Making Content Caching Policies ‘Smart’
using the DEEPCACHE Framework’

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, Zhi-Li Zhang
University of Minnesota
Minneapolis, Minnesota
{arvind,verma,eman,babai008,zhzhang}@cs.umn.edu

ABSTRACT

In this paper, we present DEEPCACHE a novel Framework for con-
tent caching, which can significantly boost cache performance. Our
Framework is based on powerful deep recurrent neural network
models. It comprises of two main components: i) Object Character-
istics Predictor, which builds upon deep LSTM Encoder-Decoder
model to predict the future characteristics of an object (such as
object popularity) - to the best of our knowledge, we are the first
to propose LSTM Encoder-Decoder model for content caching; ii) a
caching policy component, which accounts for predicted informa-
tion of objects to make smart caching decisions. In our thorough
experiments, we show that applying DEEPCACHE Framework to
existing cache policies, such as LRU and k-LRU, significantly boosts
the number of cache hits.

CCS CONCEPTS

« Information systems — Multimedia information systems; «
Networks — Network services; « Computing methodologies —
Neural networks;

KEYWORDS

DeepCache; deep learning; machine learning; caching; Istm; seq2seq;
smart caching policies; cache hit; video object caches; prefetching;
proactive caching; popularity prediction; fake requests;

1 INTRODUCTION

Recent years have witnessed a rapid increase in video streaming
services, as a result of the massive content published by content
providers, high-speed Internet, and the number of devices con-
nected to the Internet. Thus, content providers have resorted to
employ one or more content distribution networks (CDNs) to han-
dle scalability, and improve the quality of experience (QoE) for
users. By 2021, 77% of the Internet video traffic is expected to cross
CDNss [1]. Hence, adding cache storage space at routers becomes
of utmost importance to handle this massive growth, and improve
the network performance as well as user’s QoE. Consequently, in-
formation centric networks (ICNs) (e.g., NDN [11], DONA [12],
CONIA [16]) have been developed as an emerging architecture for
content delivery. ICN offers new primitives such as in-network
caching, in which storage becomes an integral part of the network
substrate (i.e., routers have the capability to cache objects on-the-fly,
and serve user requests for cached objects). This makes caching

“This is a slightly revised version of paper DEEPCACHE: A Deep Learning Based Frame-
work For Content Caching that was initially presented at the SIGCOMM’18 workshop
on Network Meets Al & ML (NetAl 2018).

ACM SIGCOMM Computer Communication Review

64

algorithms a major aspect in video streaming applications. With-
out caching, every user request is fetched from the backend/origin
server, which increases the network load, as well as user-perceived
latency. As a result, user engagement is impacted, which leads to
significant revenue loss for content providers.

One of the most difficult decisions is which object to cache and
evict, given the limited capacity of the cache network and large num-
ber of objects to cache. Caching algorithms can be classified based
on which entity controls the caching decision, and the available
information to make these decisions. Least Recently Used (LRU),
Least Frequently Used (LFU), and their variants are examples of
reactive caching, in which individual caches decide which objects
to cache purely based on the recent locally observed object access
patterns. They are easy to implement and widely used in today’s
CDNss [18]. On the other hand, static caching is proactive caching,
in which centralized controllers have global view of user demands
and object access patterns. They decide which objects to cache, and
push these objects to cache nodes. Reactive caching reacts faster to
changes in object access patterns, but leads to caching non-popular
objects, which are evicted before receiving their next request, due
to their lack of knowledge about future object popularity. This
leads to thrashing problem and wasting cache resources (see (§3)
for more details). Proactive caching is the optimal solution only if
the object access pattern is stationary. Thus, it cannot cope with
sudden changes in object popularity as reactive caching.

