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CoMID: Context-Based Multiinvariant Detection for
Monitoring Cyber-Physical Software
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Abstract—Cyber-physical software delivers context-aware ser-
vices through continually interacting with its physical environment
and adapting to the changing surroundings. However, when the
software’s assumptions on the environment no longer hold, the in-
teractions can introduce errors for leading to unexpected behaviors
and even system failures. One promising solution to this problem
is to conduct runtime monitoring of invariants. Violated invariants
reflect latent erroneous states (i.e., abnormal states that could lead
to failures). In turn, monitoring when program executions violate
the invariants can allow the software to take alternative measures to
avoid danger. In this article, we present context-based Multiinvari-
ant detection (CoMID), an approach that automatically infers in-
variants and detects abnormal states for cyber-physical programs.
CoMID consists of two novel techniques, namely context-based trace
grouping and multiinvariant detection. The former infers contexts to
distinguish different effective scopes for CoMID’s derived invari-
ants, and the latter conducts ensemble evaluation of multiple in-
variants to detect abnormal states during runtime monitoring. We
evaluate CoMID on real-world cyber-physical software. The results
show that CoMID achieves a 5.7-28.2% higher true-positive rate
and a 6.8-37.6% lower false-positive rate in detecting abnormal
states, as compared with the existing approaches. When deployed in
field tests, CoMID’s runtime monitoring improves the success rate
of cyber-physical software in its task executions by 15.3-31.7%.

Index  Terms—Abnormal-state
software, invariant generation.

detection, cyber-physical

I. INTRODUCTION

YBER-PHYSICAL software programs (in short as cyber-
physical programs) integrate cyber and physical space to
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provide context-aware adaptive functionalities. An important
class of cyber-physical programs are those that iteratively in-
teract with their environments. Examples of such programs are
those running on robot cars [1]-[3], unmanned aerial vehicles
(UAVs) [4]-[6], and humanoid robots [7]-[9]. These program
continually sense environmental changes, make decisions based
on their preprogrammed logic, and then, take physical actions to
adapt to the sensed changes. The three steps, namely, sensing,
decision making, and action taking, form an interaction loop
between a cyber-physical program and its running environment.
Each pass of such an interaction loop is referred to as an iteration.

To improve the productivity and cope with infinite kinds of
environmental dynamics, software developers often hold certain
assumptions on typical scenarios, where their cyber-physical
programs are supposed to run. For example, a robot controlled by
acyber-physical program walks in an indoor environment, where
the floor is supposed to be firm but not slippery, and the space is
supposed not to contain any fast-moving obstacle. However, it is
challenging for the developers to precisely specify what can be
considered as “not firm” or “slippery.” In addition, when put into
an open environment that is more complex than a cyber-physical
program’s designed scenarios, the program itself can hardly
tell when its encountered scenarios have already violated these
assumptions, and thus, it could be subject to various runtime
errors or even system failures. As such, a cyber-physical program
is easily subject to runtime errors in its deployment [11]-[15],
and then, suffers from misbehavior or even failure (e.g., a robot
falling down and damaging itself). Therefore, there is a strong
need for preventing cyber-physical programs from entering such
errors, which indicate the violation of their implicit assumptions
on the running environments.

One promising way is to conduct runtime monitoring of pre-
specified invariants, which represent the properties that have to
be satisfied during executions, to check whether a cyber-physical
program’s execution is safe. Being safe indicates that the pro-
gram’s execution will not lead to a failure, if no intervention is
taken, but just following the logics in the program. However,
specifying effective invariants is challenging. For example, one
may specify invariants as the negation of failure conditions, e.g.,
not crashing of an UAV or falling down of a humanoid robot.
However, such invariants are not that useful, because when they
are violated (i.e., the corresponding failure conditions are evalu-
ated to be true), it is already too late for a concerned program not
to fail. An alternative is to specify invariants for latent erroneous
states (a.k.a. abnormal states). Then, one is potentially able
to predict future failures, and prevent a concerned program
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from taking originally planned actions, which would otherwise
have caused failures. For example, if a robot finds its program
execution violating the invariants that represent safe executions,
it can decide to stop further exploring the current scenario and
plan another path to its destination. This resolution action can
help it avoid unexpected danger in the original scenario.

There are two major ways of specifying invariants for detect-
ing abnormal states: using manually specified properties or using
automatically generated invariants. For the former, the develop-
ers need domain knowledge to understand what can constitute
abnormal states, and derive corresponding properties. This man-
ual process is challenging, especially when a cyber-physical pro-
gram and its running environment are nontrivial [4]. On the other
hand, approaches of automated invariant generation [16]-[19]
provide a promising alternative. Despite varying in details, these
approaches follow a general process [20] as follows. When a sub-
ject program is running, these approaches collect its execution
trace in terms of program states (e.g., variable values) at program
locations of interest (e.g., entry and exit points of each executed
method). Then, from a set of such collected safe traces (i.e.,
those not leading to failures), the approaches derive invariants for
different program locations based on the predefined templates.
These invariants can then be used with runtime monitoring to
predict the program’s future executions to be safe (i.e., passing,
for no invariant violation) or not (i.e., failing, for any invariant
violation). Here, passing implies that the program runs safely
with its assumptions on the environment holding, and failing
implies that the program could soon fail since its assumptions
on the environment no longer hold now.

However, using automatically generated invariants for run-
time monitoring is still challenging. One major problem is how
to balance between general and specific invariants. If an invariant
for a program location is too general, using it for runtime
monitoring can miss the detection of abnormal states, resulting
in false negatives. For example, relaxing invariants to cater
for various firm floors can accidently include firm but slippery
floors, breaking the robot program’s assumptions on its running
environment. On the other hand, if an invariant is too specific,
using it for runtime monitoring can detect many ‘“‘abnormal”
states even in safe executions, resulting in false positives. For
example, restricting invariants to specific firm floors (e.g., in
brick or wood material) can cause false alarms when the robot
walks on other firm but not slippery floors, where the program’s
execution is still safe.

Even worse, this balancing problem can be further exac-
erbated by two characteristics of cyber-physical programs:
iterative execution and uncertain interaction.

1) Iterative execution: Cyber-physical programs are featured
by repeated iterations of a sensing, decision-making, and
action-taking loop. Then, a program location for which
an invariant is generated can be executed multiple times
during multiple iterations for dealing with different con-
texts (i.e., various situations in handling environmental
dynamics). During these different iterations, a program’s
definition of safe behavior with respect to each context
varies across the iterations. Overlooking these contexts,
generated invariants would be overgeneralized, such that

the detection of abnormal states can be missed. On the
other hand, generating invariants by sticking to any spe-
cific context would also make the invariants overly fragile
to other contexts of safe executions, causing false alarms.
Recently, researchers have proposed to enhance invariant
generation with contexts to avoid false alarms. For exam-
ple, ZoomlIn [24] proposed to use program contexts to dis-
tinguish effective scopes for different invariants. However,
for a cyber-physical program that iteratively interacts with
its environment, only one type of context (i.e., program
context) may not be sufficient for specifying an invari-
ant’s effective scope. The reason is that a cyber-physical
program’s behavior can also be additionally affected by
its environment, even if its program context keeps similar
in different iterations.

2) Uncertain interaction: Cyber-physical programs could
also face massive false alarms due to uncertainty [21],
when they use automatically generated invariants to detect
abnormal states. For example, even if one places a robot
at the same position across different iterations, its sensors
can possibly report different values for its position due
to uncertainty (as an inherent nature of sensing). These
different input values are then propagated to a program
location of interest for deriving invariants, causing this
location to own variable values different from those in
other safe executions also from the same position. Then,
overlooking the impact of such uncertainty, runtime mon-
itoring with the generated invariants can easily report false
alarms: invariant violation is actually caused by inaccurate
sensing, not due to a program’s assumptions not holding
on its environment.

To address these challenges, in this article, we present an ap-
proach, named context-based multiinvariant detection (CoMID),
to automatically generating invariants for specifying developers’
implicit assumptions, and checking these invariants for detecting
when a cyber-physical program has entered any abnormal state
at its runtime. CoMID addresses the preceding challenges with
its two techniques, namely, context-based trace grouping and
multiinvariant detection.

1) Context-based trace grouping: The first technique divides
collected execution traces into different iterations, and
groups them according to both program and environmental
contexts. Here, program context refers to a program’s
statements executed during one iteration, and environmen-
tal context refers to the values of environmental attributes
as sensed by the program during the iteration. The tech-
nique conducts execution trace grouping by clustering,
based on the similarities of corresponding contexts be-
tween each pair of iterations. Then, for each group, the
technique generates invariants based only on the itera-
tions in that group. Since the iterations in a group share
a common program context and environmental context,
the two contexts together specify the effective scope for
the invariants generated for this group. We name this
scope the group’s generated invariants’ context. Then, in
the future when the cyber-physical program executes in
an open environment, where different scenarios can be
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encountered, CoMID helps identify those iterations shar-
ing similar contexts with the invariants that are valid to de-
tect abnormal states. Therefore, CoMID’s context-based
trace grouping increases both the chance of identifying
such context-sharing iterations (by shorter executions) and
the accuracy of abnormal-state detection (by checking
both context types)

2) Multiinvariant detection: The second technique addresses
the robustness problem for invariants when their relied
execution traces contain noisy values due to uncertainty.
Instead of generating a single invariant from all execution
traces in a group, this technique generates multiple ones,
based on different subsets sampled from the execution
traces in the group. Then, it uses an estimation func-
tion to decide the detection of abnormal states based on
multiinvariant evaluation results. The function measures
the ratio of violated invariants against all invariants with
respect to their corresponding groups, and then, takes
the uncertainty in program—environment interactions into
consideration, to decide whether the invariant violation
indicates the detection of abnormal states or is simply
caused by uncertainty. This idea has been inspired by
ensemble learning [22], which uses multiple models to
improve the prediction performance, in contrast to the
conventional prediction based on one constituent model
alone.

