Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sc1. COMPUT. (© 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 5, pp. A2911-A2937

CONSTRUCTING NEW TIME INTEGRATORS USING
INTERPOLATING POLYNOMIALS*

TOMMASO BUVOLIT AND MAYYA TOKMAN#

Abstract. We present a methodology for constructing time integrators for solving systems of
first-order ordinary differential equations by using interpolating polynomials. Our approach is to
combine ideas from complex analysis and approximation theory to construct new integrators. This
strategy allows us to trivially satisfy order conditions and easily construct a range of implicit or
explicit integrators with properties such as parallelism and high order of accuracy. In this work, we
present several example polynomial methods including generalizations of the backward differentiation
formula and Adams—Moulton methods. We compare the stability regions of these generalized meth-
ods to their classical counterparts and find that the new methods offer improved stability especially
at high order.

Key words. time integration, polynomial interpolation, approximation theory, parallelism,
high-order

AMS subject classifications. 65104, 65105, 65106, 65E99

DOI. 10.1137/18M1203808

1. Introduction. Due to their simplicity and adaptability, polynomials are
widely used in approximation theory to estimate functions, derivatives and integrals.
The interpolating polynomial, which matches function and derivative values at a set
of nodes, is one of the most commonly used approximations. By choosing stable inter-
polation nodes it is even possible to construct convergent interpolating polynomials
of very high degree [21, 5].

The use of interpolating polynomials has led to several important developments
in the solution of partial differential equations, most notably finite difference methods
[18] and spectral methods [10, 20]. In each case, a polynomial approximation, either
local or global, is formed using spatial information and then differentiated. Interpolat-
ing polynomials have also been applied in the time dimension to derive linear multistep
methods such as backward differentiation formulas (BDFs), Adams—Moulton (AM)
methods, and Adams—Bashforth methods.

When discussing polynomial approximations, it is natural to consider the complex
plane, especially for numerical differentiation. Sampling a function off the real line
helps overcome the ill-conditioning inherent in classical finite difference formulas for
high derivatives. For example, by using polynomial interpolation at the roots of
unity, Lyness and Fornberg both developed perfectly well-conditioned algorithms for
numerical differentiation [9, 15].

The complex plane has also proven invaluable in other mathematical domains. In
the context of time discretization, there have been several attempts to study classical
methods along complex-valued integration paths. Examples include Taylor methods

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section October

16, 2018; accepted for publication (in revised form) June 26, 2019; published electronically October
1, 2019.

https://doi.org/10.1137/18M1203808

Funding: This work was funded by the National Science Foundation, Computational Mathe-
matics Program, under DMS-1115978 and DMS-1216732.

fDepartment of Applied Mathematics, University of Washington, Seattle, WA 98195 (buvoli@
uw.edu).

fSchool of Natural Sciences, University of California, Merced, CA 95343 (mtokman@
ucmerced.edu).

A2911

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/18M1203808
mailto:buvoli@uw.edu
mailto:buvoli@uw.edu
mailto:mtokman@ucmerced.edu
mailto:mtokman@ucmerced.edu

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2912 TOMMASO BUVOLI AND MAYYA TOKMAN

in the complex plane [8], a Taylor-Padé ODE solver for the Painlevé equations [11],

and an analysis of superconvergence for classical Runge-Kutta methods along complex

paths of integration [16]. Another interesting attempt to incorporate complex time
was presented in [14], where complex coefficients enabled the construction of high-
order splitting schemes for analytic semigroups.

In this work, we utilize polynomial approximations in the complex plane to con-
struct new classes of time integrators that retain the derivational simplicity of linear
multistep methods while improving upon their stability restrictions. Our broad aim
is to introduce a new construction strategy for deriving stable, high-order integra-
tors that provides a viable alternative to existing approaches such as extrapolation
methods, spectral deferred correction methods, and fully implicit collocation methods.

Our methodology for constructing time integrators using polynomials has three
principal components:

1. Complex time integration. Our methodology allows for the development of integra-
tors that compute inputs and stages at complex times. This generalization allows
us to construct schemes that more broadly incorporate ideas from approximation
theory and stable numerical differentiation. The novelty of our approach is in the
direct use of complex temporal nodes to design classical-type time integrators with
improved stability properties.

2. A new parameter. To construct polynomial integrators we introduce an additional
parameter that we call the extrapolation factor. This new parameter is essential
for obtaining methods with improved stability regions.

3. A new method formulation. We describe methods in terms of the interpolating
polynomials used to compute stage and output values. This formulation is com-
plementary to the traditional coefficient representation.

The paper is organized as follows. Section 2 introduces ordinary differential equa-
tions (ODESs) in the complex time plane and discusses an explicit polynomial method
that can be derived from either a discretized Cauchy integral formula or polyno-
mial interpolation. In section 3 we introduce our new polynomial-based construction
approach and derive polynomial block methods (PBMs). We discuss the order of ac-
curacy for these integrators and provide a simple procedure for computing coefficients.
In section 4 we present several strategies for constructing PBMs and introduce two
schemes that generalize backward differentiation and AM methods. Finally in sec-
tion 5 we present several numerical experiments for these generalized methods and
compare them to their classical counterparts.

1.1. The model problem. We are interested in developing time integrators for
solving systems of ODEs of the form

ay;
(1.1) dt
Yji(tn) = yjnl < o0,

:Fj(t7y17"'7yM)7]:1 M

To improve the clarity of our presentation we introduce all of our methods using the
scaler equation

(12) Z/(t) = F(tvy(t))a y(tn) = Yn.

However, all of our results are directly applicable to the nonscalar case.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2913

2. Time-stepping in the complex plane. In this section we briefly discuss
how initial value problems posed on a real time interval can be extended into the
complex time plane. We then use this observation to construct an explicit time-
stepping method that computes the solution at complex time points. We first derive
this method using the Cauchy integral formula and then present an alternative deriva-
tion using Lagrange interpolating polynomials in the complex plane. Interpreting this
method from a polynomial perspective provides a clear direction for further general-
ization and motivates the construction of a wide class of time integrators based on
interpolating polynomials.

2.1. Ordinary differential equations in complex time. It is normally as-
sumed that the initial value problem (1.2) is valid only for real time. However, if
the solution y(t) is locally analytic in a region containing the initial condition, then
we may extend the initial value problem to complex time via analytic continuation.
Local analyticity is guaranteed by the following well-known theorem.

THEOREM 2.1 (Cauchy-Kowalevski). Consider the system of ODEs (1.1). If
each Fj(t,y1,...,ym), j=1,..., M, is an analytic function of each of its arguments
in a domain D containing t = t,, then (1.1) has a unique, analytic solution in a
neighborhood of t,, [1, section 3.7].

The conditions required by the Cauchy—Kowalevski theorem include many com-
mon ODEs and spatial discretizations of partial differential equations. If we restrict
ourselves to these problems, it is possible to explore time integration methods in the
complex time plane.

Using a Taylor expansion we can express the solution in complex time ¢t = ¢, + h
via

(2.1) y(tn + h) = Zq: M + O(hath.
v=0 :

Despite the simplicity of a Taylor series method, it is generally impractical to differ-
entiate the right-hand side of (1.1) explicitly due to complexity. As an alternative
to manual differentiation, we propose to utilize the Cauchy integral formula coupled
with trapezoidal quadrature to approximate derivatives of y(¢). This approximation
is well-conditioned, is spectrally accurate, and allows for simple calculation of high-
order derivatives [15, 9, 3, 4, 2]. This strategy will lead us naturally to a multivalue
time integrator that approximates the solution at complex time points.

2.2. A time-stepping scheme based on the Cauchy integral formula.
We now derive a new explicit time integrator based on the Cauchy integral formula.
This new method applies techniques from stable numerical differentiation [15, 9] to
the time domain and joins a host of other algorithms that use analytic functions at
the roots of unity [2].