Content objects are heterogeneous as they vary in size (e.g., web
pages vs. videos), access pattern, and popularity. A study in [3]
shows that 70% of objects served by a cache server are requested
only once over a period of days. Object access patterns are fre-
quently changing due to the frequent changes in object popularity
as shown by the study in [20] using real traces, object popularity
changes within each day according to the diurnal pattern, and also
over days according to the object’s life span. In addition, changes
in request routing algorithms due to network/server failures can
also cause changes in object access patterns. Due to these frequent
changes, the assumption of stationary object access patterns be-
comes invalid. Thus, caching algorithms cannot rely on the locally
observed object access patterns for making decisions. On the other
hand, manually tuning the caching algorithm for each cache server
according to the changes of request access patterns is very expen-
sive and is not scalable.

Thus, if we know ahead of time an estimation for object charac-
teristics, we can utilize such information in the caching mechanism
to cope with the predicted changes. The cache performance de-
pends on the prediction accuracy, and how it is being utilized to
make decisions. This task has many challenges, (1) the future object
characteristics need to be forecasted to be available at the time of

Volume 48 Issue 5, October 2018

making cache decisions; (2) these characteristics change over time,
and hence, this forecasting needs to run continuously; (3) finally,
the caching mechanism needs to carefully utilize these predicted
object characteristics to improve cache performance.

Our goal is to develop a self-adaptive caching mechanism, which
automatically learns the changes in request traffic patterns, espe-
cially bursty and non-stationary traffic, and predicts future content
popularity, then decides which objects to cache and evict accord-
ingly to maximize the cache hit. In recent years, recurrent neural
networks (RNN) have become the cornerstone for sequence pre-
diction. RNNs have shown their unchallenged dominance in the
area of natural language processing [15], machine language trans-
lation [2], speech recognition [7], and image captioning [8]. Many
variants of RNN exist in literature, among which Long Short-Term
Memory (LSTM) [10], Gated Recurrent Unit (GRU) [5] are the most
popular ones for sequence prediction. Thus, it is natural to wonder
their ability to predict content popularity where content requests
arrive in a form of a sequence.

In this paper, we build the DEEpCACHE Framework, which suc-
cessfully demonstrates the ability of our LSTM based models to
predict the popularity of content objects. The main contributions
of our paper are two folds. We recognize the problem of content
popularity prediction as a seq2seq modeling problem, and to our
knowledge, we are the first to propose LSTM Encoder-Decoder
model for content popularity prediction. Secondly, we create a gen-
eral framework called DEEPCACHE for making end-to-end cache
decisions presented in (§3) and (§4). In (§5), we evaluate DEEPCACHE
Framework by applying it to existing caching policies like LRU and
k-LRU, and show that it significantly boosts the number of cache
hits. Lastly, we also show the dominant performance of employing
LSTM Encoder-Decoder model for content popularity prediction
on our datasets. We discuss existing caching mechanisms, related
work and challenges in applying machine learning to the content
caching problem in (§2), and finally conclude the paper in (§6).

2 RELATED WORK

Reactive caching such as LRU, LFU, and their variations rely on
locally observed access patterns to decide the order of cached ob-
jects for replacement. However, they cannot predict future object
popularity. Another approach which has attracted a lot of atten-
tion is timer-based caching, where each object is associated with
a time-to-live (TTL) timer, and is evicted when the timer expires.
Due to Che’s approximation [4] objects within a cache are viewed
independently, and their hit probabilities/rates are analyzed sep-
arately. Assuming the knowledge of object inter-arrival process
and their popularity distributions, [6] provides optimal timer set
up by solving an optimization problem to maximize cache hit rate.
However, extracting request patterns for each object is a challeng-
ing task in real systems. [3] designed an adaptive algorithm to set
up TTL-values for objects to handle heterogeneity, burstiness, and
non-stationary nature of real-world content requests workloads.
However, they rely on the history of received requests to change the
TTL-values regardless of the changes that may happen in future.
One of the recent attempts in learning objects access patterns
is made in [9] for prefetching program counter's memory address
in order to avoid on-chip misses. In [9], the authors treated the

