Microprocessors and Microsystems 73 (2020) 102954

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Integrated moving target defense and control reconfiguration for)
securing Cyber-Physical systems et

Bradley Potteiger®*, Zhenkai Zhang®, Xenofon Koutsoukos®

aVanderbilt University Nashville, TN United States
b Texas Tech University Lubbock, TX United States

ARTICLE INFO ABSTRACT

Article history:

Received 29 April 2019

Revised 21 October 2019

Accepted 11 December 2019
Available online 17 December 2019

With the increasingly connected nature of Cyber-Physical Systems (CPS), new attack vectors are emerg-
ing that were previously not considered in the design process. Specifically, autonomous vehicles are one
of the most at risk CPS applications, including challenges such as a large amount of legacy software,
non-trusted third party applications, and remote communication interfaces. With zero day vulnerabilities
constantly being discovered, an attacker can exploit such vulnerabilities to inject malicious code or even
Keywords: leverage existing legitimate code to take over the cyber part of a CPS. Due to the tightly coupled nature

Moving target defenses
Cyber-Physical systems
Resiliency

Instruction set randomization
Address space randomization

of CPS, this can lead to altering physical behavior in an undesirable or devastating manner. Therefore, it
is no longer effective to reactively harden systems, but a more proactive approach must be taken. Moving
target defense (MTD) techniques such as instruction set randomization (ISR), and address space random-
ization (ASR) have been shown to be effective against code injection and code reuse attacks. However,
these MTD techniques can result in control system crashing which is unacceptable in CPS applications
since such crashing may cause catastrophic consequences. Therefore, it is crucial for MTD techniques
to be complemented by control reconfiguration to maintain system availability in the event of a cyber-
attack. This paper addresses the problem of maintaining system and security properties of a CPS under
attack by integrating moving target defense techniques, as well as detection, and recovery mechanisms
to ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of de-
tecting code injection as well as code reuse attacks, and reconfiguring fast enough to ensure the safety
and stability of autonomous vehicle controllers are maintained. By using MTD such as ISR, and ASR, our
approach provides the advantage of preventing attackers from obtaining the reconnaissance knowledge
necessary to perform code injection and code reuse attacks, making sure attackers can’t find vulnerabil-
ities in the first place. Our system implementation includes a combination of runtime MTD utilizing AES
256 ISR and fine grained ASR, as well as control management that utilizes attack detection, and recon-
figuration capabilities. We evaluate the developed security architecture in an autonomous vehicle case
study, utilizing a custom developed hardware-in-the-loop testbed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

tuation. It is critical to shift the CPS security focus into a more
proactive approach, aimed at creating more resilient architectures.

With the increasingly connected nature of Cyber-Physical Sys-
tems (CPS), new attack vectors are emerging. Normally, an adver-
sary will use memory corruption attacks to achieve manipulation
of the cyber sub-system, leading to alteration of the physical dy-
namics. As such, the compromise of safety-critical systems, as well
as commercial Internet of Things (IoT) devices opens the gates for
attackers to exfiltrate sensitive data, or inappropriately control ac-

* Corresponding author.
E-mail addresses: bradley.d.potteiger@vanderbilt.edu (B. Potteiger),
zhenkai.zhang@ttu.edu (Z. Zhang), xenofon.koutsoukos@vanderbilt.edu (X. Kout-
soukos).

https://doi.org/10.1016/j.micpro.2019.102954
0141-9331/© 2019 Elsevier B.V. All rights reserved.

Automobiles today are extremely complex systems of systems,
consisting of several hundred electronic digital components with
over a million lines of code. The internal automotive network con-
sists of a series of multiple communication buses such as CAN, LIN,
FlexRay, and MOST [42]. Due to the traditionally standalone design
of vehicle architectures, the communication and controller designs
prioritize functionality and cost over cybersecurity. Additionally,
with the majority of software being written in legacy code, vast
numbers of vulnerabilities are potentially included. With the in-
troduction of external interfaces such as infotainment centers and
telematics systems, adversaries now have remote avenues in place
to access the internal vehicle network [8].

2 B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954

The two primary instances of memory corruption attacks are
code injection and code reuse attacks. Code injection attacks ex-
ploit existing input vulnerabilities for injecting a custom designed
instruction payload that can be executed by control flow redirec-
tion [27]. For code injection attacks to be successful, the adversary
has to rely on knowing the native instruction set architecture of
the target machine. Code reuse attacks on the other hand leverage
existing code by diverting control flow to legitimate code segments
allowing the adversary to achieve his/her malicious goal even in
the cases where directly injecting code is not possible [35]. One
of the most popular examples of this type of attack is return ori-
ented programming (ROP) [34] in which case existing code gadgets
are chained together to form a program that can execute malicious
behavior. One of the most common memory corruption vulnerabil-
ities in legacy code leading to code injection and code reuse at-
tacks is the buffer overflow. Buffer overflow vulnerabilities allow
attackers to input data longer than designed, overflowing into ad-
jacent areas, and if properly designed, can be leveraged to redirect
control flow.

Moving Target Defenses (MTD) aim to prevent legacy vulnera-
bilities by dynamically changing system properties. Compared to
traditional defense mechanisms which focus on identifying mal-
ware, and suspicious communications, MTD focus on decreasing
the reconnaissance knowledge of the adversary with the goal of
minimizing the probability of successful reverse engineering, vul-
nerability discovery, and exploit deployment. Two MTD techniques
utilized in this paper are Instruction Set Randomization (ISR), and
Address Space Randomization (ASR). ISR is a technique for pro-
tecting against code injection attacks by changing the binary in-
struction set architecture to a randomized version that is not
known [28]. ASR is a technique for mainly protecting against code
reuse attacks by introducing diversity in the various segments
of a program to make external memory access unpredictable.
ASR can be implemented at various granularities including course
grained [24], and fine grained [41], while also having the ability to
be customized to protect the most critical memory segments [47].

In the CPS domain, even when successfully protecting against
cyber-attacks, it is equally as important to maintain reliable, safe,
and predictable operation of the system. With ISR and ASR de-
ployed, code injection and code reuse attacks will be thwarted, but
an invalid instruction or invalid address access exception will be
generated, leading to program termination. In this sense, it is not
acceptable for a safety-critical system to stop functioning, as any
loss of availability can lead to unsafe actuation causing physical
damage. As such, there has to be recovery mechanisms in place
to keep the system up and running at all times, even when under
a cyber-attack campaign.

To address the difficulty of guaranteeing system availability,
while preventing code injection and code reuse attacks, we have
developed a security architecture that includes an AES 256 ISR
implementation for protecting against code injection attacks [14],
combined with a fine grained ASR implementation for protecting
against the relative, and direct control flow redirection necessary
for code reuse attacks [30]. Our security architecture consists of
three stages including attack protection (randomize, derandomize),
detection, and recovery. The main CPS challenge addressed in this
paper is protecting system integrity during cyber-attacks, while
maintaining system availability with safe and reliable operation.
Our paper makes the following contributions:

+ We develop a CPS security architecture for providing secure
protections against code injection and code reuse attacks by
utilizing AES 256 ISR, and function level fine grained ASR.

» We incorporate control reconfiguration into our security archi-
tecture for maintaining system availability in the event of a
cyber-attack.

« We implement a hardware in the loop testbed prototype using
a combination of off-the-shelf embedded computing hardware
and open source simulation software for analyzing the effects
of cyber-attacks and our security architecture in CPS environ-
ments consistent with deployment settings.

We present an autonomous vehicle case study to demonstrate
the effectiveness of our security architecture in limiting the
physical impact of code injection, and code reuse attacks on
driving safety.

The paper is organized as follows. Section 2 introduces the sys-
tem and attack model utilized throughout the paper. Section 3 de-
scribes the high level component organization of our security ar-
chitecture. Section 4 describes the implementation of our security
framework including the MTD implementation, and process flow
during a cyber-attack. Section 5 describes the evaluation of our
security architecture including a developed hardware-in-the-loop
testbed, and autonomous vehicle case study. Section 6 describes
current limitations of our security framework, as well as our plans
to address them. Section 7 describes related work for our paper.
Finally, Section 8 ends the paper with concluding remarks.