By restricting ourselves to the class of initial value problems that satisfy the
conditions of the Cauchy—Kowalevski theorem, we are guaranteed that there exists
some R > 0 such that the ODE solution y(t) is analytic inside the circular domain

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2914 TOMMASO BUVOLI AND MAYYA TOKMAN

of radius R centered around t,,. This allows us to express the local derivatives of the
solution at t = t,, using the Cauchy integral formula:

Oy = L v g
v = 5 § 2,

27t Jp (z —tn)

RN U) Y G P D G AR T I
20 (8,) ﬁ: d ,i d

27i (z —tn)¥ ; 27i (z =t

Apply ODE

where I is a simple closed contour inside the disk of radius R enclosing t,. If we take
T" to be a circular contour of radius r < R centered at t,, and apply the change of
variables z = re* 4+ t,,, then the contour integrals reduce to

27
y(o)(tn) = i/ y(reie—i-tn)dﬁ7

2
(VZI)(t)= (v—1)! 2m F(re? +t,,y(re’? + t"))dO
Y)T T ci(v—1)0 :

The change of variables leads to locally analytic, periodic integrands. By discretizing
the interval [0,27) into the w points §; = w, j=1,...,w, we may approximate
the integrals to exponential accuracy using the trapezoidal rule [22]. This leads us to
the approximations

O) S Y w1 (s 0 VDI plnl -1y,
(22) Yy (tn)"’; 9) (tn)"“ ’LU’I"V_l J;fj €)

where yj[-n] and fjm are the solution and derivative values at the scaled roots of unity
enclosing t = t,, such that

[n] y(t[ﬁ])
A A
tg-n] =ret% 4+ t,

We may now substitute the derivative approximations (2.2) into the Taylor polynomial

(2.1). In order to develop a time-stepping method, we must evaluate the polynomial

at the points t["+1] = t;n]

[n+1] Z] | Z

It is convenient to introduce the extrapolation factor a and parametrize the stepsize
h as the product of a and the radius r. By letting h = r« and taking w = ¢, the
timestep simplifies to

(23) 4l = §jyk r§j§j

+ h. The timestep iteration can be written as

Cpwrv-l

h—i—?‘e J an] i(1— V)ek‘|’ 7=1,...,w.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2915

In Figure 1(a) we present a graphical representation of the input and output times
tgn], tgnﬂ] and the parameters r, h and « for ¢ = 4. At the first timestep the method
(2.3) requires the solution values at each of the ¢ roots of unity.

The time-stepping scheme (2.3) is a Taylor method where the derivatives have
been approximated by discrete Cauchy integrals. This explicit time integrator has
several interesting properties. First the derivation is simple to understand and the
method is easy to implement for any order of accuracy by varying ¢. Second, unlike
many explicit linear multistep methods, the linear stability regions do not contract
to zero at least up to order seven (See Figure 1(b)). Numerical results suggest that
this property holds for higher-order methods as well, although we have not proved
this theoretically. Finally, the method is parallel since each of the g right-hand-side
evaluations may be computed simultaneously at each timestep.

Im(7)
0.6/
[n] [n+1]
tj tj 04
] e}
0.2f
tn tn+1 = o Unstable Stable
o— Re() E
’ - -0.2
h=ra
° o -0.4
-06
-1.0 -08 -0.6 -04 -02 00 0.2 04
Re(2)
(a) (b)

F1c. 1. (a) Input and output times for the method (2.3) with ¢ = 4. Input times tg.n] are labeled

with black circles, output times " are labeled with white circles, and the timestep centers tn,
tn+1 = tn +h are labeled with gray circles. Two circles of radius r centered around t, and tp41 are
also plotted. The stepsize h has been parametrized as h = ra, where o denotes the number of radii
r per timestep. (b) Numerically computed linear stability regions of the method (2.3) for a =1 and
q=2,3,...,7. The stability regions contract monotonically as q increases. Methods with ¢ = 2, 3,6,
and 7 are stable along an imaginary interval containing the origin.

2.3. An alternative derivation using polynomial interpolation. We de-
rived the integrator (2.3) by considering a truncated Taylor series where the exact
derivatives were replaced with approximations computed using a discrete Cauchy in-
tegral formula. It is natural to ask if we may generalize this idea by considering other
approximations to derivatives. We are motivated by the observation that the discrete
Cauchy integral formula we used to derive (2.3) produces the same approximations
as the polynomial-based finite difference formula with nodes at the roots of unity.
We will briefly explore this connection and then rederive the integrator (2.3) using
polynomials.

Remark 2.2. Suppose we seek to approximate the derivatives of a function g(z)
at z = 0 using the values g = g(zx), where zj are scaled roots of unity given by

2, = rexp(2mi(k — 1)/q) for k=1,...,q.

Then, the following two algorithms are equivalent.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2916 TOMMASO BUVOLI AND MAYYA TOKMAN

Algorithm 1. Polynomial differentiation. Differentiate a Lagrange interpolating
polynomial p(z) that passes through each g, then () (0) ~ §* = p*)(0).

Algorithm 2. Discrete Cauchy integral formula. Approximate the Cauchy inte-
gral formula using a circular contour or radius r centered at zero and trapezoidal
quadrature at each of the points zg, then

! © 0 VI~ 2m(k — 1)
2.4 (V)O:L?{g ~§ = — whe O = ——2.
(24) ¢ (0) omi Jn (v g e 2 gke or k p

To prove the equivalence of the two algorithms, i.e., g = g”, we express the
Lagrange interpolating polynomial as p(z) = ZZ;(I) apz®, where the coefficients ay,
are obtained by solving the g x ¢ linear system

W, = (z;/r) ! a=lag,...,aq9-1]",
WDa=g for Y (j/)7 1 and [qu]
D = diag(1,r,...7r97%), g=191,---,94
The Vandermonde matrix W is the inverse discrete Fourier transform matrix. We
can obtain an explicit formula for a by inverting the system, yielding

a=D"'W-lg for Wl =g (z/r)

Finally, using p(”)(O) = vla,, we obtain the approximation (2.4). Had we approxi-
mated the derivatives at z # 0, then the trapezoidal approximation of the Cauchy
integral formula amounts to rational approximation of the underlying function and
the two algorithms would no longer be identical [2].

Using this result we can present a second derivation for the method (2.3) based
on interpolating polynomials in the complex plane. At each timestep, we can use
the inputs and input derivatives to form local Lagrange interpolating polynomials
approximating y(t) and F(¢,y(t)). We may express these polynomials as

q
n n n n zZ—Zz
ypl () =y and BRI =340 £, where £;(2) =] L

. - Z; — 2]
=1 =1 1=1"7
! ’ 1]
Next, we can approximate the derivatives of y(t) at t = ¢,, as
) (] w>1))
Yy (tn) = yp (0) and Y= () = dtv—1 Fp <t)‘t:0'

By substituting these derivative approximations into the Taylor series (2.1), and eval-
uating at each t;nH] we obtain the method (2.3).

Interpreting the integrator (2.3) as a polynomial-based method opens many av-
enues for further generalization. First, we can construct methods that use different
node sets and we can consider polynomial approximations which pass through both
function and derivative values. Second, we can expand the Taylor series (2.1) at a
different point and approximate each derivative using a different polynomial approx-
imation. Finally, we can also consider implicit methods and methods that compute
stage values. The framework introduced in the next section incorporates each of
these generalizations and allows us to easily construct a wide range of polynomial
integrators.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2917

3. Polynomial time integrators. In this section we generalize the ideas pre-
sented in section 2 and introduce a methodology for deriving polynomial based time
integrators for solving systems of first-order ODEs. Our methodology relies on the
use of interpolating polynomials to trivially satisfy order conditions. This simple and
flexible approach can be used to construct a wide variety of integrators with favorable
properties including those with parallelism and high order of accuracy.

We begin this section by introducing a family of polynomials designed to ap-
proximate the solution of initial value problems. We call these polynomials ODE
polynomials, and we construct them using a corresponding ODE dataset that con-
tains approximate solution and derivative data. ODE polynomials form the basis of
our methodology but can be regarded more generally as tools for locally approximat-
ing the solution to initial value problems. Once we present ODE polynomials and
ODE datasets, we proceed by formally introducing polynomial-based time integrators
along with their corresponding notation and parameters. We then use this notation
to present PBMs and close the section by discussing their linear stability and order
of accuracy.

3.1. The ODE dataset. We define an ODE dataset to be an ordered set that
contains approximate solution values and derivative values along with their corre-
sponding temporal nodes. The nodes are expressed in the local coordinates 7, where
the global time ¢ is given by

(3.1) tr) =17 +s.

All ODE datasets are parametrized by the scaling factor r and the translation constant
s; together, these parameters determine the temporal locations of each data element.
The scaling factor r is a strictly positive real number, while both 7 and s can be
complex.

