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Abstract—Data centers, the infrastructure of cloud computing,
have been widely deployed around the world to accommodate to
the increasing cloud computing demands. A Data Center Network
(DCN) connects tens or hundreds of thousands of servers in
the data center and uses a traffic control scheme to enable the
data transmission among the servers. Various new applications in
cloud present new requirements on traffic control of DCNs, such
as low latency, high throughput. Existing traffic control schemes
in DCNs suffer from the complicated kernel processing and
cannot satisfy the requirements. Remote Direct Memory Access
(RDMA), which bypasses the kernel processing to enable fast
memory moving across a network, is recognized as a promising
solution. In this paper, we present a survey of traffic control
schemes for traditional RDMA, traditional DCNs, and RDMA-
enabled DCNs and explain their limitations. We also differentiate
the existing schemes from congestion control, performance, and
components. In order to encourage future research, we point out
some potential research directions of this research.

Index Terms—Survey, RDMA, Data Center Networks, Traffic
Control, Congestion Control

I. INTRODUCTION

Traffic control is a critical research topic in Data Center
Networks (DCNs). Many efforts have been conducted to
provide low latency and high throughput traffic transmission
for DCNs, such as DCTCP [1], TIMELY [2], pFabric [3],
QJUMP [4]. However, the emerging new applications in
cloud require much higher performance [5]. For example, a
Machine Learning (ML) application (e.g., parameter server
[6]) distributes its computation load into computation units
for parallel processing, and the units demand low transmission
latency to frequently transmit and synchronize a large amount
of data with each other. Existing traffic control schemes cannot
satisfy the new requirements, and new techniques are needed.

Remote Direct Memory Access (RDMA) is recognized as
a promising solution to meet the requirements, and many data
center operators have started to deploy it. RDMA is a memory
access technique that enables Network Interface Cards (NICs)
to transfer data directly to/from application memory. The NIC-
based fast data transfer, which prevents data copies between
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Fig. 1: Classification of traffic control schemes of traditional
RDMA, traditional DCNs, and RDMA-enabled DCNs.

application memory and data buffers by bypassing the ker-
nel processing in the operating system, significantly reduces
Central Processing Unit (CPU) overhead and overall latency,
compared to the traditional traffic control schemes in DCNs.
The low latency and minimal processing overhead provided by
RDMA can greatly accelerates overall application performance
of ML applications that frequently move massive amounts
of data, exchange messages, and compute results. In [7], a
deep neural network-based speech training shows that RDMA
outperforms Transmission Control Protocol (TCP) by reducing
the communication time of the total training time from 72%
to 44%. Using a 40G NIC, TCP respectively consumes 6%
and 12% CPU for the sender and receiver, while RDMA only
consumes 2% for the sender and the receiver. Many state-
of-the-art ML systems (e.g, TensorFlow [8]) have employed
RDMA.

Many studies are working on deploying RDMA in DCNs.
Some works present RDMA-based applications in DCNs, such
as HERD [9], FaSST [10], and several studies efficiently
utilize limited RDMA NIC cache, such as FaRM [11], LITE
[12], INFINISWAP [13]. Actually, one of the fundamental
problems is how to use RDMA to efficiently transmit traffic
in DCNs. RDMA is originally designed for supercomputing
networks (e.g., InfiniBand) rather than Ethernet or Internet
Protocol (IP)-based DCNs. RDMA over Converged Ethernet
(RoCE) and Internet Wide-area RDMA Protocol (iWARP)
have been proposed to enable RDMA over Ethernet and IP
networks. However, both of them cannot be directly used
to DCNs. RoCEv2 depends on Priority Flow Control (PFC)
to achieve the lossless Ethernet, but the PFC brings many
undesirable results (Section III-A). Due to complicated NIC
design, iWARP requires high on-die CPU and memory re-
source and results in low performance (Section III-B). Most
existing traffic control schemes for DCNs are not compatible
with RDMA because they rely on TCP/IP stack in the kernel
layer of operating systems to control the traffic.

In this paper, we present a survey on traffic control schemes
for RDMA. Fig. 1 categorizes the existing works. In Sec-
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Fig. 2: Comparison of socket programming with RDMA
programming.

tion II, we briefly introduce RDMA and its operations. In
Sections III and IV, we introduce traffic control schemes on
traditional RDMA and traditional DCNs and explain why
the existing schemes cannot be directly used. In Section
V, we introduce state-of-the-art traffic control schemes of
RDMA-enabled DCNs and analyze their limitations. Section
VI differentiates existing schemes from congestion control,
performance, and components. We propose potential research
directions in Section VII and summarize our paper in Section
VIIL

II. RDMA
A. Socket vs RDMA

Socket programming is usually used for transmitting data in
a TCP/IP network. In the socket programming, an application
from the user-space needs to initialize a socket in the ker-
nel, which sends data through Transmission Control Protocol
(TCP), Internet Protocol (IP), and NIC driver before accessing
to the NIC. The data transmission between layers of the kernel
requires CPU processing and memory copy. Different from the
socket programming, the RDMA programming bypasses the
multiple processing in the kernel and can directly use RDMA
Application Programming Interface (API) to send data to the
RDMA NIC from the application, reducing CPU overhead
and overall latency for traffic transmission. Fig. 2 shows the
processing difference between the socket programming and
the RDMA programming.

