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ABSTRACT

The state-of-the-art hardware in artificial neural networks is still affected by the same capacitive challenges known from electronic integrated
circuits. Unlike other emerging electronic technologies, photonics provides low-delay interconnectivity suitable for node-distributed non-
von Neumann architectures, relying on dense node-to-node communication. Here, we provide a roadmap to pave the way for emerging
hybridized photonic-electronic neural networks by taking a detailed look into a single node perceptron. We discuss how it can be realized in
hybrid photonic-electronic heterogeneous technologies. Furthermore, we assess that electro-optic devices based on phase change or strong
carrier dispersive effects could provide a viable path for both the perceptron “weights” and the nonlinear activation function in trained neural
networks, while simultaneously being foundry process-near materials. This study also assesses the advantages of using nonlinear optical
materials as efficient and instantaneous activation functions. We finally identify several challenges that, if solved, could accelerate the adoption
of such heterogeneous integration strategies of emerging memory materials into integrated photonics platforms for near real-time responsive
neural networks.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5109689

I. INTRODUCTION of efficiently implementing artificial NN operations, in particular,

vector matrix multiplication (VMM) and backpropagation.’

While the scientific community still lacks a full understanding
of the operation of the human brain, we yet can draw some parallels
to compute-systems with respect to operating efficiency. Machine
learning (ML) tasks performed by neural networks (NNs) can be
used for such computer-vs-brain comparison since both are exam-
ples of nonlinear (NL) hypothesis systems that can be trained to
classify patterns. Interestingly, one of the fastest computers' is only
able to simulate ~1% of human brain activity in requiring about
one hour and demanding massive compute infrastructure overheads
(e.g., 82000 processors and 1.73 x 10° virtual nerve cells connected
by 10.4 x 10" synapses) consuming about 10 MW, while the human
brain operates on tens of Watts.”

In the aim to compensate this disparity and to match some of
the brain’s computational and energy efficiency, the recent efforts
to develop non-von Neumann neuromorphic hardware are capable

Conventional (von Neumann) compute architectures utilize
centralized processors and rely on logic technologies, while exe-
cuting stored programs sequentially. On the other hand, emerging
non-von Neumann systems are inherently decentralized and, there-
fore, require significant communication between these many nodes
of the network, yet process information in parallel and are trainable
for applications such as in machine learning.

Electronic implementations of such brain-mimicked systems
show significant 3-4 orders of magnitude”’ energy-per-compute
reductions defined by the underlying mathematical interconnection
function of NNs, namely, multiply-and-accumulate (MAC). Thus,
the efficiency and performance in the number of processed MAC’s
per unit time and unit energy (i.e., MAC/s and MAC/]) are two
key metrics to be considered when new hardware technology and
emerging materials are explored for NN technology.
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While electronic NN-based processors have shown improve-
ment with respect to energy efficiency, the time delay to obtain a
classification result from the NN (e.g., of an inference ML task) is
not improved as compared to regular von Neumann systems due to
the high-RC delay of electronic circuits.

In this work, we consider the NN being trained offline and
hence only discuss the performance under inference operation. This
approach, yet, requires mapping the ML-task to the NN hardware,
which is not straightforward for photonics networks at the time
this paper is written. However, initial approaches of modifying
graph-simulators (e.g., TensorFlow) to include physical effects from
the device layer (e.g., impact of noise, cascadability) show higher
inference accuracy using electro-optic (EO) hybrid approaches
for NNs.

Emerging memory technologies, such as phase-change mem-
oryS (PCM), conductive bridge random access memory() (CBRAM),
and resistive switching memoryI Y (RRAM), have been demonstrated

PERSPECTIVE scitation.org/journal/apm

to be compelling candidates as synaptic devices for weight stor-
age and matrix vector multiplication (VMM) in purely electronic
neuromorphic circuitry. These devices are characterized by excep-
tional characteristics such as high footprint scalability, multibit stor-
age capability, and long retention-time nonvolatility as well as an
overall higher technological maturity compared to integrated pho-
tonics. Therefore, few efforts’’ '” have targeted integrating non-
volatile materials with waveguides, in order to explore novel ways
of tuning their refractive index, either plasmonically of the optical
mode or through phase changes in the crystallinity of the mate-
rial. From this perspective, here we argue that integrated photonics
and memristive hybrid systems (Fig. 1) could present significant
improvements to the established digital implementations of VMM-
tasks using graphic and tensor process units (GPU and TPU). How-
ever, their usage aiming to replace the current technology is still
hindered by the above-mentioned hurdles and the state of the com-
munity of integrating complementary metal oxide semiconductor
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FIG. 1. Hybrid memristive photonic systems toward building dual-technology neural network (NN) architectures. (a) Specific pros and cons which characterize the two
technologies, integrated photonics (dark) and memristor (light). (b) The perceptron model representing a single node of a NN can be mapped onto photonic hardware
components. Thus, once the NN is trained and the weights are set in the electro-optic weighting modulators, the delay inference for the inference task is given by the
photons time-of-flight through the photonic integrated circuit (PIC), which can be taken to be “real-time” (i.e., 1-10 ps) compared to electronic NN solutions. However, the
opto-electronic weights require a constant voltage bias taking a toll on the power consumption. Thus, real-time fast and power efficient photonic NNs can be designed
by integrating nonvolatile memory elements near the photonic weight components. This is synergistic to offline trained “weights,” which are updated infrequently, if ever.
(c) Schematic of a back and front end-of-line of hybrid integration for nonvolatile weights. In addition to technological performance gains, the material compatibilities with
fabrication processes of foundries need to be considered as well. (d) Schematic of a purely illustrative monolithic silicon or SisN4 photonic integration, which comprises planar
integration of Si photonics with complementary metal oxide semiconductor (CMOS) circuits on the same layer.
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(CMOS) compatible phase change materials,® such as germanium-
antimony-tellurides (GST) (Ge;Sb,Tes), with Photonic Integrated
Circuit (PIC) is relatively at its infancy.