DEFINITION 3.1 (ODE dataset). An ODE dataset of size w is an ordered set of tu-
ples Of the form D(Ta 8) = {(Tja Yj, Tfj)};'uzl where Y; ~ y(t(T]))} and fj :F(t(Tj)7 y])

Note that each derivative term in the dataset is multiplied by a factor of r to
reflect the transformation into local coordinates 7 where

d_1d
dt rdr’

It is sometimes convenient to categorize the elements of a dataset. We will do so using
the following notation:

data label 1: {(7;, y;, 7f;)}
data label 2 : {(7;, v, 7f;)}

JjEAL

JEA2
D(r,s) =
data label n : {(7;, y;, rfj)}jeA" ,
where the sets A; each contain some subset of the indices 1,...,w, and the union of

the sets must produce all the indices from 1 to w. In short, each element in the dataset
must pertain to at least one category. In this paper we will frequently categorize the
elements of ODE datasets into inputs, outputs, and stage values.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2918 TOMMASO BUVOLI AND MAYYA TOKMAN

3.2. The ODE polynomial. We define an ODE polynomial to be a polynomial
that approximates the solution of an initial value problem and is constructed using
values from an ODE dataset. All ODE polynomials are truncated Taylor series of y(t)
in which every exact derivative has been replaced with an approximation obtained by
differentiating an interpolating polynomial.

If the ODE dataset D(r,s) is used to construct an ODE polynomial, then the
polynomial is also expressed in terms of the local coordinates 7 where t(7) = r7 + s.
All ODE polynomials are written in terms of an expansion point b and approximate
the truncated Taylor series for the local solution y(¢(7)), expanded around the point
7 = b. Regardless of the value of b, every ODE polynomial approximates the local
solution y(t(7)) so that

y(t(r)) = p(r;b) Vb.
We formally define an ODE polynomial as follows.

DEFINITION 3.2 (ODE polynomial). An ODE polynomial of degree g is a polyno-
mial of the form

9. as —_p)
(32) prst) =30 BOU=EE
§=0
where each approzimate derivative a;(b) must be computed using values from an ODE
dataset D(r,s) = {(7, yj, rfj)};”:l n one of the following ways:

1. By differentiating a polynomial h;(7) that approximates y(¢(7)). h;(7) must
be the polynomial of lowest degree that interpolates at least one solution value
in the ODE dataset D(r,s) and whose derivative h';(1) interpolates any num-
ber of derivative values in D(r,s) so that

hi() =ye for ke A and A1 #0,
W(T) =7 f for keBl,

and the sets A7 and B? contain unique indices ranging from 1 to w. Then,
the approzimate derivative a;(b) is
d7
a;(b) = ——5h;(7) -
2. By differentiating a polynomial /;(7) that approximates ry’(t(7)). I,;(7) must
be the polynomial of lowest degree that interpolates at least one derivative
value in the ODE dataset D(r,s) such that

Li(te) =rfx for keCl andCi #£0,

and the set C7 contains unique indices ranging from 1 to w. Then, the ap-
prozimate derivative a;(b) is
a1t
a;(b) = FQ(T) - (only valid for j > 1).

It follows from the definition that all ODE polynomials depend implicitly on the
scaling factor r. However, we will avoid writing p(7,r;b) since the dependance on
r does not arise from the structure of the polynomial, but instead comes from the
values in the ODE dataset D(r, s) used to compute the derivative terms a;(b).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2919

Remark 3.3. If an ODE dataset contains nondistinct nodes 7; (i.e., more than
one approximation of y(¢) is provided at the same temporal node), then any inter-
polating polynomial h;(7) or [;(7) that matches solution or derivative information at
these nodes must pass through a linear combination of the corresponding solution or
derivative values where each of the weights sums to one.

3.2.1. Special families of ODE polynomials. The family of all ODE poly-
nomials is large and the Taylor formulation (3.2) provides no guidance for choosing
derivative approximations. To help remedy this problem, we introduce two special
families of ODE polynomials that are inspired by classical linear multistep methods.

Let p(7;b) be an ODE polynomial of degree g of the form (3.2), constructed from
an ODE dataset D(r,s). Then, we make the following statements:

1. The polynomial p(7;b) is an Adams ODE polynomial if each of its approximate
derivatives a;(b) is formed via

Ly(b)v =0,
3.3 a:(b) = i]
()]() dd:j,ll LF(T)‘T:I) j> 0’

where (1) L,(7) is a Lagrange interpolating polynomial that interpolates any sub-
set of the solution values in D(r,s), and (2) Lr(7) is a Lagrange interpolating
polynomial that interpolates at least one derivative value in D(r,s). Any Adams
ODE polynomial may be expressed in integral form as

(3.4) p(r5b) = Ly (b) + /b " Le(e)de,

where the expansion point b serves as a left integration endpoint. We name these
approximations Adams ODE polynomials since the Adams-Bashforth and AM
methods can be derived using an Adams ODE polynomial constructed from an
ODE dataset with equispaced nodes.
2. The polynomial p(7;b) is a BDF ODE polynomial if each of its approximate deriv-
atives a;(b) is formed via
d7

(3.5) aj(b) = =

Hy(7))

T=b
where H,(7) is an interpolating polynomial of degree g that interpolates g solution
values in D(r, s) and whose derivative %Hy(r) interpolates a single derivative value
in D(r,s). BDF ODE polynomials do not depend on the expansion point b since

p(T;b) = Hy(1) Vb.

We name these approximations BDF ODE polynomials since the classical BDF
method may be derived from a BDF ODE polynomial constructed from an ODE
dataset with equispaced nodes.

3.2.2. Important properties of ODE polynomials. The following proper-
ties of ODE polynomials are useful for characterization and method construction:
1. Degree. The degree of p(7;b) in 7.
2. Truncation error. The truncation error for p(7;b) is given by

TE(r,7) = |p(750) — y(t(7))],

where p(7;b) is the ODE polynomial we would obtain had we replaced the dataset
used to construct p(7;b) with one containing exact solution values. We say that
the truncation error is of order p at g if TE(r, 79) = O(r?).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2920 TOMMASO BUVOLI AND MAYYA TOKMAN

3.3. Polynomial time integrators. A polynomial time integrator is any time-
integration method where each stage and output is computed by evaluating an ODE
polynomial formed from an ODE dataset containing the method’s inputs, outputs,
and stages, along with their corresponding derivatives. Certain polynomial methods
can already be found within many classes of existing time integrators, including linear
multistep methods, Runge-Kutta methods, and general linear methods. For example,
Adams—-Bashforth and AM are polynomial methods, as are the Runge-Kutta midpoint
and Heun methods, whose coeflicients can be derived via polynomial quadrature.

In this work, we view each of these existing methods as a special case of a more
general family of parametrized integrators with the ability to scale the interpolation
nodes independently of the stepsize. To formally introduce this concept we begin by
presenting our notation and by discussing two important families of integrators that
emerge from this parametrization.

3.3.1. Parameters and notation. During the timestep from ¢, to t,4+1 =
t,+h, a polynomial time integrator accepts ¢ inputs, computes s stages, and produces
q outputs. We will denote these quantities as follows:

inputs y[ﬁ]

! i=1,...,q, stages Y;, j=1,...,s.
[n+1]

outputs Y;

Each input, output, and stage approximates the solution y(t) at a time node. We will
[n]

express the input times using the variables ¢, and the stage nodes using the variables

T} such that
y][.n] ~y (tg-n]) , yj[.n+1} ~y (tg-n] + h) , and Y;=y (Tj[n]) .

For a classical time-integration method, the input times scale with the stepsize h. For a
polynomial method the input times scale with the node radius r, which is independent
of the stepsize. This additional parameter allows a polynomial method to maintain a
specific stepsize while scaling its input times relative to the local smoothness of the
solution (see Figure 2).

We express the input times in terms of a node set {z;}9_,, where [2;| < 1. The
input times are obtained by scaling the node set by the radius r and translating by
the current timestep center:

input times tg-"] =rzj+t,, j=1,...,q.

q

Similarly, we express the stage times in terms of a node set {c;} j=1, where the con-

stants ¢; may implicitly depend on the parameters r and h:

Small r Larger
Im(r) Im(7) tzn\ tzmu
[n] [n+1] L]]
t! l\
. o
O—————0—— Re(r) o— Re(7)
n E 13
L] h (e} h
* (e}

Fic. 2. Input times t;n] (black circles) and output times t;nJrl] (white circles) for a method

whose nodes are equal to the four roots of unity. Input and output times are shown for two different
r values where the method stepsize h has been kept constant.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2921

stage times T =rc; +1t,, j=1,...,s.

