
Quality Assessment for Large-Scale Industrial
Software Systems: Experience Report at Alibaba

Chen Zhi∗†, Shuiguang Deng∗†, Jianwei Yin∗, Min Fu‡§, Hai Zhu‡, Yuanping Li‡, Tao Xie¶
∗Zhejiang University, Hangzhou, China

†Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
‡Alibaba Group, Hangzhou, China

§Macquarie University, Sydney, Australia
¶Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

{zjuzhichen, dengsg, zjuyjw}@zju.edu.cn, {hanhao.fm, marvin.zh, yuanping.lyp}@alibaba-inc.com, taoxie@pku.edu.cn

Abstract—To assure high software quality for large-scale in-
dustrial software systems, traditional approaches of software
quality assurance, such as software testing and performance
engineering, have been widely used within Alibaba, the world’s
largest retailer, and one of the largest Internet companies in the
world. However, there still exists a high demand for software
quality assessment to achieve high sustainability of business
growth and engineering culture in Alibaba. To address this
issue, we develop an industrial solution for software quality
assessment by following the GQM paradigm in an industrial
setting. Moreover, we integrate multiple assessment methods into
our solution, ranging from metric selection to rating aggregation.
Our solution has been implemented, deployed, and adopted
at Alibaba: (1) used by Alibaba’s Business Platform Unit to
continually monitor the quality for 60+ core software systems;
(2) used by Alibaba’s R&D Efficiency Unit to support group-
wide quality-aware code search and automatic code inspection.
This paper presents our proposed industrial solution, including
its techniques and industrial adoption, along with the lessons
learned during the development and deployment of our solution.

Keywords—Software quality assessment, software quality
model, experience report

I. INTRODUCTION

With the widespread application of computing technologies,

various industries have become increasingly dependent on

software systems. At the same time, due to various software

quality problems, ranging from poor user experiences to

software failures, more and more severe accidents arise, not

only resulting in substantial economic losses [1], but also

sometimes even human-life losses [2]. Due to the importance

of software quality, significant efforts have been invested by

both academia and industry to assure high software quality.

As a result, a large number of software quality assurance

technologies have been proposed and applied, such as software

measurement, software testing, and code review.

Alibaba is the world’s largest retailer, and one of the largest

Internet companies in the world. It owns and operates a diverse

array of businesses worldwide, such as e-commerce services,

electronic payment services, and cloud computing services.

In order to support such a large-scale business, the size of

the underlying software systems is substantial, amounting to

several billion lines of code. The size is increasing continu-

ously with the rapid growth of the business. Significant efforts

have been made to assure high software quality for such large-

scale software systems. For example, we have built substantial

testing infrastructures (e.g., the automatic regression testing

platform and end-to-end stress testing platform) to assure

correct functionality and high reliability. Moreover, typically

the foundational system software (e.g., JVM and Tomcat) is

highly customized and optimized to improve the performance.

However, there still exists a high demand for software

quality assessment in Alibaba for two main reasons:

• Ensuring high sustainability of business growth. As

the rapid growth of Alibaba, it has become more than just

an e-commerce platform, but a vast commerce ecosystem

across many industries. The services provided by Alibaba

have become the infrastructure for the business industry

as well as an essential part of Chinese daily life. As the

businesses of Alibaba highly depend on the underlying

software systems, they should be easy to maintain and

evolve to support the sustainable business growth of

Alibaba.

• Building engineering culture. In order to develop core

technologies to support business innovation, Alibaba is

transforming from business-driven to technology-driven.

Building engineering culture is a critical part of the

transformation, as doing so can inspire the creativity of

engineers. Software quality assessment is perceived as

a vital step toward engineering culture: higher-quality

software typically requires less time to maintain and

allows developers to have more time to do creative work.

As a supplement to existing practices at Alibaba, we aim to

develop an industrial solution for software quality assessment

similar to a physical medical examination. First, there is a

rating representing the overall software quality (similar to the

health condition) so that the developers and managers can

obtain a direct understanding of the quality condition. Second,

there are various attributes for reflecting different aspects of

the software (similar to human body), and the overall rating

is aggregated from ratings for these attributes. Each attribute

can be used to identify problems (similar to health symptoms),

which can help pinpoint problematic code (similar to disease).