Nevertheless, the integration of the two technologies seems to
be an interesting direction to pursuit to complement their strengths
[Fig. 1(a)]. Yet, if successful, such hybrid integration would be par-
ticularly appealing since it could enable retention of the optical
information, digitalization of the output, and introduction of non-
linearities at the same time, while building on the existing pro-
cess know-how and made capital investments (i.e., material-foundry
compatibility). The underlying mechanism for achieving weight-
ing functionality in integrated photonics using memristors relies
on specific active materials'>'*'**" either alone (weighting + stor-
ing) or in combination with electro-optic modulators (storing),
aiming to alter their optical response in a nonvolatile reversible
way, by means of an activation potential (i.e., thermal, electrical or
optical).

With the aforementioned electronic-NN based ML successes,
the question becomes why perform NNs in the optical domain?
Before we answer this, one can more generally ask what the ratio-
nale might be for performing information processing in optics and
in integrated photonics? Here, we argue that the main reason for
photonic NN hardware is found in the short delay,”" which could
be important for applications such as in ranging, synthetic aperture
radar, automated target recognition, or nonlinear predictive con-
trol”” (Table I). Once the dot-product, providing the “weights” of
the photonic perceptron, is set (i.e., trained offline), the entire sys-
tem only depends on the time-of-flight of the photon through which
the NN plus the response time of the electro-optic components of the
perceptron;”””*” here, several implementation options exist, and for
the discussion of this roadmap, we focus on the dot-product pho-
tonic weights and the nonlinear activation function (NLAF). That
is, the entire NN’ delay (once trained) can be hundreds of picosec-
onds short using integrated photonics and high-speed (tens of giga-
hertz) photodetectors. In addition to delay, there are other benefits
using photonics for NNs or well-established information processing
paradigms such as parallelism from Wavelength Division Multiplex-
ing (WDM) and vanishing capacitive “wire” delay (Table I). How-
ever, challenges exist too such as in function-per-wafer-footprint,
electro-optic (EO) conversion efficiencies, packaging, and—most
relevant for this roadmap paper—efficiency and number of states
of photonic memories, whose development is still in its beginning.

PERSPECTIVE scitation.org/journal/apm

It is this very reason that we turn our attention to a hybridiza-
tion strategy by combining the best-of-both-worlds [Fig. 1(a)];
that is, using the nonvolatility from electronics yet the intercon-
nectivity from optics combined with the compactness from inte-
grated photonics which also aims to leverage semiconductor process
economy of scale, through foundry services such as AIM, IMEC,
or IME.

While a number of both fundamental and practical strengths
exist, there are realistic “pain points” as well that need to be over-
come in the long term in order for photonics (i.e., integrated optics)
to become competitive. However, we note also that details on hard-
ware competitiveness depend strongly on the applications sought
after.

While volatile memory options in photonics could be imple-
mented for the weighting function using, for example, electro-optic
modulators,”®  their high optical material index drifts, due to ther-
mal and electrical noise, are suboptimal for the typical longevity
of NN weights while performing inference of unseen data, which
change only when a new training set is obtained (if ever), which
can be particularly time consuming due to the enormous amount of
training data employed to ensure correct training in a high dimen-
sionality problem, namely, the “curse-of-dimensionality.””* There-
fore, we firmly believe that the community should explore emerging
materials that feature favorable performances for photonic, electro-
optic material performance while keeping chip integration synergies
in mind, as discussed below.

Neuromorphic photonics and memristor-based systems pro-
vide solutions that can deliver particularly high performances in
terms of either throughput or energy efficiency by comparison with
the current purely CMOS based execution.””"” The main advantage
of exploiting PIC for NN tasks is intrinsic to the wave-nature of the
signal that carries information [Fig. 1(a)]. The fundamental oper-
ation in NN-tasks are multiplications and accumulations (MAC),
which can be performed without any additional energy because a
MAC is achieved by simple interference of phase-shifted electro-
magnetic waves traveling within waveguides.””"*” Moreover, inte-
grated photonics is naturally predisposed to ultrahigh speed charac-
terized by short latency due to (a) the time-of-flight of the photon
in the chip (few picoseconds for large chips) and (b) to a consid-
erable extent by its electro-optic components (few tens of picosec-
onds), such as detectors and modulators. Furthermore, exploit-
ing Wavelength Division Multiplexing (WDM),” PICs can perform

TABLE . Rationale to perform information processing such as exploited in artificial neural networks for machine-learning

tasks in the optical domain.

Rational for photonic information processing

Strengths

Pain points

Nanosecond delay — “real time”
Bosonification — parallelism (e.g., WDM)
Low loss communication — “wire” is free

— distributed non-von-Neumann architectures

“One-shot” execution (noniterative)

Fabrication in progress — aim photonics, IMEC, IME

Efficient memory
functionality

(low, IL, efficiency, multistate)
Footprint

E-O conversion
Packaging/alignment
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selective weighting operation on multiple inputs mapped on differ-
ent wavelengths, using the same physical channel, supporting higher
parallelism and remarkable throughput.””® Furthermore, engineer-
ing light-matter interactions enable advances in efficient modula-
tors, which can realize hundreds of attojoule-per-operation energy
dissipation.””

Nevertheless, the advancement of integrated photonics in neu-
ral networks is hindered by major challenges; beside the larger foot-
print with respect to microelectronics, which could be neglected
considering the higher throughput and efficiency, the advancement
of PICs at a larger scale is primarily held back by difficulties in the
integration with a CMOS interface, local laser sources, and pack-
aging (Table I). This is because the materials employed require
dedicated industrial process recipes that have not reached enough
maturity yet to provide cost effective, consistent, or scalable results.
Just to clarify this point further: PICs-based components and sub-
systems are commercially sold in the millions, namely, for data-
centers, but using PICs for NN is a technology direction which is
still at its infancy despite great progress having been made.””*****
It is also worth mentioning that, except for recent efforts,”” NNs
in integrated photonics are still lacking a straightforward imple-
mentation of an optical NLAF to mimic the action potential firing
in the neuron or an analog tuning such as favored by the com-
puter science community (e.g., rectifying linear unit ReLU). Also,
the absence of a straightforward nonvolatile memory realized in
photonics that can be written, erased, and read optically still lim-
its the realization of all-photonic chip-scale information processing
for NN tasks, yet initial design concepts exist.”* What we find is
that the required power consumption and bandwidth could both
be improved when nonvolatile memory functions could be inte-
grated directly in the optic domain, which is particularly advanta-
geous in trained networks when the weights are fixed (or changing
seldom).