Finally, the derivatives for each input and output will be denoted as

17 =y,

n n n j:17"'7Q7
= Py

)

while the stage derivatives will be denoted as F; = F(T},Y;), j=1,...,s.

At times, it is notationally convenient to use vector notation to express the inputs,
outputs, and stages. We therefore introduce the input vector y! and the input
derivative vector fI"| where

T T
=[] [

We also introduce the similarly defined output vector y[" 1, output derivative vector
fl7 1] stage vector Y, and stage derivative vector F.

3.3.2. Parametrizing the stepsize: The extrapolation factor a. We will
describe polynomial timeintegrators in terms of their ODE polynomials rather than
their coeflicients. By parametrizing the stepsize h in terms of the node radius r,
we obtain natural variables for working with polynomials in local coordinates. We
introduce the extrapolation factor o and parametrize the stepsize as

h =ra,

where the extrapolation factor represents the number of radii » per timestep h. If a
polynomial time integrator has complex nodes, then smaller a will require more ana-
lyticity in the solution per timestep h. To minimize analyticity requirements, we seek
methods with large «, though we will see in subsequent sections that this will not
always be possible for reasons of stability and round-off error.

In summary, using the new parametrization, the input times, output times,
and stage times for every polynomial method are determined from the following
parameters:

{z;}7_ nodes r node radius
JJi=1

{¢; (oz)}jz1 stage nodes a extrapolation factor
Since we are only interested in methods that advance the solution at each timestep,

we will only consider methods where a > 0.

3.4. Polynomial block methods. Block methods [12, 13] generate a set, or
block, of ¢ new values at each timestep. They are natural candidates for exploring
polynomial time integration since we may use the multivalue input to form high-order
polynomial approximations of the differential equation solution. We restrict ourselves
to considering block methods of the form

(36) y[n+1] _ Ay[n] + th[n] + Cy[n+1] + th[n+1]’
where A, B, C, D are ¢ X ¢ coefficient matrices. These block methods do not compute

any stages or off-step points, and all outputs are computed by taking linear combi-
nations of the inputs, the outputs, and the corresponding derivatives. We distinguish

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2922 TOMMASO BUVOLI AND MAYYA TOKMAN

between six types of block methods based on their architecture (parallel or serial)
and their degree of implicitness (explicit, diagonally implicit, and fully implicit). For
parallel diagonally implicit schemes, the ¢ nonlinear systems are independent and
may be solved simultaneously, while for parallel explicit schemes, the right-hand-side
evaluations may be computed simultaneously. In Table 1 we classify these schemes
based on the structure of their coefficient matrices.

TABLE 1
Block methods (3.6) classified by matric structure. The abbreviation SLT stands for strictly
lower triangular.

Ezxplicit Diagonally implicit Fully implicit
Parallel | C=D =0 | D diagonal, C=0 no such methods
Serial C, D SLT C, D lower triangular | C, D may be dense

Recall that for polynomial integrators we parameterize the stepsize as h = ra,
where 7 scales the input times and « is the number of radii r per timestep. We may
express classical block methods using this parametrization by considering integrators
of the form

(3.7) y" = A(a)y™ + rB(@)f™ + C(a)y™ U + rD(a)fin 1.,

The stepsize for a parametrized block method is given by h = ra, where the point
radius r acts as a scaling factor for the input and output times. A parametrized
block method is a polynomial method if the coefficient matrices A(«), B(a), C(a),
and D(a) can be derived from ODE polynomials. However, we will avoid the coeffi-
cient formulation (3.7) in favor of a description that explicitly reveals the underlying
polynomial approximations.

3.4.1. General form. PBMs compute each output by evaluating an implicit or
explicit polynomial approximation of the solution. To construct a PBM, one must
choose a set of nodes and a set of ODE polynomials formed from the method’s input
and output data. Every PBM depends on the parameters

g number of inputs/outputs {%; ;1.:1 nodes, z; € C, |z;| <1
r node radius, r >0 {bj}?zl expansion points
« extrapolation factor

and can be written as

(38) y = pi(z + o by), i=1,...q,

where each p;(7;b) is an ODE polynomial over the ODE dataset
inputs : { (z y[-n] rf[n]) }q
VAR j =1 5

q
outputs : {(ZJ +a, yj[_n+1]7 TfJ[nJrl]) } .
=

(3.9) D(r,t,) =

that contains the method’s inputs and outputs and their derivatives.
We may classify PBMs based on their architecture and degree of implicitness by
specifying the subsets of D(r,t,) that can be used to form the ODE polynomial. This

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2923

classification provides a simple way to construct methods of a particular type. For
each type of method listed in Table 1, the polynomial p;(7;b) may use the data

(3.10) inputs y,[gn], ,Ln] for k € {1,...,q},
' outputs y" T I for k€ A,

where the set A is defined in Table 2.

TABLE 2
For a PBM, the ODE polynomial p;(7;b) may be formed using all input data together with the
output data yLn+1], f}£"+1] for k € A.
Ezxplicit Diagonally implicit Fully implicit
Parallel | A =10 A={j} no such methods
Serial | A={l,....j—1} | A={L,...,5} A={l,...,q)

3.5. Linear stability. The linear stability properties of a multivalue method
that produces ¢ outputs at each timestep are determined using the Dahlquist test
problem y’ = A\y. The timestep iteration for such a method applied to this problem
will reduce to

y[n-‘rl] — M(Z)y[n] ,

where z = hA and M(z) is a ¢ X ¢ matrix. The stability region S is the subset of the
complex z-plane where M(z) is power bounded, so that

S = {z :osup |[M(2)" < oo}.
neN

In general, the matrix M(z) will be power bounded if its eigenvalues lie inside the
closed unit disk, and any eigenvalues of magnitude one are nondefective.

We can trivially extend linear stability analysis to parameterized integrators.
When applied to the Dahlquist test problem, these methods reduce to the iteration

y[n—H] _ M(C,a)y["],

where ¢ = rA and M((, @) is a ¢ X ¢ matrix. We then define the stability region of
the method to be the subset of the complex (-plane

() = {¢ 5 sup (/o)) <o
neN

We take (— (/a = z so that the stability regions for parametrized methods are

scaled relative to the stepsize h instead of the node radius r. This rescaling allows

us to overlay the stability regions for parametrized methods directly with those of

classical methods.

3.6. Order of accuracy. We can determine the order of accuracy of a poly-
nomial integrator by expressing it as a general linear method, specifying a starting
method, and analyzing the resulting algebraic order conditions [6, sect. 53]. Unfortu-
nately, this processes is tedious and the result is dependent on the choice of starting

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2924 TOMMASO BUVOLI AND MAYYA TOKMAN

method. However, we can easily obtain a lower bound on the order of accuracy for
polynomial integrators by taking the minimum of the following two quantities: (1) the
lowest order of accuracy of our inputs, and (2) the smallest order of the truncation
error of the method’s ODE polynomials at their evaluation points. This observation
leads to the following result.

Remark 3.4. A polynomial time integrator is at least order p accurate with respect
to the node radius r if the following two conditions are met:
1. The starting method produces inputs that are at least order p accurate with respect
to r.
2. All of the method’s ODE polynomials for computing stages, outputs, and inter-
polated values have a truncation error of at least order p 4+ 1 at their evaluation
points.

To formally prove order of accuracy [6, sect. 53], we must require that the inputs
be order p accurate. However, in practice it may be more convenient to compute the
starting values using a low-order integrator with a strict error tolerance.

3.6.1. A lower bound for the truncation error of ODE polynomials. The
truncation error for any ODE polynomial p(7;b) of degree g can be determined by
(1) replacing any approximate data values used to form p(7;b) with exact values, and
(2) Taylor expanding. If the construction strategy for an ODE polynomial is known,
then a lower bound on its truncation error is

(3.11) p=min(g+1, A1, ..., Ag),

where the constants A\; are computed as follows:
1. If the approximate derivative a;(b) is computed by differentiating a polynomial
approximation h;(7) =~ y(t(7)) of degree d, then

00 if j = 0 and h;(7) interpolates a solution value at 7 = b,
Aj =14 o0 if j = 1 and h}(7) interpolates a derivative value at 7 = b,
d+1 otherwise.

2. If the approximate derivative a;(b) is computed by differentiating a polynomial
approximation [;(7) =~ y/(¢(7)) of degree d, then

N> if j =1 and [;(7) interpolates a derivative value at 7 = b,
7 1d+2 otherwise.

