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Abstract— As more non-synchronous renewable energy
sources (RES) participate in power systems, the system’s
inertia decreases and becomes time dependent, challenging
the ability of existing control schemes to maintain frequency
stability. System operators, research laboratories, and academic
institutes have expressed the importance to adapt to this new
power system paradigm. As one of the potential solutions,
virtual inertia has become an active research area. However,
power dynamics have been modeled as time-invariant, by not
modeling the variability in the system’s inertia. To address this,
we propose a new modeling framework for power system dy-
namics to simulate a time-varying evolution of rotational inertia
coefficients in a network. We model power dynamics as a hybrid
system with discrete modes representing different rotational
inertia regimes of the network. We test the performance of
two classical controllers from the literature in this new hybrid
modeling framework: optimal closed-loop Model Predictive
Control (MPC) and virtual inertia placement. Results show
that the optimal closed-loop MPC controller (Linear MPC)
performs the best in terms of cost; it is 82 percent less expensive
than virtual inertia placement. It is also more efficient in terms
of energy injected/absorbed to control frequency. To address
the lower performance of virtual inertia placement, we then
propose a new Dynamic Inertia Placement scheme and we find
that it is more efficient in terms of cost (74 percent cheaper) and
energy usage, compared to classical inertia placement schemes
from the literature.

I. INTRODUCTION

In power systems, frequency will deviate from its nominal
value when there is a mismatch between electricity genera-
tion and consumption [1]. There exists a set of mechanisms
to prevent frequency excursions. The first automatic response
when frequency starts to deviate is the inertial response.
This inertial response is originated from the kinetic energy
supplied to the grid by the synchronous generators. This
inertia (present in rotating masses of generators and turbines)
determines the instantaneous frequency change when imbal-
ances of active power occur. Therefore, more inertia in the
system will translate into a slower rate of change of the
frequency. As the frequency starts deviating, some generators
will respond automatically through governor response [2].
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Governor response or droop control is an automatic control
proportional to the frequency deviation. After droop control
starts actuating, slower mechanisms (e.g. spinning reserves)
participate to restore frequency to its nominal value [2].

It is a crucial aspect for the operation and stability of
electrical systems to maintain the grid frequency within
acceptable ranges. Nowadays, large shares of renewable en-
ergy sources (RES) are being integrated into power systems.
Several countries have set ambitious goals for the future to
provide more electricity using renewable energy [3] and/or
reducing their CO2 emissions. This global drive will steer
the power system to a grid dominated by RES [4]. In
this scenario, renewable sources, such as wind and solar,
are usually connected to the grid through inverters, which
decouple their rotational inertia (if existing) from the grid.

Usually, depending on the configuration of the inverters,
no inertial response is delivered to the grid. With this
increasing penetration of RES, the global system inertia of
the power systems is decreasing and time-varying. This can
provoke an increment in the variation of frequency under
abrupt changes in generation and demand. If no actions are
taken, this can lead to cases in which standard frequency con-
trol schemes are too slow to mitigate arising contingencies
[5].

A possible solution for this issue is to use RES inverters
or large scale storage to provide inertia. This can be done
by operating the RES or storage’s inverters as virtual inertia
(control proportional to the derivative of the frequency), that
could allow large penetration of RES without jeopardizing
the system’s stability [6]. Previous work studying virtual
inertia can be found in the literature. In [7], a detailed
survey of different virtual inertia techniques, topologies and
future directions are presented. [8] introduces the concept
of inverters that emulate the response of a synchronous
machine. [9] proposes a new controller to address low inertia.
This work argues that virtual inertia could amplify noise in
an unbounded manner. The work from [10] discusses virtual
inertia (or inertia mimicking) by enabling inverter-connected
generation units to quickly modify their power output via
Model Predictive Control (MPC), mimicking the dynamic
response of conventional units. In a similar line of work,
[11] studies the effect that changes in inertia have on power
system stability, and how to best place devices providing
virtual inertia. Most recently [12] studied optimal placement
of virtual inertia in different nodes of a network. To the
best knowledge of the authors, the body of work around
virtual inertia has mostly focused on the effects on the grid
and on its optimal allocation. The frequency dynamics have
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been modeled as a time-invariant system. However, when
we take into account the nature of the changes of rotational
inertia in the grid, it requires a new modeling framework
that represents this time dependence and variability of the
system’s inertia. Thus, the contributions of this paper are the
following:
• We propose a new modeling framework for power

system dynamics to simulate a time-varying evolution
of rotational inertia coefficients in the network. To do
this, we model power dynamics as a hybrid system [13]
where each mode corresponds to a rotational inertia
regime. At each time step of the simulation the dynam-
ical system mode can switch to a different rotational
inertia mode in an exogenous fashion.