B. RDMA Composition

RDMA transmission works in NICs with three queues: Send
Queue (SQ), Receive Queue (RQ), and Completion Queue
(CQ). When an RDMA application starts to work, it must
create its SQ, RQ, and CQ in the RDMA NIC, and registers
regions in memory for its processing. The work scheduling
unit of RDMA is a Queue Pair (QP), which consists of one
SQ and one RQ. Traffic of the same QP follows the same path,
while traffic on different QPs traverses different paths. In the
QP, a Work Queue Element (WQE) is placed as an instruction
pointing to the memory buffer where the data will be placed or
transmitted, and the RDMA NIC executes the WQE without
involving the kernel. A Completion Queue (CQ) is used to
notify the application when the transmission is done. Every
time a WQE completes, a Completion Queue Element (CQE)
is generated and placed into the CQ. RDMA supports two
kinds of transmission semantics for WQESs: channel semantic
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Fig. 3: An example of transmitting data using RDMA.

including SEND and RECV verbs!, and memory semantic
including READ and WRITE verbs.

C. A Transmission Example

Fig. 3 shows an example of using verb SEND in RDMA to
transmit data from application A to application B. The process
in this figure consists of six steps. @ RDMA NICs A and
B create their QP’s Completion Queues and register memory
regions. NIC A registers a buffer for the data of application A
to be moved to application B, and NIC B allocates an empty
buffer for application B to receive the data from application A.
(D Application B creates a WQE and posts it in the RQ. The
WQE contains a pointer to an empty memory buffer allocated
for the data to be placed. () Application A creates a WQE
and posts it in the SQ. The WQE points to the memory buffer
that application A will move to application B. 3) RDMA
NIC A consumes the WQE in the SQ of application A, and
the data from the memory region of application A begins to
transmit to application B over a network. When data arrives
at RDMA NIC B, the NIC consumes the WQE in the RQ
of application B to learn the memory location to place the
data, and the data bypasses the kernel process and is directly
placed in the assigned memory location. 3 When the data
transmission completes, a CQE is created in the application
B’s CQ. The application B polls the CQE from its CQ and
identifies that the transmission completes. 5) Similarly, when
the data transmission completes, a CQE is created in the
application A’s CQ, and the application A polls the CQE from
its CQ and identifies that the transmission completes.

III. TRAFFIC CONTROL IN TRADITIONAL RDMA

RDMA was previously used in the lossless Infiniband
networks. To use RDMA in Ethernet and IP networks, two
protocols are introduced: RoCE and iWARP. RoCE follows the
original design of RDMA for the lossless network and uses
PFC to achieve lossless network on Ethernet and IP networks,
while iWARP enables RDMA in the lossy networks by fully
deploying TCP/IP stack in the NIC. In this section, we briefly
introduce the two protocols and their limitations.

A. RoCE
RoCE v2? is a network protocol that makes RDMA compat-
ible with existing networking infrastructure. With RoCE, an

Tn RDMA, APIs to establish data channels are called verbs.
2In the paper, we use RoCE to represent RoCE v2.
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schemes in RoCE.

RDMA packet can be transformed into an Ethernet/IP/User
Datagram Protocol (UDP) packet. The UDP header is used
for Equal-Cost Multi-Path (ECMP) routing. The destination
UDP port is always set to 4791, while the source UDP
port is randomly chosen. RoCE handles two scenarios for
realizing the lossless network transmission: preventing out-
of-order packets with go-back retransmission and preventing
packet loss with PFC.

1) Go-back Retransmission: In Infiniband networks, packet
drops are rare but could happen due to some unexpected
situations, such as software or hardware bugs. The original
design of RDMA employs a go-back-0 retransmission to
handle this scenario. Assume a sender sends the data con-
sisting of multiple packets to a receiver. When the receiver’s
NIC receives an out-of-order packet of the data, it discards
this packet and requests the sender to retransmit all packets
of the data. This go-back-0 scheme suffers from the live-
lock problem: the links of switches are fully utilized, but
the application’s throughput could be very low [14]. This is
because the application cannot use the data for processing until
it receives all packets of the data. However, with the go-back-0
retransmission, one packet loss requires the retransmission of
all packets of the data. To solve the problem, a modified go-
back scheme named go-back-N retransmission is introduced.
With the go-back-N scheme, when the receiver’s NIC receives
an out-of-order packet of the data, it discards this packet and
asks the sender to retransmit all packets that are sent after the
last acknowledged packet. Fig. 4 shows compares go-back-0
and go-back-N when packet 2 is an out-of-order packet.

Limitation: Go-back-N retransmission solves the live-lock
problem but still wastes the time and bandwidth for sending
redundant packets, potentially increasing the probability of
congestion.

2) PFC: The PFC is a hop-by-hop flow control mechanism
to prevent buffer overflow on Ethernet switches and NICs. It
works in the queue granularity and sends PAUSE/RESUME
frames from downstream devices to notify upstream devices to
pause/resume sending packets. A downstream device receives
packets from its upstream device and monitors its ingress
queues. When one ingress queue of the downstream device
reaches the PFC threshold, it sends a PAUSE frame to its
corresponding upstream device’s egress queue. Upon receiving
the PAUSE frame, the upstream device stops sending packets
from the corresponding egress queue. Once the ingress queue’s

length falls below the PFC threshold, the downstream device
sends a RESUME frame to the upstream device to resume the
transmission.