Third, quality assessment is fully automatic without human

142

2019 26th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/19/$31.00 ©2019 IEEE
DOI 10.1109/APSEC48747.2019.00028

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

intervention, because the efficiency and scalability of manual

assessment are infeasible when dealing with large-scale indus-

trial software systems.

To produce such an industrial solution, we conduct a sys-

tematic review to understand existing techniques for software

quality assessment. After that, we adapt and improve existing

techniques to build our solution for software quality assess-

ment. Our industrial solution has been implemented, deployed,

and adopted at two major units at Alibaba. First, it is adopted

by Alibaba’s Business Platform Unit, which is responsible for

developing foundational platforms to provide basic business

capability (e.g., membership management, trade management,

and fund management) and support a number of business

lines (e.g., Taobao, TMall, and AliExpress). Our solution has

been continually monitoring the quality for 60+ core software

systems and has operated stably for about one year. Second,

it is adopted by Alibaba’s R&D Efficiency Unit, which is

in charge of developing supporting platforms to improve the

efficiency and quality of software development in Alibaba. Our

solution is adopted to support quality-aware code search and

automatic code inspection.

In this paper, we present our proposed industrial solution

for software quality assessment developed upon adapting and

improving existing techniques. Furthermore, we summarize

the lessons that we learn to provide useful guidelines for other

researchers or practitioners to conduct technology transfer of

software quality assessment to industrial practices.

In summary, this paper makes the following main contribu-

tions:

• A brief overview of the general process and existing

techniques for software quality assessment. Moreover, we

give some brief explanation for the choices of technology

genres.

• A detailed description of our proposed industrial solution,

including its techniques and industrial adoption.

• Lessons learned during the development and deployment

of our proposed industrial solution, from both technical

aspects and social aspects.

The rest of the paper is organized as follows. Section II dis-

cusses the background and related work. Section III presents

the technical details of our proposed industrial solution. Sec-

tion IV describes our industrial adoption at Alibaba. Section V

discusses the lessons learned, and Section III concludes and

outlines future work.

II. BACKGROUND AND RELATED WORK

To build a system for software quality assessment, there are

generally two phases: building a model of software quality

and defining a method of software quality assessment. Since

software quality is a complex and multifaceted concept, a

quality model is a common way to define software quality in

a structured manner. Ideally, a quality model can decompose

the quality into some software metrics that represent certain

aspects of quality. However, the measurement results usually

cannot be directly used for quality assessment for two reasons.

First, there is often a gap between software metrics and

software quality, so we need to transform the raw metric

values to ratings that represent software quality. Second, many

metrics are defined at low-level entities, such as methods and

classes, and aggregation is required to derive a single value for

the entire project under assessment. Therefore, the assessment

method should clarify both how to rate and how to aggregate.

A. Model of Software Quality

A large number of quality models have been proposed since

the emergence of this research topic in the 1970s. At the

early stage, models such as Boehm [3] and McCall [4] explore

various characteristics of software quality in a top-down fash-

ion. Based on these early quality models, the ISO/IEC 9126

standard was defined in 1991, and its successor ISO/IEC 25010

was proposed in 2011. These standards provide reference

models for the quality of software products. However, these

standards are often too complex to be practical. Therefore,

some recent work [5]–[8] focuses on adapting these standard

models in practice. Compared with such work, our work

focuses on building a model of software quality from software

quality problems observed in practice by following the Goal-

Question-Metric (GQM) paradigm [9], especially providing

some guidelines for detailed procedures (e.g., metric selection

and threshold derivation). Additionally, the model derived

from our work can be integrated with standard quality models

by mapping software quality problems observed in practice to

quality factors.

B. Method of Software Quality Assessment

A method of software quality assessment consists of two

parts: rating and aggregation. We next provide a brief overview

of existing techniques on these two parts.

Existing techniques of software quality rating mainly

fall into three categories: threshold-based techniques [10],

utility-function-based techniques [7], and probabilistic tech-

niques [11]:

• Threshold-based techniques [10] assign an approximate

risk level or profile to specific metric values according

to predefined threshold values. However, the number

of levels is finite, indicating that many different metric

values can fall into the same level, and the expressiveness

of the assessment result is limited.

• Utility-function-based techniques [7] can be viewed as

continuous generalizations of threshold-based techniques.

There are two steps for utility-function-based techniques:

(1) define the worst and best cases for the metrics and

assign the lowest and highest scores to the corresponding

metric values, and (2) define a utility function that can

fit these two fixed points. However, it is difficult to

determine the worst or best case for some metrics. For

example, as the metric of Lines Of Code in method

(LOCm) follows a power-law distribution, any extreme

value is possible to appear.