ACM SIGCOMM Computer Communication Review

65

problem as a sequence classification, and then employed LSTM for
the same purpose. In contrast, our DEEPCACHE prediction problem
belongs to seq2seq modeling, in which we employ LSTM Encoder-
Decoder Model for object popularity prediction. The most closest
work that partially focuses on object popularity prediction is Pen-
sieve [13]. However, their content prediction is based on gathering
statistics over time regardless of the temporal behavior. We aim
to account for the temporal pattern in our prediction approach.
Recently reinforcement learning (RL) has also been introduced
in [13, 17] for making caching policy based on the notion of local
and global popularity. Their work complements our DEEPCACHE
framework, in the sense that the proposed RL mechanisms can be
integrated into our caching policy for making better decisions.

Challenges: Understanding content object characteristics such
as content popularity, change in the popularities, knowing arrival
times, life-spans, etc. is key to building any effective caching mecha-
nism. If one is able to accurately predict vital content characteristics
ahead of time, content caches can be pre-populated with objects that
are more likely to be requested in the near future - thus improving
cache efficiency. But with the heterogeneity described earlier in
the content types including but not limited to change in content re-
quest patterns over time and complications introduced by handling
burstiness and non-stationary nature of real-world content object
requests, the problem of predicting content object characteristics
becomes all the more difficult. Not a lot have been successful at
applying machine learning and deep learning based algorithms to
the caching problem which can be attributed to mainly the follow-
ing three challenges: i) how do we model the caching problem?; ii)
given the diversity and heterogeneity in content objects, how do we
model the input features?; and, iii) how do we interpret the results
and update the caches? The question we therefore put forth is — can
we develop a self-adaptive and machine learning driven caching mech-
anism that is able to generalize to different and time-varying content
object characteristics (e.g., arrival patterns, popularities, life-spans)
and improve cache efficiency?

smart caching policy
integral

. . Object B . operator
time series of L Caching \/
object requests_' Charact‘erlstlcs Future Rty *“—r Cache H—
Predictor .
object

characteristic

Figure 1: Data Flow in DEEPCACHE

3 OVERVIEW OF DEEPCACHE

In DEEPCACHE framework, we try to leverage state-of-the-art ma-
chine learning algorithms to improve cache efficiency. The core idea
behind DEEPCACHE is to predict characteristics of objects ahead
of time. For instance, in this paper we focus on predicting object
popularities. If we know the popular objects ahead of time, we can
proactively make decisions based on the cache network objectives.
If one wants to increase the cache hit efficiency, they can prefetch
objects ahead of time; another goal could be to reduce network
costs whereby knowing object popularities in advance can help
reduce the problem of cache thrashing — by avoiding the eviction

Volume 48 Issue 5, October 2018

/ LSTM Encoder N
1
| |
1
| LSTM LSTM LSTM !
! Cell Cell ° Cell i
] T I
: :
:\ X1 X Xr ,5

{ !
! 1
J RN i 1
i LSTM LSTM _‘_,, ... , LsT™M i
L Cell Cell) Cell]
i | |
1 1
i |

1
N\ LSTM Decoder J

Figure 2: LSTM Encoder-Decoder Model used in DEEPCACHE framework. We have an input sequence of request objects
{x1,x2, ...,x7} at time T and desired output sequence {X7+5,XT+s,-.-» XT+s+K } where S > 0 represent the shift in time and K > 0

is the desired number of outputs.

of future popular objects (or to evict future unpopular objects from
the cache). However, to keep it simple, we drive this paper with a
goal to increase the number of cache hits. This way, we are also able
to verify the accuracy of DEEPCACHE's object popularity prediction
model. Figure 1 illustrates the design of applying DEEPCACHE to a
timeseries of object requests.