Limitation: Because of a coarse-grained queue level op-
eration, the PAUSE frame could unfairly impact many flows
on the same queue, including flows that are not relevant to
congestion, and lead to poor performance for individual flows.
Two typical results are unfairness flow transmission and head-
of-line blocking. Fig. 5 shows an example of unfairness flow
transmission resulted from PFC. In this figure, one switch has
incoming flows from ingress queues 1 and 2 to egress queue 1.
Ingress 1 is used by flow f1, and ingress 2 is used by flows 2,
3. Initially, the three flows equally share egress 1, as shown
in Fig. 5(a). In Fig. 5(b), when egress 1 starts building up
and reaches the PFC threshold, the switch pauses its ingress 1
and ingress 2. In Fig. 5(c), when the congestion is eliminated,
ingress 1 and ingress 2 receive RESUME frames and resume
to their transmission. In ingress 2, f2 and f3 compete each
other, while ingress 1 only has fl. After a while, in egress 1,
flow fl transmits faster than flows 2, f3 and finally has the
higher throughput than each flow on egress 2, as shown in
Fig. 5(d).

Fig. 6 shows an example of head-of-line blocking also
resulted from PFC. In this figure, flows f1 and f2 share ingress
queue 1 of the switch, but they are toward two different egress
queues: fl goes to egress 1, and f2 goes to egress 2. When
egress 1 receives a PAUSE frame from its downstream device,
it further sends a PAUSE frame to ingress 1 to pause packets of
flow f1. Due to the coarse-grained queue level operation, flow
f2, which is toward egress 2, is also affected by the PAUSE
frame from egress 1.

Unexpected interaction between PFC and Ethernet packet
flooding can break the up-down routing and could lead to
occasional deadlocks [14][15]. Some existing works try to
solve the above problems, but most solutions require to modify
NIC. The hardware modification could cost months and years
to complete and delay the wide deployment of RDMA.

B. iWARP

iWARP [16] implements RDMA over TCP/IP networks by
putting full TCP/IP stack on the NIC. By offloading transport
processing from the server’s CPU to NIC, iWARP eliminates
CPU overhead attributed to networking and removes system
memory bandwidth reservation for intermediate TCP/IP stack
buffer copies. One obvious advantage of iWARP is that it
can directly use existing standard Ethernet-based network
equipment and the route across IP networks with existing
network infrastructure.

Limitation: iWARP is compatible with existing network
structure at the cost of multiple protocol layers of translation
between RDMA abstractions and traditional TCP bytestream
abstractions. Fig. 7 compares the NIC implementation of
iWARP and RoCE [17]. In this figure, iWARP NIC requires
three layer translations, including Marker PDU Aligned fram-
ing (MPA, PDU is short for Protocol Data Unit), Direct Data
Placement (DDP), and a separate RDMA Protocol (RDMAP).
Compared to RoCE NICs, the complicated design of iWARP
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NICs requires higher processing cost on NIC and achieves
lower performance [18].

IV. TRAFFIC CONTROL IN TRADITIONAL DCNS

Many traffic control schemes are designed for traditional
DCNs. We categorize the existing schemes into two classes
based on their different congestion signaling: Explicit Con-
gestion Notification (ECN)-based and Delay-based. In this sec-
tion, we present the requirements of traffic control in DCNs,
introduce one representative scheme for the two classes, and
point out their limitations on RDMA.

A. Traffic Control Requirements in DCNs

Data centers operate applications with diverse workload.
The recent study categorizes the workload into two classes:
delay-sensitive flows and throughput-intensive flows [1]. The
delay-sensitive flows (e.g., web search, distributed memory
caches, large-scale machine learning) are usually small flows
and require low latency and high burst tolerance. Throughput-
intensive flows (e.g., application upgrade) are typically large
flows with high throughput demand.

The diverse workload proposes requirements for traffic
control in DCNss:

1) Fine-grained traffic control: because of the different
goals, delay-sensitive flows and throughput-intensive
flows should be treated differently, especially when they
experience congestion.

2) Fast congestion detection: a congestion should be
quickly identified and notified in order to timely adjust
traffic sending rate.

3) Quick start: ML applications (e.g., parameters server)
usually generate short flows (e.g., a few hundreds of
bytes or less [19]). In order to achieve lower latency,
the sender should start transmission at full speed (i.e.,
quick start) rather than probing the available bandwidth
from a small transmission rate (e.g., 2 packets at slow
start phase in TCP).

4) Low CPU consumption: CPUs on a server are involved
in traffic transmission. Reducing the resource consump-
tion for a traffic transmission enables more traffic trans-
mission on a server.

B. Datacenter TCP (DCTCP)

ECN is widely deployed in DCNs [1], [20], [21], [22], [23],
[24], because ECN can notify senders that the queue in buffer
is building up, while senders in other traditional schemes
have to wait for packet loss. Thanks to ECN, senders can
reduce their transmission in advance, rather than overflowing
the buffer, which leads to packet loss, retransmission, greater
transmission latency, and worse network performance.

DCTCP [1] is the first ECN-based traffic control scheme
for DCNs. In DCTCP, each flow achieves not only quick
congestion notification by ECN but also fine-grained per-
flow congestion control, which adjusts each flow’s congestion
window according to its notified congestion severity. DCTCP
works as follows: when a switch’s queue occupancy is greater
than the ECN marking threshold, the switch will mark sub-
sequent packets with Congestion Encountered (CE) codepoint
to record the congestion on the packets. Upon receiving an IP
packet with the Congestion Experienced (CE) codepoint, the
receiver sets the ECN-Echo (ECE) bit in the corresponding
Acknowledgement (ACK) of this packet.