• Probabilistic techniques [11] are the most desirable

techniques, because the assessment result is not a single

143

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

value, but a probability distribution. The key of proba-

bilistic techniques is constructing the goodness function

(the probabilistic generalizations of the utility function),

from histograms of metric values. However, the assess-

ment result of this technique is hard to understand.

In summary, the three categories of techniques increase the

expressiveness in order, but the explainability decreases. In our

work, we adapt the first two categories of techniques because

having a concrete value to represent software quality is one of

the requirements for our solution. We choose the most suitable

rating techniques according to the characteristics of software

metrics, such as value ranges and data distributions.
Since we use threshold-based techniques to rate some

software metrics, we need to determine the threshold values

for each software metric. There are generally two types

of techniques to derive thresholds: expert-based techniques

and data-driven techniques. The former relies on experts as

they can define the thresholds based on their experiences.

However, there are many software metrics lacking off-the-shelf

thresholds defined by experts. The latter usually collects metric

data for a number of benchmarking software systems and

derive some percentiles of the metric-data distribution as the

thresholds. However, it is challenging to determine reasonable

percentiles. To address these issues, we combine the two types

of techniques by transferring expert knowledge based on data

distributions.
Many techniques have been applied to aggregate software

metrics [12], ranging from summation, measuring accumu-

lative effect, to some advanced concepts such as inequality

indices, measuring the degree of imbalance in distribution. We

use multiple aggregation techniques, including simple average,

weighted average, and logarithm-based aggregation [13], and

we choose the most suitable ones according to the require-

ments of aggregation, such as highlighting problematic code.

III. OUR INDUSTRIAL SOLUTION

In this section, we describe how we adapt and improve

existing techniques for software quality assessment and give

the details of our industrial solution, including building a

model of software quality and defining a method of software

quality assessment, along with the implementation and indus-

trial adoption.

A. Building a Model of Software Quality
We leverage the GQM paradigm [9] to build a model of

software quality. This paradigm generally consists of three

steps: (1) determining the goal of the stakeholders, (2) defining

the question that must be answered to determine whether the

goal is being met, and (3) deciding what must be measured to

answer the question accurately.
1) Determining Goal: As the first step, we follow the GQM

template and formulate our goal as below:
�

�

�

�

“Analyze source code for the purpose of quality
assessment with respect to maintainability from the
point of view of developers in the context of large-scale
industrial software systems.”

We choose to analyze the source code, but not the process

or other products, because we intend to estimate the quality

risk at the early stage of the software development.

2) Defining Question: For the second step, we determine

the question by collecting the requirements from developers

for the industrial software systems. In this manner, our quality

model can reflect what the developers‘ concerns are. In par-

ticular, we conduct an informal interview with 20 technical

staff members at Alibaba to ask them about their opinions on

software quality and what quality factors should be included

for software quality assessment. The participants are from 4

different business units of Alibaba and consist of 12 senior

developers, 4 chief architects, and 4 senior testers. Each of

them has more than 10-year development experience. From

the result of the informal interview, we identify four most

commonly raised questions (corresponding to four dimensions

of software quality), as listed below:

• Coding convention. How well does the code comply with

Alibaba Java Coding Guidelines [14]? The guidelines

consolidate the best programming practices from Alibaba

Group’s technical teams. The guidelines can help devel-

opers minimize potential and repetitive coding mistakes.

• Code duplication. How much code duplication does

the project include? Code duplication can increase the

potential risk and maintenance effort, as we need to

ensure consistent changes to duplicated code fragments.

• Complexity. How complex is a code unit in the project?

A code unit (e.g., method and class) is the lowest-level

piece of functionality. It should be kept of low complexity

to assure high understandability and maintainability.

• Object-oriented (OO) design. How well does the code

conform to the object-oriented paradigm? As most back-

end systems of Alibaba are written in Java, and the OO

design quality can reflect architecture quality to some

extent, which also is an integral part of software quality.

3) Deciding Metrics: The final step is metric selection. We

select metrics according to two criteria: extensive validation
and wide acceptance. Meneely et al. [15] pointed out that

predictability is one of the most widely used criteria for

software metric validation. The quality risk that we intend

to estimate can be represented by the number of post-release

defects. Therefore, we select those metrics that are highly

predictable for post-release defects.