One of the most important characteristics for any caching system
is object popularties. Therefore, in this paper we develop a content
popularity prediction model. For every object request, DEEPCACHE
uses this model to predict the probabilities of future requests. This
prediction can be made for multiple timescales. For instance, in our
evaluation, for every object request, we predict popularties of all
objects for three separate time intervals in future: 1-3 hours, 12-14
hours and 24-26 hours. This information is then used by the Caching
Policy component to make decisions that control the caching be-
havior. For example, a Caching Policy could control what objects
to cache and evict. To make DEEPCACHE interoperable with tradi-
tional caches or caching strategies, we have an integral operator.
This operator combines the information from the original object
request and the output of the Caching Policy. Such an architecture
allows us to build novel and “smart” caching policies that can lever-
age the predicted object characteristics to increase cache efficiency.
(§5) provides an example where we use DEEPCACHE along with
traditional LRU-based caches.

4 DEEPCACHE COMPONENTS

In this work of DEEPCACHE, we aim to bring the paradigm of cache
prediction problem under seq2seq modeling [19]. Seq2Seq modeling
gives much more flexibility in terms of predicting variety of outputs
together with possibly varying input/output sequence length.

4.1 Seq2Seq Prediction for Caching

Seq2seq modeling enables us to jointly predict several properties
of objects required for making cache decisions including: a) pre-
dicting object’s popularity over multiple time steps in the future;
b) predicting any sequential pattern that might exists among ob-
ject requests; ¢) classifying sub-sequences of object requests into
pre-defined categories, for instance to identify anomalies such as
flash crowd phenomenon (which falls under sequence classification
problem).

For Seq2Seq modeling, recurrent neural networks (RNN) have
undoubtedly shown their dominance especially in the area natural

ACM SIGCOMM Computer Communication Review

66

language processing, machine translation and speech recognition.
In particular, we focus on RNN of type long short term memory
(LSTM) networks [10] for capturing any long-term and short-term
dependency among the object requests (or among their popularity).
LSTM models are quite popular due to their special design property
related to carefully avoiding vanishing and exploding gradient
problem when building deep layer neural network models.

For our purpose, we adopt LSTM Encoder-Decoder model as
shown in Figure 2 for seq2seq prediction. This model essentially
consists of encoder part which encodes the input sequence into a
hidden state vector, and decoder part which decodes the output
sequence from the hidden state vector.

The main challenge we tackle in this paper is designing appro-
priate input features and predicting plausible desired outputs based
on LSTM that are helpful for making cache-relation decisions under
our DEEPCACHE framework.

Problem Formulation: In abstract, let X; = {x1,x2,...,x+} be a
sequence of objects requested so far at time ¢ where each x; € R4
represents the input feature vector (d—dimensional) corresponding
to the object. Let Y; = {y1,y2, ..., yx } be the sequence of k outputs
associated with the arrival of object x; where y; € R? represents
the output feature vector of p—dimension. Our goal is to construct
meaningful X; and Y; that are helpful in making caching decisions.
In this paper, we primarily focus on constructing Y; to be future
content popularities based on past X; popularities. We construct
X; and Y; sequences for training based on synthetic datasets as
discussed in (§5).

4.2 Content Popularity Prediction Model

For predicting object’s popularity, we construct x; as the probabil-
ity vector of all unique objects at time t computed in a pre-defined
probability window. Here, the definition of probability window can
be time-based or can also be calculated based on a fixed length
window of object requests previously seen. In this case, input di-
mension d is equal to the number of unique objects. Our output
Y; at time ¢, is also a sequence of k future probabilities, where k
represents the number of probabilities to predict — possibly at mul-
tiple time steps of nearby and long-term future probabilities. Here
again, output dimension p would be equal to the number of unique
objects ie., p =d.