2. System model

An exemplary vehicle system model is shown in Fig. 1. This
model includes 6 components: a sensor cluster, actuator cluster,
driving controller, telematics control unit (TCU), remote function
actuator (RFA), and RFID sensor. The sensor cluster provides crit-
ical data representing the current state of the vehicle such as the
speed, position on the track, and heading. The actuator cluster pro-
vides the ability to manipulate vehicular behavior such as steering
and acceleration. The driving controller is responsible for perform-
ing computation based on the provided sensor cluster input, and
outputing commands to the actuation cluster. Both the TCU, and
RFA are responsible for providing the external interface for the ve-
hicle. The TCU monitors the various metrics of the system, trans-
mitting data to a remote operating station for maintenance and
emergency purposes. The RFA is responsible for determining the
presence of a key fob for allowing the vehicle to be turned on.

In the system model, the sensor cluster, actuator cluster, and
driving controller are on a safety-critical CAN bus network, includ-
ing both communication authentication to prevent spoofing, and
integrity checking within the driving controller to ensure that uti-
lized sensor data is accurate. On the other hand, the TCU, and RFA
communicate with the driving controller through a low priority
CAN bus interface. Since these components are the most vulnerable
to remote attacks due to being connected to external communica-
tion channels, the safety-critical and low priority communication
buses protect against the TCU and RFA directly controlling the sen-
sor or actuator ECU clusters. However, to detect the presence of
the key fob, the driving controller constantly polls for status up-
dates from the RFA. This communication is authenticated to pre-
vent message spoofing, but there is a buffer overflow vulnerability
in the driving controller that provides an opportunity for memory
corruption attacks.

2.1. Attack model

The attack model for this paper focuses on code injection and
code reuse attacks on a vehicle network. The authors in [2] note
that the biggest current threat to self driving vehicles is exploita-
tion through remote avenues. As such, the attack vector utilized in
this paper consists of the adversary compromising the TCU through
the remote cellular interface, and consequently pivoting to hijack
the RFA. With access to a direct communication channel with the
driving controller, the adversary can craft a message payload to

B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954 3

take advantage of the buffer overflow vulnerability and alter con-
trol. At this point two options are presented: a code injection at-
tack which inputs executable code directly on the driving con-
troller stack, and a code reuse attack which strategically diverts the
driving controller control flow to other locations in program mem-
ory. By utilizing these two attack techniques, the physical dynam-
ics of the vehicle can be significantly altered consequently compro-
mising safety.

2.2. Problem formulation

With the possibility of a code injection or code reuse attack
on the vehicle network, data integrity is not just threatened but
safety can be compromised. In the case of a safety-critical CPS
such as an automobile, alteration to normal controller functional-
ity can lead to physical damage. Additionally, a loss of availability,
even in the event of successful cyber-attack mitigation can be just
as detrimental to the physical safety of the system. The problem
that we aim to solve is how to protect against code injection and
code reuse attacks effectively, while reconfiguring fast enough to
maintain safety and stability of the CPS. We hypothesize that by
utilizing ISR and ASR in combination with control reconfiguration
within a developed security architecture, we can not only protect
against code injection and code reuse attacks, but can maintain
safe operation throughout cyber-attack events.

Five assumptions are made for our approach to be success-
ful. First, it is assumed that the sensor and actuator clusters are
fully secure. The driving controller ECU contains the buffer over-
flow vulnerability utilized for control hijacking, while the TCU and
RFA contain vulnerabilities allowing for key fob message spoofing.
Second, the attacker has full knowledge of the system architecture
necessary to craft an accurate payload. Third, the attacker has com-
plete knowledge of the architecture of safety-critical controllers
like the steering controller. Fourth, the attacker has knowledge of
the beginning address of the buffer input on the driving controller
stack. Fifth, the attacker has knowledge of the relative memory lo-
cation of the current driving controller function return address on
the stack from the beginning of the input buffer. After this knowl-
edge is gained, the attacker crafts an input payload to overwrite
the current return address to divert control flow to either the in-
jected payload, or existing control function. At this point, the ad-
versary can cause the vehicle to enter an unsafe state by altering
the physical behavior of the car. These assumptions are not im-
practical given examples demonstrated in the literature [25].

In the rest of this paper we discuss a developed security archi-
tecture aimed at preventing the vulnerabilities discussed in our at-
tack model. The objectives of our security architecture include the
following:

1. Any implemented software must maintain safe and reliable per-
formance of the CPS. This includes minimizing the security ar-
chitecture overhead, and ensuring that all real time deadlines
are met.

2. Implement reliable detection mechanisms for monitoring and
flagging attack events.

3. Implement reliable recovery and control reconfiguration mech-
anisms to maintain safe system operation and minimize system
downtime. This is especially crucial in CPS applications where
the cyber controller crashing, even when experiencing a cyber-
attack can result in devastating consequences.

To evaluate the effectiveness of our architecture within the con-
text of an autonomous vehicle case study, we utilize a developed
hardware-in-the-loop testbed. We further utilize physical metrics
such as vehicle position combined with software metrics like per-
formance overhead and recovery time to assess safety in both nor-
mal operation and attack scenarios. Finally, to conclude that our
hypothesis is true two observations need to be clear from the re-
sults: 1) The performance overhead needs to be minimal enough to
ensure that execution times do not exceed designed real time con-
straints and 2) Vehicles need to follow safe driving behavior, main-
taining a safe position near the center of the road while avoiding
driving off the road or colliding with obstacles. In the event that
both of these observations are true, we can conclude that our ar-
chitecture is successful.

3. Architecture

In Fig. 2, a high level overview of our security architecture is
presented. The key components are the (1) Configuration Manager
(CM) that oversees, customizes, and adjusts the operation of the
various operating components, (2) CPS Controllers which control
the physical plant, (3) Dynamic Binary Translator (DBT) which pro-
vides a sandboxed runtime environment for each CPS controller,
and (4) Operating System Kernel which handles the task schedul-
ing and exception detection. We assume that each CPS controller
in our architecture may be vulnerable to cyber-attacks by the ad-
versary, but the remaining components are secure. Our security ar-
chitecture is designed with the goal of keeping the CPS controller
from becoming compromised by the attacker. These components
are described below.

Configuration Manager (CM): This process oversees and main-
tains the operation of the security architecture, including all un-
derlying components such as DBT, CPS controllers, and network
communication. Additionally, the CM is responsible for detecting
cyber-attacks, and executing the reconfiguration process to trans-
fer execution to the backup controller in the case that the de-
fault controller is compromised. Signal handlers are implemented

Sensor Cluster

Speed
Lidar
Orientation

N

Telematics Control Unit

Monitor System

Actuator Cluster Driving Control ECU

Steering

Steering

Throttle/Brake Throttle

Remote

Function RFID

Actuator SENSOr | g
Relay

Fig. 1. Vehicle Architecture Diagram.

4 B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954

Network
Configuration St
Manager __Program Attack
] Program, *
Spawn/Kill Program_
DBT ;
Adépter I Prrorcesrsers> ; - : DBT
Event , i ..
) Change Programy

Monitor Schedule DBT Configuration,

N

Signal to Inform

Schedule Signal to, Terminate

" RT-Scheduler

B

OS-Kernel ™

Hardware Exception

7/

fExceptiqn_ Handlers

Execute Instruction

Hardware

v

Invalid Instruction or Segmentation Fault

Fig. 2. Control Architecture [30].

to capture exception events caused by failed cyber-attacks. After
attack detection, reconfiguration algorithms determine the appro-
priate controller process to transfer to, and execution can be es-
tablished through the use of POSIX signals.

CPS Controller: The CPS controller controls the physical dy-
namics of the system through receiving sensor data as input, and
outputting actuator commands through the use of computation al-
gorithms. Our architecture allows for incorporating domain specific
controllers representative of various CPS applications. The CPS con-
troller is the customized component in the architecture, potentially
containing vulnerabilities that can be exploited to achieve code in-
jection and/or code reuse attacks.