In conventional ECN, the receiver uses a single or multiple
ECNs to notify the occurrence of a congestion and simply
half the congestion window when a congestion happens. In
DCTCP, however, the receiver precisely notifies the sender the
number of packets that are experienced congestion by ECN
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(d) DCTCP congestion notification: S1 receives one
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packets 4 and 5, and S2 receives one ACK for packet
a and two ECN-marked ACKs for packets b and c.
ACKs are used to generate two bitmaps showing the
congestion impact on the two flows.

Scheme Without the congestion message Receiving the congestion message

ECN S1 CNWD: 20, S2 CNWD: 30 S1 CNWD: 10, S2 CNWD: 15
DCTCP S1 CNWD: 20, S2 CNWD: 30 S1 CNWD: 14, S2 CNWD: 19
DCQCN S1 rate: 20, S2 rate: 30 S1 rate: 12, S2 rate: 18

(b) Congestion control of ECN-based schemes when S1 and S2 receive
an ECN, respectively. For ECN, S1 and S2 cut the congestion window
(CNWD) of each flow by half. For DCTCP, the bitmaps showing the
congestion impact are 00011 for the pink flow and 011 for the yellow
flow. The two flows’ estimate congestion severity are 2/5=40% and
2/3=66%. Under g = 0.5, o = 0.8, their CNWDs are reduced to 14
and 19. For DCQCN, under g = 0.5, a = 0.8, the sending rates of
the two flows decrease to 12 and 18.
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(e) DCQCN congestion notification: R pe-
riodically sends S1 and S2 a Congestion
Notification Packet (CNP) until R receives
a congestion notification echoing from S1
and S2. CNP is defined by RoCE to notify
the occurrence of a congestion.

Fig. 8: Comparison of ECN, DCTCP, and DCQCN.

marks. Every Round-Trip Time (RTT), the sender calculates
the congestion severity, which is inferred by the percentage
of ECN-marked packets in all packets sent in this RTT, and
updates the corresponding congestion window according to
this congestion severity. Fig. 8 shows an example that differen-
tiates ECN and DCTCP in terms of congestion notification and
congestion window adjustment. Compared with ECN, DCTCP
adjusts each flow’s transmission rate dynamically according to
the severity of congestion.

Moreover, in order to achieve better network performance,
other DCTCP-like schemes, e.g., D?*TCP [22], L2DCT [20],
and TaTCP [24], are proposed. Unlike DCTCP which fairly
shares the network bandwidth among flows, these new
schemes argue that the user experiences could be improved
through differentiating flows according to their own priorities
(e.g., short flows first in L?DCT, imminent deadline first in
D2TCP). To this end, these DCTCP variants leverage not only
the congestion severity « but also their own priority factors to
adjust the transmission rate of flows and control the network
traffic.

Limitation: DCTCP needs switches to support ECN and
does not fit RDMA because it relies on the TCP/IP stack to

realize traffic control. Additionally, it has a slow start phase
and performs poorly under bursty storage workloads [25].
Besides, its variants also suffer from the same issues, since
all of them rely on the congestion severity a.

C. Delay-based Traffic Control

Many works use ECN to identify congestion since DCTCP
is proposed. However, ECN can only identify a congestion
that when the number of packets in a queue exceeds a ECN
threshold at a single switch. It does not provide the accuracy
of end-to-end congestion severity if multiple switches are
congested at the same time. Besides, ECN also cannot detect
congestion at NICs, which do not support ECN. In the case
of multiple priority queue, a low priority flow could also
experience a large queueing delay before triggering ECN. To
solve the problems, many works argue that RTT is also an
important measurement, or performs even better, for network
congestion detection [2], [26], [27], [28], since it contains end-
to-end information rather than a single switch’s. Therefore,
some delay-based congestion control schemes for DCNs are
proposed. One representative of them is TIMELY [2].
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TIMELY uses RTT to reflect end-to-end latency, and exist-
ing NICs, which can provide accurate measurement of the time
of packet transmission and reception, makes TIMELY feasible.
Fig. 9 shows the processing procedure of TIMELY. TIMELY
works at the sender and consists of three components: RTT
Measurement, Rate Computation, and Rate Control. In the
RTT Measurement, an RTT for each segment of data is
calculated. An RTT equals tcompletion - tsend - tse’rializatio’ru
where tcompiction 18 the time the ACK is received as the
segment of data transmission completes, ¢4¢,q is the time when
the first packet is sent, and tscriqlization 1S the serialization
delay to transmit all packets in the segment. In the Rate
Computation, the delay gradient (i.e., derivative of the queuing
with respect to time) is used to decide the sending rate. An
increasing RTT leads to a positive delay gradient, which indi-
cates an increasing queue, while a negative gradient indicates
a decreasing queue. If the gradient is less than or equals zero,
the network can have a higher rate, and the sending rate is
increased with a constant value to probe for more bandwidth.
If the gradient is positive, the sending rate exceeds the network
capacity, and a multiplicative rate decrement is performed.
In the Rate Control, a scheduler is used to handle flows. It
computes the sending time for the current segment based on
the segment size, flow rate, and time of the last transmission,
and then places the segment in a priority queue. When reaching
on sending times, the segments are passed to the NIC in the
round robin fashion for immediate transmission.