We evaluate our CoMID approach on three real-world cyber-
physical programs: a four-rotor unmanned aerial vehicle (4-
UAV) [23], a six-rotor unmanned aerial vehicle (6-UAV), and a
NAO humanoid robot [7]. We compare CoMID with two existing
approaches: naive, which simply uses an invariant inference
engine (i.e., Daikon [16]) to generate invariants, and p-context,
which uses program context to enhance invariant generation and
abnormal-state detection (e.g., Zoomln [24]). The evaluation
results show CoMID’s effectiveness: it achieves a 5.7-28.2%
higher true-positive rate and a 6.8-37.6% lower false-positive
rate in detecting abnormal states for the three programs’ ex-
ecutions; when deployed for runtime monitoring to prevent
unexpected failures, CoMID improves the success rate of the
three programs by 15.3-31.7% in their task executions.

In summary, this article makes the following contributions.

1) The CoMID approach to automatically generating in-
variants and detecting abnormal states for cyber-physical
programs’ executions.

2) The context-based trace grouping technique to refine in-
variant generation with respect to different contexts.

3) The multiinvariant detection technique to address the im-
pact of uncertainty in program—environment interactions
on invariant-based runtime monitoring.

4) An evaluation with real-world cyber-physical programs
and comparison of CoMID with state-of-the-art invariant
generation approaches.

The rest of this article is organized as follows. Section II
presents a program—environment interaction model (PEIM) for
understanding a cyber-physical program’s iterative execution
nature, and a motivating example for explaining the chal-
lenges in generating effective invariants. Section III gives an
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overview of our CoMID approach, and then, elaborates on its two
techniques. Section IV presents our evaluation of CoMID with
three real-world cyber-physical programs and compares it with
existing approaches. Section V discusses related work, and
finally, Section VI concludes this article.

II. PRELIMINARIES

In this section, we introduce our PEIM and present our
motivating example based on this model.

A. Program—Environment Interaction Model (PEIM)

To better demonstrate the iterative execution of a cyber-
physical program, we propose a PEIM. The model concerns not
only the program itself, but also its environment under interac-
tion, in contrast to the traditional program models that concern
programs themselves only. Note that our PEIM model is only
for capturing the iterative nature of a cyber-physical program
in interactions with its environment. Our CoMID approach is
essentially a code-based approach.

Given a program P, we define its PEIM using a tuple, (P, F,
U, C). We use P to represent the program, and F to represent
the environment where the program executes. Conceptually, we
consider environment E' as a black-box program whose behavior
can be observed by monitoring its global variables, although
one may not actually know how E works. We assume that
one can observe P’s behavior in F (i.e., P’s output) and P’s
obtained sensory data from E (i.e., P’s input). We use C' to
represent P’s and E’s initial configuration (i.e., default startup
parameter values for P and initial environmental layout for F).
We use U to represent the specification of uncertainty affecting
the interaction between P and E.

We define the uncertainty specification U as a function that
maps environment E’s output Op to program P’s input Ip.
If one does not consider uncertainty, /p would trivially equal
to O, on their values. However, in practice, Ip # Op due to
uncertainty. Their differences are caused by inaccurate environ-
mental sensing (e.g., a sensed value deviates from its supposed
value) or flawed physical actions (e.g., an action is taken without
exactly achieving its supposed effect)[35]. Note that a complete
specification of such differences may not be available. There-
fore, we assume that U is a partial specification, which contains
information on ranges and distributions of uncertainty on the
conversion between Ip and OF values.

As a whole, our PEIM = (P, E, U, C') works in an iterative
way, as illustrated in Fig. 1. It starts with program P and envi-
ronment F initialized by configuration C' (Step 1). Then, both
P and FE begin their independent executions. At the program
side, P gets its input Ip from the environment’s current output
Ogp, executes based on [ p, updates its global variables G p, and
finally, returns output Op (Step 2). At the environment side,
FE also takes its input Iz from the program’s current output
Op, “executes” by applying Ig’s effect to update its global
variables G g, and finally, returns output Op (Step 3). Once
Op or Op is produced, E or P receives it, converts it to /g or
Ip, and puts the result in a buffer for later use. When P or £
finishes its iteration, it obtains its next input /p or Iz from the
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®

Fig. 1. PEIM'’s iterative reaction loop.

Fig. 2. NAO robot controlled by a cyber-physical program. (a) Walking on a
wood floor. (b) Walking on a brick floor.

corresponding buffer using some policy, e.g., first-in, first-out or
priority-first (an input for indicating that an emergency situation
can be processed first). We conceptually represent the impact of
uncertainty on the conversion between P and E by Ip = U(Op)
(Step 4). Steps 2—4 form an iterative reaction loop (i.e., iteration,
as mentioned earlier).

B. Motivating Example

We use a motivating example to illustrate our target problem
and its challenges. Consider our aforementioned NAO humanoid
robot controlled by a cyber-physical program P. Its environment
E, according to our PEIM, describes the robot’s surrounding
environment. F takes the robot’s actions as input, changes its
states (e.g., the position and posture of the robot), and produces
P’s sensory data as output. For uncertainty U, we consider only
inaccurate sensing, which maps a given environment’s output
parameter o to an error range [op — lower, og + upper] for P
to sense. At last, the configuration C' specifies the initial states
of P (e.g., the initial values of P’s global variables) and F (e.g.,
the initial position of the robot, and the layout of the obstacles).

Suppose that the robot is exploring an indoor area, as il-
lustrated in Fig. 2. For the sake of quality and productivity,
the developers can hold implicit assumptions on the scenarios
where the robot is supposed to walk, e.g., a room with a firm
and not slippery floor. Then, the developers proceed to design
corresponding exploration strategies for the robot, e.g., walking

slowly and balancing by raising its arms with certain angles.
These strategies are for ensuring the robot to walk safely on a
floor made of several common materials, e.g., wood, as shown in
Fig. 2(a), and brick, as shown in Fig. 2(b). We next analyze what
challenges the runtime monitoring with invariants can encounter,
in order to prevent the robot from entering abnormal states.

Program P uses readings of two pressure sensors installed
on the robot’s two feet to measure whether the robot has leaned
toward left or right and decide whether it has to balance the robot
in its walking. The measurement is conducted by calculating
the difference between the two sensors’ readings, pre;.; and
Preighe- I then decides one of the robot’s arms according to
which direction the robot is leaning toward, and calculates the
height the decided arm should be raised to. Suppose that variable
angle in P controls the height value, and then, it becomes a key
factor that decides whether the robot can properly balance itself
in walking. The developers can design various logics to calculate
the angle value, but they more or less depend on the material
comprising the floor.

One outstanding challenge is that the developers can hardly
specify proper angle values. The developers typically follow
a trial-and-error process to calculate plausible angle values. If
lucky enough, the developers can design the calculation logics
that seemingly work for several types of the floor material. Even
s0, the users of the robot may still not be able to decide whether
a specific scenario is safe for the robot to walk into (i.e., whether
the calculation logics still work), or when a previously safe
scenario becomes no longer safe (e.g., when the scenario grad-
ually evolves). As mentioned earlier, runtime monitoring with
invariants can play an important role to address such preceding
challenge. We next explain how to generate invariants for the
angle variable and use them to decide whether P’s execution is
safe for the current scenario.

Most existing approaches of invariant generation work simi-
larly. Consider that we generate an invariant for variable angle
at the entry point of method motion.angleMove (names,
angle, timeLists), which is the key method for deciding
how to raise an arm for balancing the robot. We first collect
several safe execution traces (e.g., try, tro, and trs) of program
P, in which angle’s corresponding variable-value pairs are ¢ry:
{angle = 48}, try: {angle = 52}, and tr3: {angle = 55}. Fol-
lowing a predefined template (e.g., varX < ('), we can derive
an invariant like “angle < 55,” satisfying all the three traces.
This invariant suggests that proper angle values at this program
location should not exceed 55. Then, later when P controls the
robot and finds its collected angle value at the same program
location to be 60, the runtime monitoring could decide that P’s
execution is not safe. Technically, the runtime monitoring reports
that the current execution enters an abnormal state, i.e., classified
as failing.

However, as mentioned earlier, invariant generation has to
balance between general and specific invariants. The preceding
invariant “angle < 55” has relaxed its condition on proper
values for the angle variable to cater for all the three execution
traces, although these values could be from different scenar-
ios. Then, using this invariant can potentially misclassify an
unsafe execution with an angle value of 53 for the scenario
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experienced in ¢y as passing. On the other hand, if one derives
the invariant from two execution traces, ¢r; and ¢rs, only (e.g.,
“angle < 527), but checks it against the execution of trs from
another scenario. Then, the runtime monitoring can be too strict
and would misclassify that execution as failing.

The nature of cyber-physical programs exacerbates the
invariant-balancing problem. For example, a cyber-physical pro-
gram can encounter multiple iterations, and not all iterations
share the same context. Suppose that a robot is walking in a
scenario connected with different types of floor material (e.g.,
wood and brick) and placed with different types of obstacle (e.g.,
high, low, and round). Such a scenario implies different values
of the environment E’s variables (i.e., environmental context).
Even on the same floor, the robot may take different strategies
to handle different obstacle situations. Such variety of strategies
implies different execution traces of the program P in the current
iteration (i.e., program context). Without distinguishing these
contexts, invariant generation can be easily overgeneralized
(e.g., deriving invariants to cater for all executions traces),
and invariant violation can also be easily overtriggered (e.g.,
checking invariants in a context different from the context from
which the invariants are derived).