For better performance of LSTM, we provide multiple past prob-
abilities (denoted as m number of past probabilities) as input. Each

Volume 48 Issue 5, October 2018

0.0005

_ 0.06
O
©
10° 4 g 0.0004 0.05
€ o
> =1 S 4
g @ 0.0003 500
g =
% § g 0.03 1
L 5 0.0002 S
s < 0.02
_% 0.0001 0.011
104 4 -4
T T T 0.0000 0.00-
10° 10! 102 10° 20 40 60 80 100 0 5 10 15 20
Object Rank object life span in days Hour

(a) Object Popularity

(b) Histogram of Object Life Span

(c) Hourly Access Ratio

Figure 3: Workload Properties of Dataset 2

of these probabilities are calculated using a predefined probabil-
ity window. As a result, our input and output can be seen as a
3D Tensor with dimension (#samples, m, d) and (#samples, k, d), re-
spectively. We construct the input and output tensor from a given
trace of object requests (i.e., a workload) and split the data further
into training and testing parts. Finally, we train our LSTM Encoder-
Decoder model to predict future probabilities of any requested
object at time t. One important finding based on our datasets is that
LSTM encoder-decoder performs much better if we separately feed
the probabilities of each object as a sample data (instead of append-
ing in an input feature vector). This results in an input and output
tensor with dimension (#samples * d, m, 1) and (#samples * d, k, 1),
respectively. The reason it works better is because - in our datasets,
time series of object popularities are independent of each other.
For cases where popularity of objects are correlated over time, we
expect the former mentioned input/output data construction to
work better.

Seq2Seq Prediction using Generate

LSTM Encoder-Decoder Model “fake object
(i.e. Content Popularity requests”
Prediction Model) for objects popular in Simple merge operator
x future (original + fake requests)
» 4
\ integral
" Obj . operator
time series of "po(::l:facrtity" @ Caching p"' Cache |—»
object requests Predictor Fusure Policy)
object
“popularities” o
Traditional
LRU/k-LRU

caches

Figure 4: A Case For DEEPCACHE

4.3 Caching Policy

The Caching Policy component gets the characteristics predicted
by the Object Characteristics Predictor (see Figure 1). It makes
decisions on what to cache or evict. In this work, we consider con-
tent popularity as the object characteristic that is being predicted.
Therefore, Content Popularity Prediciton Model predicts future
object popularity. We design a simple yet smart caching policy in
a way to make DEEPCACHE interoperate with traditional caching
strategies such as LRU, LFU, etc. The main idea of this caching
policy is that — since we are given the future content popularities
from the predictor component, our naive caching policy generates
“fake content requests” and forwards it to the integral operator. The
integral operator in our paper is a simple merge operator, which
merges a stream of fake request to the original request and then

ACM SIGCOMM Computer Communication Review

67

sends it to the cache. Such fake requests would make the traditional
cache (e.g., LRU) to prefetch the objects. If the fake requests in-
deed represent those objects that will be popular in the near future,
prefetching them would lead to an increase in the overall number
of cache hits. Depending upon the definition of probability window,
we can either generate such “fake content requests” periodically
over time or for every n‘" request. Our evaluation considers both
approaches. One may argue that this approach would lead to many
cache evictions and additions - thus increasing overall network
and system load. However, this trade-off is subjective to the cache
network objectives, which is out of scope in this paper.

Piecing together all the different components presented in this
section, Figure 4 shows how we leveraged DEEPCACHE framework
to improve cache efficiency. The figure also reflects the settings
used in our experiments.

5 EXPERIMENTAL RESULTS

We evaluate our approach using two synthetic datasets with differ-
ent characteristics. In this section, we explain the data generation
process of the synthetic datasets, and show the results of applying
DEeEPCACHE on them under different settings.

5.1 Synthetic Data Generation

Dataset 1: Dataset 1 has 50 unique objects with more than 80K
requests. It includes six intervals of time series which primarily
differ in object popularities. Within each interval though, object
popularity ranks remain constant. Object popularities are gener-
ated using Zipf distributions with f = [0.8,1,0.5,0.7,1.2,0.6] as
the parameters for 50 objects. The popularity rank of objects is
generated by a random permutation for each interval. The interval
length is approximately a thousand requests.