However, few past research efforts use coding-convention

metrics and code-duplication metrics to predict post-release

defects. So we use only two well-accepted metrics in prac-

tice: density of rule violations denoted as density(r v) and

duplication coverage denoted as cov(dup), respectively. The

former is defined as the number of rule violations divided

by the total number of lines of code from the project under

measurement. The latter is defined as the total number of lines

of duplicate methods divided by the total number of lines of

code from the project. A method m is marked as duplicate if

there is another method whose similarity with m exceeds the

predefined threshold.

144

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I: OVERVIEW OF OUR INDUSTRIAL SOLUTION

Fortunately, software metrics measuring complexity and OO

design are an active research topic, and a number of metrics

have been used to predict maintainability efforts and post-

release defects. Based on the result of previous literature

reviews [16], [17], we select 11 metrics for complexity and

OO design, respectively, as listed in Table I: 1 metric for

coding convention, 1 metric for code duplication, 4 metrics

for complexity, and 7 metrics for OO design.

B. Defining a Method of Software Quality Assessment

We next present the two parts in our defined method of

software quality assessment: rating and aggregation.

1) Rating: We use threshold-based rating and utility-

function-based rating in our work. We prefer utility-function-

based rating when we can define the worst case and best case

for specific metrics.

The rating of coding convention is derived from the density

of rule violations denoted as density(r v). Although the

value range of density(r v) is [0,+∞], we observe that the

maximum value does not exceed 1 in real data distributions.

Therefore, the best case for density(r v) is 0, which indi-

cates that there is no rule violation, and the worst case for

density(r v) is 1, which indicates that every line has one

rule violation on average. We use the max function to rate

coding convention, with the following formula:

rating(conv) = max((1− density(r v)) ∗ 100, 0) (1)

The rating of code duplication is based on duplication

coverage denoted as cov(dup). The value range of cov(dup)
is [0, 1]. The best case for cov(dup) is 0, which indicates that

there is no code duplication, and the worst case for cov(dup) is

1, which indicates that every method is duplicate. The formula

of duplication rating is

rating(dup) = (1− cov(dup)) ∗ 100 (2)

We mainly use threshold-based techniques to rate the 11

complexity metrics and OO design metrics as shown in Table I,

because 9 out of these 11 metrics follow the power-law

distribution, indicating that it is hard to define the worst case

for these metrics. At first, we decide to use the 5-point risk

level: very high, high, mediate, low, and very low, as Morisio

et al. [10] pointed out that the ideal number of risk levels is

between three and five. In order to ease the aggregation among

different risk levels, we assign continuous interval scores, from

0 to 4, to these levels, respectively.

However, it is difficult to determine reasonable thresholds

for these metrics, even after many attempts have been made

by researchers for decades. To overcome these drawbacks, we

combine expert-based techniques and data-driven techniques

with the following procedure:

1) Threshold collection. We perform a literature review and

web search to collect existing thresholds for five metrics,

including NOM, NOF, CC, LOCm, and MND.

2) Benchmark construction. As Klaus et al. [18] pointed

out that the larger the size of the benchmarking base

is, the less the variance of the quality assessment result

is. We construct a benchmark base by retrieving all

public and successfully compiled repositories written in

Java in an internal GitLab, which is the most widely

used version control system in Alibaba. The resulting

benchmark consists of more than 5,000 software systems

with various sizes and different application domains.

3) Distribution analysis. We observe that existing thresh-

olds of these five metrics approximately represent 95%,

99%, 99.5%, and 99.9% quantiles of the corresponding

data distribution in the benchmark. Figure 1 shows the

distributions and thresholds of NOM and NOF. Due to

the large scale of the benchmark, the data distribution is

extremely right-skew, and these percentiles are very close

to each other.

4) Threshold transfer. For the remaining metrics following

the power-law distribution, we use the 95%, 99%, 99.5%,

and 99.9% quantiles as their thresholds.

The threshold values used in our solution are listed in

145

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Distribution of NOM and NOF

Table I. Note that the ratings of DAM and LCOM HS are

calculated by utility-function-based techniques, specifically,

linear-function-based rating. Because these two metrics are

both ratio-scale-type metrics with closed intervals, it is easy

to define the best case and worst case for these two metrics.