A cyber-physical program’s uncertain interactions with its
environment similarly worsen the invariant-balancing problem.
Uncertainty U, which might be caused by inaccurate sensing,
would make derived invariants imprecise due to random noises
in sensor readings. Such imprecision can cause both false-alarm
and missing-warning problems. A naive way is to relax the
condition in such an invariant by allowing some extent of error,
e.g., adelta of +5 added to proper values for the angle variable.
However, this way is quite ad hoc, and can also easily aggravate
the false-alarm and missing-warning problems.

These limitations of the existing approaches on automated
invariant generation motivate us to develop our CoMID ap-
proach, particularly focused on the invariant generation and
runtime monitoring for cyber-physical programs. CoMID aims
to distinguish different contexts for effective invariant generation
and address the impact of uncertainty for effective runtime mon-
itoring with generated invariants. We elaborate on our CoMID’s
methodology in the next section.

III. CONTEXT-BASED MULTIINVARIANT DETECTION

The input of our CoMID approach is a cyber-physical program
P and its running environment £ (conceptually). For the purpose
of invariant generation, we assume the availability of a set of fail-
ure conditions (e.g., crashing of an UAV or falling down of a hu-
manoid robot) for deciding whether a cyber-physical program’s
execution has already failed, as the existing work [24] does.
CoMID works in four steps, which are as follows:
1) itfirst executes program P in the environment F to collect
safe execution traces, i.e., no failure condition triggered
(Step 1: trace collection);
2) itthen groups iterations from the collected execution traces
into multiple sets of context-sharing iterations, based
on their program and environmental contexts (Step 2:
iteration grouping);
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3) after that, it generates multiple invariants for each group
(Step 3: multiinvariant generation);

4) finally, it uses the generated invariants to detect abnor-
mal states for program P’s future executions (Step 4:
abnormal-state detection).

Fig. 3 illustrates CoMID’s workflow.

In the first two steps, besides collecting the traditional artifacts
(e.g., arguments and return values for each executed method),
CoMID also analyzes program and environmental contexts for
each iteration. Regarding the program context, CoMID records
what statements are executed in an iteration. Regarding the
environmental context, CoMID records attribute values asso-
ciated with the environment E. CoMID recognizes P’s system
calls related to the environmental sensing, and uses these calls
to record attribute values at the beginning of each iteration.
CoMID uses the program context to distinguish an iteration’s
specific strategy in handling external situations, and uses the
environmental context to distinguish different situations that P
is facing in a specific iteration.

In the last two steps, CoMID generates and checks multiin-
variants to address the impact of uncertainty on deciding whether
a specific invariant violation is a convincing indication that the
current execution is no longer safe. CoMID leverages previous
work (e.g., Daikon [16]) for invariant derivation by feeding
different sets of sampled iterations.

We next elaborate on CoMID’s details.

A. Context-Based Trace Grouping (Steps I and 2)

1) Trace Collection: In the first step, CoMID executes the
given cyber-physical program P and collects its traces for in-
variant generation. For saving the cost, CoMID records values of
program variables only at entry and exit points of the methods
executed in each iteration. CoMID also records program and
environmental contexts for each iteration, in order to distinguish
different iterations. For the program context, CoMID records
the statements executed in each iteration through program in-
strumentation. For the environmental context, CoMID records
values of environmental attributes using their involved system
calls at the beginning of each iteration (i.e., once CoMID recog-
nizes a new iteration).

CoMID extracts iterations from a collected execution trace
by identifying P’s input points, which indicate the start of each
iteration and separate different iterations. For a cyber-physical
program that iteratively interacts with its environment, it receives
environmental inputs through periodically invoking system calls
related to environmental sensing, e.g., reading a pressure sen-
sor’s value every 200 ms, or sampling a picture from a camera per
second. CoMID relies on such periodical environmental sensing
and related system calls to decide such input points. For many
cyber-physical programs, their system calls for environmental
sensing have the same or similar invocation cycles, and this
characteristic makes their inputs naturally free from being over-
lapping. A cyber-physical program may also conduct one-time
sensing actions, e.g., reading an ultrasonic sensor’s value to
decide the distance to an obstacle in an ad hoc way. However,
such one-time sensing actions can be easily distinguished from
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Fig. 3. CoMID’s workflow.

periodical sensing actions through analyzing their appearances
in an execution trace.

Formally, we use segment to represent the collected infor-
mation for each iteration in program P’s execution. A segment
abstracts P’s execution state during an iteration. We use sg* to
represent P’s state for its ¢th iteration: 59" = (Poxts Fext, M1,
M, ..., Mj), where

1) P. represents the ith iteration’s program context, which
is a set of identities (ids) of statements executed in the
iteration;

2) FE.x represents the ith iteration’s environmental context,
which is a set of name—value pairs for sensing variables
in P;

3) My, Mo, ..., M, represent a sequence of methods executed
in the ith iteration, each of which contains a method’s
name, arguments, and return value.

CoMID conducts random testing on P and collects its exe-
cution traces. The random testing is according to P’s targeted
application scenarios, whose information is typically available
when it is built or tested. For example, in our evaluation (see
Section IV), the NAO robot subject is designed to walk on
wooden or brick floor, and the two UAV subjects are designed
to fly on a sunny or cloudy day without strong wind. In addition,
random testing has been shown to be simple, yet effective for
exploring a program’s diverse behaviors (e.g., Android Monkey
testing [28] and Google’s Waymo self-driving car testing [29]),
which are useful for CoMID to generate invariants by studying
these diverse behaviors from the cyber-physical program.

Then, according to P’s associated failure conditions, one
annotates whether a collected execution trace is safe or unsafe
(i.e., whether violating any failure condition or not). We note
that failure conditions can vary for different subjects, depending
on their different tasks and execution environments. Still, there
are three common suggestions for specifying failure conditions,
which are as follows:

1) concerning a cyber-physical program’s safety properties,

e.g., arobot or an UAV should never fall into the ground;

2) concerning liveness properties, e.g., a robot should not
always be trapped in a small region;

3) concerning stableness properties, e.g., an UAV should not
lose its height quickly in short time or lose its balance in
the air.

The set of safe execution traces forms the initial trace set for

CoMID to learn and generate invariants from.

Original or new
environment E’

2) Iteration Grouping: In the second step, CoMID groups
iterations (segments) from the safe execution traces so that each
group contains only context-sharing ones. Here, contexts refer
to program and environmental contexts recorded in the first step.

CoMID analyzes environmental contexts F.y recorded in
segments to discover common patterns shared by iterations. It
builds a set of all environmental contexts ENV_CONTEXT,
and conducts the k-means clustering algorithm [25] to form
different clusters. We choose k-means clustering mainly for
the performance consideration, since it is one of the most
efficient clustering algorithms. For the same reason, CoMID
considers only environmental attributes of numeric types in
the clustering. It uses a normalized Euclidean metric to mea-
sure the distance between each pair of environmental con-
texts. Compared with the Euclidean metric, the normalized
Euclidean metric can better measure the distance in a space
whose dimensions have different scales. Since a cyber-physical
program’s sensing variables naturally have different scales
according to involved sensors of different types, we choose
the normalized Euclidean metric to measure the distance be-
tween two environmental contexts. Formally, given two environ-
mental contexts Fexi_ A (a_A1,a_As,...,a_A,)and Eq_B
(a_By,a_Bs,...,a_By,), their distance dis(Eext_A, Eext_B)
is calculated as

diS(ECXt_A, Ecxt_B) = Z
i=1

where 512 is the variance of all values of E..’s ith attributes in
the ENV_CONTEXT set.

The k-means clustering algorithm [25] requires setting a
suitable value for parameter k, which decides the maximal size
of each formed cluster of environmental contexts. Generally, a
small k value can make derived clusters more specific, but it
could also increase noises in later classification [26]. Therefore,
we choose the grid search [27], a traditional way of conduct-
ing parameter optimization in machine learning algorithms, to
decide the most suitable value for the parameter k. Intuitively,
the grid search conducts cross validation on a set of candidate
values for the parameter to be optimized, and selects the one
with the best performance.

We initially use 30 candidate values for parameter k, from 1%
of the total number of collected environmental contexts to 30%,
increasing with a pace of 1%. Then, we conduct tenfold cross

Authorized licensed use limited to: University of lllinois. Downloaded on September 07,2020 at 21:27:27 UTC from IEEE Xplore. Restrictions apply.



112

validation to decide the most suitable k£ value. We randomly
divide the ENV_CONTEXT set into ten disjoint subsets
of the same size. Nine subsets are merged for training (i.e.,
training set) and the remaining one is for validation (i.e., testing
set). For each candidate k value, we conduct its corresponding
clustering on the training set, resulting in multiple clusters
of environmental contexts. With respect to these clusters, the
environmental contexts from the testing set are then classified
into them. Accordingly, we calculate an average deviation value
to measure the performance associated with the specific k value.
Let an environmental context from the testing set be E.¢_1', and
its classified cluster be C' (Feyi_1, Fexy_2, ..., Eext_j). Then,
context Fe;_T"s deviation value div(FE.x;_T) is calculated as

1 J
diV(ECXt_T) - - Z diS(Ecxt_T7 Ecxt_i)~

i=1

The average deviation value for k is the averaged deviation
values of all environmental contexts from the testing set. One
would expect this value to be minimized, and thus, CoMID
selects the k value with the smallest average deviation value
after comparing all candidate values. In our field tests of the
NAO robot and UAV subjects used later in our evaluation (see
Section IV), we observe that the selected k& value ranges from
17% to 22% of the total number of collected environmental
contexts with their corresponding performance being similar.
Therefore, we select 20% of the total number as the &k value
used in CoMID to simplify its implementation and evaluation.