Dataset 2: In order to consider a more realistic workload, we use
MediSyn [20] to create Dataset 2. This dataset has a total of 1,425
unique objects with more than 2 million requests. The workload
has static properties as well as temporal properties denoted using S:
and T: prefixes, respectively. To implement the temporal properties
of the workload, we assume that each object has a life span, all the
object requests follow a diurnal pattern, and the access ratio to an
object diminishes each day.

e S:Object Frequency: We use a generalized Zipf distribution
to generate object’s frequencies. We use = 0.8 as popu-
larity parameter along with M = 175, 000 as the maximum

Volume 48 Issue 5, October 2018

—— k-LRU
—— P-Optimal(k-LRU)
—— DeepCache(k-LRU)

Total Hits (x1000)
ey
o

5| — LRU 4001 ___ |ry

51 — p-Optimal(LRU) — P-Optimal(LRU)
§ 20 — DeepCache(LRU) S 300 { — DeepCache(LRU)
S o
= —
Z 151 2
2 2 2001
T E
5107 :
= S 100
T =

01 o

0 20 40 60 0 500

Request Sequence x1000
(a) DEEPCACHE LRU on Dataset 1

Request Sequence x1000
(b) DEEPCACHE LRU on Dataset 2

250 500 750 1000 1250
Request Sequence x1000

(c) DEEPCACHE k-LRU on Dataset 2

1000 1500 0

Figure 5: Cache Hit Performance using DEEPCACHE

frequency and the scale parameter k = 30 for 1, 425 objects.
(See Figure 3a for Object Rank v/s frequency).

e T:Object Life Span: We define object life span as the num-
ber of days the object is seen during the whole timeseries
of the workload. We use log-normal distribution to gener-
ate object life spans, 3b. For dynamic generation of life
spans, the parameters of log-normal distribution, p(mean)
and o(standard deviation), are generated by two normal dis-
tributions. The parameters are stated in Table 1.

Normal dist. lognormal p | lognormal o
Parameters

I 3.0935 1.1417

o 0.9612 0.3067

Table 1: Object Life Span Parameters

e T:Diurnal Pattern: The diurnal pattern for each object's
request arrival process within a given day is modeled as
a non-homogeneous Poisson process. Each bin which is an
hour, has an specified Poisson parameter. The Diurnal ratio
values are generated with user specified function of time
(see Figure 3c for the hourly ratio of requests per day).

e T:0Object Access Rate: We use linear and non-linear func-
tions to control the request arrival rates, access rates, for an
object during its life span. The number of requests received
for an object diminishes each day.

5.2 Experiment Settings

LSTM Encoder-Decoder Model Settings: For our datasets, we
use a two-layer depth LSTM Encoder-Decoder model with 128 and
64 as the number of hidden units. All experiments were run on a 2x
GPU TITAN V. The loss function is chosen as mean-squared-error
(MSE). We ran our experiments for a number of epochs equal to 30,
with the batch size set to 10% of the training data. Runtime for all
of our experiments is confined within the period of 30— 120 minutes.

LSTM Input-Output Data Construction Settings: The sample
sequence length is set to be 20, i.e., m = 20 for both datasets. For
dataset 1, the probability of object o’ is calculated as N; /1000, where
N; represents the number of occurrences of o in the window of
past 1K objects. While for dataset 2, the probability of o is the
normalized frequency of that object in an hour. In dataset 1, we
aim to predict next K = 10 future probabilities (i.e. 10 future time

ACM SIGCOMM Computer Communication Review

68

units). For dataset 2, we set K = 26, but only used subset of these
predicted probabilities. For both datasets 1 and 2, we used 80% of
the content objects for training, and remaining 20% objects for test-
ing. The entire period of objects from the training set were used
to train. Testing were conducted on content objects never seen by
the model. We then use the predicted future probabilities to make
caching decisions.