Dynamic Binary Translator (DBT): The DBT is responsible for
establishing an unique runtime environment for each CPS con-
troller in the architecture. This component manages the cus-
tomized runtime environment for each controller by initializing a
randomization key, randomizing the instruction and address space,
and derandomizing instructions as they are fetched at runtime.
This component allows for the dynamic generation of randomiza-
tion keys at load time, ensuring security is maximized by gen-
erating different randomization keys for each controller. For our
architecture, both AES 256 ISR, and fine grained ASR are sup-
ported. This component effectively sandboxes the underlying CPS
controller, leaving a code injection or code reuse attack ineffective
due to incorrect reconnaissance knowledge. The DBT is additionally
responsible for storing the generated randomization keys, allowing
for the maintenance of key confidentiality throughout the program.

Operating System Kernel: The operating system manages the
scheduling for our architecture, utilizing a rate monotonic schedul-
ing algorithm. Additionally, our detection algorithms in the CM are
based on exceptions such as an invalid instruction execution or in-
valid address access caused by a failed attack attempt. The operat-
ing system is POSIX-compliant, enabling signals used for one way
communication between architecture components.

4. System implementation

For our security architecture implementation, we focus on a
two stage approach, MTD and control reconfiguration. MTD is fo-
cused on providing protection against code injection, and code
reuse attacks, while control reconfiguration is focused on main-

taining system availability in the event of a cyber-attack. These
stages are discussed below. The main contribution of our archi-
tecture is the integration between these two stages, linking MTD
within the DBT to the control reconfiguration defined in the Con-
figuration Manager.

4.1. MTD Implementation

4.1.1. ISR

To perform a successful code injection attack, an adversary
must have knowledge of the system instruction set architecture to
craft a valid payload [14]. The adversary will be able to successfully
execute code directly on the target system only if the instructions
can be validly decoded. However, if the instruction set architecture
is not known, the attack will result in the process terminating due
to executing an invalid instruction. ISR leverages this adversary re-
quirement by dynamically changing the binary representation of
instructions, and decreasing the likelihood that the correct format
will be utilized in a code injection attack. As such, the adversary
will end up using an invalid instruction representation resulting
in control system termination. Our implementation supports both
XOR and AES 256 encryption. AES 256 encryption presents a higher
overhead to the system, but also provides a higher level of security
for safety-critical applications.

At load time we first dynamically generate a randomization key.
As the program is loaded into the DBT application memory, an al-
gorithm will encrypt each instruction with the generated key. At
runtime, as each instruction is fetched by the DBT, it will first be
decrypted with the same key before it is passed along to the pro-
cessor. In this case, since the instructions are encrypted before run-
time, even if the attacker is able to inject malicious instructions
into the program with the original format, once the instructions
are fetched by the DBT, they will be “decrypted,” resulting in a
new invalid instruction representation. As such, once these attacker
instructions reach the processor, they will result in an exception.
The exception will then be detected by the Configuration Manager
which then triggers the reconfiguration process in the architecture.
The ISR process is described in Algorithm 1.

B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954 5

Algorithm 1 PAG Integrity Check.

Algorithm 2 ASR Implementation.

P = Program Code Segments
[* At Load Time */
key = generateAESKey()
for Instruction I in P do
| E = AESEncrypt(l, key)
end
/* At Run Time */
N = Instructions Sent To Processor
for E in Fetched Instructions do
| 1= AESDecrypt(E, key)
end

4.1.2. ASR

To perform a successful code reuse attack, an adversary must
have knowledge of the memory layout, specifically the locations
of safety-critical functions [43]. In a normal attack, control flow
will be redirected to these target functions to manipulate safety-
critical operations even in the case where code cannot be injected
directly. Since the target code already exists in the program, ISR
is not a feasible protection since that code will already be ran-
domized at load time along with the rest of the program. However,
ASR leverages the requirement of knowing the target function lo-
cation by changing the memory locations of various entities within
the program. Since the location of a target function will never be
the same for two separate program executions, the adversary will
hardly be successful in redirecting control flow to the respective
function. There are multiple levels of ASR, the most popular of
which is randomizing the base addresses of shared libraries, the
stack, and heap sections (e.g. Linux ASLR [6]). However, for higher
security applications, our architecture includes a fine grained ASR
implementation, randomizing memory locations at function level
granularity. There will be a higher level of performance overhead
compared to traditional ASR implementations, but this overhead
will mostly be limited to load time.

For our implementation, at load time we first iterate through
the binary ELF file to find the memory location of all function sym-
bols within the program, storing them in a table. We then iter-
ate through this table, switching function memory positions as we
go along. As instructions are fetched by the DBT, branch/calls with
absolute addresses are easily handled by patching the respective
branch/call instruction with the updated target address. However,
indirect branch/call instructions are more challenging to handle. In
this case, the target address needs to be accessed dynamically be-
fore branch/call patching can occur. To accomplish this, DBT con-
trol flow is altered to separate the current basic block into two
segments: one consisting of instructions up to the branch/call in-
struction, and one consisting of the specific branch/call instruction.
The first basic block segment is executed including an added in-
struction to access the register storing the respective target ad-
dress. At this point, the normal patching process can be executed
by checking the target address against the function table, and up-
dating the respective branch/call instruction with the new address.
Since the ASR process is completed dynamically for every CPS con-
troller binary at load time, running a program two times will result
in not only different memory locations of functions, but also dif-
ferent function orders for protecting against relative jumping. The
ASR process is described in Algorithm 2.

4.2. Control reconfiguration

In our security architecture, the binary is randomized at load
time, and derandomized instruction by instruction before they
reach the processor for execution. Our architecture supports mul-
tiple CPS controller instances, but by default includes a default

P = Program
F = Function Symbols
for Symbol S in P do
if S=function then
| Fappend(S)
end
for Symbol S in F do
R = selectRandom(F)
swapLocation(F,S)
end
or | in Every Jump do
S = findAssociatedFunctionSymbol(])
updateJump(S new address)

Iy

end

controller, and backup controller configuration. Each of these con-
trollers is sandboxed in a MTD environment within a DBT, enabling
both AES 256 ISR, and fine grained ASR with function level gran-
ularity. This DBT provides the ability to dynamically customize ex-
ecuting binaries, allowing for us to tap into the virtual pipeline
to change memory at load time, and derandomize instructions as
they are fetched. The MAMBO DBM environment has been utilized
to serve as the DBT in our framework [11].

When the architecture is started, the first component initiated
is the Configuration Manager. The Configuration Manager spawns
the CPS controllers inside of DBTs as child processes. This allows
the Configuration Manager to monitor the underlying vulnerable
controllers for cyber-attacks, as well as any other unsafe behav-
ior. Further, the Configuration Manager controls the execution of
the controllers, allowing for the transfer of control in the case of
an attack. By default, controllers are built to be put in a waiting
state once loaded, and the Configuration Manager then resumes
the default controller with a SIGCONTINUE POSIX signal. In both
DBT processes, a randomization key is dynamically generated, en-
suring that there will be a different randomization key for every
component instance. This key is stored inside of the DBT enclo-
sure and is utilized for the derandomization process. Since both
controllers are loaded inside of their respective DBT (MAMBO) ap-
plication memory, the DBT has the full ability to execute the de-
randomization throughout runtime.

When looking at a snapshot of our architecture process flow,
the default CPS controller will be operating under normal circum-
stances inside of a DBT. The backup controller will exist in a wait-
ing state. As each instruction from the default controller is fetched
by the DBT, it will be derandomized utilizing an AES decrypt op-
eration with the respective randomization key. At this point, the
instruction will be stored in a basic block data structure and sent
to the processor for execution. Once an attack is encountered, the
Configuration Manager has attack detection algorithms that han-
dle exceptions. After this point, the default controller is compro-
mised, and the Configuration Manager triggers the recovery pro-
cess by transferring execution to the backup controller with a SIG-
CONTINUE POSIX signal. Afterwards, a new default CPS controller
is spawned inside of a DBT enclosure to serve as the new backup
controller. By reconfiguring in this manner, a safe state can be en-
sured during unstable circumstances, while the benefits of the de-
fault high performance controller can be maintained during normal
operation.