Moreover, DX [27] is another typical delay-based con-
gestion control scheme in data centers. Thanks to the ac-
curate queueing delay measurement in either software-based
or hardware-based way, DX adjusts the transmission rate
in a fine-grained manner, successfully achieving both high
utilization of the link and low queueing delay. Specifically,
DX increases the congestion window by one, if the average
queueing delay is zero during the current window. Otherwise,
the congestion window reduces by 1 — Q/V, where Q is the
measured average queueing delay. And V is a self-updated
coefficient calculated by R - W*/(W* — 1). Here, R denotes
the base RTT, while W* is the previous congestion window
size. Note that, in order to adjust transmission rate quickly
and correctly, DX requires accurate RTT measurement through
either software (i.e., Linux kernel modification) or hardware
(i.e., DPDK-based NIC) solution.

Limitation: TIMELY tries to become a generic solution
to control traffic in DCNs but has some limitations. First,
TIMELY is implemented in each host, and such a distributed
protocol, which uses only delay as the feedback signal, can-

not simultaneously achieve fairness or a guaranteed steady-
state delay [29]. Second, some jitters could introduce delay
and noise in the feedback signal and affect the accuracy of
congestion detection. Deploying TIMELY in RDMA scenario
also needs PFC to prevent the performance degradation from
packet drops. Though DX can work without PFC, it faces
the same issue like TIMELY. That is modification of end-
hosts’ operating system or hardwares, leading to complex
deployment.

V. TRAFFIC CONTROL IN RDMA-ENABLED DCNSs

The previous two sections explain the limitation of the
existing traffic control schemes of RDMA and DCNs, and why
they cannot be directly used. Deploying RDMA in DCNs also
has some specific requirements. In this section, we present the
requirements and introduce three state-of-the-art traffic control
schemes for RDMA-enabled DCNs.

A. Traffic Control Requirements in RDMA-enabled DCNs

Because of low cost and high performance, RoOCE dominates
the RDMA market, and most recent works focus on RoCE-
based solutions for RDMA-enabled DCNs. Besides the four
requirements of DCNs explained in Section IV-A, efficient
RDMA deployment in DCNs has the following requirements.

1) Low NIC resource consumption: the data transfer of
RDMA is completely implemented by NIC, which has
limited computing resource and on-chip memory. Re-
ducing the NIC consumption for an RDMA transmission
can enable more transmission for different applications.

2) Easy configuration and implementation: new schemes
should be easily configured and deployed to existing
RoCE NICs.

3) High performance: the PFC and go-back-N retrans-
mission work together to enable lossless networks for
RDMA, but they also bring some undesirable results and
demands high overhead. An efficient solution should not
depend on the two schemes.

B. DCOCN

DCQCN [25] is the first congestion control solution for
utilizing RDMA in DCNs. DCQCN takes advantages of quick
congestion notification from ECN, fine-grained rate control
from DCTCP, and fast sending rate increase from Quantized
Congestion Notification (QCN) [30]. DCQCN processing re-
lies on the switch, the sender NIC and the receiver NIC. When
a switch’s egress queue’s occupancy exceeds a given ECN
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threshold, the switch marks arriving packets in the queue with
CE codepoint to notify the receiver of a congestion. If the
marked packet arrives at the receiver NIC, the NIC periodically
sends the sender a Congestion Notification Packet (CNP) de-
fined by RoCE until the NIC receives a congestion notification
echoed from the sender. Fig. 8(e) shows an example that
compares DCQCN with ECN and DCTCP in term of using
ECN and congestion control.

A sender’s NIC adjusts the sending rate of flows using
two rates: R, the current sending rate, and R;, the target
rate that records the sending rate before the last congestion
feedback message arrives at the sender NIC. The rate control
consists of the sending rate decrease and the sending rate
increase. Rate decrease is very simple. Upon getting a CNP,
the sender updates R. to R; for recovery and reduces R,
similar to the change of the congestion window in DCTCP.
However, the rate increase is complicated. Unlike TCP, which
increases rate when receiving ACKs, Ethernet does not have
positive rate-increasing signals. DCQCN employs the similar
rate increasing method in QCN [30], where a sender uses two
rate increasing patterns at two phases. In the Fast Recovery
phase, the sending rate slowly gets back to the loss rate. R;
does not change, and R, always increases to (R, + R;)/2. In
the Active Increase phase, the sending rate grows fast through
quick bandwidth probes. R, still increases to (R. + R:)/2,
but R; increases to R; + R 47, where R4 is a constant value.
Fig. 10 shows the trend of the rate increase of QCN. In this
figure, the rate is R4 when the congestion is identified. During
the Fast Recovery phase, R; = Ry, and R, increases R;/2"
(e.g., Rq/2, Rq/4, Rq/8) at the end of interval n until R,
recovers to Rg4. During the Active Increase phase, both R;
and R, increase, and the increasing rate is proportional to the
time.

Limitation: DCQCN provides per-flow congestion control
and alleviates PFCs limitations. However, DCQCN still needs
PFC to prevent packet loss and poor performance when flows
begin transmitting at line rate. If we want to use ECN to send
congestion feedback and reduce the probability of triggering
PFC, we need to carefully set parameters for switches, such
as the buffer threshold for storing PFC pause packet, the PFC
threshold in ingress queue, and ECN threshold in egress queue.
The parameter setting depends on switches case by case, and
there is not a generic way for configuring switches.

[l Packet |\ ACK @ ECN

S: Sender  R: Receiver

(a) data transmission

(b) ACK reply and ECN reply

Fig. 11: Congestion control in MP-RDMA.