• We test the performance of two classical controllers
from the literature (optimal closed-loop controller from
MPC and virtual inertia placement) in this new hybrid
modeling framework.

• We propose a new controller (Dynamic Inertia Place-
ment) to more efficiently address low and variable
inertia in the grid.

We conclude that the new modeling framework we develop
is necessary to design controllers that address frequency
regulation in power systems with high RES penetration.
We also find that the optimal linear closed-loop controller
(referred as Linear MPC in this paper) performs best in terms
of cost and energy injected/absorbed to control frequency.
Lastly, we find that our proposed controller for Dynamic
Inertia Placement (when modeling dynamics with variable
inertia) is more efficient in terms of cost and energy usage
than the classical Inertia Placement from the literature.

The rest of the paper is organized as follows: Section II
presents the problem formulation, Section III shows simu-
lations from a study case, and finally Section IV concludes
with our main findings.

II. PROBLEM FORMULATION

A. Power system dynamics as a hybrid system

We consider an electric power network modeled as a graph
with N nodes and N(N − 1)/2 possible edges connecting
them. The swing equation model used for this network is
based on [1], where dynamics are given by

miθ̈i +diθ̇ = pin,i−∑
j

bi j(θi−θ j), i ∈ {1, ...,N} (1)

mi corresponds to the equivalent rotational inertia in node
i, di is the droop control, pin,i represents the power input at
node i, bi j is the susceptance of the transmission line between
nodes i and j, and θi is the voltage phase angle at node i.
The state space representation of the model is given by[

θ̇

ω̇

]
=

[
0 I

−M−1L −M−1D

][
θ

ω

]
+

[
0

M−1

]
pin

(2)
where the states correspond to the stacked vector of angles
and frequencies at each node (θ ,ω) ∈ R2n, M = diag(mi) is
a diagonal matrix with rotational inertia coefficients, D =

diag(di) is a diagonal matrix with droop control coefficients,
pin corresponds to the power input, and L ∈ Rn,n is the
Laplacian of the network. The network Laplacian is defined
as `i j =−bi j when i 6= j, and `ii = ∑i6= j bi j + yi,s, where yi,s
are all shunt admittances connected at node i.

In the traditional paradigm of power systems, where gen-
eration has been dominated by thermal generation, the inertia
at each node mi has been considered constant. However, in
recent years, it has been observed that due to the increase
in generation from RES, the rotational inertia in the network
has become lower and time-varying [5], [14]. In order to
model power dynamics taking into account the variability of
inertia at each node, our work proposes a new framework for
modeling frequency dynamics. Instead of assuming equation
(2) as a time-invariant dynamical system, we propose to
model it as a Switched Affine hybrid system [13], where
each mode will be given by a predetermined set of values
of mi at each node. The switching between the different m
modes depends on the current online generators. In this work,
the mix of online generators at each time step t is modeled
as an exogenous input. Therefore, power dynamics will be
given by[

θ̇

ω̇

]
=

[
0 I

−M−1
q L −M−1

q D

][
θ

ω

]
+

[
0

M−1
q

]
pin

(3)
where Mq represents the inertia matrix M in the current
mode q∈ {1, ...,m}. The switching between modes can occur
from any time step t to t + 1, and it is given by a uniform
distribution with the following possible outcomes:
• No change of inertia
• Increase of inertia
• Decrease of inertia

Thus, the evolution over time of the matrix Mq is modeled
as a Markov Chain. For simplicity, for a given mode q we
assume the same inertia coefficients for all nodes. Section
III, subsection A, describes in more detail the assumption
on inertia coefficients at the nodes of the network.