For architecture implementation to be successful two assump-
tions must be true. The first assumption is that the operating sys-
tem, as well as the Configuration Manager process are secure. The
vulnerable component that we focus on in our threat model is the
CPS controller. The second assumption is that the communication
between the Configuration Manager and the DBT processes must

6 B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954

Simulation Workstation

TORCS Simulator - Eth
Simulator API

ECU Cluster

Wrapper

ﬂ Eth

Controller Board

Sensors
CAN

CAN

Actuator:

Fig. 3. Testbed Hardware Architecture.

be unidirectional. As such, the Configuration Manager will be able
to communicate to DBT processes through POSIX signals. By not al-
lowing communication in the other direction the threat of the Con-
figuration Manager becoming compromised through the CPS con-
troller is eliminated.

4.3. Recovery time analysis

During the course of an attack, it is important to ensure that
the CPS maintains safe and reliable operation. As such, it is impor-
tant to minimize the recovery time as much as possible to maxi-
mize normal operation. The recovery process is comprised of three
stages: detection, backup controller execution transfer, and backup
controller execution. The recovery time noted in this paper is mea-
sured from the time of attack occurrence to the time an actuation
command is sent from the backup controller.

The first phase, detection, consists of the Configuration Man-
ager determining the presence of an attack. During a code injection
or code reuse attack, the consequences will result in an exception
which will be caught by signal handler functionality within the
Configuration Manager component. This process is handled by the
operating system and can be considered negligible in comparison
to the overall recovery time. Once the attack is detected through
the Configuration Manager, the second phase consists of the pro-
cess of transferring execution to the backup controller. Since in our
implementation, the backup controller is loaded into memory with
a waiting state, the Configuration Manager only needs to send a
SIGCONTINUE POSIX signal to the backup controller to trigger the
process to resume execution. Since POSIX signals are handled by
the operating system, the time of this phase can also be considered
negligible. The final phase, which encompasses the largest portion
of the recovery process is the backup controller execution to com-
pute a new actuation value. With the assumption that the default
and backup controller both have the same defined period P, the
recovery time taken from resuming execution to actuation trans-
mission will be P.

During runtime, an attack can occur at any point throughout
the period. At best, the attack will occur right after a deadline, al-
lowing the backup controller to produce an actuation command
at time P later, just after the next deadline instance. However,
at worse case an attack will occur just before a deadline occur-
rence. In this case, the backup controller will take over execution
and produce a new actuation command at time P later. Since the
new deadline will be defined as time P after the deadline follow-
ing attack, the actuation will be successfully computer before the
new deadline is encountered. As such, in the worst case scenario,
only the deadline immediately following the attack will be missed,
meaning that in our approach, only 1 deadline will be missed at
worst. By limiting the recovery downtime to one missed deadline,
we can resume normal operation fast enough in order to maintain
the stability of the CPS.

5. Evaluation
5.1. Experimental testbed

For analyzing our security architecture for CPS, it is important
to analyze both the cyber and physical dynamic effects. To max-
imize the compatibility of the framework, the software must be
testbed on platforms consistent with the deployment environment.
To support this work, a hardware-in-the-loop testbed was devel-
oped for aiding in measuring, and analyzing the cyber-attack ef-
fects as well as our security architecture performance overhead.
We utilize this testbed for implementing security experiments for
evaluating our MTD framework under varying scenarios.

5.1.1. Hardware architecture

Autonomous vehicles consist of a variety of interacting dis-
tributed components. As such, the backbone of our testbed re-
volves around open source embedded hardware. We break up a
CPS into various components including the simulation workstation
(physical plant), sensors and actuators, and computational compo-
nents. A local network provides communication capabilities within
the distributed CPS environment. To support realistic automotive
designs, the local network consists of both a 100 Mbps Ethernet
network, and a 1 Mbps CAN Bus network. For implementing high
complexity controllers, a NVIDIA Jetson TX2 board [10] is included
as the computational platform consisting of a Quad Arm A57 CPU
with 256 NVIDIA Pascall CUDA cores. For representing the lower
complexity intermediary sensor and actuator software in the ECU
cluster, Beaglebone Black 1 GHz ARM Cortex-A8 embedded com-
puting boards [9] are included. Finally, the simulation workstation
consists of a single i7 desktop computer with a 7200 RPM hard
drive. This hardware setup is illustrated in Fig. 3.

5.1.2. Software architecture

The software architecture of the testbed provides the capability
to implement real time CPS control algorithms to interact with and
operate an autonomous vehicle within a connected simulator.

Autonomous Vehicle Simulator: The autonomous vehicle sim-
ulator utilized in our testbed is the TORCS Racing Simulator [49].
TORCS can be run on Windows, Linux, and Mac computers, but
for our setup we have the simulator running on Ubuntu 16.04.
A socket based communication is provided to access variables in
the simulation, but we built a customized python API interface for
easing variable access from external processes in our testbed. The
simulator can be customized to output sensor values such as li-
dar, speed, brake, gear, track position, distance from start position,
vehicle heading, and position in the race. Among the outputs, the
user can change variables such as steering, acceleration, braking,
and gear value.

CPS Controller: The software for both the neural network and
safe controller exists on the NVIDIA Jetson TX2 board. This board
is configured with the Linux4Tegra 28.2 operating system, GPU li-
braries such as CUDA, and machine learning libraries such has Ten-
sorflow. The operating system is additionally patched with the RT-

B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954 7

PREEMPT patch. This patch allows for specifying real-time prior-
ities of executing processes at the application layer. Then priori-
ties are then a kernel level rate monotonic scheduler which han-
dles the sharing of resources. The configuration manager has the
highest priority, while the executing processes within the DBT are
premptible with a lower priority. Furthermore, buffer overflow vul-
nerabilities are inserted to test the effect of a code injection, and
code reuse attack on the overall system behavior.
Communication: To support automotive applications, multiple
communication interfaces are included such as Ethernet and CAN
bus. For Ethernet communication, the ZeroMQ (ZMQ) communica-
tion library in utilized. Additionally, for the CAN bus communica-
tion, an open source library called SOCKETCAN is utilized to sup-
port the communication between the control code and ECU cluster.

5.2. Case study

To demonstrate the capabilities of our security architecture, an
autonomous vehicle case study is utilized. The case study is based
on a platoon scenario, with one manual vehicle driving as the
leader and an autonomous vehicle as the follower. For the purpose
of evaluation, the follower vehicle will be the center of focus. The
follower vehicle system is composed of an ECU cluster containing
sensors such as lidar, heading, and speed sensors, as well as actu-
ators like steering, and throttle. A neural network is utilized as a
vehicle controller to take lidar, brake, gear, and speed data as input
while outputting actuation to control the steering, and acceleration
of the vehicle. Additionally, in the event of a cyber-attack, a safe
PID controller is utilized. This controller will be less optimal from
a physical control standpoint compared to the neural network, but
will be designed in a manner to ensure a higher degree of security,
and safety. The goal of the case study is to keep the car in a safe
state (center of the road), while maintaining a stable speed and
distance from the leader vehicle. To assess the effect of our secu-
rity architecture, several metrics are analyzed including controller
execution times, recovery time (system downtime/availability), ve-
hicle position (distance from center of road), and the vehicle dam-
age.

Neural Network Controller: The neural network controller is
built as a sequential model. The neural network architecture con-
sists of 5 layers with 20 nodes each. The model takes a vector of
9 lidar sensor values, speed, brake value, and gear value and pro-
duces a vehicle control sequence as output consisting of a throttle
and steering value for the car. This model is trained utilizing 10
hours of manual car driving data from the autonomous car sim-
ulator. The model produces consistent behavior of the car safely
driving around the track at approximately 80 mph following the
leader car which serves as a good baseline of operation for our se-
curity architecture. It is important to note that the controller lidar
input processing function includes non-bounded input presenting
a buffer overflow vulnerability on the controller.