2) Aggregation: After we get ratings for each metric, we

aggregate all these ratings to one overall rating. The rating

aggregation includes three steps. First, we aggregate ratings of

low-level entities (such as methods and classes) to get the rat-

ing for each metric at the system level. Second, we aggregate

ratings of metrics in each dimension (of the four dimensions

listed in Section III-A2) to get ratings of dimensions. Finally,

we aggregate ratings of dimensions to get the overall rating.

In the first step, most existing work aggregates low-level

ratings into top-level ratings directly. However, doing so is un-

acceptable for quality assessment, because one of the require-

ments for our industrial solution is to pinpoint problematic

code. When developers investigate the identified problematic

code, it is more desirable for the developers to drill down

step by step to lower-level entities. So we decide to aggregate

ratings across the code structure, including methods, classes,

files, modules, and systems. As most of the metrics follow

the power-law distribution, indicating that the majority of the

code has high ratings and low risk. Therefore, we decide to use

the logarithm-based aggregation to highlight the problematic

code, with the following formula:

y = log10

∑n
i=1 10

−xi

n
(3)

where xi is the low-level ratings and y is the resulting high-

level rating.

2 3

1

Fig. 2: An Example of Dashboard

To aggregate ratings of different metrics, we use the simple

average function to aggregate ratings of metrics to ratings of

dimensions. Most existing work uses the weighted-average

function for aggregation. However, it is difficult even for

experts to determine the weight of metrics. Therefore, we use

the simple average function instead.

We use the weighted-average function to aggregate ratings

of dimensions to the overall rating. Because these four dimen-

sions are extracted from our interview with industrial devel-

opers, we conduct another survey to ask about 50 industrial

developers to assign a weight for each dimension. One third

of the participants each have more than 10-year development

experiences, and the rest of them each have at least 5-

year development experiences. We use the average weight

as the final weight for each dimension, being 0.34 (coding

convention), 0.25 (code duplication), 0.215 (complexity), and

0.195 (OO design).

IV. INDUSTRIAL ADOPTION OF OUR SOLUTION

A. Adoption by Alibaba’s Business Platform Unit for core
software development

Alibaba’s Business Platform Unit is responsible for develop-

ing foundational platforms, such as membership management,

trade management, and fund management, to support various

business lines, such as Taobao, TMall, and AliExpress. Thus,

the quality of these foundational platforms is critically impor-

tant to the Alibaba business.

Based on our solution, we develop a prototype to measure

and analyze the quality of these foundational platforms. The

prototype pulls the latest code from version control systems

(e.g., Git and Subversion), collects raw metric data by state-

of-the-art tools (e.g., p3c-pmd [19] for coding convention and

SourcererCC [20] for clone detection), stores rating data into

a large-scale data warehousing system [21], and visualizes

rating data by powerful analysis tools [22]. Figure 2 shows

an example of a dashboard for some projects. All the ratings

are labeled in different colors based on the values to highlight

low ratings (Figure 2-1). Each column can be sorted as

the descending or ascending order to support top-k analysis

(Figure 2-2). We provide a query panel to enable easy selection

of ratings of interest (Figure 2-3). We also provide similar

dashboards for each dimension and metric.

Our prototype is deployed to continually monitor the quality

of these foundational platforms for about one year. Figure 3-

146

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of Alibaba Projects Under Assessment

1 depicts the distribution of some size metrics (the number

of lines of code and the number of commits) for the projects

under assessment by quantile plots. We can observe that there

are about 20% projects with more than 100,000 lines of code,

but account for more than 80% code for all the projects. The

number of commits for these projects also follows the same

distribution. Figure 3-2 shows the histogram of the overall

ratings of the projects. We can observe that the distribution

follows a normal distribution (Shapiro-Wilk test p-values are

larger than 0.05), which conforms to our intuition that the vast

majority of the projects are of medium quality.

During the adoption by the Business Platform Unit, the

quality assessment results are qualitatively validated from two

aspects. First, we validate whether the overall quality ratings

can be used to detect quality differences between different

projects. We invite about 20 technical leaders in the Business

Platform Unit to review the overall ratings for the software

systems that they are responsible for. Specifically, they are

asked to check the quality level of the software systems; the

quality level is derived from the assessment results. Their

feedback indicates that the quality level is consistent with

their subjective opinions. Second, we validate whether the

assessment results can be used to detect problematic code.