(c) sending rate adjustment

C. MultiPath-RDMA

In DCNs, transmitting traffic via rich and parallel paths is
an efficient method to improve transmission efficiency. For
example, Multipath TCP (MPTCP) allows a TCP connection
to use multiple paths to maximize resource utilization and in-
crease redundancy. Efficient multiple path transmission should
dynamically distribute traffic based on the congestion state of
each path and maintain high throughput by preventing out-
of-order packets for flows. However, the RoCE NIC does not
have enough memory to track and store the congestion state
of each path and packet order of each flow. The NIC can
upload path state and flow state to host memory, but frequent
swapping data between on-chip memory and host memory
increase Peripheral Component Interconnect express (PCle)
bus latency and the contention on the bandwidth, eventually
degrading NIC throughput.

MultiPath-RDMA (MP-RDMA) [31] first proposes to use
resource-limited RoCE NIC and Field-Programmable Gate
Array (FPGA) to enable multi-path routing in RDMA-enabled
DCNs. MP-RDMA uses one congestion window for all paths
instead of maintaining per-path states and performs congestion
control with an ECN-based multipath ACK-clocking. MP-
RDMA works at switch, sender’s NIC, and receiver’s NIC.
RoCE uses the UDP header for ECMP routing. In RoCE, the
destination UDP port is always set to 4791, while the source
UDP port can be selectively chosen. Thus, a UDP source port
can be viewed as a virtual path, and a switch uses ECMP to
pick up the path for a flow based on the UDP source port in the
packet header. ECMP guarantees that packets with the same
UDP source port are always mapped to the same path. Upon
receiving a packet, the receiver’s NIC with FPGA instantly
generates a MP-RDMA ACK and sends it to the sender. In
the ACK, its UDP header encodes the same virtual path ID
of the received packet, and its RoCE header encodes the
packet sequence number of the received packet, the cumulative
sequence number at the receiver, and the ECN signal.

The sender’s NIC mainly achieves congestion control with
a congestion window-based traffic adjustment. Initially, the
sender’s NIC randomly spreads an initial window of N packets
to NN virtual paths by selecting a specific source port in
the UDP header for each packet. When a MP-RDMA ACK
arrives from the virtual path vp, the sender’s NIC calculates
its congestion window cwnd. If the ACK is marked with ECE
bit, the sender’s NIC decreases its cwnd by 1/2 segment;
otherwise, the NIC increases its cwnd by 1/cwnd segment.
If the cwnd has space M, M packets will be forwarded
on virtual path vp. Fig. 11 shows an example of congestion
control in MP-RDMA. In this figure, paths 1, 2, and 3 are
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Fig. 12: MP-RDMA'’s bitmap in the NIC to track path state.

between sender S and receiver R. The cnwd is six, and
two packets are forwarded on each path. Paths 1 and 2 have
the same loaded, and the receiver replies two ACKs for the
received packets on the two paths. The congestion occurs on
path 3. Two ECN-marked ACKs are replied to the sender.
Following the above cwnd adjustment principle, the sender
decreases the cwnd by one and sends only one packet on path
3.

The receiver’s NIC prevents out-of-order packets with a
bitmap-based path selection. The NIC tracks arrived packets
using a 2-bit bitmap with four states: Empty, Received, Tail,
and Tail with Completion, and encapsulates the state in each
packet. When the NIC receives a head-of-line message with
a continuous block of slots and the last slot is Tail or
Tail with Completion state, it identifies that the message is
completely transmitted. Then, it clears these slots to Empty
state and moves the head point after the last block of the
completed message. A Tail with Completion state requires an
extra completion notification. Fig. 12 shows an example on
monitoring path state using the bitmap. The tracking bitmap
only has a limited number of slots used to monitor the path
state. To efficiently use the limited slots, the NIC adaptively
removes slow paths and only forward packets on the selected
fast paths with a similar delay. Fig. 13 shows an example on
dynamically selecting forwarding paths. In this figure, paths 1,
2, and 3 are between sender S and receiver R, and two packets
are forwarded on each path. Path 3 is relatively congested,
compared to paths 1 and 2, and the ACKs of path 3 arrive
later than paths 1 and 2. Thus, path 3 is identified as a slow
path. To make sure packets arrive in order, no packets will be
forwarded on path 3.

Limitation: The implementation of MP-RDMA is based on
FPGA and relies on PFC. Thus, the real deployment of MP-
RDMA increases hardware cost and cannot be easily employed
by data centers.

D. Improved RoCE NIC (IRN)

PFC and go-back-N transmission have obvious bad effects,
but DCQCN and MP-RDMA require them to guarantee loss-
less network transmission. To remove RDMA’s dependency
on PFC, one recent work proposes IRN for deploying RDMA
in the lossy network [32]. IRN follows the idea of iWARP,
which handles packet loss of the TCP stack in hardware, but
in a very simple method using selective retransmission and
packet-level traffic control.

Selective retransmission improves packet loss recovery effi-
ciency by only retransmitting lost packets. The IRN maintains
a bitmap to track different types of packets: received packet
are cumulatively acknowledged through ACKSs, while lost
packets are selectively acknowledged through Negative Ac-
knowledgement (NACK). When receiving every out-of-order
packet, the receiver’s NIC sends a NACK, which carries both
the cumulative acknowledgment that indicates its expected
packet sequence number and the packet sequence number for
triggering the NACK. When receiving a NACK, the sender’s
NIC stops sending new packets and starts to selectively
retransmit lost packets indicated by the bitmap. The number of
retransmitted packets is from the cumulative acknowledgment
value to the sequence number of the packet triggered the
NACK. If the sequence of the cumulative acknowledgment
is greater than the sequence of the last regular packet that
is sent before the retransmission of a lost packet, the loss
recovery ends and the sender’s NIC continues to transmit new
packets. Fig. 14 shows an example that compares go-back-N
retransmission with selective retransmission when packet 2 is
out of order.