Safe Controller: The safe controller is a simple PID controller
that computes the vehicle steering, and acceleration based on the
speed of the vehicle, as well as the Lidar data, and vehicle heading.
The controller aims to keep the vehicle in the center of the road.
The assumption is made that this controller has been proven to be
fully secure, and the adversary can not perform exploitation.

Additional Vehicle Processes: In addition to the vehicle driving
controller, multiple external controllers are implemented. These
controllers include a remote function actuator, and telematics con-
trol unit. As such, they present an additional overhead to the sys-
tem that must be taken into account when scheduling. Further-
more, these controllers provide for an external communication
interface that opens up an avenue for remote exploitation. The
telematics control unit is responsible for relaying vehicle informa-
tion such as speed, distance, and damage to a remote database

representing a central operating station for emergency and main-
tenance personnel. The remote function actuator is responsible for
determining the presence of a vehicle key fob, by sending a con-
stant message signal to the driving controller for polling purposes.
With the absence of this signal, the vehicle has built in logic to
shut off and terminate operation.

CAN Bus Message Synchronization: Since a CAN BUS uti-
lizes a broadcast based communication method, transmitted mes-
sages must be syncrhonized to ensure that packets are reliably re-
ceived. [44] notes that the worst case message transmission time
for an 8 byte CAN packet was found to be 138 microseconds. As
such, a CAN timeslot of 200 microseconds was chosen for syn-
chronizing transmitted messages. For the case study, 5 different
messages are transmitted in this order: the sensor input, key fob
detection message, telematics sensor data message, actuation out-
put, and telematics actuator data message. These message times-
lots will combine to form a communication period of 1 millisec-
ond. Furthermore, the 2 message gap between the received sensor
input, and transmitted actuator output provides a 400 microsec-
ond buffer for control computation. The message transmission or-
der can be observed in Fig. 4.

Configuration Manager Setup: The Configuration Manager is
responsible for initializing the underlying security architecture,
as well as providing attack detection and reconfiguration mecha-
nisms. For this case study, the Configuration Manager is configured
to spawn two underlying child processes consisting of a neural net-
work controller and safe controller. One instance of each will be
spawned inside of a DBT enclosure which provides a customized
vitualized environment including ISR with AES 256 encryption, and
fine grained ASR at function level granularity. The neural network
controller will be assigned to execute by default, while the safe
controller will assigned the role of backup controller, remaining in
a waiting state. The detection algorithm is configured to be trig-
gered by an invalid instruction or invalid address exception caused
by an attack failure due to the MTD defense mechanisms. Upon
attack detection, the reconfiguration algorithm will transfer execu-
tion to the backup safe controller and spawn a new neural network
controller instance with a new randomization environment. Upon
the vehicle reaching a stable state, execution will then be trans-
ferred back to the neural network controller.

5.3. Attack scenarios

For this case study we focus on exploits that rely on buffer
overflow based vulnerabilities. Two of the most common exploits
in this class are code injection and code reuse attacks. During these
two scenarios, the adversary will leverage unsecure communica-
tions between the remote function actuator and the neural net-
work driving controller to inject a malicious payload into a vul-
nerable input buffer. This buffer was manually inserted into the
high performance CPS controller to aid in the evaluation process.
At this point, the attacker can either execute customized code on
the stack, or can redirect control flow to other existing points in
the program to disrupt safety-critical behavior. The below scenar-
ios will be run under three circumstances for comparison 1) Base-
line - Normal operation where no attacks or defenses are in place
2) Attack - An adversary executes an attack without any defenses
in place 3) Defense - An adversary executes an attack, but our se-
curity architecture is in place.

5.3.1. Scenariol: Code injection attack

This scenario involves an autonomous vehicle starting out driv-
ing on a straight road. At the point where the vehicle starts to take
a turn at 70 seconds into the simulation, an adversary spoofs a ma-
licious RFA packet to exploit a buffer overflow vulnerability in the
operating neural network controller, and execute a code injection

8 B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954

Ous 200us 400us

600us 800us 1000us

Key Fob

S Dat.
ensor Data Detect

Telematics
Sensor Data

Telematics
Actuator Data

Actuator
Output

Fig. 4. CAN Bus Message Timeslots.

attack. The spoofed packet will contain an executable instruction
payload to start a malicious controller that transmits false steering
and throttle messages to cause the vehicle to drive straight at full
speed, failing to turn on the curve, and consequently driving into
a wall.

5.3.2. Scenario2: Code reuse attack

This scenario starts off the same as the first scenario with an
autonomous vehicle driving on a straight road and then turning on
a curve. The adversary leverages a buffer overflow vulnerability in
the neural network controller found through reconnaissance efforts
and spoofs a malicious packet as input to the buffer at 70 seconds
into the simulation. Instead of executing code directly on the stack
like in scenario 1, the attacker will craft the exploit specifically to
overwrite the return address of the current controller function to
redirect control flow to an existing safety-critical function in the
program that causes the vehicle to turn left. By continuously redi-
recting control flow back to this function, the vehicle will move
into a state of continuously turning left in circles. The goal of the
attacker is to put the vehicle in this state with the hope of causing
a crash into a wall, or by approaching vehicles from behind.

5.4. Overhead results

As the target sampling rate is 20 Hz, requiring a 50 ms dead-
line, it is critical to have a low overhead in respect to the security
architecture. To accurately measure the overhead of our architec-
ture, we measure the time taken between the CPS controller re-
ceiving sensor input, and transmitting actuation output. This time
difference represents the amount of time taken for computation
by the controller. We repeat this process for 1000 iterations of
the controller with varying inputs to identify an average execu-
tion time for the controller process. By measuring the average ex-
ecution times for the CPS controller without our architecture, and
with our architecture, we can have a relative comparison of the
overhead that our architecture presents.

When observing Figs. 5, and 6, the overhead created with both
ISR and ASR enabled is minimal enough to maintain execution

NN Con'groller Performance

ISR/ASR |

No ISR/ASR

80 100 120 140 160 180 200 220 _ 240
Execution Time (us)

Fig. 5. Neural Network Controller Execution Times.

Safe Controller Performance

T

ISR/ASR |

No ISR/ASR |- |- - - - -—— 1

36 38 40 42 44 46 48 50 52
Execution Time (ns)

Fig. 6. Safe Controller Execution Times.

times under the respective real time deadlines. For example, when
looking at the low complexity controller (safe controller) execu-
tion times, overhead is about 10.2%, bringing the average execu-
tion time from approximately 39 nanoseconds to 43 nanoseconds.
Additionally, this overhead brings the worst case execution time
from 42 nanoseconds to 51 nanoseconds. These results represent
the lower bound of our architecture overhead. When looking at the
complex controller (neural network controller), we can obtain a
more accurate representation of the upper bound of the overhead.
In this case, the average execution time will increase from approx-
imately 100 microseconds to 210 microseconds, a 110% overhead.
The worst case execution time will consequently increase from 267
microseconds to 580 microseconds. However, even with a scaling
factor of 10, this is still well under the 50 millisecond deadline,
leaving room for scheduling other complementary tasks in the rate
monotonic scheduling algorithm.

5.5. Worst case recovery time

It is not only important to meet the real time deadlines under
normal circumstances, but it is equally as critical to meet deadlines
when a cyber-attack occurs. As such, during an attack scenario,
the attack must be detected and the architecture must reconfig-
ure fast enough to meet the appropriate real time deadline, and
consequently maintain safety and stability of the controllers. Fig. 7
illustrates the respective recovery times of the complex and safe
controller. To measure the recovery time, we recorded the time
difference between the last actuation transmission and when the
backup controller sends the next actuation transmission after re-
suming execution.The average recovery time observed is approxi-
mately 1.158 ms, while the worst case observed was 1.230 ms. This
means that in all of the experimental iterations, the architecture is
able to recover in time to meet the respective deadline. However,
when assessing the absolute worst case scenario, the cyber-attack
will occur close to the end of the period. With a worst case safe
controller execution time of approximately 52 ns, the next actua-
tion command will be ready at the time 50 ms + 52 ns after the
last actuation command, essentually equating to just after the next

B. Potteiger, Z. Zhang and X. Koutsoukos/ Microprocessors and Microsystems 73 (2020) 102954

12 T

Attack Recovery Time
|- Recovery Times

Count

1100 1120 1140 1160 1180 1200 1220 1240
Recovery Time (us)

Fig. 7. Attack Recovery Times.

period starts. This means that in the worst case scenario, the re-
covery process will miss at most one deadline. During these cir-
cumstances, a fail safe mechanism is implemented in the Configu-
ration Manager to send the last actuation command to the physical
plant until the safe controller fully takes over execution.