Our aim in this work is to explore a roadmap of nonvolatile
materials and approaches that can be integrated with photonics to
enable dot-product multiplications and thresholding in the optical
domain. Here, we review, discuss, and project challenges and oppor-
tunities for device type and material choices for these memristor-
based electronic-photonic hybrid NNs from the perspective of key
metrics such as power dissipation, electrical vs optical readout, mul-
tistate tunability to mention a few, thus laying a corner stone toward
establishing a material roadmap for photonic NNs. We discuss the
advantages and issues related to a hybrid integration of photonics
and memristors in a complementary way, highlighting material sys-
tems, which are jointly shared between the two technologies and
that could allow a seamless integration. CMOS compatibility and
large-scale integration pose additional material-related constraints,
limiting the choice of materials available for electrodes, device layers,
and isolation.

Il. INTEGRATED PHOTONICS FOR NEUROMORPHICS

For hybrid memristor-photonics NN systems, the fast and effi-
cient response of the transfer function of an electro-optic modulator
is mostly suitable for mimicking the NLAF of the neuron rather
than the weighting since the network is mostly offline trained and
performing only the inference tasks.”*"*’ On the contrary, the abil-
ity of the memory element to retain information for a comparable

scitation.org/journal/apm

long time can be exploited for the purpose of efficiently storing
the weights and modulating the signal traveling in the waveguide
accordingly. In this section (Sec. II B), we discuss recent work on
integrated photonics platform, optical modulators, and their inte-
gration with CMOS electronics, before we further discuss the key
metrics of the state-of-the-art modulators.

A. Passive photonic neural network interconnectivity:
Waveguide platform options

For PIC operating at telecommunication wavelengths (1550
nm), the main platform for planar light-wave circuit is Silicon on
Insulator (SOI). The crystalline silicon layer atop the insulator is
used to create optical waveguides (through optical index contrasts)
and can be extended to include both passive and active devices used
to deliver NN functionality. The SOI chip can be realized by either
smart cut or separation by ion implantation of oxygen (SIMOX) pro-
cesses. The buried insulator enables propagation and strong confine-
ment of infrared light in the silicon layer on the basis of total inter-
nal reflection, with low propagation losses (<1 dB/cm)*' and small
bending radii (<5 ym)"’ enabling PIC with compact footprint. This
SOI platform also features monolithic electro-optic modulators, i.e.,
without the addition of any other material, either by thermally or
electrostatically changing silicon’s optical refractive index.” ** Sili-
con’s optical (i.e., all-optical) nonlinearities arise at few tens of milli-
watts, which is a value that could limit the depth (numbers of layers)
of the NN, and contemporary sets the limits to the insertion losses
(IL) admissible.

The integration with CMOS electronics for logic circuitry with
SOI, while technologically feasible,”” is challenging due to tech-
nical and economic mismatches; therefore, hybrid integration is
usually required. Layer-stacking and integration with light sources
could be feasible by SOI wafer bonding techniques such as cou-
pling the evanescent optical mode of a III-V laser to SOI waveg-
uide,”*” high-performance quantum dot (QD) lasers monolithi-
cally grown on Si,"”" or other electrically driven solution.”” While
silicon’s bandgap is transparent at telecommunication frequencies,
there is no conceptual rule why PIC-based NN could not operate at
visible or also at mid-IR wavelengths. In fact, there are convincing
reasons to consider small wavelengths: (a) the smaller wavelength
enables denser PICs, (b) the higher bandgap can deliver lower opti-
cal losses saving chip power consumption, and (c) extending the
pump-power range before NL become parasitic,”’ thus enabling NN
cascadability. Such a visible-photonics platform material is Si3Ny,
which presents a bandgap at higher energy (0.4 ym). Interestingly,
the process recipes for silicon nitride are favorable for large-scale
photonic networks; when deposited by LPCVD, Si3Ny is character-
ized by both high material stability and refractive index regular-
ity, as well as nanoscale etch-resolution and lower surface rough-
ness, which leads to reduced scattering and hence low optical losses
per unit length (<10 dB/m) for a 0.5 ym bending radii, which is
10-100x lower compared to SOL’’ In contrast to SOI, due to the
fundamental flexibility of the deposition techniques,H Si3Ny also
allows for easy integration and 3D stacking flexibility with either
SOI or CMOS platforms.”” Regarding other material integration
into this silicon nitride platform, several options have been success-
fully embedded such as a number of metals or colloidal quantum
dots.” This platform also allows creating more complex photonic
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structures such as distributed feedback reflectors (DFB)”" and has
shown to deliver PICs with multiple photonic layers. Regarding
electro-optic (EO) phase tunability, silicon nitride is less responsive
than even silicon and hence is not a suitable material for monolithic
weights of photonic NNs. Nonetheless, given its promising passive
properties, it appears an ideal material for heterogeneous integration
in addition to co-integration with SOI and CMOS logic circuitry.