To derive the bound (3.11), we begin by noticing that the constants A; are lower
bounds on the truncation error of the approximate derivatives a;(b). The jth approx-
imate derivative has a truncation error of order A; if

‘dj(b) — 73y D (rb 4 s)‘ =0 (rY),

where a;(b) was computed using an ODE dataset where any approximate solution
values have been replaced with exact ones. The lower bounds for the truncation error
orders \; are obtained as follows. If the jth derivative of the polynomial approxima-
tion for computing a;(b) interpolates the jth derivative of the solution at 7 = b, then
the truncation will be infinite since a;(b) = y\)(b). If the approximate derivative is
computed by differentiating an approximation to y(¢(7)), then the truncation error

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2925

order must be greater than or equal to the order of the polynomial plus one. Simi-
larly, if the approximate derivative is computed by differentiating an approximation
to y'(¢(7)), then the truncation error order must be greater than or equal to the order
of the polynomial plus two since all derivative data is multiplied by a factor of r in
local coordinates.

The bound (3.11) can be used to rapidly construct high-order methods by ap-
propriately choosing their ODE polynomials. To construct an ODE polynomial with
truncation error p, construct all the approximate derivatives a;(b) by differentiating
polynomials approximations of y(¢(7)) that pass through p data points, or by differ-
entiating polynomial approximations of y'(¢(7)) that pass through p — 1 data points.
For BDF polynomials (3.5) this is equivalent to choosing an H(7) of degree p — 1.
For Adams polynomials (3.4) choose Lg(7) of degree p — 2 and choose b; to be node
values that L, (7) passes through, or choose L,(7) of degree p and Lp(7) of degree

p—1

3.7. Deriving method coefficients. Each stage and output of a polynomial
time integrator is computed by evaluating an ODE polynomial at a specific point. This
operation amounts to taking a weighted linear combination of solution and derivative
data. Each weight depends on the evaluation location of the ODE polynomial and
can be computed by solving linear systems. The total number of linear systems is
dependent on the number of unique interpolating polynomials used to compute the
ODE polynomial’s approximate derivatives, and the size of each linear system is given
by the order of the interpolating polynomials. The condition number of the resulting
linear systems will be heavily influenced by the temporal locations of the data. For
certain nodes, such as the roots of unity, the resulting matrices will be perfectly well-
conditioned, while for other nodes, such as real-valued nodes, the condition number
can grow exponentially.

For fixed time-stepping the coefficients must only be computed once, while for
adaptive time-stepping it will be necessary to recompute the weights at each step.
In either case, the cost of computing coefficients will be negligible for any reasonably
interesting problem since the size of the linear systems will be significantly smaller
than the dimension of the initial value problem.

We now describe a procedure for generating the weights for evaluating an ODE
polynomial

piri) = 32 =0
Jj=0 ’

built from an ODE dataset D(r,s) = {(Tj,yj,rfj)};;l. We begin by introducing

the data vector d = [y1,...,Yw, 7f1,-.- ,rfw]T that contains all the solution and
derivative data in D(r,s). Next, we rewrite p(7;b) as a weighted linear combination
of the data elements, where each weight depends on 7 and b, via

p(7;b) = w(r;b) - d,
where w(7;b) € C**. The weight vector w(7;b) can be written as

w(r;b) =Y (T —b)a(j;b),

Jj=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2926 TOMMASO BUVOLI AND MAYYA TOKMAN

where the vectors a(j;b) no longer depend on 7 and satisfy

a(jib) - d= 40

i ij=0,...,9.

To simplify our discussion for computing the vectors a(j; b), we introduce the following
variables:

A={A;}]_, A set of size v containing indices of the solution data used to
compute a;(b).

B= {Ei}f;l A set of size ¢ containing indices of the derivative data used to
compute a;(b).

v=++4+¢—1 The degree of the interpolating polynomial for computing a(j; b)

is given by v.

The approximate derivatives a;(b) are computed by differentiating interpolating poly-
nomials that pass through solution and derivative values. For notational simplic-
ity, we assume that the temporal nodes of these data values are unique such that
T # 7 for all k, | € AUB. Though notationally tedious, this algorithm can be easily
generalized for polynomials that pass through convex combinations of values at the
same time point. However, assuming unique temporal nodes, we may compute a(j; b)
as follows:

1. If a;(b) is computed by differentiating a polynomial approximation to y(¢(7)), then

the polynomial approximation to y(¢(7)) can expanded around 7 = b as

14
hi(r) = Z cr(T = b)F, where the coefficients ¢, must satisfy the conditions
k=0

ch(n—b)k =y VieA and chk(n—b)k_l =rf; VieB.
k=0 k=1

These conditions will lead to a (¥ + 1) x (v + 1) linear system Hc =y, where

2 v
1 74, Th, Ta, o YA,
2 v
Lo7a, Ty A, | va,
v—1
0 1 27‘]31 VT]Bl T’f]Bl
v—1
_O 1 27, Vg, | | e | _rfm;d) |

If H is invertible, then the nonzero entries of the vector a(j;b) are given by

[a(j; b)]Ak = H]’_J:I,k:’

T=2>0as

k=1,...

Vs and [a(]7 b)]]Bk

If H is noninvertible, then the p(7;b) either is nonunique or does not exist. In
either case, we will consider such polynomials not suitable for time-stepping.

2. If a;(b) is computed by differentiating a polynomial approximation to y'(¢(7)),
then v = 0, and the polynomial approximation to y'(¢(7)) can be expanded around

Li(r) = Z cx (T —b)*, where
k=0

=H

-1

J+Lkty

k=1,...,¢.

ch(n — b)k = ’l"fl VI € B.

k=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2927

These conditions will lead to a (v 4+ 1) x (v 4+ 1) Vandermonde system Lc = f,
where

1 TB, T§1 Co TfIBgl
v
1 7, ... TH,, cy T fB,

The nonzero entries of the vector a(j, b) are given by
[a(j;b)lg, = Li4/d, k=1,...,0.

4. Constructing PBMs. A PBM with ¢ outputs and nodes {Zj}g:1 can be
written as

y][n+l] _pj(zj+a;bj)7 j:]-v"'vq7
where the ODE polynomials p;(7;b) are built from the dataset (3.9). To construct
a PBM one must choose a set of ODE polynomials, a set of nodes, and a set of
expansion points. In general, these parameters can be chosen in any order. However,
selecting one of these parameters first will inform the remaining choices. For example,
choosing a particular set of nodes informs the selection of ODE polynomials. We used
this strategy in section 2, where we first chose the nodes to be the roots of unity
and then built a scheme using Adams polynomials. In this section we employ an
alternative construction strategy where we simply choose a set of ODE polynomials
without specifying the nodes. This approach generates a family of integrators that are
characterized by their ODE polynomials; to obtain a specific method within a family
one must select a single set of nodes and endpoints. In the following subsection,
we will present several example ODE polynomials for constructing families of block
methods and use them to introduce two new schemes that generalize BDF and AM.

4.1. Example Adams PBMs. An Adams PBM is a PBM formed using only
the Adams ODE polynomials introduced in subsection 3.2.1. We may express any
Adams PBM in integral form as

zZita .
_ _) .
yg +_ ng](bj) +r/b L[I{J(T)dr, ji=1,...,q.

To simplify the presentation of Adams methods, we introduce a compact notation to
describe the Lagrange polynomials LLJ] (1) and Lg] (r). It LLJ](T) passes through the

solution values in an ODE dataset with indices ci,...,c, and L[I?] (1) passes through
the derivative values with indices d, ..., dx, then we will use the following notation:
(4.1) Lg/j]:{ycl,...,ycw}7 Lg}:{fdl,...,fdm}.

Below we list several possibilities for choosing Lgf](7‘) and Lgﬁ] (7). Each of the
following polynomials leads to a parallel method with an order of accuracy of at least
g — 1 for any choice of unique nodes {z; }?zp endpoints {b; };1:1, and extrapolation
parameter o > 0.