5.6. Safety-Critical results

Fig. 8 illustrates the vehicle position relative to the center of
the road with respect to the code injection attack scenario. At ap-
proximately 70 seconds into the simulation a malicious payload
is injected in an attempt to hijack control of the vehicle. In the
case where MTD defense mechanisms were not enabled, the pay-
load successfully spawns a malicious controller that results in the
vehicle driving off of the road and crashing into a side wall at ap-
proximately 80 seconds. At this point, the vehicle will sustain dam-
age and skid along the wall until reaching a complete stop around
120 seconds. However, when looking at the code injection scenario
where MTD defense mechanisms are enabled, once the payload is
injected, successful recovery to the safe controller occurs, provid-

Code Injection Attack Scenariq

12
- Attack without MTD/Reconfiguration
10k — Attack with MTD/Reconfiguration
— Baseline

o :
|
U 8f
-t
[}
E
—
3
=
@)
| .
(7]
+—
c
Q
O

_2 L L L ! L

0 20 40 60 80 100 120

Time (seconds)

Fig. 8. Vehicle Road Center Offset Time Plot.

9
- Code Reuse Attack Scenario
— Attack without MTD/Reconfiguration
= Attack with MTD/Reconfiguration
8- — Baseline

E : ‘

[}

D 6

E

)

[}

&

[-

(@)

—_

(7]

et

c

(@}

O

_2 L L L L L
0 20 40 60 80 100 120

Time (seconds)

Fig. 9. Code Reuse Scenario Road Center Offset Time Plot.

ing control stability while the vehicle is driving on the track curve.
Once the vehicle reaches a more stable state (straight road), at 95
seconds, the neural network controller will resume execution, and
the vehicle behavior becomes more closely aligned with the base-
line scenario.

In the second scenario where a code reuse attack is executed,
Fig. 9 illustrates the vehicle distance from the center of the road.
At 70 seconds into the simulation, the payload is injected into
the vulnerable input buffer. At this point, when ISR and ASR are
not enabled, control flow is successfully redirected to the turn left
function, causing the vehicle to constantly move left in a loop, and
explaining the oscillating distance behavior in the plot. However,
when ISR and ASR are enabled, the attack will fail due to an invalid
memory exception, and recovery will occur to the safe controller.
Similarly to scenario 1, once the vehicle reaches a more stable state
past the curve in the road, reconfiguration then transfers back to
the newly spawned neural network controller for the rest of the
simulation.

6. Limitations

Under the current implementation of our security architecture,
there are a few limitations. These limitations are described below,
as well as our plans to address them in the future.

During the normal reconfiguration process, once an attack is
detected, an execution transferring process takes place to restore
execution to the backup CPS controller. At this point a new default
controller instance is spawned to serve as the new backup con-
troller in the architecture. However, this process requires a mini-
mum amount of recovery time to ensure that both controllers are
fully loaded and operational. In the case of a rapid attack cam-
paign, partial protection is provided by leveraging different CPS
controllers with different software structure. This means that at-
tackers can't infiltrate both controllers with the same attack tech-
niques. However, if a new vulnerability is found in the backup con-
troller, another recovery process can ensue. If a rapid attack cam-
paign occurs, the system could be forced to remain in a constant
recovery state, potentially leading to denial of service behavior. If
this behavior occurs, a fail safe mechanism can be implemented to
stop the vehicle at a safe position on the road, and wait for further
assistance from the operators.

For our current implementation, a DBT is needed for customiz-
ing the runtime environment of the CPS controller. Even though
several benefits have been demonstrated with the introduction of

10 B. Potteiger, Z. Zhang and X. Koutsoukos/Microprocessors and Microsystems 73 (2020) 102954

fine grained ASR compared to course grained ASR, the utilization
of a DBT provides a degree of performance overhead that could be
a limiting factor in applications with tight real time deadlines. As
such, a design time decision is needed to determine the applicabil-
ity of utilizing this type of approach with respect to safely handling
this performance overhead.

For this work, we focus on two popular attack vectors includ-
ing code injection, and code reuse attacks. The MTD techniques
of ISR, and ASR are effective in mitigating against these types of
attacks. However, another popular attack vector is a non-control
data attack. These types of attack can overwrite adjacent safety-
critical variables for the purpose of altering the computation out-
put of controllers. To address this attack vector, we plan to im-
plement data space randomization and integrity checking mecha-
nisms to ensure the authenticity of safety-critical variables in our
program [31].

To ensure the integrity of our security architecture, the random-
ization keys must remain secure. In some cases, side channel at-
tacks have been shown to be effective techniques to reverse engi-
neer software to potentially defeat the randomization of CPS con-
trollers [18,21]. Currently, we randomize CPS controllers with dif-
ferent keys to provide a basic protection against a widespread side
channel attack effect. However, in the future we plan on imple-
menting dynamic reconfiguration to periodically update the ran-
domization keys of controllers to mitigate against reconnaissance
efforts through side channel means.

7. Related work

An overwhelming amount of security advisories from US Cert
have described memory corruption attacks as the top major risk
to systems, enabling attackers to execute remote code on critical
systems [19]. Numerous vulnerabilities have been found in cur-
rent automobile models [1,25]. Automobile security research gen-
erally focuses on hardening systems based on finding vulnerabili-
ties through penetration testing, and implementing defense solu-
tions such as securing internal network communication [20], im-
plementing encryption, and authentication of data [17], and se-
curing external interfaces [13]. However, these methods tend to
be vulnerable to zero day exploits which leverage vulnerabilities
not known at design time. Once an adversary can gain entry to
the internal vehicle network through vulnerabilities in external
device interfaces such as the infotainment center, they have the
ability to interact with several safety-critical ECUs throughout the
system.

Memory corruption can be broken into four categories: code
corruption, control flow hijacking, information leakage and non-
control data attacks [43]. Exploitation often involves leveraging
programming bugs such as dangling pointers, integer, and buffer
overflows. Defense techniques for code injection attacks have been
proposed including W X protections such as DEP [48]. How-
ever, in response to these defense techniques, there has been
a rise in ROP based attacks, leveraging existing code segments
to accomplish attacker goals without the need for injecting cus-
tomized instruction payloads [34]. Memory corruption attacks to-
day have been found to still be a significant threat, despite decades
of research in defense protections, and the development of safe
programming languages [45]. In applications such as automobiles
where C/C++ legacy code still makes up the majority of software,
these types of vulnerabilites will exist for years to come.

ISR implementations range from hardware based FPGA imple-
mentations [40], to software implementaitons based on virtualiza-
tion in the operating system. Past implementations of ISR have
been based on utilizing emulators for customizing processor archi-
tecture representations [5,16]. However, ISR software implementa-

tions are based on DBT tools such as MAMBO [11], STRATA [36],
and PIN [22] that use dynamic instrumentation to create a vir-
tualization environment that can modify a program dynamically
at runtime, including the ability to alter instructions as they are
fetched. As such, programs can be randomized dynamically at load
time, and derandomized instruction by instruction as they are
fetched by utilizing a generated randomization key [29]. One re-
cent ISR implementation has been developed for Intel X86 ma-
chines utilizing the PIN DBT [29], while another implementation
focuses on the combination of ISR and course grained ASR with
respect to randomizing system calls [15]. However, our framework
is the first ISR implementation on ARM based systems utilizing the
DBT approach.