B. Electro-optic “weights” and nonlinear activation
function: Materials for high-speed and efficient
modulators

To modulate the light-wave information traveling in the waveg-
uides, efficient electro-optic or absorptive modulators must be
designed and integrated, either monolithically or heterogeneously
in the SOI or Si3Ny platform. Modulators are active photonic com-
ponents that induce an optical absorption (EA, electroabsorption)
or change the optical path length or refractive index (EO, elec-
trorefraction) of a material.” The choice of electro-optic modu-
lation over electroabsorption and vice versa is merely related to
the device type and its use in the network. Using either electrore-
fractive or electroabsorptive modulation ultimately translates into
an intensity modulation. Phase modulators require interferomet-
ric scheme to induce an amplitude change, such as the Mach-
Zehnder (MZ) configuration or Microring Modulators (MRMs),
whereas absorption modulators achieve it in a linear waveguide
geometry. MRMs and MZM operate at specific wavelength, while
electro-absorption modulation is principally broadband. MRMs can
be employed in architectures that exploit the available bandwidth
using Wavelength Division Multiplexing (WDM), in which WDM
inputs are weighed through tunable MicroRing resonators (MRRs)
multiplexed on the same physical channel. In the end, a modula-
tor is a multi-trade-off device, and a straightforward comparison
without application context lacks relevance. For instance, the mate-
rial system LiNbO3 has shown lower power and high-speed perfor-
mance’®” but comes with very large footprints (~centimeter size)
due to the lack of any resonance effect. The other extreme is, for
example, a graphene-plasmon modulator’ deploying both opti-
cal and material resonance allowing for micrometer small devices,
yet at a (much) higher per-unit length device insertion loss. In
fact, we have explored such material-mode-performance options
for a variety of EO-active materials (Si, ITO, Graphene, III-V, QD,
TMDs) and multiple optical modes (photonic, plasmonic, hybrids)
in Refs. 28 and 67.

Nevertheless, the performance of the electrorefractive/absorptive
modulators depends on the physical modulation mechanism such
as Pockels effect (LiNbO3), Kerr effect,”*"” quantum confined stark
effect’’ (Ge-Si/Ge), and free carrier modulation (Si'* and ITO™).

For neuromorphic applications, the optical modulator is a key
component having a significant impact on the overall metric of the
NN."' Indeed EA/EO modulation can perform two of the three func-
tionalities required in NNs rely on a high interconnectivity func-
tion between nodes; hence, scaling questions rooted in component
“performance-per-overhead” should be considered. A NL with a
limited modulation range can translate into a non-efficient type of
NonLinear Activation Function (NLAF), which does not allow to
discriminate the data, hindering the accuracy of the network in the
classification task, something we have shown in a recent paper,”
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where we investigated the NN inference accuracy as a function of the
actual EO modulator material, and the modulator and photodetec-
tor. Taken together, both interconnectivity density and modulation
performance are key for the core of the perceptron mechanism. The
modulator can also be used for online learning by actively adjust-
ing the weights of a to-be-trained NN.""”" That is, when the net-
work is trained offline, the weighting can be realized completely
passive without energy consumption using EO or EA modulators
that are gated via a nonvolatile storage element or by photonic mem-
ories [Fig. 1(b)]. Whereas the NLAF would mostly still rely on EO
or EA modulators in combination with photodiodes. As reported
by Miller,”” while providing a signal modulation depth (extinction
ratio, ER, >3 dB) at a sustained speed (>25 Gbit/s), the target power
consumption for modulators has to be within few femtojoule/MAC
(or better) for global on-chip connections to become technologically
competitive (i.e., BER < 10_8). Materials such as silicon,”””” lithium
niobate (LiNbO3),”” germanium, "’ and hybrid I11-V**"* are regu-
larly employed as active component in modulators and have show-
cased reliable and, to a certain extent, scalable results. However, their
use in densely integrated photonic circuit is not a viable approach
due to their vastly (~10°x) larger footprint compared with electronic
switches (e.g., MOSFETs). Usually, for improving the extinction
ratio while enabling relatively restrained footprint, these materials
are embedded on resonant structures such as microring resonators,
thus limiting the optical response. Considering Silicon as the domi-
nant material in PIC-platform for NNs, the most obvious material
choice for implementing modulators for weights and/or NL acti-
vation module would be silicon. Although, as displayed in Fig. 2,
Si-modulators based on carrier injection display low dynamic mod-
ulation (i.e., low ER) and if doped are particularly lossy (high inser-
tion losses, IL), and additionally if thermally driven modulators are
slow (1-10 kHz). On the other hand, even though characterized by
competitive performances, III-V modulators are difficult to integrate
into SOI platform as well as with CMOS circuitry due to process
and material incompatibility, and the wafer sources are costly (10s
times compared to SOI). Instead, LiNbO3 based modulators require
a 1-20 cm-large device lengths for inducing a m-shift if CMOS-
compatible voltage biases (1-2 V) are desired,”® thus hindering
integration density.

In the view of providing modest energy reductions when per-
forming NN tasks compared to electrical approaches, while still
preserving a modest footprint, several engineering design and mate-
rial choices must be made. As a main point, evidently, the selec-
tion of the active material is strongly impacted by its ability for
voltage-efficient optical index tuning for the NL activation function
and the weights; ideally, the absolute difference in the transmission
of the modulator is in its two states (ON/OFF), avoiding modu-
lators with significant background loss, therefore not using those
active materials which present high intrinsic losses in the OFF-state.
Although this might not be sufficient to achieve a sufficiently high
modulation performance and low energy-per-compute for surpass-
ing electronic efficiency, an enhanced modulation can be reached
by using either quantum-confined system or subdiffraction lim-
ited plasmonic structures, either with monolithic or heterogeneous
integration of other materials or structures. This results in a low-
energy consumption of few attojoules-per-bit,”” up to the highest
speeds,””””**”” which corresponds to a compounded merit improve-
ment of 10° times compared to electronic switches. Hence, many
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FIG. 2. Electro-optic modulators can be used not only as efficient tunable “weights” of the perceptron but also as the nonlinear (NL) activation function “threshold.” For the
latter, the “weighted-addition” signal can be provided by a photodetector, whose photogenerated voltage becomes the input “gate” bias of the modulator. Refer to Refs. 7,
22, and 23 for details on possible perceptron architectures or to Fig. 1(b). A comparison of key metrics for electro-optic and absorption modulators for different material
systems. The figure of merit considered is the integrability (qualitative number 1 low to 5 high), compactness (1/Length expressed in um), energy efficiency (bit/fJ), speed
(GHz), and modulation dynamics vs losses (ER/IL refers to the ratio between extinction ratio and insertion loss). The values of the key metrics increase moving further away
from the center of the radar chart. Silicon,%® Indium Tin Oxide (ITO), graphene,”’ LiINbO3,” hybrid-organic,”® Si-plasmonic,”’ InGaAsP/Si*® electro-optic modulators are
reported (left). Silicon, ITO,*” graphene,” germanium, Silgermanium,®* 11I-V/Si°" electro absorption modulators (right). Integrability is an arbitrary value (1-5), given based
on the “standardization” of the fabrication process as well as compatibility of the material with CMOS technology. CMOS compatible processes such as Si and (now recently
also) ITO based modulators received 5 points, foundry-close materials (Ge, Si/Ge) and processes received 4 points, materials that show R&D-level evidences defined as
successful material co-integration into pretaped-out chips, such as integration with SOI, received 3 points (graphene, LiNbOs), 2 points are given to materials that are still
relegated to the research level and 1 star to materials that are not compatible with standard CMOS processes (InP and polymers) and require complex integration or limited

by small scale integration capability.