1. Parallel explicit, a block generalization of Adams—Bashforth:

(4'2) L[] |:y:[[n]7 yg]7 M) y([]n]]ﬂ L[M |: [n]7 f2 y ottt fq[n]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2928 TOMMASO BUVOLI AND MAYYA TOKMAN

2. Parallel diagonally implicit, a block generalization of AM: If the jth output node
overlaps with any input node, i.e., there exists an integer k(j) € {1,...,q} such
that zp(;) = z; + a, then choose the polynomials

. [, [n]] n . .
(4.3) Ly [yl s Ys e s Y | o = i L= k),
' j n n n U n .
g ol el el 1 1A kG).
If there is no overlap, then choose the polynomials
; n n n 7 n n n n+1
(4.4) LU [ot yH, Ly [A SRR A A

4.2. Families of BDF PBMs. A BDF PBM is a PBM formed using only the
BDF ODE polynomials introduced in subsection 3.2.1. We may write these methods
simply as

gt = HI)(z; +), j=1....q.
If Hl[,ﬂ (7) interpolates the solution values in an ODE dataset with indices c1,..., ¢y

and %Hl[f](T) interpolates a derivative value with index &, then we will use the fol-
lowing notation:

(4.5) HIY: {yers - s Yeys fu}

Below we list several possibilities for choosing Hl[,j] (1) for constructing parallel

methods. If each of the polynomials Hl[,j] (1) can be constructed for j = 1,...,q, then
the formulas will produce methods with order of accuracy q. However, for certain
node sets {2;}7_; and a values it will not be possible to construct the polynomial

Hy[f] (7) since the corresponding linear systems will be singular.
1. Parallel explicit, a new class of explicit BDF methods:

(4.6) HZ[/j] : [ygn], yén], e y([I”], f]["]] .

2. Parallel diagonally implicit, a block generalization of classical BDF:

(4.7) HY [ygn], 0,y f}”*”}.

4.3. Classical linear multistep methods as special cases of PBMs. The
ODE interpolating polynomials described in subsections 4.1 and 4.2 will produce clas-
sical linear multistep methods for special nodes, endpoints, and extrapolation param-
eters. For example, if we choose

j— Zj+1; | <)
zj:—1+2<éfi), l)j:{J+1] e and oz:q%l,
Zq J=4q,

then (4.2) produces the classical Adams-Bashforth method of order ¢, (4.3) and (4.4)
produce the classical AM method of order ¢ + 1, and (4.7) produces the BDF of
order q.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2929

4.4. New polynomial block methods with complex nodes. We now intro-
duce two new PBMs that are inspired by classical BDF and AM. These methods use
a node set consisting of ¢ equispaced points on the imaginary interval [—i,], given by

(4.8) 2= —i+2i(j —1)/(q— 1), i=1,....q

These nodes are merely a rotation of those used to obtain the classical BDF and AM

methods. We may describe these new methods as follows:

1. BBDF: A parallel, diagonally implicit block BDF method of order ¢ with ODE
polynomials (4.7), node set (4.8), and ¢ > 1.

2. BAM: A parallel, diagonally implicit block AM method of order ¢ + 1 with ODE
polynomials (4.4), node set (4.8), expansion points b; = z;, and ¢ > 1.

When ¢ is even, the BBDF and BAM methods have no real-valued nodes. We
must therefore compute an additional output at the local coordinate 7 = « during the
final timestep, or at any timestep where we wish to obtain the solution at a real time
point. This can be accomplished by forming and evaluating a new ODE polynomial
Pout (73 D) so that

y([:lll:rl] = Pout (045 bout)-

Possible choices for the output polynomials for BBDF and BAM are

o

1. BBDFoy — HUY: [y%“],...7y¢5“], f[ﬂ?”},

L [l L [g gl)

bout = 2q/2-

2. BAMout

Remarks regarding complex arithmetic. By choosing complex-valued nodes
we must now store the solution at complex times and solve complex-valued nonlin-
ear systems. In general this leads to a doubling in storage costs and a doubling in
computational complexity. For reference, in Table 3 we highlight the slowdown factor
caused by switching from real-valued to complex-valued arithmetic in MATLAB.

TABLE 3
Quantifying the slowdown factor caused by complex arithmetic in MATLAB for scalar multipli-
cation, scalar division, matriz-vector multiplication, and solving linear systems. Random matrices
of dimension 100 were used to generate the last two entries in the table.

Operation | axb a/b Ax Ax=Db

Slowdown factor | 1.4x 1.9x 2.0x 2.2x

During each timestep a polynomial method with complex nodes may require any
of the following operations:
e Evaluation of the right-hand-side F'(¢,y(t)) at complex times.
e Computation of linear combinations of complex-valued solution vectors where
the weights will also be complex-valued.
e Solution of complex-valued nonlinear systems with complex-valued initial con-
ditions.
For certain methods, including BAM and BBDF, the total storage cost will be
equivalent to that of a BDF or Adams—Moulton method of identical order. This is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2930 TOMMASO BUVOLI AND MAYYA TOKMAN

because the nodes {z;}7_; and endpoints {b;}_, for BBDF and BAM are symmetric
with respect to the real line. If the underlying ODE is real-valued then, the Schwarz
reflection principle implies that the solution y(t) and its derivative F'(¢,y(t)) satisfy
the relations

y(z") = y(2)" and F(2*,y(2")) = F(z,y(2))",

where * denotes complex conjugate. For BBDF and BAM methods, this implies that
we only need to compute the first [¢/2] outputs and function evaluations, since it
follows that

g (yg":;ﬂl) and f}nﬂ] = (fg’i—;}r]l) for —j=1,....1¢/2].

This simplification reduces the storage requirements of the method by half and elimi-
nates redundant computation, but it does not reduce the parallel time of the method
since each of the ¢ systems can be solved independently.

Finally, when implementing these integrators on real-valued problems, it is impor-
tant to set to zero any imaginary rounding errors at each timestep from any outputs
with real-valued temporal nodes. If the imaginary rounding errors are not removed,
then we find that the method may become unstable.

4.4.1. Linear stability results for BBDF and BAM schemes. The BBDF
and BAM methods presented in section 4.4 are block generalizations of BDF and AM.
In this section we will compare the stability properties of each of these six schemes
with a focus on A(6) stability for BDF methods and negative stability intervals for
Adams methods. The two properties are defined as follows:

1. A method is A(#) stable if its stability region
S D {z:|arg(—2)| <0, z#0}.
2. A method has a negative stability interval of [—, 0] if its stability region
S D [-p,0] for 8> 0.

For classical BDF methods of orders one through six, A(f) stability decreases
monotonically, and methods of order greater than six are no longer root stable (see
Table 4). On the other hand, classical AM methods have bounded linear stability
regions that contract rapidly with order and are often smaller than those of explicit
methods (see Table 5).

BBDF and BAM methods improve upon these limitations, leading to high-order
methods with more favorable stability properties. In comparison to BDF, BBDF
schemes satisfy the root condition past order six and provide improved A(#) stability
especially for small «. In Table 4 we present A(6) stability for BBDF, and in Figure 3
we show plots of BBDF stability regions and those of the classical BDF methods.

Like AM methods, BAM methods have bounded stability regions. However, they
possess significantly larger linear stability regions than their classical counterparts,
rendering them more useful for mildly stiff equations. One drawback is that they are
unstable along the imaginary axis. In Table 5 we present real stability intervals for
BAM schemes and in Figure 4 we present plots of BAM stability regions overlaid with
those of the classical AM methods.

The stability gains for the BBDF and BAM methods are possible because of
the extrapolation parameter «. As a general rule we find that smaller « values lead
to improved stability for both methods. However, recall that choosing a smaller «
requires a greater amount of analyticity relative to the timestep h = ra.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2931

TABLE 4
A (0) stability for classical BDF and BBDF from section 4.4. The table lists 6 values for methods
of orders two through eight and for BBDF methods with o values of 1, 1/2, 1/4, and 1/8. All angles
are rounded to two decimals. Empty positions indicate the underlying method is not root stable.

Order 2 3 4 5 6 7 8

BDF 90° 86.03° 73.35° 51.84° 17.84°
BBDF,—1 90.00° 89.54° 88.51° 87.58° 86.89°
BBDF 90.00° 89.88° 89.32° 88.51° 87.72° 87.05° 83.58°

BBDFa_l 90.00° 89.99° 89.90° 89.68° 89.31° 88.83° 88.33°
4

BBDFa,l 90.00° 89.99° 89.99° 89.98° 89.94° 89.86° 89.75°
—8

TABLE 5
Negative stability intervals B for AM and BAM schemes from section 4.4. The table lists B
values for methods of orders two through eight and for BAM methods with o values of 1, 1/2, 1/4,
and 1/8. All values are rounded to two decimals.