ASR has been implemented on Linux [6], Windows [19], Mac-
intosh [7], and mobile platforms [7]. The Linux version of ASR,
referred to as address space layout randomization (ASLR), is the
most widely utilized implementation, randomizing the base ad-
dresses of shared libraries, the stack, and heap by default. How-
ever, it is noted that on 32 bit Linux systems there are only 16 bits
of randomization and on 64 bit Linux systems there are 32 bits of
randomization [39]. There have been a couple of fine grained ASR
research prototypes including MARLIN [12]. However, our imple-
mentation is the first to include both ISR, and fine grained ASR on
ARM based systems. Our view is that this will allow our framework
to be applicable to the CPS, as the majority of these devices tend
to include ARM processors. [43] provides a good analysis of the
benefits of MTD techniques such as ISR, and ASR against memory
corruption attacks like code corruption, and control flow hijack-
ing. ASR was found to be the most prominent probabilistic MTD
technique against control flow hijacking attacks. There is a trade-
off however in the average 10% performance overhead required for
position independent compilation needed for the implementation,
compared to the increase in security. The importance of reducing
information leakage in a program was also emphasized for mini-
mizing the probability that the randomization key will be reverse
engineered.

With regards to recovery, there has been a wealth of work in
the area of software fault tolerance. Several existing methodologies
integrate N-Version programming to lower the probability of suc-
cessive attacks by implementing different software versions with
different structures, but similar semantics [3]. Additionally, check-
pointing techniques such as recovery blocks have been utilized
for rollback recovery implementations, allowing for controllers to
maintain state through the reconfiguration process [23,32,33]. Sim-
plex, which is the primary motivator of our security architecture,
has been a widely utilized fault tolerant architecture, which con-
sists of a complex controller, safety controller, and decision mod-
ule which switches execution between the two based on specific
events [38]. Several previous simplex based implementations in-
clude Secure System Simplex [26], Net Simplex [50], and L1 Sim-
plex [46]. Furthermore, simplex architectures have been popular in
safety-critical applications such as flight control systems [37], med-
ical devices [4], and unmanned aerial vehicles [51].

8. Conclusion

In this work, we have successfully leveraged ISR, and ASR to
protect against code injection, and code reuse attacks. We have ex-
tended our MTD security architecture to upgrade security by im-
plementing AES 256 encryption for ISR, and further adding fine
grained ASR support at function level granularity. These techniques
which greatly improve security have been shown to have high but
acceptable performance overhead in the autonomous vehicle case
study utilized in this paper. Furthermore, attack detection, and re-
covery methodologies have been successfully integrated to main-

B. Potteiger, Z. Zhang and X. Koutsoukos/Microprocessors and Microsystems 73 (2020) 102954 1

tain safe system availability in the case of cyber-attacks, address-
ing the drawbacks of traditional MTD approaches in leading to sys-
tem crashing. We describe our security architecture in terms of the
high level organization, as well as the process flow of the imple-
mentation. For evaluating, our security architecture we introduce a
developed hardware in the loop testbed that emulates CPS control
software on hardware consistent with a distributed CPS deploy-
ment environment, with the additional ability of assessing the net-
worked communication between the physical plant (TORCS sim-
ulator), ECU cluster, and controllers. By utilizing this testbed, we
were able to obtain live measurements and analysis of the system
in both normal operation, and under cyber-attacks. For the case
study, we evaluated several metrics of our security architecture in-
cluding controller performance overhad, system recovery time, and
physical safety metrics. It has been shown that the performance
overhead, and recovery time is minimal enough to support safe,
and stable vehicle driving controller operation. In the future, we
plan on integrating data space randomization, dynamic reconfigu-
ration, and time triggered functionality.

Declaration of competing interest

The authors certify that they have NO affiliations with or in-
volvement in any organization or entity with any financila inter-
est (such as honoraria; educational grants; participation in speak-
ers’ bureaus; membership, employment, consultancies, stock own-
ership, or other equity interest; and expert testimony or patent-
licensing arrangements), or non-financial interest (such as personal
or professional relationships, affiliations, knowledge or beliefs) in
the subject matter or materials discussed in this manuscript.

Acknowledgements

This work is supported in part by the Air Force Research Labo-
ratory (FA 8750-14-2-0180), the National Science Foundation (CNS-
1739328, CNS-1238959), and by NIST (70NANB17H266). Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of AFRL, NSF, or NIST.

References

[1] New vehicle security research by keenlab: experimental security assess-
ment of bmw cars - keen security lab blog, (https://keenlab.tencent.com/en/
2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-
Assessment-of-BMW-Cars/).

[2] securing_self_driving_cars.pdf, (http://illmatics.com/securing_self_driving_cars.
pdf) (Accessed on 12/05/2018).

[3] A. Avizienis, The n-version approach to fault-tolerant software, IEEE Trans.
Softw. Eng. (12) (1985) 1491-1501.

[4] S. Bak, D.K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, L. Sha, The sys-

tem-level simplex architecture for improved real-time embedded system

safety, in: Real-Time and Embedded Technology and Applications Symposium,

2009. RTAS 2009. 15th IEEE, IEEE, 2009, pp. 99-107.

E.G. Barrantes, D.H. Ackley, T.S. Palmer, D. Stefanovic, D.D. Zovi, Randomized

instruction set emulation to disrupt binary code injection attacks, in: Proceed-

ings of the 10th ACM Conference on Computer and Communications Security,

ACM, 2003, pp. 281-289.

S. Bhatkar, D.C. DuVarney, R. Sekar, Address obfuscation: an efficient approach

to combat a broad range of memory error exploits., in: USENIX Security Sym-

posium, 12, 2003, pp. 291-301.

[7] H. Bojinov, D. Boneh, R. Cannings, I. Malchev, Address space randomization for
mobile devices, Proc. Fourth ACM Conf. Wirel. Netw. Secur. - WiSec "11 (2011),
doi:10.1145/1998412.1998434.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al., Comprehensive experimen-
tal analyses of automotive attack surfaces., USENIX Security Symposium, San
Francisco, 2011.

[9] G. Coley, Beaglebone black system reference manual, Texas Instrument. Dallas
(2013).

[10] D. Franklin, Nvidia jetson tx2 delivers twice the intelligence to the edge,

NVIDIA Accelerat. Comput. — Parallel Forall (2017).

(5

6

[11] C. Gorgovan, A. D’antras, M. Lujan, Mambo: a low-overhead dynamic binary
modification tool for arm, ACM Trans. Archit. Code Optim. (TACO) 13 (1) (2016)
14.

[12] A. Gupta, S. Kerr, M.S. Kirkpatrick, E. Bertino, Marlin: a fine grained random-
ization approach to defend against rop attacks, in: International Conference on
Network and System Security, Springer, 2013, pp. 293-306.

[13] K. Han, A. Weimerskirch, K.G. Shin, Automotive cybersecurity for in-vehicle
communication, in: IQT QUARTERLY, 6, 2014, pp. 22-25.

[14] W. Hu,]. Hiser, D. Williams, A. Filipi, JW. Davidson, D. Evans,].C. Knight,
A. Nguyen-Tuong, J. Rowanhill, Secure and practical defense against code-in-
jection attacks using software dynamic translation, in: Proceedings of the
2nd International Conference on Virtual Execution Evironments, ACM, 2006,
pp. 2-12.

[15] X. Jiang, HJ. Wangz, D. Xu, Y.-M. Wang, Randsys: Thwarting code injection
attacks with system service interface randomization, in: Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International Symposium on, IEEE, 2007,
pp. 209-218.

[16] G.S. Kc, A.D. Keromytis, V. Prevelakis, Countering code-injection attacks with
instruction-set randomization, in: Proceedings of the 10th ACM Conference on
Computer and Communications Security, ACM, 2003, pp. 272-280.

[17] P. Kleberger, T. Olovsson, E. Jonsson, Security aspects of the in-vehicle network
in the connected car, in: Intelligent Vehicles Symposium (IV), 2011 IEEE, IEEE,
2011, pp. 528-533.

[18] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.
Prescher, M. Schwarz, Y. Yarom, Spectre attacks: exploiting speculative execu-
tion, arXiv:1801.01203(2018).