research groups have strived for engineering on-chip modulators
beyond the solutions offered by heterogeneous integrated photonic-
foundries to date. Recent developments of monolithically and
CMOS compatible integrated emerging EO or EA materials such as
Indium Tin Oxide (ITO),”*”* graphene,”””"”*”" quantum-confined
structures,” and TMDs into Si-photonics with specific device con-
figuration aiming to enhance mode overlap allowed energy effi-
cient,””*’ compact silicon photonic based modulators. The impor-
tant performance metric for EOMs include high ER (>3 dB),
low IL (<1 dB), modulation speed (>25 GHz), low energy consump-
tion per bit (<10 fJ/bit), and compact footprint area (possibly 3D
volume). ITO can be particularly suitable for heterogeneous inte-
gration in Si exhibiting formidable electro-optic effect characterized
by unity-order index change at telecommunication frequencies. ITO
carrier-based electroabsorption models, which are implemented via
capacitive gating,”” have shown a sharp dynamic range, compact
footprint, and potential for gigahertz-fast modulation.

In recent works, Amin et al.”* demonstrated a monolithically
SOI-integrated ITO electro-optic modulator based on a Mach Zehn-
der interferometer (MZI) featuring a high-performance half-wave
voltage and active device length product of VaL = 0.52 V mm.
This device demonstrates a unity-strong index change in the active
ITO layer enabling a 30 ym-short m-phase shifter, while purpose-
fully operating ITO in the index-dominated region away from the
epsilon-near-zero (ENZ) point, hence reducing optical losses. More-
over, some major electronics manufacturers have recently declared
to integrate ITO into their foundry processes; hence, it can now

be termed a CMOS compatible material as it can be monolithically
integrated in the photonic frameworks and directly interfaced with
on-chip logic circuitry and memories (Fig. 2).

ITO has the advantage over silicon of higher tunable absorp-
tion [in electro absorption modulation (EAM) scheme in proximity
of ENZ'*"'] and unity variation of the refractive index [in Electroop-
tic modulator (EM) devices™*" away from ENZ]. The inherent low
tunability of Si under electrical bias causes inadequate performances
with respect to the ITO modulator given a fixed modulator length.”
Moreover, by engineering the ITO process, one can tailor its opti-
cal response, thus increasing the modulation dynamic and lower-
ing insertion losses, without necessitating plasmonic or dielectric
cavities or ring resonators.

Incidentally, GST, discussed in Sec. I1], is a second candidate
that will enter foundry processes soon, while graphene has yet to
receive such “permission” due to limitation in the substrates used
for the growth and the inconvenience of the required transfer. In
addition to ITO-based modulators,”***”” other active optoelectronic
components are also demonstrated; Kim and Kim.”’ for instance,
experimentally demonstrated efficient and potentially high-speed
directional coupler-based on ITO that can also be employed as
intensity modulation for NN weighting. Still at a research level due
to their nonscalable integration, other emerging materials such as
graphene,”"" transition metal dichalcogenide flakes,”*" organic”
modulators, and detectors, have been reported, demonstrating, in
some cases, striking performances, yet process maturity is far-away
from foundry standards. As aforementioned, integrated photonics
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necessitate materials could provide memory functionality. Recent applications, these transistors use polysilicon for the floating gate.

work on different device configurations has showcased capabilities For photonic integration, however, this option is not very desirable
of optically write/read/reset functionality, as described in Sec. II1. since the low-number of trapped charges can only impose slight
Next, we proceed in depicting the hybridization of photonic changes in the modulators’ refractive index (low dynamic range).
NN, discussing details of novel memory devices embedded in pho- Weight banks or NL activation functions based on such a technology
tonic framework, used for storage and weighting functionalities. option will have limited neuron bit-density limiting inference accu-
racy and NN cascadability. This essentially rules out online-learning

lIl. NOVEL MEMORY DEVICES FOR PHOTONIC options, where these modulators had to be adjusted according to
INTEGRATION a gradient-descent algorithm via back-propagation, which relies on

differentiability of the modulators transfer function. For the steeper
dynamic range, it is possible to achieve higher bit-density and conse-
quently higher training efficiency, i.e., lower power. Also, the addi-
tional electrical capacitance from poly-depletion increases both the
devices’ RC-delay and the energy-per-MAC similar to arguments in
transistor technologies and hence high-k dielectrics and metal-based
floating gates may be a more viable path. Recent work™ proposed a
floating gate utilizing a nonvolatile optical switch, where a graphene
sheet is used as floating gate material’’ with much larger refrac-
tive index variation’' [Fig. 3(a)]. However, electron-based memory
storage can be problematic from the perspective of increased opti-
cal loss in semiconductor waveguides, reduced nonvolatility, and
limited analog programmability. A more desirable approach could
be integrating memories heterogeneously with photonic waveguide-
modulators. Such micrometer-compact device-to-device integration

In a hybrid photonic system, memristor devices would be used
mainly as weights, which do not require high-frequency updat-
ing. Therefore, the efficiency of programming them during train-
ing (either directly on the photonic hardware or uploading offline-
trained weights) is of importance in terms of chip power budget and
compatibility of available voltage ranges (i.e., signal dynamic range).
Recent studies’” ** have highlighted the difficulties of training large-
scale memristor networks acting as weights for neuromorphic com-
puting. An alternative approach is to alleviate these challenges and
to use both long- and short-term memory elements to implement
these different temporal weight classes.

