1)T−1s with K̃V = [0 KV]. The
new dynamics can be written as:

xt+1 = Aqxt +Bq[−KLx+ T−1s K̃V(xt − xt−1)]
= [Aq −Bq(KL − T−1s K̃V)]xt − T−1s BqK̃Vxt−1

Augmenting the states as zt+1 = (x>t , x
>
t+1)

>, our new system
can be written as:

zt+1 =

[
02n×2n I2n×2n

−T−1s BqK̃V Aq −Bq(KL − T−1s K̃V )

]
zt (9)

For the learned controller, adding a virtual controller of the
form KV = 0.15In×n results in eigenvalues of the augmented
system for mode q1 inside the unitary circle. This is depicted in
Figure 2, where it can be observed that there are two modes
that are unstable for the closed loop system only using the
learned controller (in red). When we incorporate the virtual
inertia controller all modes are stable (in blue).

C. Controllers’ comparison for fixed inertia

For each mode q, we compare the performance of the
learned controller KL and the learned controller with virtual
inertia, KL + VI, against the optimal controller from the
LQR formulation. Table II shows peaks (`∞ norm), `2 and
`1 norms for frequency deviations f and control inputs u,
and objective function values J for the different controllers
under different inertia modes (columns). The values in table
II represent increases in percentage with respect to the metrics
for the LQR controller. The learned controller is unstable in the
critical inertia regime (q1, lowest inertia). When adding virtual
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Fig. 3. Frequency deviations for node 1 for 5 different controllers from a
hybrid system simulation.

inertia, the controller becomes stable. The objective values for
the data-driven controllers are greater than for the LQR. This is
intuitive because the learned controllers have fixed parameters
over time while the LQR changes its parameters for each
mode. The `2 norm for the frequency is in general smaller
for the learned controllers than for the LQR controllers. On
the other hand, the `2 norm of the control action is higher than
in the LQR case.

D. Controllers’ comparison for time-varying inertia

We evaluate the performance of different controllers in a
simulation of the hybrid system switching among different
inertia modes. We assume that the system starts in mode
q2 = 0.5s, and possible transitions of inertia can occur every
4 time steps. Figure 3 depicts the evolution of frequency
deviation in node 1, under 5 different controllers for an initial
condition f0 = −0.15 Hz at every node. The controllers we
use are the following: In blue, the frequency is controlled using
the learned controller KL. In red, we show the learned and
virtual inertia controller KL +VI (ensure stability). Similarly,
cyan depicts a controller that uses KL and virtual inertia only
when the system is in the unstable mode q1. In black and green
we use the optimal controllers Kq obtained from (6) for modes
q3 = 1s and q8 = 5s, respectively. Around 4 seconds of the
simulation, the system enters mode q1 for around 0.4 seconds.
This provokes an instability for controllers K8 and KL. After
leaving the unstable mode the frequency is stabilized again.
The other controllers are able to maintain stability in all the
modes. In addition, key differences can be observed at the
beginning of the simulation. Controller K3 shows the highest
overshoot of the simulation, while controller KL +VI (in red)
is the fastest to peak due to the usage of the derivative of the
frequency. Finally, the frequency for the first and third case (in
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TABLE II
COMPARISON OF LEARNED CONTROLLER (KL ) AND LEARNED CONTROLLER WITH VIRTUAL INERTIA (KL + VI) AGAINST OPTIMAL CONTROL FROM

LQR UNDER DIFFERENT INERTIA MODES

Metric q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

||fKL ||∞ Unstable −21.1% −10.4% −5.4% −1.1% 2.6% 5.9% 8.8% 11.9% 14.4%
||fKL+VI||∞ 106.7% −16.1% −8.8% −4.3% −0.2% 3.5% 6.5% 9.5% 12.4% 14.4%

||fKL ||2 Unstable −9.0% −7.1% −5.5% −3.9% −2.5% −1.1% 0.2% 3.7% 11.2%
||fKL+VI||2 -7.2% -8.9% -7.4% -5.8% -4.3% -2.9% -1.5% -0.3% 3.2% 10.9%
||uKL ||∞ Unstable 3.2% −2.7% −5.9% −8.2% −10.2% −11.9% −13.3% −17.1% −15.2%
||uKL+VI||∞ 87.9% 3.2% −2.7% −5.9% −8.2% −10.2% −11.9% −13.3% −17.1% −15.2%
||uKL ||1 Unstable 13.3% 6.2% 2.5% −0.3% −2.7% −4.7% −6.5% −11.0% −19.7%
||uKL+VI||1 78.1% 19.0% 8.6% 4.2% 1.1% −1.4% −3.6% −5.5% −10.2% −19.1%
||uKL ||2 Unstable 12.2% 6.0% 4.6% 4.4% 4.6% 4.9% 5.3% 6.5% 9.2%
||uKL+VI||2 45.2% 16.4% 8.7% 6.6% 5.9% 5.8% 5.9% 6.1% 7.1% 9.4%

JKL Unstable 29.8% 39.9% 49.2% 57.8% 65.7% 73.2% 80.2% 98.9% 138.1%
JKL+VI 39.1% 31.6% 40.2% 49.0% 57.4% 65.3% 72.6% 79.5% 98.1% 137.3%

blue and cyan) are almost identical except when the system
is in the mode q1. This shows that if we can detect when the
system is in critical modes, we can apply virtual inertia control
only when it is necessary to obtain a better performance.

IV. CONCLUSIONS

In this paper we propose a new framework for obtaining a
constant data-driven controller for uncertain and time-varying
power system dynamics. This is relevant because it can be
intractable to solve frequency dynamics in real time (time-
varying LQR) in large power networks. In addition, time-
varying controllers, as the one from LQR, rely in the ability
to predict or identify the current mode of the hybrid system.
Finally, given the existing infrastructure and droop control, it
would be simpler to implement a proportional controller with
fixed gains compared to a time-varying control.

We use a switched affine hybrid system, where its modes
change based on the changes of inertia in the system [13], we
find optimal controllers using an LQR formulation. We use
the solution (x, u) from the LQR as a dataset to train a fixed
controller. We test our learned controller in different modes
against optimal controllers. Results show that our learned
controller can be used to obtain a similar performance as the
optimal LQR controllers in the different modes. Finally, we
show that adding a virtual inertia controller can stabilize the
system for low inertia modes. This highlights the importance
of using more flexible controllers when considering temporal
variability in the system dynamics. For future work we plan to
explore the performance of our controller with AC power flow,
voltage dynamics, machine dynamics and power electronics
(inverters) approximate dynamics. We will also compare our
proposed controller with a robust controller. We also plan to
study different learning algorithms with new features to test
the efficiency of the learned controller, in particular promoting
sparsity and information requirements using LASSO or Block
Sparse Regression.
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