Figure 4 shows the distribution of ratings for dimensions of

the projects. We can observe that (1) there are some projects

whose ratings of code duplication are much lower than the

average, and (2) whose ratings of complexity and OO design

have much room for improvement, especially for OO design.

Therefore, we select some projects with the lowest ratings in

these three dimensions and locate problematic code based on

our assessment results. We observe some typical code smells

in these projects, such as Type I Clone, Long Method, and

God Class. We then contact the developers of these projects,

and most of the reported problems are confirmed by these

developers.

B. Adoption by Alibaba’s R&D Efficiency Unit for group-wide
software development

Alibaba’s R&D Efficiency Unit is responsible for devel-

oping supporting platforms to improve the efficiency and

Fig. 4: Distribution of Ratings for Each Dimension

quality of software development in Alibaba. Our solution has

been integrated with Aone, which is a one-stop collaborative

platform for software development, from project planning

and source code management to continuous integration and

continuous deployment. More specifically, Aone applies the

assessment capability of our solution in two scenarios: code

search and code review.

The R&D Efficiency Unit develops and deploys a code

search platform to promote code sharing and reuse in Alibaba,

similar to code search in GitHub. Given a search query, the

code search platform retrieves relevant code snippets from all

the source code of repositories hosted by Aone. Traditionally,

the candidate code snippets are ranked according to relevance

to the given query. However, the quality of code snippets is

ignored in this way, which brings the risk to spread low-

quality code snippets across the code base. Therefore, the

R&D Efficiency Unit integrates and deploys our solution into

the code search platform so that it can take the quality of code

snippets as a factor when ranking the candidate code snippets.

As a critical part of the code review practice in Alibaba,

the R&D Efficiency Unit develops a code inspection platform

based on our solution. This platform is similar to Sonar-

Qube [23], which can perform fully automatic reviews for

quality assessment and provide powerful visualization for deep

analysis. In fact, SonarQube also has been integrated into

Aone, but development teams rarely adopt it in Alibaba due to

its high false-positive rate under default settings. Moreover, it

is not trivial to customize SonarQube to reduce false positives

for two main reasons: (1) there are many coding rules that need

to be customized; (2) there are no guidelines for customization,

especially for those threshold-based rules.

V. LESSONS LEARNED

In this section, we discuss the lessons that we learn during

the development and deployment of our proposed industrial

solution. We classify these lessons into technical aspects and

social aspects, respectively.

A. Technical Aspects

1) Being Aware of Conflicts Among Requirements of Qual-
ity Assessment: During the stage of requirements analysis, we

conduct various actions of gathering requirements, and collect

a number of requirements. However, it is not unusual that

some requirements are in conflict with each other. We need to

147

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

prioritize these requirements and make tradeoffs between the

conflicting requirements.

For example, the accuracy and explainability of quality

assessment are in conflict with each other. Many techniques,

such as various complex regression and prediction models, can

be applied to improve the accuracy of the assessment results,

but the explainability of the assessment results is likely to be

decreased in this manner. In particular, for utility-function-

based rating, one of the reasons for us to select the linear

function is that we can induce the original values from ratings

by the inverse function, so that the assessment results can be

interpreted directly according to the definition of metrics.

2) Paying Attention to Different Implementations of Soft-
ware Metrics: During the implementation of collecting soft-

ware metrics, we explore various existing tools, but find that

they sometimes implement the same metric in different ways,

and there are two main causes of such differences. First, the

definition of a metric is sometimes quite flexible. For example,

the definition of WMC does not specify how to set the weight,

so people use different types of weight, such as unified weight,

CC, and LOCm. Second, the definition of a metric is generally

independent of the programming language used in the project

under assessment. The divergence occurs when the metric is

implemented for a specific language. For example, implement-

ing most OO metrics encounters challenges in dealing with

inner classes. Some people ignore the differences between

inner and outer classes and deal with them in the same way.

Others take inner classes as part of outer classes and eliminate

inner classes by inlining.

However, different implementations are likely to have a

critical impact on the measurement results and further work

based on these results. Lincke et al. [24] pointed out that

existing software metric tools implement OO software metrics

differently, impacting the results of quality assessment based

on these metrics. To address this issue, we first inspect the

definitions of metrics and determine the implementation strate-

gies for common attributes to avoid inconsistency. We then

examine all the procedures influenced by the implementations

for software metrics. For example, when we collect existing

thresholds for metrics, we carefully inspect the implementation

details of these metrics to check whether their implementations

are consistent with ours.