A. Efficient and long-term weights: Heterogeneous
integration of nonvolatile memory

There are several long-term nonvolatile memory technologies was recently pointed out by Miller”’ due to improved capacitive
that show promise for integration with photonics systems (Fig. 3).  loading; since every micrometer of metallic wire has a capaci-
Given their technological maturity, flash memories (i.e., floating  tance of 0.2 fF, just a few micrometer of wire would bring the

gate transistors) have the potential for gating the above-discussed ~ power budget above 1 fJ-per-operation (i.e., bit or MAC) just for
modulators that perform the weighting or NL thresholding  the wiring alone (excluding the functional devices) for a Vpp of
[Fig. 3(a)]. However, in a typical configuration for regular memory just1V.

graphene
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FIG. 3. Designs and key metrics of memory technologies monolithically integrated with waveguides. (a) Graphene-based floating gate,” (b) phase change memory synaptic
device with optical readout™ (number of levels can exceed 3, attenuation can be minimized using specific alloys,”® and switching energy reduced when integrated in
cavities®®), and (c) plasmonic memristor with silver filaments.”’
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For such “tight” integration, phase change memory (PCM)
materials could be a viable option. Chalcogenide phase change mate-
rials based on germanium-antimony-tellurides (GST-PCMs) dis-
played remarkable properties in nonvolatile memory technologies
due to their high write and read speeds (ranging from few tens of
nanoseconds to 1 ns'’), high degree of integrability, CMOS com-
patibility, contained power consumption, long data retention, and
multilevel storage capability. In photonics, the GST-PCM can sig-
nificantly change the effective refractive index of the waveguide by
local amorphization or crystallization, which produces unity-strong
index changes (i.e., 10°~10* times stronger than the free-carrier
modulation of silicon, for example).

Furthermore, PCMs have a state retention time of (estimated)
>10 years and analog programmability up to 3-4 bits during the
“write” transition. Recent experimental demonstration” showed a
photonic synaptic behavior of a chalcogenide GST phase-change
film integrated with a SisN4 waveguide [Fig. 3(b)]. To achieve precise
control of weight-programming using fixed-pulse characteristics,
an innovative tapered waveguide structure with multiple discrete
PCM islands was used, demonstrating 3 bit (8 level) operation using
~400 pJ for single pulse weighting. However, for such a power,
if this GST-based synapse in a photonic multilayered perceptron
framework are used for performing training, it would not pro-
vide any significant advantage with respect to the state-of-the-art
electronic neuromorphic systems or hybrid analog Non-volatile
memory (NVM)-based approaches,”” thereby reducing the photonic
advantages.

However, the short NN delay would still be the main rationale
for photonic PCM-hybrid NN systems, when performing inference.
To further clarify this concept, when the network is trained off-
chip (ie., in electronics, e.g., GPU), the weights are set and will
(typically) not be updated often depending on the application (e.g.,
possibly weekly, monthly, yearly). On a device level, this means that
the PCM-based memory must be written only once. This means
that the optical phase-control of a portion of the PCM film must
be altered only when the NN is set and should retain its phase
throughout the inference process, in order to effortlessly modu-
late the quickly varying input signals, according to the value of the
weights obtained by the off-chip training. In that instance, MAC
operations are performed in a complete passive fashion with the
obvious energy benefits.

On the other hand, if the network is performing training on-
chip, the limiting factor would be the update speed of the weights,
which need to be constantly and ideally rapidly updated. Large
and continuous amount of data fed to such a NN will be used
for updating the weights through algorithms based on backprop-
agation and gradient descent. If the weight functionality is imple-
mented with current photonic memories based on PCM, the net-
work would require a rather long learning time. Also, in terms of
overall energy consumption when performing training, switching
continuously the phase of the GST demands substantial amount of
energy consumption (tens of picojoule per weight update), which
scales superlinearly with the number of nodes and layers. There-
fore, during the training process, having fast and energy-efficient
switching materials is not just desirable but compulsory. Current
PCM switching energy (tens of picojoule/bit) and delay (tens of
nanoseconds) are at least 2 orders of magnitude larger than current
EOM and would not provide an advantage compared to electronic
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implementation when performing training on-chip. Replacement of
GST with engineered phase-change materials that have low switch-
ing powers and fast response is therefore desirable from a material
roadmap perspective.”’

Another intriguing alternative is plasmonic memristive devices
that exploit the modulation of electron transmission in optical sys-
tems through filamentary switching [Fig. 3(c)]. Memristive devices
based on metallic or highly reduced oxide filaments can be used
for this purpose, for example. Plasmonic memristors based on sil-
ver filaments and integrated with silicon waveguides have shown
a hysteretic behavior and optical readout functionality.” However,
the poor ON/OFF signal ratio limits higher-bit densities (i.e., mul-
tilevel switching), but a lower power compared to PCMs highlights
the potential for femtojoule operation. On the other hand, once the
NN is trained, a power-optimized bit-density is about 3-bits only.
In this context, photonics memory, in particular, those based on
phase change materials and filamentary switching, can help reduc-
ing the overall computational cost and overall losses of a multilayer
perceptron NN implemented in photonics when performing infer-
ence task, by adopting quantization schemes (lower number of bits
up to 1), especially in regard of the weights quantization, which
could lead toward photonic Quantized NN (QNN).””” Addition-
ally, filamentary memristive devices can potentially be employed
as electric perceptron mechanism triggered by a plasmonic
response.’”’

That is, the inference accuracy does only marginally improve
for higher bit densities. This is in contrast to online training on
the photonic hardware, where higher bit-density reduces the energy
cost and training time during gradient descent back-propagation
algorithm, while resulting in higher accuracy during inference oper-
ations.”” Nonetheless, Li et al.”* through opportunely shaped pulse,
reported a 5 level GST cell, additionally quasicontinuous tuning of
GST has been achieved'* when integrated on a ring resonator.