Cache Policy Settings: As discussed earlier, we use a naive caching
policy to enable DEEPCACHE to interoperate with traditional caches.
For every object request oi at time ¢, we generate a varying number
of “fake object requests” (denoted as F;). For dataset 1, we generate
F; by calculating the top M = 5 objects with highest probability at
t + 1. For dataset 2, we rather consider a varying number of top M
objects with the highest probability from multiple time intervals.
In other words, our fake set of requests F; not only considers im-
mediate future, but also considers popular objects in the next 12
hours and 24 hours with a diminishing weight for the number of
selected objects from each interval.

Integral Operator: For both datasets, the operator is a simple
merge operator, where the actual object request is followed by all
the fake requests generated by our Caching Policy. This helps us to
update the state of the cache by prefetching objects based on future
object popularity and evict unpopular ones.

Cache: For dataset 1, we set the cache size to 5, while for dataset 2
we set the cache size to 150.

MSE MAE
Dataset 1 1.2x107° 4.8%x1073
Dataset 2 3.8 107° 8.3x1073

Table 2: Prediction Accuracy.
5.3 Results

LSTM Encoder-Decoder Prediction Accuracy: Table 2 shows
the mean-squared-error (MSE) and mean-absolute-error (MAE) of
our prediction accuracy on Datasets 1 and 2, both ranging from 0 to
1in our case. These low error rates show the strong performance of
our LSTM model for object popularity prediction. To give a sense of
our predictions, Figure 6 shows the ability of LSTM predicting the
next i*" hourly count for object requests. As evident from Figure 6,
LSTM performs quite well in tracking the original time series over
multiple future time steps.

Volume 48 Issue 5, October 2018

2000 T

== Qriginal
— 1 hour prediction
— 12 hour prediction
1500 —— 24 hour prediction]
<
>
o
(&) |
S 1000 | | |
0 ‘ \ /
[}
>
o
® | |
% 500 ¥ ! 1
O L L L L
0 50 100 150 200 250

Hourly Time Series (~10 days)

Figure 6: Performance of our L§TM-based Content Popular-
ity Prediction Model of an object. Here, we see LSTM per-
forms well for predicting ith = {1,12,24} hour ahead of time
in comparison with the original values over a time series of
~10 days.

Cache-Hit Efficiency: Figure 5 shows the result of applying a
simple form of DEEPCACHE Framework on both Datasets 1 and 2.
For instance, in Figure 5a, we compare traditional LRU with DEEp-
CACHE, and without DEEPCACHE. P-Optimal shows the performance
of DEEPCACHE with 100% accuracy in content popularity prediction.
For Dataset2 which represents a more realistic workload with large
number of object catalog and cache size, we evaluate DEEPCACHE
using both LRU (see Figure 5b) and k-LRU (see Figure 5¢). In k-LRU,
the object has to traverse K — 1 virtual caches before it is inserted in
the physical cache [14]. For all experiments, we found DEEPCACHE
significantly outperforms simple LRU. Surprisingly, in Figure 5c,
we observe that DEEPCACHE with k-LRU has slightly higher cache-
hit than P-Optimal. We hypothesize this is due to LSTM’s smooth
probability prediction behavior. In case of P-Optimal, probabilities
are frequently changing, which makes caching policy less stable
compared to DEEPCACHE. As a result, slightly more cache hits are
observed for DEEPCACHE over longer period of time.

6 CONCLUSION

In this paper we proposed DEEPCACHE Framework, a paradigm
to use state-of-the-art machine learning tools to the problem of
content caching. In that, using such a framework, we proposed
how to reason about the cache prediction problem under seq2seq
modeling. We successfully show the ability of our LSTM based
models to predict the popularity of content objects. To show the ef-
ficacy of our approach, we evaluated it using two synthetic datasets
under multiple settings out of which one tries to emulate realistic
workloads. Results show that enabling DEEPCACHE with existing
cache replacement algorithms such as LRU, k-LRU significantly
outperforms algorithms without it.