B. Social Aspects

1) Increasing the Awareness of Assessment Tools: As

Campbell et al. [25] argue, software development tools often

suffer from the “deep discoverability” problem, which prevents

developers from being aware of these tools. To increase

awareness and adoption of assessment tools, we exploit three

different approaches:

• Posting on Online Developer Forums. There is a

popular technical forum in Alibaba for providing a col-

laborative environment to post development topics and

questions for open discussion with other developers. We

post some articles to introduce our tools and end up with

thousands of page views.

• Organizing Offline Technical Seminars. We also orga-

nize some technical seminars to promote our tools. To

attract more developers to attend, we invite some well-

known experts to give talks in these seminars.

• Supporting Programming Events. To promote the

adoption of the code inspection platform, we sponsor

some company-wide hackathons in Alibaba. In these

hackathons, the code inspection platform is employed

as one source of rating for the code written by each

participant.

2) Promoting the Adoption of Assessment Results: It is not

trivial to convince developers to adopt the assessment results

for improving software quality. As Jonathan et al. [26] pointed

out, quality improvement often fails in practice due to the

mishandling of the organizational and psychological factors.

To address this issue, we explore two main strategies:

• Being driven. The quality improvement is initiated in a

top-down manner, as developers are driven by managers

to improve software quality. This strategy is adopted by

the Business Platform Unit. In fact, the manager already

has an opinion on the quality condition of the software

systems. The main reasons why the manager introduces

our quality assessment solution are attaining evidence

from an independent assessor and having an external

party to announce unpleasant truths. Therefore, the man-

ager is willing to ask relevant developers to improve the

quality of software according to the assessment results.

• Being motivated. Developers are self-motivated to im-

prove software quality. This strategy is adopted by the

R&D Efficiency Unit. More specifically, we aim to help

developers gain reputation from high-quality code written

by them, but avoid damaging their reputation due to low-

quality code written by them. For example, the code

search platform displays the owners of each candidate

code snippet. The public exposure can increase the repu-

tation of developers, and cause them to be more willing to

write high-quality code to improve their rank in relevant

queries.

VI. CONCLUSION

In this paper, we have presented our industrial solution

for Alibaba’s software quality assessment to ensure high

sustainability of business growth and build engineering culture

in Alibaba. We have summarized our solution’s techniques

and industrial adoption, along with the lessons learned during

the development and deployment of our proposed industrial

solution.

In future work, we plan to improve the efficiency and

effectiveness of our solution. To address efficiency issues, we

plan to implement the incremental measurement mechanism,

inspired by the fact that most of the code usually remains

unchanged in revisions and the measurement result of the

unchanged code can be reused. To enhance the effectiveness,

we plan to introduce some advanced techniques in our solu-

tion, such as using the GQM+Strategies [27] methodology to

148

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

align business strategies with software measurement and using

architectural metrics to reflect the quality of high-level design.

VII. ACKNOWLEDGMENT

This work is supported by the National Key Research

and Development Program of China (No.2017YFB1400603),

National Natural Science Foundation of China under

Grant (No.61772461, No.61825205, No.61772459, and No.

61529201), National Science and Technology Major Project

of China (No.50-D36B02-9002-16/19), Natural Science Foun-

dation of Zhejiang Province (No. LR18F020003 and

No.LY17F020014) and the Alibaba-ZJU Joint Research In-

stitute of Frontier Technologies, NSF under grants no. CNS-

1564274 and CCF-1816615, and a grant from the ZJUI

Research Program.

REFERENCES

[1] C. Jones and O. Bonsignour, The economics of software quality.
Addison-Wesley Professional, 2011.

[2] N. Leveson and C. Turner, “An investigation of the therac-25 accidents,”
Computer, vol. 26, no. 7, pp. 18–41, 1993.

[3] B. Boehm, J. Brown, and H. Kaspar, Characteristics of software quality.
North-Holland, 1978.

[4] J. McCall, “Factors in software quality,” US Rome Air development
center reports, 1977.

[5] B. Behkamal, M. Kahani, and M. K. Akbari, “Customizing ISO 9126
quality model for evaluation of B2B applications,” Information and
Software Technology, vol. 51, no. 3, pp. 599–609, 2009.