B. Neural network nonlinear thresholds and online
training: Short-term memory options

Since memristors are challenged by device-to-device variability
and require trains of tens of voltage pulses for precise tuning, short-
term memory technologies are needed to speed-up both the training
and to reduce the energy consumption for on-the-hardware training
(offline training, i.e., using GPUs, and closed-loop transfer would be
an alternative).””

Capacitive-driven devices can be a useful short-term mem-
ory solution for integration with photonic platforms since foot-
print is not as significant of a concern as in ultrascaled purely elec-
tronic systems. Here, micron-scale capacitors can be fabricated in
a stacked configuration atop waveguides, utilizing long-term mem-
ristor devices as photonic weights, for example [Fig. 1(b)]. Unlike
capacitive-challenged arrays of electronic memories [either emerg-
ing PCMs or classical static random access memory (SRAMs)],
EO components such as the NL thresholding modulators dis-
cussed above are capacitive stand-alone devices, just connected to
their respective drivers (e.g., the summation providing photodetec-
tor). These modulator-activation functions can respond at <10s of
picoseconds short delays thus do not slow down the (already fast)
optical NN. If longer retention is needed, short-term memory ele-
ments can be used to bias the modulator’s gate temporarily. Such a
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complex cell could benefit from the advantages of each technology
and minimize the drawbacks regarding training.

A novel technology for short-term memory, for instance, is
the diffusive memristor;'"" while designed as a selector device
compatible with memristive crossbars, the diffusive memristor has
the advantage of a metallic filament that can be programmed
using low voltages and its memory-state dissolves rapidly (hun-
dreds of microseconds to milliseconds) afterward forming nanopar-
ticles. This behavior resembles the Ca?* dynamics in a biolog-
ical synapse thus providing the short-term memory capabilities
required during training. Experiments in plasmonic metasurfaces
using silver nanofilaments have shown short-term memory, and
few volts switching voltage was found similar to that of a diffusive
memristors.'”’

The efficient diffusive memristor’s dynamic can potentially
mimic both short- and long-term plasticity of biological synapses
when electrically driven; however, when triggered by plasmonic
modes, this control might not be as straightforward as in the elec-
tronic counterpart; also integration of multilevel diffusive memris-
tor in photonics has not be demonstrated yet. Ultimately, noble
metals such as silver are well-known to exhibit plasmonic perfor-
mances, but their use is restricted in a CMOS foundry as they are
contaminants for circuitry, hindering the cointegration process.

C. Challenges in design of memristor devices for
photonic integration

While the integration of nonvolatile memristive devices in pho-
tonic circuits would be an enabling step toward energy-efficient and
NN capable of nanosecond-short inference tasks, here we address
some of the challenges that should be considered in such a roadmap;
a typical issue with novel material-chip integration is often a limited
reproducibility for larger-scaled PICs.

Unlike NN approaches from the computer science community,
which often follow a strategy of adding more neurons to increase
inference accuracy and whose NNs approach millions of neurons,
recent results on photonic neuromorphic show that (a) hundreds of
neurons are sufficient to perform smaller inference tasks equally well
to electronics,” and (b) the inherent noise of the analog photonic
system can be advantageous during training with respect to accu-
racy. More in detail, additional noise in the training phase might be
beneficial.'”’

A network trained with small amount of noise will be more
robust and tolerant to noise during the inference task, and we argue
that could potentially reduce the impact of the quantization error
because of discrete weights. Nonetheless, reproducibility and relia-
bility at the device-level is fundamental to ensure performance guar-
antees at the circuit and system levels during inference, and too
high noise will, trivially, impact accuracy adversely. This problem
is related to material engineering, interface control, and optimiza-
tion of nanofabrication processes. Engineering the material stoi-
chiometry to improve device performance is desirable for a broad
range of materials of interest in both memristor and photonics
fields. For example, ITO composition can be explored in a holistic
fashion using reactive sputtering'”* to carefully control its electri-
cal and optical properties. Similarly, phase-change materials can be
tuned to lower the switching energy and improve reliability of amor-
phization/crystallization. For filamentary memristors, the issue of
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filament robustness and controllability is driven also by the choice
of materials; for example, the electrode material influences the fil-
ament shape based on the different free energy of oxide formation
or the metal electromigration.'” Such instabilities lead to noise of
the NN. Interestingly, depending on the amount of noise,* train-
ing the NN with the actual system noise of these photonic ana-
log networks results in higher inference accuracy than performing
the training “signal-clean” digitally (i.e., GPUs). Indeed, highlight-
ing material systems that are jointly shared between memory and
photonic technologies could enable a seamless integration pathway
(Fig. 4).

Here, CMOS compatibility and large-scale integration poses
additional material-related constraints, limiting the choice of mate-
rials available for electrode, device layer, and isolation. For con-
ductive bridge devices, short term transient memory effects on a
metasurface can be obtained at voltages as low as 5 mV, yet the
thermal noise floor of 26 meV at room temperature would dictate
an signal-to-noise ratio (SNR) < 1 at the back-end photodetector
of the photonic NN."” However, long-term memories require often
high programming voltages, which reduce the endurance (number
of memory’s programmable cycles) leading to undesirable electric
shorts as the failure mode, which could become extremely critical
at high speed. In fact, if the endurance performance of a short-term
memory element had a value of <10"! cycles and this memory would
be used as the charge-storage that controls the NL threshold of the
photonic NN, then this memory would fail after just 5 s when the
inference data input is clocked at 20 GHz. This shows that some
performance parameters do not translate well across these different
applications.