With the k value set for the k-means clustering, CoMID
derives initial clusters for collected environmental contexts,
and their belonging segments are also clustered accordingly.
Then, CoMID refines these initial clusters of segments based on
their program contexts, by measuring the similarity of program
contexts between segments in each cluster. CoMID uses the
Jaccard similarity index [30] to calculate the degree of similarity
(DoS) value between each pair of program contexts. Let P.yt_sg
be segment sg’s program context (i.e., a set of statement ids).
Then, for two given segments sg, and sgp, the DoS value
between their program contexts DoS(Pext_Sg 4, Pext_sgg) is
calculated as

_ |cht—SgA N cht—SgB|
| Pext—_8g4 U Pext_sgp|

DoS(Pext_Sg 4+ Pext_58p)

Then, the DoS value between a pair of program contexts ranges
from O to 1. CoMID considers two segments to have the same
program context if the DoS value of their program contexts is
no less than 0.8. This reference value is set by following the
existing work [24]. Nevertheless, we also study the impact of
different DoS threshold values on CoMID’s effectiveness in our
later evaluation (see Section IV).

Based on this similarity measurement on program contexts,
CoMID refines the initial clusters of segments. If two segments
in one cluster have the same program context, they are still
together in that cluster. Otherwise, they are separated into two
clusters. This separation process iterates until no cluster can
be refined. Then, the final result is a set of groups, each of
which contains only segments with the same environmental
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Fig. 4. Illustration of Step 1: Trace collection.

and program contexts. We also say that each group contains
context-sharing iterations.

Example: Consider in our robot example method mo-
tion.angleMove (names, angle, timeLists).Fig.4
illustrates CoMID’s recorded information for the 8th and 12th
iterations in an execution trace tr4. The segment representing
the 8th iteration, denoted as seg, is shown in the upper dashed
box, and the segment representing the 12th iteration is shown
in the lower box. For each segment, its upper block lists the
concerned iteration’s environmental and program contexts, re-
spectively, and its lower block lists the information for methods
executed in this iteration (here, we show one method for illus-
tration). We use a tuple, e.g., (22.3, 20.8, 26.3), to represent the
values of sensed environmental attributes, e.g., for the pressure
on the robot’s left foot, that on the right foot, and the robot’s
distance to its front-facing obstacle, respectively. We use “stm”
followed by a number, e.g., “stm30,” to represent the id of a
statement executed in the concerned iteration. Note that this
example is for the illustrative purpose, and thus, many aspects
are simplified. For example, we list only three statements as
program contexts (in reality, there can be many). As a result, a
DoS threshold value of 0.8 between two program contexts is not
effective to use, and one has to design more statements as pro-
gram contexts to make this value useful. To make this example
simple yet illustrative, we adopt another DoS threshold value of
0.5 here.

Fig. 5 illustrates how the iterations in three execution traces
(tra, trp, and tr¢) are grouped according their environmental
and program contexts. CoMID first derives initial clusters [see
Fig. 5(a)] according to environmental contexts of the iterations,
and cluster C includes six iterations (seg® and seg!? from
tra, segd and seg® from trp, and segl? and segZ’ from trc).
We show only their environmental and program contexts for
illustration. CoMID then calculates DoS values for program
contexts of the six iterations, and refines the C; cluster into
two final groups [see Fig. 5(b)]. One larger group contains four
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Fig. 5. Illustration of Step 2: iteration grouping. (a) Deriving clusters by
environmental context. (b) Refining clusters by program context to form final
groups.

iterations (seg®, seg!?, segl?, and seg?’) from execution traces
tr 4 and tro, and the other smaller group contains two iterations
(seg? and seg?) from trace trp. Such refinement result is
due to their DoS calculations, e.g., DoS(seg%, segt?) = 1.0,
DoS(segQBl, seg%o) = 0.5, DoS(segi, segQBl) = 0.2, and
DoS(seg?, segt?) = 0.2, and so on.

B. Multiinvariant Detection (Steps 3 and 4)

1) Multiinvariant Generation: After context-based trace
grouping, CoMID obtains multiple groups of context-sharing
iterations in terms of segments. CoMID feeds the segments in
each group to the Daikon [16] engine for deriving invariants
specific to this group. Note that the effectiveness of our CoMID
approach is independent of the used invariant inference engine.
Here, we have chosen Daikon due to its wide usage and fair
comparisons in our evaluation as explained later. One could
also use other invariant inference engines for cyber-physical
programs. In such cases, the artifacts collected in Step 1 (i.e.,
arguments and return values for each executed method) should
be replaced by corresponding artifacts according to the actually
used invariant inference engines. Nevertheless, program and
environmental contexts should still be collected since they are
required by our CoMID’s technique of the context-based trace

grouping.

As mentioned earlier, CoMID needs to address the impact
of uncertainty on invariant generation, so as to suppress the
negative consequences of inaccurate sensing values. To do so,
CoMID uses different subsets from each group of segments for
deriving invariants, which are later used for collective checking
in the runtime monitoring against uncertainty. Generally, one can
freely decide the number of such subsets, and CoMID chooses
four for avoiding high computational and monitoring overheads.
The sizes of the sampled subsets can also be freely decided, and
here, CoMID makes the sizes of sampled subsets have equal
differences (i.e., 20%, 40%, 60%, and 80% of the total number
of segments in a group). We also study the impact of different
sizes of sampled subsets on CoMID’s effectiveness in our later
evaluation (see Section IV).

Then, besides the one invariant (i.e., principal invariant) for
the universal set (i.e., a whole group of segments), CoMID gener-
ates four invariants for the four subsets, respectively. These five
invariants are named as an invariant family, with respect to each
supported invariant template and each executed method requir-
ing invariant generation in the group. Since each invariant family
is associated with a specific group of context-sharing iterations,
the group’s contexts are also referred as the invariant family’s
context. An invariant family’s context specifies the situations
under which the invariants in the family are suitable for checking,
thus deciding abnormal states for concerned programs.

2) Abnormal-State Detection: Now CoMID has generated a
set of invariant families for runtime monitoring of each pro-
gram location of interest. Different from the existing work [24],
CoMID chooses to check only those invariant families whose
contexts are the same as that of the current iteration in a pro-
gram’s execution. Here, “same” is decided by the comparisons
of both program and environmental contexts as follows: 1) the
DoS value between a pair of program contexts no less than
0.8 (see Section III.A), and 2) the environmental context of the
current iteration is classified into the same cluster as that of the
considered invariant family.

After selecting suitable invariant families for checking, Co-
MID then needs to decide whether an invariant violation in the
runtime monitoring is simply caused by uncertainty or indicates
the detection of a real abnormal state. CoMID uses an estimation
function to ensemble the evaluation results of invariant checking
across multiple iterations, in order to suppress the impact of un-
certainty on the decision. The design of the estimation function
is based on the following two intuitions.

1) The possibility that an invariant violation or satisfaction is
caused by uncertainty relates to the number of segments
that have been used for deriving the invariant under check-
ing.

2) The impact of uncertainty on invariant checking can be
suppressed by examining checking results across multiple
consecutive iterations.

Based on these two intuitions, the estimation function assigns

a weight to each invariant violation or satisfaction. The weight
assignment is designed as follows.

1) For a violated invariant inv;, the more segments are used
for deriving it, the less possibility that inv;’s violation is
caused by uncertainty, since inv; is inclined to be general.
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2) For a satisfied invariant invs, the more segments are used
for deriving it, the less possibility that invy’s satisfaction
indicates the current execution to be passing, since satis-
fying a general invariant is natural.

Recall that CoMID makes five subsets for each group of
segments (from 20% to 100% of the total size, with a pace of
20%), and generates invariants with respect to each of these
subsets. Then, given a subset of segments and its associated size
ratio p (i.e., 20%, 40%, ..., or 100%), CoMID sets the weight
assigned for the violation of one invariant generated from this
subset to be p, and that for the satisfaction to be —(1 — p).
Such a weight value intuitively models the likelihood whether an
execution is failing or passing: a positive value suggests failing,
while a negative value suggests passing, and its absolute value
indicates the confidence.

Formally, consider an invariant family INV = {inv;},1 < <
k. Let the invariant-checking result for inv; at iteration j be rf,
where 1 denotes invariant satisfaction and —1 denotes violation.
Let the size ratio associated with invariant inv; be p; (from its
corresponding segment subset). Then, the estimation function
returns for INV at iteration j as follows:

Di j

L SE e
EST(INV) = 3 . —

i=1 _k_ipz

Zw:l(l - pl’)

EST(INV)/ calculates the sum of the weighted checking
results for all invariants in INV for iteration j. The estima-
tion function then calculates the averaged result for the last w
consecutive iterations (until j5)

r =1

J

>

i=j—(w-1)

. | .
EST(INV)/~ (v~ — — EST(INV)’,

This averaged value falls in the range of [—1, 1], and a value
closer to 1 would be a strong indicator of a failing execution
(i.e., having entered an abnormal state). Like the existing work,
CoMID needs to set up a threshold for this value to decide
whether a monitored execution is failing. Since this value’s
fluctuation can be largely caused by the uncertainty, we assume
that its distribution corresponds to that of the specific uncer-
tainty type experienced by a cyber-physical program. Then,
based on the specific uncertainty type (i.e., its error range [—U,
U] and distribution D), CoMID sets up the threshold A by
solving the uncertainty’s C'-confidence interval equation, i.e.,
Pr(x € [-U x A,U x A]) = C, where Pr(z) is the probability
function for distribution D. For subjects such as the NAO robot
and UAVs in our later evaluation, CoMID sets w = 5 and
C = 90%. The former suggests 2-3 seconds before CoMID
makes a decision, which is sufficient for such low-speed subjects
to take new actions (customizable by application domains). The
latter suggests that CoMID plans to hold a confidence level of
90% for its made decisions (also customizable by application
domains). In the confidence interval equation, the probability
function for most uncertainty types follow common models [31],
facilitating the equation’s solution. For example, if a specific
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Fig. 7. Illustration of Step 4: Abnormal-state detection.

certain type follows the uniform distribution, A would be solved
to be 0.9; if it follows the normal distribution, A would be
0.65. By doing so, CoMID sets up the threshold A for deciding
whether an averaged EST value implies the prediction of a failing
execution, i.e., by checking whether the value is larger than A.