ACKNOWLEDGMENTS

This research was supported in part by US NSF grant CNS-1411636,
CNS-1618339 and CNS-1617729, DTRA grant HDTRA1-14-1-0040,
and a Huawei gift.

ACM SIGCOMM Computer Communication Review

69

REFERENCES

[1] Cisco visual networking index: Forecast and methodology, 2016-2021, 2017.

[2] Baupanau, D., CHo, K., AND BENGIO, Y. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

Basu, S., SUNDARRAJAN, A., GHADERYI, J., SHAKKOTTAL S., AND SITARAMAN, R.
Adaptive ttl-based caching for content delivery. vol. 45, ACM, pp. 45-46.

CHE, H., WANG, Z., AND TUNG, Y. Analysis and design of hierarchical web caching
systems. In Proceedings IEEE INFOCOM 2001. (2001), vol. 3, pp. 1416-1424 vol.3.
CHUNG,]., GULCEHRE, C., CHO, K., AND BENGIO, Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
(2014).

FERRAGUT, A., RODRIGUEZ, 1., AND PAGANINI, F. Optimizing ttl caches under
heavy-tailed demands. vol. 44, ACM, pp. 101-112.

GRAVES, A., AND JAITLY, N. Towards end-to-end speech recognition with re-
current neural networks. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32 (2014), ICML’14,
JMLR.org, pp. I-1764-11-1772.

GREGOR, K., DANTHELKA, L., GRAVES, A., REZENDE, D. J., AND WIERSTRA, D. Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623
(2015).

HasHEMI, M., ET AL.
arXiv:1803.02329 (2018).
HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural compu-
tation 9, 8 (1997), 1735-1780.

JAcoBsoN, V., SMETTERS, D. K., THORNTON, J. D., Prass, M. F., Brigas, N. H., AND
BRAYNARD, R. L. Networking named content. In Proceedings of CONEXT 2019
(New York, NY, USA, 2009), CONEXT ’09, ACM, pp. 1-12.

KoroNEeN, T., CHAWLA, M., CHUN, B.-G., ERMOLINSK1Y, A., Kim, K. H., SHENKER, S.,
AND STOICA, I. A data-oriented (and beyond) network architecture. In Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (New York, NY, USA, 2007), SIGCOMM 07, ACM,
pp. 181-192.

Mao, H., NETRAVALL R., AND AL1ZADEH, M. Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (2017), ACM.

MARTINA, V., GARETTO, M., AND LEONARDL E. A unified approach to the perfor-
mance analysis of caching systems. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications (April 2014), pp. 2040-2048.

Mikorov, T., KARAFIAT, M., BURGET, L., CERNOCKY, J., AND KHUDANPUR, S. Re-
current neural network based language model. In Eleventh Annual Conference of
the International Speech Communication Association (2010).

RAMADAN, E., NARAYANAN, A., AND ZHANG, Z. L. CONIA: Content (provider)-
oriented, namespace-independent architecture for multimedia information deliv-
ery. In 2015 IEEE ICMEW (June 2015), pp. 1-6.

SADEGHI, A., SHEIKHOLESLAML, F., AND GIANNAKIS, G. B. Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities. IEEE
Journal of Selected Topics in Signal Processing 12, 1 (Feb 2018), 180-190.

SHAFIQ, M. Z., L1u, A. X., AND KHAKPOUR, A. R. Revisiting caching in content
delivery networks. vol. 42, ACM, pp. 567-568.

SUTSKEVER, L, VINYALS, O., AND LE, Q. V. Sequence to sequence learning with
neural networks. NIPS’14, MIT Press.

TANG, W., Fu, Y., CHERKASOVA, L., AND VAHDAT, A. Medisyn: A synthetic stream-
ing media service workload generator. In NOSSDAV (2003), ACM.

[9]

(10]

Learning memory access patterns. arXiv preprint

(1]

[12

(13]

(14]

(15]

[16]

(17

[18

[19

[20

Volume 48 Issue 5, October 2018