Power input at node i, can be expressed as

pin =
(
δ +u

)
, δi ∼ N(0,0.1) i = 1...N (4)

where δ is a time-varying vector whose components, δi, are
disturbances at each node i (modeled as white noise), and the
vector u is the controller (power injection). Thus, equation
(3) can be written as[

θ̇

ω̇

]
=

[
0 I

−M−1
q L −M−1

q D

][
θ

ω

]
+

[
0

M−1
q

](
δ +u

) (5)

[
θ̇

ω̇

]
:= Aq

[
θ

ω

]
+ Bq

(
δ +u

)
(6)

In this hybrid formulation, the design of the optimal con-
troller u is more complex than in the traditional linear time-
invariant (LTI) case. Recent work has shown the relevance
of the optimal placement of virtual inertia in the grid [12],
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which expanded on previous work that studied the effects of
rotational inertia in a network [11]. In this study we build
on this work by including the evolution over time of the
rotational inertia at each node. Using receding horizon Model
Predictive Control we study three different designs for the
controller u in equation (5).

B. Optimal frequency control for low and time-varying ro-
tational inertia coefficients

In order to minimize an objective function with the states
and controller as variables, we consider three possible con-
trollers u. In addition, we take into account a constraint
to maintain the frequency ω at all time t in a predefined
safe interval. The receding horizon MPC formulation can be
summarized by the following optimization problem:

min
x(t),u(t)

∫ T

t=t0
x(t)>Qx(t)+u(t)>Ru(t)dt (7)

s.t. x(t0) = x0 (8)

ẋ(t) = Aqx(t)+Bq
(
δ (t)+u(t)

)
, t ∈ (t0,T ) (9)

b≤ x(t)≤ b̄, t ∈ (t0,T ) (10)
δi(t)∼ N(0,0.1), i ∈ {1, ...,N}, t ∈ (t0,T ) (11)

where x is the vector of the states (θ ,ω), u the controller, Q
and R are symmetric positive definite matrices, t0 the initial
time, T the final time, b and b̄, lower and upper bounds for
the frequency, and x0 the initial state. As it was mentioned
earlier, the hybrid modes q transition at each time step t
using a Markov Chain. We consider three designs for optimal
controllers u obtained using receding horizon MPC:

1) Linear MPC:

ui(t) unconstrained, i ∈ {1, ...,N}, t ∈ (t0,T ) (12)

2) Inertia Placement [12]:

ui(t) =−Miω̇i, i ∈ {1, ...,N}, t ∈ (t0,T ) (13)

3) Dynamic Inertia Placement:

ui(t) =−Mi(t)ω̇i, i ∈ {1, ...,N}, t ∈ (t0,T ) (14)

The receding horizon MPC formulation (7) - (12) is
classified as a quadratic problem with linear constraints, thus
a convex problem. The receding horizon MPC formulation
for inertia placement, (7) - (11), (13) and (7) - (11), (14),
are non convex problems. To model the first formulation we
use CVX [15], [16]. To model the non convex formulations
we use the parser YALMIP [17], and solved the optimization
problem using an interior point method.

In the case of the Linear MPC formulation, the controller
ui(t) does not have any constraints imposed. Implying that
the feasible set of the Linear MPC formulation and the
feasible set of the problem given by (7) - (11) are equivalent.
The Dynamic Inertia Placement formulation introduces a
new variable Mi(t). This new variable needs to be optimized
for all nodes i at all time steps t. The controller ui(t) is con-
strained to be equal to −Mi(t)ω̇i, serving as virtual inertia.
The fact that the Dynamic Inertia Placement formulation has

TABLE I
PARAMETERS FOR THE TWELVE-BUS THREE-REGION CASE STUDY [1],

[11].

Parameter Value
Transformer reactance 0.15 p.u.

Line impedance (0.0001 + 0.001j) p.u./km
Base voltage 230 kV
Base power 100 MVA

Droop control 1.5 %/%

an extra set of constraints on ui(t) implies that the feasible set
of this problem is contained in the feasible set of the Linear
MPC formulation. Finally, the Inertia Placement formulation,
in addition to having the constraint on the structure of ui(t)
as the Dynamic Inertia Placement had, it has an additional set
of constraints. This extra set of constraints forces Mi(t) to be
equal to Mi for all t. In other words, the design of the virtual
inertia controller cannot be specific to a node and time, but
a fixed design over time for each node. Thus, the Inertia
Placement formulation has its feasible set contained in the
feasible set of the Dynamic Inertia Placement formulation.
In summary, the Linear MPC formulation has the largest
feasible set, followed by the Dynamic Inertia Placement
which has more constraints. Finally the Inertia Placement
formulation comes in third place with the most restrictive
feasible set. Due to this, we expect solutions u∗ from the
Linear MPC formulation to be best, attaining the lowest
value in its objective function. We expect the Dynamic
Inertia Placement case to come in second place with a higher
optimal value for its objective function compared to the
Linear MPC formulation. The formulation with the highest
optimal value of its objective function would be the Inertia
Placement formulation.