Example: Consider in our robot example the variable
angle for method motion.angleMove (names, angle,
timeLists). Fig. 6 illustrates an invariant family for this
variable (showing three invariants for example), generated based
on one group of the context-sharing iterations. In this family,
the principal invariant is “angle < 65, 100%,” indicating that
the robot’s arm should not be raised over 65 degree in all
cases. This invariant is generated based on all segments (i.e.,
100%) in the concerned group. The other two invariants, namely,
“angle < 52,20%” and “angle < 58, 50%,” are generated
when only 20% and 50% (randomly sampled) segments are used.
These invariants’ context is also illustrated in Fig. 6 (from their
corresponding group of segments).

Fig. 7 illustrates how CoMID uses the generated invariant
family to detect abnormal states in the runtime monitoring.
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Consider the 45th and 46th iterations for a monitored execu-
tion trace (using two consecutive iterations, for example, i.e.,
w = 2). Suppose that the earlier generated invariant family shares
the same context with both iterations. Then, CoMID checks all
three invariants in the family to decide whether the execution
is safe or not. For the 45th iteration, its execution violates all
the three invariants, and thus, EST(INV)3 is calculated to be 1
(%7 + (1)%3 + (1):‘;). For the 46th iteration, its execution violates
only one invariant “angle < 52, 20%”, and thus, EST(INV)46
is calculated to be —0.27 (—% + (1)%? — %). So, the averaged
value of the estimation function for the execution consisting of
the 45th and 46th iterations is 0.37 ( %27) If the uncertainty
type follows the normal distribution, CoMID would solve the
equation to obtain the threshold value to be 0.65, as explained
earlier. Then, the result (0.37) suggests that the monitored ex-
ecution is still safe, and that the several invariant violations
encountered in these two iterations have been possibly caused

by uncertainty.

IV. EVALUATION

In this section, we present the evaluation of our CoMID ap-
proach including comparing it with two existing approaches. The
first approach naive simply uses an invariant inference engine
(i.e., Daikon [16]) to generate invariants. The second approach
p-context, inspired by Zoomln [24], uses program context to
enhance the invariant generation and abnormal-state detection.
We select three real-world cyber-physical programs, namely,
NAO robot [see Fig. 8(a)], four-rotor UAV [see Fig. 8(b)], and
six-rotor UAV [see Fig. 8(c)], as the evaluation subjects. For the
evaluation, we implement CoMID as a prototype tool in Java 8
and study the following three research questions.

RQ1: How does CoMID compare with the existing work in
detecting abnormal states for cyber-physical programs in terms
of effectiveness and efficiency?

RQ2: How does CoMID’s configuration (e.g., enabling either
or both built-in technique(s) for improving the generated invari-
ants, setting up which DoS threshold value for distinguishing dif-
ferent program contexts in the invariant generation, and choosing
which sizes of sampled subsets for multiinvariant generation)
affect its effectiveness?

RQ3: How useful is CoMID-based runtime monitoring by
invariant generation and checking for cyber-physical programs?

A. Evaluation Subjects

We instrument the three evaluation subjects to record their
program variable-value and context information during their

executions. We use Daikon as the invariant inference engine
for generating invariants from these subjects’ execution traces.
Besides the invariant templates internally supported by Daikon,
we additionally add polygon invariant templates into Daikon, as
suggested by the existing work [4], [32] on runtime monitoring
for cyber-physical programs. Note that CoMID is itself indepen-
dent of the used invariant templates, and this feature makes it
general to common cyber-physical programs.

The three evaluation subjects are from different companies
or universities. The commercial NAO robot program contains
300 line of code (LOC) (Python-based, with five methods).
The two UAV programs are developed by professional electrical
engineers, and contain 1500 LOC (Java-based, with 24 methods)
and 4000 LOC (C-based, with 35 methods), respectively.

B. Evaluation Design and Setup

1) Execution-Trace Collection: In the evaluation, all invari-
ants should be generated based on the execution traces collected
from the selected evaluation subjects. For the evaluation pur-
pose, we design various scenarios for our evaluation subjects
to run with, and collect their execution traces accordingly. We
test totally six scenarios and collect 1200 execution traces (i.e.,
obtaining a total of 1200 execution traces from six scenarios)
for the three evaluation subjects.

We decide whether an execution trace is safe or not (i.e.,
the oracle) according to its corresponding program’s behavior
and whether its associated failure conditions have been trig-
gered. The failure conditions discussed later seem ad hoc as
they may not hold for other cyber-physical program subjects.
Nevertheless, such failure conditions can hardly be general or
systematic for a wide range of cyber-physical programs, as the
latter can have varying requirements for being safe or functional.
For example, the criterion for an NAO robot to stay balanced on
the ground would be clearly different from that for an UAV to
stay balanced when flying in the air. As such, failure conditions
should probably be application specific, as we design different
failure conditions for the three subjects. If any failure condi-
tion is triggered, its corresponding subject program is directly
decided and annotated to be unsafe in its execution. Based on
such oracle information (safe or unsafe), we can later judge
whether a specific approach under comparison gives a correct
prediction or not (i.e., passing versus safe, and failing versus
unsafe).

For the NAO robot (subject #1), we design a 3 x 3 m indoor
area (including random obstacles and different floor materials)
for free exploration. The NAO robot’s failure conditions concern
its safety (e.g., the robot should never fall into the ground or
crash into any obstacle) and liveness (e.g., the robot should not
be trapped in a small region). We collect a total of 200 execution
traces, including 127 safe ones and 73 unsafe ones. We also build
a simulated space with the same settings by the official NAO’s
emulator Webots [33], and collect 600 execution traces, which
include 454 safe ones and 146 unsafe ones. We note that the
Webots emulator also supports uncertain environmental sensing
internally, and thus, its emulated executions are accompanied
with uncertainty naturally. However, both the subject program
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and all the approaches under comparison are unaware of such
uncertainty. For ease of presentation, we use NAO-f and NAO-
e to denote the two scenarios, i.e., field setting and emulation
setting for the NAO robot, respectively.

For the four-rotor UAV (subject #2), we design three field
scenarios and collect 100 execution traces for each scenario
due to battery constraints. In the first scenario, the UAV takes
off from a starting point and lands at a remote destination. We
collect 68 safe execution traces and 32 unsafe ones. In the second
scenario, the UAV carries some balancing weight during its
flying. We collect 71 safe execution traces and 29 unsafe ones.
In the last scenario, the UAV conducts extra actions in addition
to its normal flying plans, e.g., hovering and turning around.
The failure conditions for the four-rotor UAV concern its safety
(e.g., an UAV should never fall into the ground or land outside a
destination area) and stableness (e.g., an UAV should never lose
its height quickly in short time or lose its balance in the air). We
collect 64 safe execution traces and 36 unsafe ones. Similarly,
we use 4-UAV-sl1, 4-UAV-s2, and 4-UAV-s3 to denote the three
scenarios, respectively.

For the six-rotor UAV (subject #3), similarly it is scheduled
to fly from a starting point to a remote destination. The six-rotor
UAV’s failure conditions are the same as the four-rotor UAV'’s.
We collect 100 execution traces, including 76 safe executions
and 24 unsafe ones. We design one field scenario for the evalu-
ation and use 6-UAV to denote this scenario.

2) Evaluation Procedure: From the collected execution
traces from various scenarios, all the approaches under com-
parison (i.e., CoMID, naive, and p-context) generate invariants,
which are evaluated for their qualities, in order to answer the
three research questions. The evaluation is conducted on a
commodity PC with an Intel(R) Core(TM) 17 CPU at 4.2 GHz
and 32-GB RAM. For each scenario, we run CoMID, naive,
and p-context on safe execution traces to generate invariants,
respectively. Then, we use safe and unsafe execution traces to
validate their generated invariants in detecting abnormal states
for the three evaluation subjects. We use tenfold cross validation
in our evaluation. More specifically, for each scenario, we divide
the set of safe execution traces into ten subsets of the same
size. One subset of safe execution traces (named the safe set)
and the set of unsafe execution traces (named the unsafe set)
are retained for validation. The remaining nine subsets of safe
execution traces are used for invariant generation. We repeat this
generation and validation process ten times and average their
results as the final results for discussion.

To answer research question RQ1 (effectiveness and effi-
ciency), we compare the invariants generated by the three
approaches. For each approach, we first study the number of
its generated invariants and the percentage of these invariants
that can also be generated by other approaches. Since CoMID
uses multiinvariant detection, we consider only its principal
invariants for a fair comparison. We then study the effectiveness
and efficiency of the invariants generated by the three approaches
in detecting abnormal states for cyber-physical programs. We
measure the effectiveness by the frue-positive rate (TP, i.e., the
percentage of unsafe execution traces that are predicted to be
failing) for the unsafe set, and by the false-positive rate (FP, i.e.,
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the percentage of safe execution traces that are predicted to be
failing) for the safe set. Finally, we compare the efficiency for
the three approaches by their time costs on invariant generation
and checking.