Order 3 4 5 6 7 8

AM 6.00 3.00 1.84 1.18 0.77 0.49
BAMqy=1 58.01 11.66 7.24 5.68 4.81 4.23

ol 202.01 29.66 14.34 9.29 7.21 5.90
=2
BAMa,l 778.01 101.67 42.77 23.60 1594 11.88
1
BAM 3082.01 389.67 156.55 81.17 51.19 35.31

5. Numerical experiments. In this section, we present numerical experiments
to demonstrate the improved stability properties of BBDF and BAM from section 4.4
in comparison to classical BDF and AM. We compare these implicit methods on two
stiff partial differential equations and present plots of absolute error versus stepsize
and absolute error versus computational time where errors are measured using the
L norm. For each equation, we compute the reference solutions using the MATLAB
odelbs integrator with a tolerance of le-14. Inputs for all multivalue methods are
computed at the initial timestep using the exponential integrator EPIRK43a [17].
For implicit methods, we solve all nonlinear systems using Newton’s method with an
exact Jacobian and the MATLAB backslash to solve the underlying linear systems.

All the results presented in this paper have been run on a six-core Intel i7-8700
CPU running at 3.20GHz. The BDF and AM methods were run using a single thread,
while the BBDF and BAM methods where run using one thread per nonlinear solve
and an additional master thread to combine the results and advance the timestep. All
parallelization was done using the MATLAB parallel toolkit which utilizes MPI. The
MATLAB implementation used to generate these results can be downloaded from [7].

5.1. Test problems. We conduct our numerical experiments using two stiff
partial differential equations. For each equation, we discretize in space using stan-
dard second-order finite differences. Below we describe the equations, their initial
conditions, and the corresponding numerical parameters.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2932 TOMMASO BUVOLI AND MAYYA TOKMAN

20f
BDF 4
10}
2t
= Stable = Stabl Unstabl
E 0 g 0 table Instable
h |) &
-4l ~
-20}, n . 3
-10 0 10 20 30 -6 2 -2
Re(z) Re(2)
6 3
BBDF
af 2|
(@=1/2)
2+ 10
N Stable [Unstable ¥ Stable |“Unstablg
E E
-1
a2l
10 325 =020 =015 =010 -0.05 0.00 0.05
Re(z)
3
BBDF B
20
— | —7]
(a=1/4) L
= = Stable [~Unstabl
L) = 0
-2l] =1t \
\
]
_al] 2| —
-6 R N N1 325 =020 =015 =010 -0.05 0.00 0.05
Re(z) Re(z)

Fic. 3. Stability regions for BDF methods of orders two through six and BBDF methods of

orders two through eight with rotated equispaced nodes. The diagrams on the right are magnified to
show the stability region near the imaginary axis. The stability boundaries for eighth-order BBDF
with o = 1/2 and o« = 1/4 are respectively labeled in red and green. Decreasing the extrapolation
parameter a consistently improves A(6) stability for BBDF schemes.

1. We consider the one-dimensional viscous Burgers’ equation with homogeneous

boundary conditions [19],

(51) Ut = VUgy — Ulg,
u(z,t = 0) = (sin(37z))* (1 — 2)*/?,
z€l0,1], telo,1],
where we take v = 3 x 10~%. We discretize in space using 2000 gridpoints and

test all time integrators using 15 different stepsizes logarithmically spaced between
5x 1073 and 5 x 107%. Equation (5.2) evolves rapidly and the timesteps were

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2933

AM BAM (a=1/2) BAM (o = 1/4)

4 1

Unstable Unstable

Im(z)
=3

Im(2)
o

Im(z)

-2 -5 -5

4 -10 -10
-6 -4 -2 -15 -10 -5 [-15 -10 -5 o

Re(2) Re(z) Re(2)

Fic. 4. Stability regions for AM and BAM of orders three through nine. The stability boundary
for third-order AM appears as a blue contour in all figures. Block methods have significantly larger
stability regions that do not enclose any portion of the imaginary azis. Smaller o leads to larger
and more circular stability regions.

chosen based on accuracy and not to guarantee sufficient analyticity off the real
timeline. As a point of comparison explicit fourth-order Runge—Kutta is only stable
for timesteps smaller than 5.8 x 107%.

2. We consider the two-dimensional advection—diffusion—reaction (ADR) equation
with homogeneous Neumann boundary conditions [17],

(5.2) Up = € (Ugz + Uyy) + 6 (g + uy) +yu(u —1/2)(1 — u),
u(z,t = 0) = 256(zy(1 —z)(1 —y))? + 0.3
x,y €10,1], te€0,0.05],

where we take e = 1/100, § = —10 and v = 100. We discretize in space us-
ing a 400x400 point grid and test all time integrators using 15 different stepsizes
logarithmically spaced between 1 x 1072 and 1 x 10~%. The ADR equation (5.2)
evolves rapidly and the timesteps were chosen based on accuracy and not to guar-
antee sufficient analyticity off the real timeline. As a point of comparison, explicit
fourth-order Runge-Kutta is stable only for timesteps smaller than 2.2 x 104,

5.2. Results for diagonally implicit polynomial block methods. We com-
pare the BBDF and BAM methods from section 4.4 with an extrapolation parameter
of @ = 1/2, against BDF and AM. We also include eighth-order BBDF and BAM
methods with & = 1/4 to demonstrate the effects of rounding errors on high-order
methods. In Figures 5 and 6 we present error versus stepsize and error versus running
time diagrams for Burgers’ equation and the ADR equation. We draw the following
conclusions from our numerical experiments.

1. Stability and accuracy. High-order BDF and AM methods were either com-
pletely unstable or only stable at smaller stepsizes. BBDF methods were stable at all
orders and BAM methods showed improved stability over AM methods of equivalent
order. All four classes of methods demonstrated or exceeded their expected orders of
accuracy at small stepsizes. When solving the viscous Burgers’ equation, BBDF and
BAM did not converge at the coarsest stepsizes due to insufficient analyticity of the
solution.

We find that AM and BAM methods have superior error properties compared to
BDF and BBDF, making them more efficient so long as they remain stable. Rounding
errors presented significant problems for both BBDFS8, which was unable to achieve an

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2934

TOMMASO BUVOLI AND MAYYA TOKMAN

Viscous Burgers’ - BDF and BBDF

= = BDF
102 —e— BBDF
2nd order
3rd order
104 Ath order
——— 5th order a=1/2
5 5 —— 6th order
= £ ——— 7th order
. * ot —— 8th order
—— 8th order } a=1/4
10®
1010
0 1 2 3 4 5
Stepsize (h) Running Time (sec)
:)
Viscous Burgers’ - AM and BAM
) —-- AM
107 =—O= BAM
2nd order
3rd order
10% 4th order
——— 5th order a=1/2
. - ——— 6th order
£ 2 —— 7th order
* ot —— 8th order
—— 8th order } a=1/4
108
1010
0
Stepsize (h) Running Time (sec)

Fi1G. 5. Error versus stepsize and error versus running time diagrams for the viscous Burgers’
equation. We present results for BDF and BBDF in the top two plots and results for BAM and AM
in the bottom two Plots. All BAM and BBDF methods of orders two through seven are run using
a = 1/2. For eighth-order methods we also show results for BAM and BBDF methods with o = 1/4,
to show that reducing o ameliorates sensitivity to rounding errors. The seven thinly dashed gray
lines on the error versus stepsize plots correspond to second- through eighth-order convergence.

error below le-7, and BAMS8, which performed worse than the BAM7 on the Burgers’
equation. However, we can resolve this issue by choosing a smaller o = 1/4 for these
eighth-order schemes.

2. Efficiency. Overall, BBDF and BAM methods are comparable in efficiency to
BDF and AM schemes. In short, the primary reason to consider BBDF and BAM
over BDF or AM schemes is their improved stability at high orders of accuracy.
For large stepsizes, high-order BDF schemes are unstable for even mildly dispersive
PDEs, and AM methods are not appropriate for stiff equations. In contrast, high-
order BBDF methods can be applied to a wider range of problems, and BAM methods
will outperform BBDF on dissipative PDEs that are not too stiff. For example, by
increasing the number of spatial gridpoints in either of our test problems, we can
cause BDF methods of orders greater than 2 to become unstable long before any of
their BBDF counterparts.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2935

2D ADR - BDF and BBDF

= = BDF
—e— BBDF

2nd order
3rd order
4th order
——— 5th order a=1/2
—— 6th order
—— 7th order
~— 8th order

Error
Error

——— 8th order } a=1/4

1 0710
0 500 1000 1500 2000 2500

Stepsize (h) Running Time (sec)

2D ADR - AM and BAM

—-- AM
—0— BAM

2nd order
3rd order
4th order
~——— 5th order a=1/2
—— 6th order
—— 7th order
8th order

Error
Error

—— 8th order } a=1/4

500 1000 1500 2000 2500
Stepsize (h) Running Time (sec)

Fi1G. 6. Error versus stepsize and error versus running time diagrams for the two-dimensional
ADR equation. We present results for BDF and BBDF in the top two plots and results for BAM
and AM in the bottom two plots. All BAM and BBDF methods are run using o = 1/2. The seven
thinly dashed gray lines on the error versus stepsize plots correspond to second- through eighth-order
convergence. For eighth-order methods we also plot BAM and BBDF methods with o = 1/4 to show
that reducing o ameliorates sensitivity to rounding errors.