[19] L. Li, J.E. Just, R. Sekar, Address-space randomization for windows systems,
in: Proceedings - Annual Computer Security Applications Conference, ACSAC,
2006, doi:10.1109/ACSAC.2006.10.

[20] C.-W. Lin, A. Sangiovanni-Vincentelli, Cyber-security for the controller area net-
work (can) communication protocol, in: Cyber Security (CyberSecurity), 2012
International Conference on, IEEE, 2012, pp. 1-7.

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, M. Hamburg, Meltdown, ArXiv e-prints (2018).

[22] C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
VJ. Reddi, K. Hazelwood, Pin: building customized program analysis tools
with dynamic instrumentation, in: Acm Sigplan Notices, 40, ACM, 2005,
pp. 190-200.

[23] M.R. Lyu, Software Fault Tolerance, John Wiley & Sons, Inc., 1995.

[24] H. Marco-Gisbert, 1. Ripoll, On the effectiveness of full-aslr on 64-bit linux, In-
depth security conference, DeepSec, 2014.

[25] C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle,
Black Hat USA, 2015, 2015.

[26] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, M. Caccamo, S3a: secure system sim-
plex architecture for enhanced security and robustness of cyber-physical sys-
tems, in: Proceedings of the 2nd ACM International Conference on High Con-
fidence Networked Systems, ACM, 2013, pp. 65-74.

[27] A. One, Smashing the stack for fun and profit (1996), See http://www.phrack.
org/show.php (2007).

[28] G. Portokalidis, A.D. Keromytis, Fast and practical instruction-set randomiza-
tion for commodity systems, in: Proceedings of the 26th Annual Computer Se-
curity Applications Conference, ACM, 2010, pp. 41-48.

[29] G. Portokalidis, A.D. Keromytis, Fast and practical instruction-set randomiza-
tion for commodity systems, in: Proceedings of the 26th Annual Computer Se-
curity Applications Conference, ACM, 2010, pp. 41-48.

[30] B. Potteiger, Z. Zhang, X. Koutsoukos, Integrated instruction set randomization
and control reconfiguration for securing Cyber-Physical systems, in: Proceed-
ings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science
of Security, ACM, 2018, p. 5.

[31] B. Potteiger, Z. Zhang, X. Koutsoukos, Integrated data space randomization and
control reconfiguration for securing cyber-physical systems, in: Proceedings of
the 6th Annual Symposium and Bootcamp on Hot Topics in the Science of Se-
curity, ACM, 2019, p. 5.

[32] L.L. Pullum, Software Fault Tolerance Techniques and Implementation, Artech
House, 2001.

[33] B. Randell, System structure for software fault tolerance, IEEE Trans. Soft. Eng.
(2) (1975) 220-232.

[34] R. Roemer, E. Buchanan, H. Shacham, S. Savage, Return-oriented programming:
systems, languages, and applications, ACM Trans. Inf. Syst. Secur. (TISSEC) 15
(1) (2012) 2.

[35] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, T. Holz, Counterfeit
object-oriented programming: on the difficulty of preventing code reuse at-
tacks in c++ applications, in: Security and Privacy (SP), 2015 IEEE Symposium
on, [EEE, 2015, pp. 745-762.

[36] K. Scott, J. Davidson, Strata: a software dynamic translation infrastructure, IEEE
Workshop on Binary Translation, 2001.

[37] D. Seto, E. Ferreira, T.F. Marz, Case study: development of a baseline controller
for automatic landing of an f-16 aircraft using linear matrix inequalities (Imis),
Technical Report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-
NEERING INST, 2000.

[38] L. Sha, Using simplicity to control complexity, IEEE Softw. 18 (4) (2001) 20-28.

[39] H. Shacham, M. Page, B. Pfaff, E.-]. Goh, N. Modadugu, D. Boneh, On the ef-
fectiveness of address-space randomization, in: Proceedings of the 11th ACM
Conference on Computer and Communications Security - CCS '04, 2004, doi:10.
1145/1030083.1030124.

12 B. Potteiger, Z. Zhang and X. Koutsoukos/Microprocessors and Microsystems 73 (2020) 102954

[40] K. Sinha, V. Kemerlis, V. Pappas, S. Sethumadhavan, A.D. Keromytis, Enhancing
security by diversifying instruction sets, Coumbia University Report (2014).

[41] KZ. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, A.-R. Sadeghi,
Just-in-time code reuse: On the effectiveness of fine-grained address space
layout randomization, in: Security and Privacy (SP), 2013 IEEE Symposium on,
IEEE, 2013, pp. 574-588.

[42] I Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kadniche, Y. Laarouchi, Sur-
vey on security threats and protection mechanisms in embedded automotive
networks, in: Dependable Systems and Networks Workshop (DSN-W), 2013
43rd Annual [EEE/IFIP Conference on, IEEE, 2013, pp. 1-12.

[43] L. Szekeres, M. Payer, T. Wei, D. Song, Sok: eernal war in memory, in: Security
and Privacy (SP), 2013 IEEE Symposium on, IEEE, 2013, pp. 48-62.

[44] K. Tindell, A. Burns, A.J. Wellings, Calculating controller area network (can)
message response times, Control Eng. Pract. 3 (8) (1995) 1163-1169.

[45] V. Van der Veen, L. Cavallaro, H. Bos, et al, Memory errors: the past, the
present, and the future, in: International Workshop on Recent Advances in In-
trusion Detection, Springer, 2012, pp. 86-106.

[46] X. Wang, N. Hovakimyan, L. Sha, L1simplex: fault-tolerant control of cyber-
physical systems, in: Proceedings of the ACM/IEEE 4th International Confer-
ence on Cyber-Physical Systems, ACM, 2013, pp. 41-50.

[47] Z. Wang, R. Cheng, D. Gao, Revisiting address space randomization, Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 2011, doi:10.1007/
978-3-642-24209-0_14.

[48] R. Wartell, V. Mohan, KW. Hamlen, Z. Lin, Binary stirring: self-randomiz-
ing instruction addresses of legacy x86 binary code, in: Proceedings of the
2012 ACM Conference on Computer and Communications Security, ACM, 2012,
pp. 157-168.

[49] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, A. Sum-
ner, Torcs, the open racing car simulator, Software available at http://torcs.
sourceforge.net 4 (2000).

[50] J. Yao, X. Liu, G. Zhu, L. Sha, Netsimplex: controller fault tolerance architecture
in networked control systems, IEEE Trans. Ind. Inf. 9 (1) (2013) 346-356.

[51] M.-K. Yoon, B. Liu, N. Hovakimyan, L. Sha, Virtualdrone: virtual sensing, actua-
tion, and communication for attack-resilient unmanned aerial systems, in: Pro-
ceedings of the 8th International Conference on Cyber-Physical Systems, ACM,
2017, pp. 143-154.

Bradley Potteiger is a PhD student in the Department of
Electrical Engineering at Vanderbilt University with a re-
search affiliation at the Institute for Software Integrated
Systems. He received his MS. degree from Vanderbilt Uni-
versity in Electrical Engineering and his BS. degree in
Computer Engineering from the University of Maryland,
Baltimore County. His research at Vanderbilt is focused
on Cyber Physical System (CPS) security with respect to
protecting safety critical systems. Through his research he
has worked with various research organizations within
the government sector and industry.

	Integrated moving target defense and control reconfiguration for securing Cyber-Physical systems
	1 Introduction
	2 System model
	2.1 Attack model
	2.2 Problem formulation

	3 Architecture
	4 System implementation
	4.1 MTD Implementation
	4.1.1 ISR
	4.1.2 ASR

	4.2 Control reconfiguration
	4.3 Recovery time analysis

	5 Evaluation
	5.1 Experimental testbed
	5.1.1 Hardware architecture
	5.1.2 Software architecture

	5.2 Case study
	5.3 Attack scenarios
	5.3.1 Scenario1: Code injection attack
	5.3.2 Scenario2: Code reuse attack

	5.4 Overhead results
	5.5 Worst case recovery time
	5.6 Safety-Critical results

	6 Limitations
	7 Related work
	8 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