One of the contributions of this work is to assess the
grid’s performance when virtual inertia is optimized over
time and location (Dynamic Inertia Placement). We also
compare inertia placement with the Linear MPC formulation.
The latter sheds light on how the performance of frequency
dynamics could improve with a more flexible controller (not
constrained to be a derivative control law as inertia placement
is).

In Section III we compare these three formulations. We
utilize the study case (originally from [1]) used in some
recent virtual inertia placement work [11] and [12].

III. CASE STUDY: TWELVE-BUS THREE-REGION
NETWORK

A. Data description

The twelve-bus three-region network used in this study
has also been used in [1], [11], and [12]. The full network
was modeled, without using any simplifications (e.g. no
Kron reduction of the graph). Therefore, twelve nodes were
modeled with two states each (angle and frequency). Table
I shows the parameters of the network.

The positive definite matrices Q and R from the objective
function in problem (7) that we use in the case study are the
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Fig. 1. Case study: Twelve-bus three-region network from [1], [12], and
[11].

identities. With this selection we are equally penalizing fre-
quency deviations from zero and energy injection/absorption
from the controller. This assumption can be changed to, for
example, represent the real economic cost to the grid that
frequency deviations and energy injection/absorption from
the controller represent. This in itself is an open research
question.

As it was discussed in Section II, subsection A, the inertia
matrix M is modeled as a diagonal matrix diag(mi), whose
elements mi correspond to the rotational inertia at the bus i.
We assume the same rotational inertia in all buses for a given
time step t (mi(t) = m(t) for all i). This implies a similar
fraction of renewable energy generation for all nodes, which
is common in large networks. However, this assumption can
be easily extended. In this work, we model the variability
of the rotational inertia in the system as a hybrid system
switching modes as the inertia changes. Each mode of the
hybrid system is given by one value of inertia. For the study
case we predefined possible inertia values for the system:
{0.1,0.5,1,1.5,2,2.5,3,3.5,5,9}. The average of this set of
possible inertia values is 2.8 seconds, which is equivalent to
having 28 percent of thermal generation (10 s of inertia) and
72 percent of RES with zero inertia. Each simulation starts
with 2 seconds of inertia, and from there- based on a uniform
distribution draw- the inertia (hybrid mode) of the system
at time t + 1 will remain the same, increase, or decrease
(Markov Chain with 1/3 probability for each possible mode
transition). This process is repeated until each time step t in
the time horizon T has assigned a rotational inertia mode.

The safety bounds for frequency are ±0.1 Hz (b and b̄ in
equation (10)).

B. Results

Each receding horizon MPC formulation is run for eight
time steps (T ) and 100 possible realizations (or scenarios)
from the Markov Chain of the rotational inertia matrix Mq.
Thus, for each formulation we obtain an optimal value of the
objective function at each time step and each scenario (i.e.
800 values). The number of nodes, N, is 11 because node
11 and 12 are the same (refer to Fig. 1). We also obtain N
control actions (one per node) for each time step and for each
scenario (i.e. 8800 values), and N frequency measurements
for each time step and for each scenario (i.e. 8800 values).
Using these sets of results we calculate moments and show

TABLE II
SUMMARY: MEAN AND STANDARD DEVIATION OF OBJECTIVE FUNCTION

J∗ , OPTIMAL CONTROL u∗ , AND FREQUENCY ω .

Moments Linear
MPC

Inertia
Placement

Dynamic
Inertia
Placement

µ(J∗) 0.17 0.92 0.24
σ(J∗) 0.07 1.66 0.30

µ(u∗) p.u. -0.004 -0.018 -0.005
σ(u∗) p.u. 0.13 0.29 0.15
µ(ω) mHz -0.34 0.93 8.10
σ(ω) Hz 0.07 0.04 0.05

histograms for the three formulations in order to compare
them.