In general, the efficiency of BBDF and BAM will be dependent on the computer
architecture, the dimension of the initial value problem, and the computational cost of
solving the nonlinear systems. For real-valued problems, BBDF and BAM methods
of order ¢ require Z complex nonlinear solves per timestep, while BDF and AM
methods require only a single real-valued nonlinear solve. If implemented in serial,
BBDF and BAM of order ¢ will cost roughly ¢ times more per timestep than any
BDF or AM method. If parallelized, then each of the nonlinear systems can be solved
simultaneously at each timestep. If these integrators are run on a distributed memory
system, then it will be necessary to communicate all the new solution values between
the nodes after each timestep. If the communication cost is high, then optimal parallel
efficiency will not be obtained. On a shared memory system communication is not
necessary, but cache misses may degrade parallel performance.

Our parallel implementation of BAM and BBDF were created using the MATLAB

spmd statements, which utilize MPI. Each MATLAB worker has its own memory and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2936 TOMMASO BUVOLI AND MAYYA TOKMAN

communication is necessary at each timestep. For the ADR equation, the Newton
solves require inverting a sparse, banded matrix of dimension 400% and the cost of
communicating solution vectors is negligible compared to that of solving the nonlinear
systems. For Burgers, the linear systems are tridiagonal with dimension 4000 and the
cost of inversion is very low; hence, the effects of communication are clearly visible in
our efficiency diagrams (this is evidenced by the fact that curves for BBDF and BAM
are shifted more to the right than in the efficiency diagrams for the ADR equation).

Finally, there is also the effect of the complex arithmetic. In our implementation,
a single step with a BBDF or BAM takes roughly twice as long as a single step with
BDF or AM. The additional cost is due to the complex-valued linear solves at each
Newton iteration. We use MATLAB backslash (mldivide) to solve linear systems;
however, we expect that for large problems one can match the performance of BDF
of AM by using a linear solver that allows for additional parallelization. For example,
one may rewrite the complex linear systems into a real system of twice the dimension
and apply GMRES where the larger matrix multiplications have been parallelized to
offset the additional cost.

6. Conclusions. In this paper, we introduced a methodology for constructing
time integrators that combines ideas from approximation theory and complex analy-
sis. Our approach eliminates the complexity of order conditions enabling simplified
construction of methods with a specific architecture (parallel or serial), degree of im-
plicitness (explicit, diagonally implicit, fully implicit), and desired order of accuracy.
Thus far, this framework has enabled us to derive new classes of high-order block
methods with improved linear stability regions compared to their classical counter-
parts. We illustrated the utility of our new approach by constructing generalized
BDF and AM integrators. The generality of this polynomial framework raises many
interesting theoretical and practical questions about the properties and utility of this
approach that we plan to address in our future work. In particular, in a follow-up
publication we will construct parametrized general linear methods and pursue the
development of efficient adaptive strategies for varying the extrapolation parameter
« at each timestep.

Acknowledgments. The authors would like to thank Randall J. LeVeque for
many useful discussions spanning the entire course of this project and for his comments
on this work. We would also like to thank John C. Butcher for his many helpful
discussions about general linear methods and B-Series.

REFERENCES

[1] M. J. ABLOowITZ AND A. S. Fokas, Complex Variables: Introduction and Applications, Cam-
bridge University Press, New York, 2003.

[2] A. P. AusTIN, P. KRAVANJA, AND L. N. TREFETHEN, Numerical algorithms based on analytic
function values at roots of unity, STAM J. Numer. Anal., 52 (2014), pp. 1795-1821.

[3] F. BORNEMANN, Accuracy and stability of computing high-order derivatives of analytic func-
tions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1-63.

[4] F. BORNEMANN AND G. WECHSLBERGER, Optimal contours for high-order derivatives, IMA J.
Numer. Anal., 33 (2013), pp. 403-412.

[5] J. P. BoYD, Chebyshev and Fourier Spectral Methods, Dover, New York, 2013.

[6] J. C. BUTCHER, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons,
New York, 2016.

[7] T. BuvoLl, Codebase for “Constructing Time Integrators Using Interpolating Polynomials,”
https://doi.org/10.5281/zenodo.3031860 (2019).

[8] G.F. Coruiss, Integrating ODEs in the complex plane—pole vaulting, Math. Comp., 35 (1980),
pp. 1181-1189.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.5281/zenodo.3031860

Downloaded 09/07/20 to 169.236.1.253. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[19]
[20]
[21]

22]

CONSTRUCTING TIME INTEGRATORS USING POLYNOMIALS A2937

B. FORNBERG, Numerical differentiation of analytic functions, ACM Trans. Math. Software, 7
(1981), pp. 512-526.

B. FORNBERG, A Practical Guide to Pseudospectral Methods, Vol. 1, Cambridge University
Press, New York, 1998.

B. FORNBERG AND J. A. C. WEIDEMAN, A numerical methodology for the Painlevé equations,
J. Comput. Phys., 230 (2011), pp. 5957-5973.

M. J. GANDER, 50 years of time parallel time integration, in Multiple Shooting and Time
Domain Decomposition Methods, Springer, New York, 2015, pp. 69-113.

C. W. GEAR, Parallel methods for ordinary differential equations, Calcolo, 25 (1988), pp. 1-20.

E. HANSEN AND A. OSTERMANN, High order splitting methods for analytic semigroups exist,
BIT, 49 (2009), pp. 527-542.

J. N. LyneEss AND C. B. MOLER, Numerical differentiation of analytic functions, SIAM J.
Numer. Anal., 4 (1967), pp. 202—210.

T. ORENDT, J. RICHTER-GEBERT, AND M. SCHMID, Geometry of Numerical Complex Time
Integration, preprint, arXiv:0903.1585, 2009.

G. RAINWATER AND M. TOKMAN, A new approach to constructing efficient stiffly accurate
EPIRK methods, J. Comput. Phys., 323 (2016), pp. 283-309.

J. STRIKWERDA, Finite Difference Schemes and Partial Differential Equations, 2nd ed., SIAM,
Philadelphia, 2004.

M. TokMAN, Efficient integration of large stiff systems of ODEs with exponential propagation
iterative (EPI) methods, J. Comput. Phys., 213 (2006), pp. 748-776.

L. N. TREFETHEN, Spectral Methods in MATLAB, Software Environ. Tools 10, STAM, Philadel-
phia, 2000.

L. N. TREFETHEN, Approzimation Theory and Approxzimation Practice, STAM, Philadelphia,
2013.

L. N. TREFETHEN AND J. WEIDEMAN, The exponentially convergent trapezoidal rule, SIAM
Rev., 56 (2014), pp. 385—458.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

arXiv:0903.1585

	Introduction
	The model problem

	Time-stepping in the complex plane
	Ordinary differential equations in complex time
	A time-stepping scheme based on the Cauchy integral formula
	An alternative derivation using polynomial interpolation

	Polynomial time integrators
	The ODE dataset
	The ODE polynomial
	Special families of ODE polynomials
	Important properties of ODE polynomials

	Polynomial time integrators
	Parameters and notation
	Parametrizing the stepsize: The extrapolation factor bold0mu mumu subsubsection

	Polynomial block methods
	General form

	Linear stability
	Order of accuracy
	A lower bound for the truncation error of ODE polynomials

	Deriving method coefficients

	Constructing PBMs
	Example Adams PBMs
	Families of BDF PBMs
	Classical linear multistep methods as special cases of PBMs
	New polynomial block methods with complex nodes
	Linear stability results for BBDF and BAM schemes

	Numerical experiments
	Test problems
	Results for diagonally implicit polynomial block methods

	Conclusions
	References