Packet-level traffic control reduces unnecessary queuing
in the network by strictly setting an upper bound for the
number of out-of-order packets. The sender’s NIC calculates a
Bandwidth-Delay Product (BDP) of the network and uses the
BDP to bound the number of sending packets in flight. A new
packet is sent by the sender only if the number of packets in
flight is less than the BDP cap. This traffic control reduces a
NIC’s workload to maintain the state information for tracking
packet losses.

Limitation: Since the design of IRN focuses on lossy
networks, which is not originally supported by RoCE, it has
to add some new features to the NIC. Selective retransmission
and packet-level traffic control rely on per-packet ACKs.
RoCE NICs support four data transfer messages, i.e., SEND,
RECYV, READ and WRITE but only supports per-packet ACKs
for two messages. Thus, other two types of ACKs should be
added. Many packets in a data message could be out of order,
such as first packet, last packet, WQE matching packet. To
prevent out-of-order packet delivery, IRN should handle all
the scenarios.

VI. COMPARISON OF DIFFERENT SCHEMES

The comparison of different schemes are listed in Tables I,
I, and III. In this section, we differentiate the existing schemes
by explaining items in the three tables one by one.

A. Congestion Control

Tables I and II differentiate the schemes’ congestion control
from three aspects, i.e., detection, notification, and adjustment
of the congestion. The details are explained below:

1) Congestion Detection and Notification: In Table I, the
seven schemes use four congestion detection methods. RoCE
implements PFC to notify the sender of the congestion when
the queue length of switches or NICs exceeds the PFC thresh-
old. iWARP and IRN use packet loss to detect congestion.
iWARP fully deploys TCP in its NIC and relies on ACKs to
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Fig. 13: Prevention of out-of-order packets in MP-RDMA.

TABLE I: Comparison of seven traffic control schemes’ congestion detection and notification

Congestion detection Congestion notification
Scheme Category Method Location Signaling Location
RoCE e PFC NIC Pause Switch, NIC
Cwarp | reditional ROMA 5o NIC ACK NIC
DCTCP Traditional DCN ECN, packet loss Kernel ECN-marked ACK Kernel
TIMELY RTT gradient, PFC | Application | PFC Switch, NIC
DCQCN ECN, PFC NIC CNP, PFC Switch, NIC
MP-RDMA RDMA-enabled DCN | ECN, PFC FPGA MP-RDMA ACK, PFC | NIC+FPGA, Switch, NIC
IRN Packet loss FPGA NACK NIC+FPGA
TABLE II: Comparison of seven traffic control schemes’
Y Y a— congestion adjustment
3 3
4 4 Congestion adjustment
5 5 Scheme Adjustment | Sending rate | Sending rate | Location
unit increasing decreasing
g [ 2 method method
4 RoCE Sending RESUME PAUSE frame | NIC
5 rate frame
iWARP Congestion | Congestion Congestion NIC
window window+1 window/2
DCTCP Congestion | Congestion Congestion Kernel
window window+1 severity o
) ) TIMELY Sending additive gradient- Application
Go-back-N Selective Retransmit .
rate increase, based
Fig. 14: Comparison of go-back-N and selective retransmis- gradient- decrease,
sion based multiplicative
: increase decrease
DCQCN Sending QCN Congestion NIC
. B . , . X rate severity «
signal congestion from the receiver’s NIC. IRN implements its MP- Congestion | Congestion Congestion FPCA
customized congestion control on FPGA and uses NACKs to RDMA window window+ window-1/2
echo the sender congestions. Since DCTCP is a variant of TCP, ‘lvli(ncd%r;%;snon
packet loss also triggers DCTCP to react to the congestion. IRN Sending Bounded by | Bounded by | FPGA
rate bandwidth- bandwidth-
DCQCN, MP-RDMA, and DCTCP employ ECN to detect delay product | delay product

congestion on switches but use different congestion signals.
DCQCN uses CNP from NIC, and MP-RDMA uses its
customized MP-RDMA ACK from FPGA. Besides packets
loss, DCTCP also utilizes ECN-marked ACKs. Since DCQCN
and MP-RDMA send traffic at line rate, they also use PFC
to prevent heavy congestion and massive packet loss. Any
scheme that uses PFC is involved with switch and NIC.

PFC has some bad effects and can degrade the network
performance significantly. One efficient solution is to use ECN
to reduce the dependency on PFC. ECN’s threshold is usually
smaller than PFC’s threshold, and thus it is triggered before
PFC. PFC only works when a busty traffic builds up queues
of switches quickly but the sender has not reacted to ECN
feedback yet [25]. We illustrate ECN and PFC’s thresholds in
Fig.15.

TIMELY consists of NIC and application. The NIC calcu-
lates real time RTT, and the application identifies congestion
based on variation of RTT gradient. TIMELY also uses PFC to
prevent heavy congestion and massive packet loss. We classify
the seven traffic control schemes based on congestion detection
methods. Fig.16 shows the classification.