Table II shows the mean and standard deviation of the
set of optimal values of the objective function (J∗) at all
times t and all scenarios for the three formulations. The same
moments are shown for optimal control (u∗) and frequency
(ω) for the three optimization problems. As discussed in
Section II, subsection B, the Linear MPC formulation shows
the lowest average and standard deviation values in its
objective function compared to the other two formulations.
The average of the objective function for the Linear MPC
is 0.17 cost units, and its standard deviation 0.07. In the
case of the average, it corresponds to 18 percent of the
average in the Inertia Placement formulation and 71 percent
of the average in the Dynamic Inertia Placement case. This
result can be interpreted as the Inertia Placement formulation
resulting in non zero frequency deviations and non zero
control actions 82 percent more of the time compared to
the Linear MPC formulation (on average). This result sheds
light on the suboptimality of the virtual (dynamic and static)
inertia controllers compared to the closed-loop formulation
(Linear MPC). Thus, there is an incentive to continue de-
signing controllers that try to address low and variable inertia
coefficients in the grid.

Another relevant result is the fact that our proposed
Dynamic Inertia Placement formulation provides better per-
formance than the Inertia Placement formulation in terms of
average cost and energy usage in the controller u∗. This is
expected as well because we provide more flexibility for the
controller to inject/absorb energy depending on not only the
node, but also on the time step. The average objective value
in the Dynamic Inertia Placement formulation is 39 percent
of the average optimal value of the objective function in the
Inertia Placement case.

Fig. 2 and 3 show histograms of the optimal controllers
u∗ for the Inertia Placement formulations. Statistics in Table
II show that the optimal controller for the Linear MPC
formulation case uses less energy on average to maintain
the frequency within the allowed bounds. Its maximum
injection/absorption is between ±0.3 p.u. (not shown in
Table II). The optimal injection from the Inertia Placement
formulation ranges between −2.6 and 2.8 p.u. to maintain
the same safety bounds for the frequency. The control range
from the Dynamic Inertia Placement is smaller (−1.2 and
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Fig. 2. Inertia Placement: Histogram of optimal controller u∗ at all nodes,
all time steps, and all scenarios.

Fig. 3. Dynamic Inertia Placement: Histogram of optimal controller u∗ at
all nodes, all time steps, and all scenarios.

1.4 p.u.) compared to the spread observed in the energy
absorbed/injected by the Inertia Placement controller. There-
fore, it shows a more efficient frequency control design.

Fig. 4 and 5 show histograms of optimal costs for the
Inertia Placement formulations. The moments in Table II
show that the optimal values for the Linear MPC formulation
are concentrated around zero. However, the Inertia Placement
formulations show more spread, reaching extreme costs of
15 units (Inertia Placement) and 4.3 units (Dynamic Inertia
Placement). The distribution of the costs for the Dynamic
Inertia Placement controller is more skewed and its tail does
not reach as high of values (Fig. 5) compared to the tale of
the cost distribution in the Inertia Placement design (Fig. 4).

IV. CONCLUSIONS

We propose a new modeling framework for power systems
dynamics that captures the variability of rotational inertia
over time. Our proposed model is a Switched Affine hybrid
system, whose modes change based on the change of inertia
in the nodes. The transition from one mode to another is
determined by a Markov Chain at each time step of the

Fig. 4. Inertia Placement: Histogram of optimal cost J∗ at all time steps
and all scenarios.

Fig. 5. Dynamic Inertia Placement: Histogram of optimal cost J∗ at all
time steps and all scenarios.

simulation. With this new framework, we test two standard
frequency control designs and propose a third design: Linear
MPC, Inertia Placement, and Dynamic Inertia Placement. As
expected, the Linear MPC formulation is better in terms of
cost and energy injection/absorption to control frequency.
This finding encourages researchers to continue designing
controllers in order to attain such optimality without having
to optimize in real time (closed-loop MPC).

Another relevant finding is the fact that the Dynamic
Inertia Placement proves to be more efficient in terms of
cost and energy usage of the controller compared to the
classical Inertia Placement case. This finding sheds light on
the importance of modeling dynamics over time assuming
temporal variability in the system’s inertia. Additionally,
it highlights the importance of designing a more flexible
controller that would adapt over time. For future work we
plan to study stability of the hybrid system and design a
controller that is more efficient in terms of energy usage
than the current virtual inertia schemes. We also plan to
characterize the disturbances at each node of the network
and to model the switching of modes of the hybrid system
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with data-driven approaches.
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