To answer research question RQ2 (impact of configuration),
we study CoMID’s effectiveness (TP and FP), as follows, with
its different configurations enabled:

1) on whether to enable one or both built-in technique(s) for
improving the generated invariants, i.e., enabling context-
based trace grouping only (Context), enabling multiinvari-
ant detection only (Multi), or enabling both techniques
(CoMID);

2) on how to set up a DoS threshold value for distinguishing
program contexts in the invariant generation, i.e., from
0.6 to 1.0 with a pace of 0.1 (0.8 as the default setting, as
explained in Section III-A);

3) on different sizes of sampled subsets for multiinvariant
generation.

The first two research questions study the quality of CoMID’s
generated invariants based on offline execution traces that have
been collected in advance. Research question RQ3 investi-
gates how CoMID’s abnormal-state detection helps to improve
a cyber-physical program’s safety in the runtime monitoring.
Without CoMID-based runtime monitoring, the three evaluation
subjects can rely on only their built-in protection mechanisms
when their corresponding failure conditions are triggered. For
example, when the robot is falling into the ground, it would
control to stop walking and crouch on its knees; when an UAV
is falling into the ground, it would control to stop rotating its
wings. Such protection mechanisms can prevent the robot and
UAVs from being damaged by the failures, but their planned
tasks already fail. With CoMID-based runtime monitoring, the
three evaluation subjects can use CoMID-based recovery in
advance once CoMID detects abnormal states (i.e., predicting
the current execution to be failing), and take remedy actions
to prevent failure. Note that the original protection actions
are invoked when failure conditions are satisfied (i.e., failures
have already occurred, e.g., a robot is falling into the ground),
while the remedy actions are invoked when CoMID detects any
abnormal state (i.e., considering the current execution unsafe or
failing). RQ3 aims to study the difference between these two
setups regarding a cyber-physical program’s recovery strategies
(i.e., without monitoring versus with monitoring, or original
protection mechanism versus CoMID-based remedy actions).

However, the carefully designed remedy actions are not the
focus of CoMID, which focuses only on indicating when remedy
actions should be invoked upon an abnormal state is detected.
For comparison purposes, we adopt only very simple remedy
actions for our evaluation subjects, i.e., suspending, and then,
resuming current tasks after a short period of time. For example,
the robot would stop walking, stand for two seconds, and then,
walk toward a different direction; an UAV would stop landing,
reinitiate the flying plan, and then, seek to land after 2 s.
Although such remedy action can delay the subjects’ planned
tasks, the remedy action should be able to help avoid upcoming
failures that would otherwise occur if no remedy action is
taken.
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TABLE I
OVERVIEW OF THE GENERATED INVARIANTS BY THE THREE APPROACHES
CoMID Naive P-context
Inv TP (%) | FP (%) Inv TP (%) | FP (%) Inv TP (%) | FP (%)
NAO-f 1,157 (33.0%) 85.9 18.3 978 (39.1%) 68.6 56.0 979 (38.0%) 78.5 43.9
NAO-e 1,313 (32.4%) 90.3 13.9 1,117 (38.1%) 79.1 44.0 1,117 (38.1%) 84.6 33.9
4-UAV-s1 860 (39.0%) 95.0 15.6 577 (58.1%) 77.5 40.0 577 (58.1%) 84.3 27.2
4-UAV-s2 802 (36.3%) 93.9 7.1 570 (51.1%) 65.7 30.7 570 (51.1%) 79.1 17.2
4-UAV-s3 933 (30.2%) 90.8 29.1 609 (46.3%) 75.5 49.4 609 (46.3%) 80.6 35.9
6-UAV 1,803 (33.0%) 92.0 12.2 1,527 (39.0%) 83.4 30.7 1,527 (39.0%) 85.9 18.9

To answer RQ3 (usefulness), we study how CoMID-based
runtime monitoring helps the three evaluation subjects on pre-
venting their failures. The failure data without CoMID-based
runtime monitoring can be obtained from earlier collected ex-
ecution traces for the three evaluation subjects in answering
RQ1 and RQ2. For obtaining the failure data with CoMID-based
runtime monitoring, we run the three evaluation subjects enabled
with CoMID-based runtime monitoring and remedy mecha-
nisms 100 times for each scenario, and average their results.
Then, we calculate and compare the success rates for the three
evaluation subjects from the failure data. In addition, since the
remedy mechanisms can delay the subjects’ planned tasks, we
study their impact by measuring and comparing the subjects’
task-completion time (i.e., when a robot finishes its exploration
task, and an UAV finishes its flying and landing tasks) for those
nonfailure executions.

C. Evaluation Results and Analyses

1) RQI (Effectiveness and Efficiency): Table 1 gives an
overview of our evaluation results on the quality of the generated
invariants by the three approaches under comparison. The table
includes the number of generated invariants (Inv), true-positive
rate (TP) in detecting abnormal states for the unsafe set, and
false-positive rate (FP) in detecting abnormal states for the
safe set. The percentage data in brackets after the invariant
numbers give the proportions of the concerned invariants that
can also be generated by other approaches. In general, CoMID
generates more invariants than naive and p-context (17.5-53.2%
more, for different scenarios), even if we consider its principal
invariants only. The reason is that CoMID generates different
invariants to govern the program behavior for different situations
by distinguishing different program and environmental contexts.
Naive and p-context generate the same numbers of invariants
since they both generate the same invariants, although they check
these invariants in different ways during the runtime monitoring,
as shown later.

In addition, we observe that the invariants generated by Co-
MID are quite different from those generated by the other two
approaches. For example, 30.2-39.0% of CoMID’s invariants
can be generated by the other two approaches, but 38.1-58.1%
of the other two approaches’ invariants can also be generated by
CoMID. Considering that the number of CoMID’s generated
invariants is larger than those of the other two approaches’
generated invariants, this result suggests that CoMID generates
much more invariants that are unique from those generated by
the other two approaches.

It is important to know whether these unique invariants bring
the positive or negative impact on detecting abnormal states for
the three evaluation subjects. We observe from Table I that these
unique invariants enable CoMID to achieve a higher TP and a
lower FP. For example, CoMID’s TP is 8.6-28.2% higher than
naive and 5.7—-14.7% higher than p-context, and at the same time,
CoMID’s FP is 18.6-37.6% lower than naive and 6.8-25.5%
lower than p-context. A high TP implies the ability of capturing
various cases of abnormal states, and at the same time, a low FP
implies that this ability is not achieved by the cost of overfitting
the generated invariants to specific cases. Therefore, this result
suggests that CoMID’s generated invariants are of a high quality,
by achieving both a high TP and a low FP. It also indicates
that CoMID deserves its efforts on particularly addressing the
iterative execution and uncertain interaction characteristics of
cyber-physical programs. For the iterative execution, p-context
partially uses program contexts to distinguish different scopes
for different invariants, and thus, performs better than naive,
which does not consider any context at all. For the uncertain
interaction, different levels of uncertainty result in CoMID’s
varying leading advantages in FP for different evaluation sub-
jects. For example, compared with p-context, COMID achieves
a 20.0-25.5% lower FP for the NAO robot, and a 6.8-11.2%
lower FP for the two UAVs.

We note that CoMID’s reported FP varies between different
subjects (7.1-29.9%). Considering different subjects’ various
deployment platforms and environments, a direct comparison
across different subjects may not make much sense. Neverthe-
less, we make a further investigation into CoMID’s FP results.
We find that the FPs are mainly caused by the uncertainty (e.g.,
inaccurate sensing) associated with these subjects. For example,
in scenarios where a subject suffers more from uncertainty, e.g.,
the in-field scenario (NAO-f) of the NAO robot, all three studied
approaches report a higher FP (4.4-12.0% higher, as shown in
Table I), as compared with scenarios where a subject suffers
less from uncertainty, e.g., the emulated scenario (NAO-¢e) of
the NAO robot.

We then compare the efficiency for the three approaches in
generating invariants and checking these invariants for detecting
abnormal states. Fig. 9(a) compares these approaches’ time
costs in generating invariants. We observe that CoMID spends
18.7-43.6% more time than naive and 8.9-23.5% more than
p-context in generating invariants. Naive spends the least time
due to its straightforward strategy of invariant generation by
overlooking all contexts. CoMID’s higher time cost is due to
its constituent techniques of context-based trace grouping and
multiinvariant generation for improving the quality of generated
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Fig. 9. Efficiency comparison for CoMID, naive, and p-context. (a) For
generating invariants. (b) For checking invariants.

invariants. For the former, CoMID groups context-sharing iter-
ations to make its generated invariants fitter to specific program
behaviors, bringing up its TP in detecting abnormal states. For
the latter, CoMID uses multiple invariants to alleviate the impact
of uncertainty, bringing down its FP in detecting abnormal
states.