2) Congestion Adjustment: In Table II, the seven schemes
use two adjustment units for flows: the flow’s congestion
window and sending rate. iWARP, DCTCP, and MP-RDMA
use the congestion window. iWARP follows the standard TCP.
DCTCEP follows the standard TCP to increase a flow’s sending
rate but uses a congestion severity « to decrease a flow’s rate.
MP-RDMA implements its rate adjustment in FPGA.



TABLE III: Comparison of seven RDMA-based traffic control schemes’ performance and requirement

Performance Components
Scheme Traffic control granularity | Quick start | Implementation Resource PFC dependency
RoCE Per-queue N — NIC N
iWARP Per-flow X — NIC X
DCTCP Per-flow X ECN-enabled Switch, Kernel Kernel X
TIMELY Per-flow N Application, NIC, Switch Application, NIC | +/
DCQCN Per-flow N ECN-enabled Switch, NIC NIC N
MP-RDMA | Per-flow N ECN-enabled Switch, NIC+FPGA | NIC+FPGA N
IRN Per-flow N NIC+FPGA NIC+FPGA X

— : the scheme is already implemented in the product.
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Fig. 16: Congestion detection classification.

The rest four schemes use the sending rate. With RoCE,
a NIC uses RESUME and PAUSE frames to adjust a flow’s
sending rate. IRN uses FPGA to increase a flow’s rate with
a upper bound of bandwidth-delay product. DCQCN follows
the standard QCN to increase a flow’s sending rate but
uses a congestion severity « to decrease a flow’s rate. For
increasing/decreasing a flow’s rate, TIMELY uses two different
methods for different RTT ranges.

B. Performance

Table III lists the performance of different schemes. In the
table, RoCE relies to PFC and performs in a coarse-grained
per-queue fashion, while other schemes work in a per-flow
manner. As shown in Section III-A, RoCE suffers from PFC
with unfairness flow transmission, head-of-line blocking, and
deadlock.

ML applications need quick start to reduce communication
latency significantly by starting the transmission of short flows
at full speed without probing the available bandwidth from a
small transmission rate. Therefore, iWARP and DCTCP, which
follow the standard TCP legacy, suffer from the TCP’s slow-
start. By contrast, other schemes can send flows at the line
rate at the beginning of transmission, resulting in a better
performance.
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C. Components

1) Implementation and Resource: In Table III, we list
the implementation of all the seven schemes, which require
four different types of hardware or software, i.e., switches or
dedicated switches, kernel, application, and NIC or NIC with
FPGA. Specifically, RoCE and iWARP are implemented in
commodity NIC. DCTCP, DCQCN, and MP-RDMA requires
ECN-enabled switches for congestion notification. TIMELY
needs NIC support for precise RTT measurement. Both IRN
and MP-RDMA use FPGA to adjust flows’ sending rates.
DCTCP and TIMELY respectively use kernel and application
to adjust transmission rate while all other five schemes require
NIC resources for rate adjustment.

2) PFC Dependency: Table III shows each scheme’s depen-
dency on PFC. Without loss of generality, all shemes expect
iWARP and IRN need PFC to achieve lossless transmission.
iWARP can recover from packet loss using its TCP/IP stack
embedded in NIC, while IRN utilizes selective retransmission
against packet loss. DCTCP does not use PFC since it handles
the packet loss in the kernel like other TCPs.

VII. OPEN RESEARCH ISSUES

Based on our analysis, we expect the following trends
for designing advanced traffic control schemes for RDMA-
enabled DCNs.

1) Removing PFC: PFC can dramatically degrade perfor-
mance and hinders the wide deployment of RDMA
in industry. Some studies propose to remove PFC but
require new hardware, e.g, FPGA. We need to find an
efficient and practical method to reduce or remove the
RDMA’s dependency on PFC.

Practical design: some existing works control RDMA
traffic in DCNs with new hardware (e.g., FPGA). These
hardware-based solutions are not cost-efficient for DCNs
with existing commercial RDMA NICs (e.g., RoCE).
An efficient solution is to use existing RDMA NICs to
achieve a similar performance of new hardware-based
solutions, such as IRN and MP-RDMA. One possible
solution is to deploy the traffic control in the user-space
and has two benefits: (1) RDMA is only used for data
transmission without any modification, and (2) we can
flexibly use existing or customized congestion control
schemes on demand.

Integrating RDMA NIC with Ethernet NIC: in DCNs,
many servers could be equipped with both RDMA
NIC with traditional Ethernet NIC and run different
applications. RDMA NICs are typically used for ML

2)

3)



4)

In
sche

applications, while Ethernet NICs are suitable for other
applications. If a server initializes VMs to run different
applications, we need a solution to differentiate appli-
cations and dynamically assign the traffic of different
applications to either RDMA NIC or Ethernet NIC.

Integrating RDMA NIC with QUIC: QUIC is a UDP-
based transport layer network protocol that aims to be
nearly equivalent to the TCP but with much-reduced
latency [33]. We think the combination of RDMA with
QUIC could be an interesting and promising solution
since both RDMA and QUIC use UDP and bypass Linux
kernel to enjoy the flexible user-space programming.

VIII. CONCLUSION

this paper, we summarize the existing traffic control
mes for traditional RDMA, traditional DCNs, and RDMA-

enabled DCNs, and discuss the pros and cons of the represen-
tative solutions of each type. In order to highlight the features

and

strengths of these existing schemes, we also compare

them from three aspects: congestion control, performance, and

requ

ired components. For encouraging the future study, we

further list and discuss potential research directions and open
issues.
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