[6] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, and P. Vaillergues, “The squale model: A practice-based
industrial quality model,” in Proceedings of the 2009 IEEE International
Conference on Software Maintenance, 2009, pp. 531–534.

[7] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz,
R. Plösch, A. Seidl, A. Goeb, and J. Streit, “The Quamoco product
quality modelling and assessment approach,” in Proceedings of the 2012
IEEE/ACM International Conference on Software Engineering, 2012,
pp. 1133–1142.

[8] M. Schnappinger, H. Osman, A. Pretschner, M. Pizka, and A. Fietzke,
“Software quality assessment in practice: A hypothesis-driven frame-
work,” in Proceedings of the 2018 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, 2018, pp. 40:1–
40:6.

[9] R. Van Solingen and E. Berghout, The Goal/Question/Metric method:
a practical guide for quality improvement of software development.
McGraw-Hill, 1999.

[10] M. Morisio, I. Stamelos, and A. Tsoukias, “Software product and process
assessment through profile-based evaluation,” International Journal of
Software Engineering and Knowledge Engineering, vol. 13, no. 05, pp.
495–512, 2003.

[11] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A
probabilistic software quality model,” in Proceedings of the 2011 IEEE
International Conference on Software Maintenance, 2011, pp. 243–252.

[12] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of
summation to aggregate software metrics hinders the performance of
defect prediction models,” IEEE Transactions on Software Engineering,
vol. 43, no. 5, pp. 476–491, 2017.

[13] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,” Journal
of Software: Evolution and Process, vol. 25, no. 10, pp. 1117–1135,
2013.

[14] Alibaba, “Alibaba Java Coding Guidelines,” accessed: 2019-04-
10. [Online]. Available: https://alibaba.github.io/Alibaba-Java-Coding-
Guidelines/

[15] A. Meneely, B. Smith, and L. Williams, “Validating software metrics: a
spectrum of philosophies,” ACM Transactions on Software Engineering
and Methodology, vol. 21, no. 4, pp. 24:1–24:28, 2013.

[16] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software
fault prediction metrics: A systematic literature review,” Information and
Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[17] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software
maintainability prediction and metrics,” in Proceedings of the 2009
IEEE/ACM International Symposium on Empirical Software Engineer-
ing and Measurement, 2009, pp. 367–377.

[18] K. Lochmann, “A benchmarking-inspired approach to determine thresh-
old values for metrics,” ACM SIGSOFT Software Engineering Notes,
vol. 37, no. 6, pp. 1–8, 2012.

[19] “p3c-pmd,” accessed: 2019-04-10. [Online]. Available:
https://github.com/alibaba/p3c/tree/master/p3c-pmd

[20] H. Sajnani, V. Saini, J. Svajlenko, C. Roy, and C. Lopes, “SourcererCC:
scaling code clone detection to big-code,” in Proceedings of the 2016
IEEE/ACM International Conference on Software Engineering, 2016,
pp. 1157–1168.

[21] “MaxCompute: petabyte-scale data warehousing,” accessed: 2019-04-10.
[Online]. Available: https://www.alibabacloud.com/product/maxcompute

[22] “Quick BI: business intelligence services on the
cloud,” accessed: 2019-04-10. [Online]. Available:
https://www.alibabacloud.com/product/quickbi

[23] “Sonarqube,” accessed: 2019-04-10. [Online]. Available:
https://www.sonarqube.org

[24] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software metrics
tools,” in Proceedings of the 2008 ACM International Symposium on
Software Testing and Analysis, 2008, pp. 131–142.

[25] D. Campbell and M. Miller, “Designing refactoring tools for developers,”
in Proceedings of the 2008 Workshop on Refactoring Tools, 2008, pp.
9:1–9:2.

[26] J. Streit and M. Pizka, “Why software quality improvement fails:(and
how to succeed nevertheless),” in Proceedings of the 2011 IEEE/ACM
International Conference on Software Engineering, 2011, pp. 726–735.

[27] V. Basili, J. Heidrich, M. Lindvall, J. Munch, M. Regardie, and A. Tren-
dowicz, “GQMˆ+ strategies – aligning business strategies with software
measurement,” in Proceedings of the 2007 International Symposium on
Empirical Software Engineering and Measurement, 2007, pp. 488–490.

149

Authorized licensed use limited to: University of Illinois. Downloaded on September 07,2020 at 22:44:47 UTC from IEEE Xplore. Restrictions apply.