Fig. 9(b) compares the three approaches’ time costs in check-
ing invariants for runtime monitoring. For the collected execu-
tion traces, which are of 4-min length on average, CoMID’s total
time overhead is less than 400 ms (176.5-363.5 ms, or 241.9 ms
on average). Considering that CoMID checks invariants only
at the end of each iteration, the time overhead is actually split
into multiple pieces for each iteration, and each piece is very
small. We observe that CoMID spends 36.3-88.5% less time
than naive. Although CoMID uses multiple invariants to decide
abnormal states, its technique of context-based trace grouping
enables it to focus on much fewer invariants specific for each
iteration encountered by a cyber-physical program. naive, in-
stead, has to check each invariant in each iteration, resulting in its
high time cost in detecting abnormal states. Regarding p-context,
whose total time overhead is about 200 ms (157.3-315.7 ms, or
209.4 ms on average), CoMID is acceptable (only slightly more
time), considering that it has additionally considered environ-
mental contexts for refining invariants and addressed the impact
of uncertainty in checking invariants. Therefore, CoMID should
be useful for many real-world cyber-physical programs, which
include, but not limited to, the three evaluation subjects.

However, due to the variety of different cyber-physical pro-
grams, one can hardly claim that CoMID applies to all of them.
We suggest characterizing CoMID’s applicable cyber-physical
programs according to their iteration lengths in terms of the
execution time for one iteration. Since CoMID checks invariants
only at the end of each iteration, a cyber-physical programs’s
iteration length would largely affect, if not deciding, whether
CoMID’s time overhead is sufficiently small and affordable. For
example, if a cyber-physical program has an iteration length of
about 100 ms or longer (i.e., sensing its environment less than
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ten times per second), then CoMID is applicable (e.g., for our
evaluation subjects, the iteration length for the NAO robot is
about 500 ms and those for the two UAV subjects are about
200 ms). The reason is that CoMID takes about 0.6 ms for each
iteration (Fig. 9(b), average total time is 241.9 ms, and average
iteration number is 420). Still, CoMID’s own time overhead
depends on how many invariants should be checked, being quite
application specific. For our evaluation subjects, the numbers of
checked invariants for the three subjects are 802—1803. For other
cyber-physical programs, one can decide CoMID’s applicability
based on their invariant numbers accordingly.
Therefore, we answer research question RQ1 as follows.

CoMID generates and checks invariants to detect abnormal
states for cyber-physical programs effectively and efficiently.
It achieves a higher TP (5.7-28.2% higher) and a lower
FP (6.8-37.6% lower) than naive and p-context. Although
CoMID spends more time in generating invariants (offline),
its invariant checking (online) is comparably efficient as
p-context and much more efficient than naive.

2) RQ2 (Impact of Configuration): We study the impact of
configurations on CoMID’s effectiveness from two aspects.
First, CoMID can be configured with its two built-in techniques
(context-based trace grouping and multiinvariant detection) in-
dividually enabled. Fig. 10 compares the effectiveness in terms
of TP and FP for the original CoMID (CoMID), CoMID with
only context-based trace grouping enabled (Context), and Co-
MID with only multiinvariant detection enabled (Multi). We
observe that when detecting abnormal states for the unsafe
set, Context performs more effectively than Multi in four UAV
scenarios (20.2-28.3% higher TP), while Multi performs more
effectively than Context in two NAO scenarios (0.7-1.1% higher
TP). As analyzed earlier, the NAO robot suffers more from un-
certainty than the two UAVs due to its complicated sensing and
physical behavior, and thus, Multi helps more than Context for
the two NAO scenarios on suppressing the impact of uncertainty.
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Fig. 11.  Effectiveness comparison for CoMID with different DoS threshold
values. (a) TP comparison. (b) FP comparison.

For the four UAV-related scenarios, their uncertainty is relatively
light, and thus, Context exhibits more substantial advantages.
When combining the two techniques together, CoMID always
produces the best results (2.7-35.4% higher TP). On the other
hand, when suppressing false alarms for the safe set, Multi
performs more effectively than Context in all six scenarios (0.9—
13.3% lower FP). The advantages of Multi are mainly caused by
the fact that uncertainty is the major reason for false alarms. Still,
CoMID again produces the best results (2.1-9.5% lower FP).
Considering that Context and Multi behave better in different
scenarios (complementing each other) and CoMID always pro-
duces the best results, CoMID’s two techniques (context-based
trace grouping and multiinvariant detection) are both useful for
improving its effectiveness by achieving a high TP and a low FP.

The p-context approach (inspired by the existing work
Zoomln [24]) uses program contexts to specify effective scopes
for its generated invariants, but does not explicitly address
the uncertainty issue. When its reported FP is compared with
Context (i.e., CoMID without addressing the uncertainty), the
latter obtains only a 1.4-3.3% lower FP rate than the p-context
approach as shown in Table I, but CoMID with both its tech-
niques enabled (i.e., addressing the uncertainty) obtains a 6.8—
25.5% lower FP rate than the p-context approach. This result
demonstrates CoMID’s strengths in alleviating the impact of
uncertainty to cyber-physical programs. This result also suggests
that the p-context approach can still be effective for subjects with
less uncertainty.

Second, CoMID can also be configured to use different DoS
threshold values for distinguishing different program contexts
in generating invariants. As mentioned earlier, CoMID uses a
default DoS threshold value of 0.8 as suggested by the existing
work [24], and here, we study the impact of this value choice
(from 0.6 to 1.0 with a pace of 0.1) on CoMID’s effectiveness.
Fig. 11 compares CoMID’s effectiveness in terms of TP and FP
with different DoS threshold values. We observe that in all six
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Fig. 12.  Effectiveness comparison for CoMID with different size configura-

tions for sampled subsets. (a) TP comparison. (b) FP comparison.

scenarios, CoMID with the value of 0.8 indeed behaves the best
in both TP and FP. Nevertheless, the winning extents are not that
large, and the extent on TP (1.8—-15.6% higher) is a bit more than
that on FP (0.1-7.9% lower). In addition, we observe that the
impact of different DoS threshold values varies across different
scenarios. For example, in scenario NAO-f, the TP for threshold
0.9 behaves slightly better than that for threshold 0.7, while
in scenario NAO-e, the latter behaves slightly better than the
former. This result suggests that CoMID’s effectiveness might
be further improved if its DoS threshold value can be tuned
adaptively for specific cyber-physical programs. Currently, we
make CoMID take the default value of 0.8 for simplicity, and
we leave its adaptive tuning to future work.

Third, CoMID samples four subsets from a group of context-
sharing iterations, each containing 20%, 40%, 60%, and 80% of
the total number of segments in a group, for multiinvariant gen-
eration. Now we study the impact of different sizes of sampled
subsets on CoMID’s effectiveness. Besides the original size con-
figuration (original), we consider three other size configurations:
four subsets each containing 20%, 30%, 50%, and 70% of the
total number of segments in a group (c/); containing 20%, 50%,
70%, and 90% (c2); and containing 20%, 26%, 36%, and 53%
(c3). While the first two size configurations are manually set to
make their size differences not equal, the last one is randomly
set for comparison.

Fig. 12 compares CoMID’s effectiveness in terms of TP and
FP with different size configurations for sampled subsets. We
observe that CoMID’s average effectiveness with the original
size configuration is the best among the four compared config-
urations in both TP (78.7%) and FP (22.2%). Nevertheless, the
wining extents are not that large (0.8—1.9% higher TP, and 0.5—
1.7% lower FP). This result suggests that changing to another
size configuration can have only limited impact on CoMID’s
effectiveness. In addition, we observe that although CoMID
with the original size configuration achieves the best average
effectiveness, CoMID with other size configurations can achieve
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the best effectiveness for the specific scenarios. For example,
considering TP, ¢l performs the best in scenario 4-UAV-s1, c2
performs the best in scenario 4-UAV-s3, and ¢3 performs the
best in both scenarios NAO-e and 6-UAV. Similar to the DoS
threshold value setting, the result also suggests that CoMID’s
effectiveness might be potentially further improved if its adopted
sizes of sampled subsets for multiinvariant generation can be
tuned adaptively for specific cyber-physical programs.
Therefore, we answer research question RQ?2 as follows.

CoMID’s configurations affect its effectiveness. First, Co-
MID’s two built-in techniques are both useful. When the
uncertainty affecting the three evaluation subjects is rela-
tively light, CoMID with only context-based trace grouping
enabled already behaves quite well. When the uncertainty
is relatively heavy, CoMID with only multiinvariant detec-
tion enabled behaves better. In either way, combing both
techniques (i.e., a full-fledged CoMID) produces the best
results. Second, CoMID'’s settings of its DoS threshold value
for distinguishing different program contexts, as well as
sizes of its sampled subsets for multiinvariant generation,
also affect its effectiveness, but not substantially. Its current
configuration (i.e., DoS threshold value set to 0.8, and sizes
of sampled subsets set to 20%, 40%, 60%, and 80% of the
total number of segments in a group) already makes it work
satisfactorily for the three evaluation subjects.

3) RQ3 (Usefulness): Finally, we study how CoMID-based
runtime monitoring helps the three evaluation subjects on pre-
venting their potential failures. Fig. 13 compares the success rate
for the three evaluation subjects in the six scenarios, based on
their failure data with (“with CoMID”) and without (“without
CoMID”) CoMID-based runtime monitoring. We observe that
CoMID indeed helps improve the success rate by 15.3-31.7%
(avg. 23.1%) across different scenarios. This result echoes our
earlier evaluation results on CoMID’s high TP and low FP
performance. In addition, as mentioned earlier, the CoMID-
based runtime monitoring and remedy mechanisms can delay the
three evaluation subjects’ planned tasks, thus trading for higher
safety (i.e., fewer failures). So, we study such impact. Fig. 14
compares the average task-completion time for nonfailure ex-
ecutions of the three evaluation subjects with (“with CoMID”)
and without (“without CoMID”’) CoMID-based runtime moni-
toring. We observe that CoMID indeed increases the subjects’
task-completion time by 8.8-35.2% (avg. 26.8%). We consider
such slowdown extent acceptable for subjects that require high
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safety assurance. In fact, the delay is largely due to the safety
control before reinitializing the tasks (e.g., a robot stands for
two seconds and then restarts walking, and an UAV restarts to
land after 2 s), customizable by different application domains.
Therefore, we answer research question RQ3 as follows.

CoMID’s capability of generating and checking invariants
for runtime monitoring can effectively prevent the three
evaluation subjects from entering potential failures. CoMID
helps improve the subjects’ success rate in their task ex-
ecutions by 15.3-31.7%, with a cost of 8.8-35.2% longer
task-completion time.

D. Threats to Validity

One major concern on the validity of our empirical conclu-
sions is the selection of evaluation subjects in our evaluation.
We select only three evaluation subjects, which may not al-
low our conclusions to be generalized to more other subjects.
Nevertheless, a comprehensive evaluation requires the support
of suitable environments for experimentation, which should be
both observable and controllable. This requirement restricts our
choice of possible evaluation subjects. To alleviate this threat,
we try to make our subjects realistic by selecting real-world
cyber-physical programs. In addition, we make the subjects di-
verse by requesting them to cover different functionalities (e.g.,
automated area exploration, planned flying, and smart obstacle
avoidance), and to run on different platforms (e.g., Python-based
NAO robot, Java-based UAV, and C-based UAV). By doing so,
we try to alleviate as much as possible potential threat to the
external validity of our empirical conclusions. Still, evaluating
CoMID on more comprehensive cyber-physical programs and
platforms deserves further efforts.

Another concern is about relating the detection of an abnormal
state to an execution’s failure result; such factor may pose
threat to the internal validity of our empirical conclusions on
an approach’s TP and FP performance. The reason is that when
an abnormal state is detected by an approach, one seems not
able to clearly relate the detection to the current execution’s
upcoming failure, considering that their time interval can vary.
To address this problem, we particularly design to measure TP
for unsafe executions and FP for safe executions only: for an
unsafe execution, if an approach never detects any abnormal
state, such result suggests its weakness (it should detect), and so
we choose to check whether the approach reports the detection
of any abnormal state, i.e., TP; on the other hand, for a safe
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execution, if an approach reports the detection of any abnormal
state, such result also suggests its weakness (it should not
detect), and so we directly check whether the approach pro-
duces such false alarms, i.e., FP. In addition, to further alleviate
the potential threat, we additionally study in research question
RQ3 whether CoMID-based runtime monitoring indeed helps
prevent the three evaluation subjects from entering failures,
i.e., by measuring and comparing their success rates in task
executions. All together, we strive our best efforts to evaluate
CoMID’s empirical and practical usefulness for cyber-physical
programs.

Last but not least, the failure conditions used for annotating
safe/unsafe execution traces may threat the validity of our empir-
ical conclusions. Failure conditions’ not being satisfied does not
necessarily indicate that the current execution is passing (i.e.,
should be a candidate to be annotated as a “safe” one) at this
moment. What we can assure is that when failure conditions are
satisfied, the current execution is indeed failing (i.e., should be
annotated as an “unsafe” one). If not, one has not yet observed
any evidence showing that the current execution will necessarily
fail in the future. Therefore, we consider that the execution is
still passing at this moment. Note that this treatment applies to
all the approaches under comparison, and therefore, should not
affect much our empirical conclusions.

V. RELATED WORK

In this section, we discuss representative related work on
testing cyber-physical programs, generating program invariants,
and runtime monitoring, respectively.

A. Testing Cyber-Physical Programs

Cyber-physical programs are featured with context aware-
ness, adaptability, and uncertain program—environmental inter-
actions, which bring substantial challenges to their quality as-
surance. To address this problem, various approaches have been
proposed for effective testing of such programs. For example,
Fredericks et al. [34] use utility functions to guide the design and
evolution of test cases for cyber-physical programs. Xu efal. [13]
propose monitoring common error patterns at the runtime of
cyber-physical programs, to identify defects in their adaptation
logics when interacting with uncertain environments. Ramires
et al. [35] explore specific combinations of environmental con-
ditions to trigger specification-violating behaviors in adaptive
systems. Yi et al. [36] propose a white-box sampling-based ap-
proach to systematically exploring the state space of an adaptive
program, by filtering out unnecessary space samplings whose
explorations would not contribute to detecting program faults.
These preceding approaches exploit different observations to
strengthen their testing effectiveness, but rely mostly on human-
written or domain-specific properties for defining abnormal or
error states in executing programs. Our CoMID approach com-
plements these preceding approaches by assisting their fault-
detection capabilities from checking trivial failure conditions
(e.g., system crashes) to comprehensive errors (e.g., various
types of error state) with automatically generated invariants.

B. Generating Program Invariants

Dynamically inferring invariants is spearheaded by the
Daikon [16] approach. The approach instantiates several pre-
defined property templates to produce candidate properties, and
uses test runs to discard candidate properties that are violated.
The remaining set of candidate properties are maintained as
the likely invariants. DySy [37] is an approach that combines
test runs with symbolic execution. Like Daikon, DySy uses
test runs but simultaneously performs symbolic execution to
collect path conditions and symbolic constraints for a method’s
return value and the receiver object’s instance variables. From
these path conditions and symbolic constraints, DySy derives
the method’s preconditions and postconditions. Prelnfer [38]
also combines test runs with symbolic execution but, unlike
DySy, Prelnfer conducts pruning and template-based abstraction
for loops to infer concise quantified invariants. Jiang ef al. [4]
derive invariants by observing messages exchanged between
system nodes, and specify operational attributes for robotic
systems based on these messages. Zhang et al. [39] use symbolic
execution as a feedback mechanism to refine the set of candidate
invariants generated by Daikon. Carzaniga et al. [40] propose
cross-checking invariant-alike oracles by exploiting intrinsic
redundancy of software systems. Different from these preceding
approaches, our CoMID approach additionally considers the
impact of contexts on invariant generation (to restrict invariants’
effective scopes) and that of uncertainty on invariant checking (to
suppress false alarms), especially catered for the characteristics
of cyber-physical programs.

C. Runtime Monitoring

By means of invariant checking, one is able to detect abnormal
states or anomalous behaviors in a program’s execution. De-
tecting abnormal states early can allow the program to execute
alternative actions to avoid danger. Zheng et al. [41] mine
predicate rules that specify what must hold at certain program
points (e.g., branches and exit points) for runtime monitoring.
Raz et al. [42] derive constraints on values returned by data
sources, and identify abnormal values based on the derived
constraints. Pastore et al. [24] use the statement-coverage in-
formation in a program’s execution to improve the precision
of abnormality detection. Nadi et al. [43] extract configuration
constraints from program code, and use the constraints to enforce
expected runtime behaviors. Xu et al. [44] collect the calling
contexts of method invocations, and use the contexts to distin-
guish a program’s different behaviors under different scenarios.
The preceding approaches share a common assumption that a
program execution’s anomalous behaviors can be discovered
by checking newly collected execution data against earlier de-
rived constraints from assumed normal executions. While this
assumption is generally correct, cyber-physical programs’ two
characteristics, i.e., iterative execution and uncertain interac-
tion as discussed earlier, make the preceding approaches less
effective. The main reason is that different iterations in a cyber-
physical program’s execution can face different situations and
undertake different strategies to handle these situations. Then, a
straightforward invariant-checking approach can easily generate
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false alarms when the derived invariants’ scopes differ and
the impact of uncertainty is overlooked. Our CoMID approach
specifically addresses this problem, and thus, complements the
existing work on effective runtime monitoring.

VI. CONCLUSION

In this article, we presented a novel approach, CoMID, for ef-
fectively generating and checking invariants to detect abnormal
states for cyber-physical programs. CoMID distinguished differ-
ent contexts for invariants and makes them context aware so that
its generated invariants can be effective for varying situations,
and at the same time, robust to uncontrollable uncertainty faced
by cyber-physical programs. Our evaluation with real-world
cyber-physical programs demonstrates CoMID’s effectiveness
in improving the TP rate and reducing the FP rate in detecting
abnormal states, as compared with two state-of-the-art invariant
generation approaches.

CoMID still has room for improvement. For example, it
currently records the values of program variables at entry and
exit points of all executed methods, and uses these variable
values to generate invariants. Monitoring all executed methods
greatly increases the time overhead of CoMID, and makes it
less effective when applied to a time-critical cyber-physical
program (e.g., a program whose iteration length is less than
100 ms, as discussed in Section IV-C). One promising way is to
restrict the invocations of Daikon to important methods only,
as suggested by other Daikon-based work [45]. In addition,
CoMID currently uses the default DoS threshold value of 0.8 as
suggested by existing work [24]. In our evaluation, we observe
the opportunities in which different threshold values can bring
higher quality of runtime monitoring for different scenarios.
Therefore, it is also worth exploring how to design adaptive
DoS threshold tuning for further refined invariant generation
and checking, as our future work.

CoMID also brings new research opportunities. Once Co-
MID detects abnormal states, one has to correct the monitored
cyber-physical program’s current execution, in order to prevent
it from reaching a failure. In our evaluation, we use a straight-
forward strategy to design the remedy actions, since remedy is
not the focus of this article. Considering the open environment
surrounding cyber-physical programs, it is very challenging to
design such simple yet effective remedy actions. One possible
way is to exploit the invariant-violation information. When
CoMID reports an invariant violation, it not only detects the
anomalies of the variable values of a cyber-physical program,
but also describes the program’s internal and external situation
through program and environmental contexts. By checking the
program’s safe executions under similar situations, one could
possibly interpret the situation with the program’s present vio-
lation, and map this information to proper remedy actions. This
direction deserves further effort to investigate.
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