However, for usage as NN “weights,” any state-of-the-art mem-
ory is already overperforming, given the infrequent updates (which,
naturally, depend on the application). Oxide-based memristors have
a more tunable filament at the expense of increased optical inser-
tion loss. Devices based on electromigration are typically bipolar,

Memristor

Photonics

Graphene «Cu
. TMDs WO s
* SrTi
«ITO  *GST | .srzr0, 2
* Weyl Semimetal | , p|N * VO,
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FIG. 4. Representative materials and material systems for photonics and mem-
ristors, highlighting the significant overlap. Here, we argue that for a multitude of
reasons, synergistic opportunities exist when heterogeneously integration memris-
tor materials to act as long and short-term photonic memory elements for neural
network weights and nonlinear thresholding, respectively. Such synergies include
process integration, reduced derive-to-device capacitance, tailorable bit-density,
and programmability (read/write speeds). Prominent options could be ITO and
GST as active electro-optic materials for weighting and thresholding, which have
both gained semiconductor foundry access recently.
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TABLE II. Qualitative mapping of both the functions of the neural network (NN) and the mathematical model of the perceptron onto photonic-electronic hybrid neurons. The
memory is most relevant in providing the charge to store the weights to bias the electro-optic modulators performing weighting. However, the same modulator can also be used

as a nonlinear activation function.

Hybrid photonic-electronic neuron

Electronic memory

Neural network Mathematical Photonic Retention Cycle Leakage
function (perceptron) function implementation” time endurance  current’
{Electro-optic modulator or tunable
Weightin Dot-product ring-filters} plus memory,” or Long-term >1-10> Important
shtng Weighted-addition & . . Y Ob (dep. on application)
. nonvolatile material phase-transition
(multiply-accumulate,
MACQ) Photodetector or Mx1 fan-in
Summation Summation waveguide configuration NA
(coherent system only)
Electro-optic modulator
No.nlln.ear Threshold (0pt1or.1a1 memory), or,' ' 3 Short-term to no 510 Mlnor
activation all-optical (e.g., photonic bistability ~ memory needed importance

and phase change material)”

* Assumes analog amplitude signal control (perceptron). Other options such as spiking neurons could also be explored for higher-order neuron signal-shaping using a multitude of

partial-differential equation.

bLee\ka\ge current impacts power consumption of the NN. Electro-optic bistability possible to Ref. 108.

°If WDM is used.

requiring both polarities of voltage for programming: one polarity
for SET (switching from OFF to ON) and the other polarity for
RESET (switching from ON to OFF). The bipolar programming is
challenging for all-optical photonic integration since it is difficult to
realize plasmonic optical programming.

A bipolar optical readout would require rectification of the
light thus an optical rectenna would be required, yet, so far, optical
rectenna technology is still in its infancy exhibiting limited perfor-
mance.'”” On the other hand, phase-change memories are unipo-
lar; thus, all-optical programmability can be achieved, as shown in
recent work on all optical spike timing dependent plasticity (STDP)
plasticity.”” For long-term memory elements, such neuromorphic
technology can interface seamlessly with an optical compute sys-
tem, thus reducing the overall delay by keeping the signal “longer”
in the optical domain before eventually converting back to electron-
ics via a photodetector. Nevertheless, electro-optic memristors offer
advantages due to the integration synergies with circuitry in existing
CMOS technology. Therefore, integrated memristor devices exhibit-
ing electrical programmability might be desirable in some integrated
photonic systems for offline weight training. These discussion points
are qualitatively summarized in Table IL.

IV. ALL-OPTICAL NONLINEAR ACTIVATION FUNCTION

The above-discussed mechanism for thresholding in a multi-
layered perceptron relies on photodetection of the optical power
(proportional to the square of the electric field), at the output of the
weighted additions for each node to node connection, which is hence
send as a gate to an EO modulator. This scheme, however, requires
additional laser sources (possibly embedded on-chip), whose

intensity is controlled by the electro-optic modulation driven by the
photogenerated electrical signal. This represents the main bottle-
neck of the implementation of the proposed perceptron scheme for
achieving NL thresholding, which despites its relatively straightfor-
ward implementation and controllability, demands an O-to-E-to-O
conversion step at every perceptron; this brings substantial trade-
offs in terms of speed and power efficiency of the otherwise intrinsi-
cally instantaneous and effortless transmission of the signal through
the PIC.

For this reason, an optical nonlinear device with picoseconds
response, low insertion losses, high modulation range, which does
not deteriorate, or quench is highly desirable and becomes a prerog-
ative to the implementation of an all optical neuron.

Recently, several steps have been taken in this direction. In
reservoir optical computing,'” one of the most accredited optical
nonlinearity consists of saturable absorber films, such as graphene
layers''’ or based on 2-photon absorption.''' Other mechanisms
are instead based on the nonlinearities of bistable switches,''” and
ring resonators''’ have also been investigated. Approaches based
on single graphene excitable laser''* have recently shown significant
progress in the field of all optical spiking neural networks. However,
the main criticality is still related to the enhancement of the mod-
ulation strength, operational speed, and the integrability and the
reproducibility of such devices in photonic circuit both at the device
and system level which represent still an open challenge. There-
fore, a combined effort of material engineering and time resolved
spectroscopy' """ """ aiming to obtain materials with optical non-
linearities which concurrently provides steep modulation range
and characterized by fast dynamics could substantially help the
advancement of the field of photonics neural networks. According
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to our predictionsf4 a 3-layer fully connected (AO-NN) would have
a delay of about few picoseconds, or 10'? MAC/s, and up to 107
MAC/J efficiency, when performing a standard classification task.

V. CONCLUSIONS

In conclusion, the heterogeneous integration of memristive
materials and devices in photonic platforms suggests promising per-
formance advantages for photonic-electronic hybrid artificial neu-
ral networks since these two technologies have complementary
strengths. The advantage of photonics, for instance, lies in provid-
ing a picosecond-short delay between the various network nodes,
hence enabling highly efficient “interconnectivity” of such non-von-
Neumann compute and information processing architectures. How-
ever, photons are challenged to store states, which is where memo-
ries come in, such as to provide for the long-term neural network
“weights” (nonvolatile) and the nonlinear thresholding or activa-
tion function (relatively volatile). In combining the “best-of-both-
words,” we see a viable path forward in densely integrating mem-
ristive materials particularly with the active photonic components
that determine the neural networks governing functions and thus
performance.

We find that electro-optic modulators are unique candidates to
perform both dot-product “weighting” as well as “thresholding,” yet
vastly different time-scales are required for each, while both share
the aim to execute the respective functionality with lowest power
consumption. The advantage is strengthened by the fact that the two
technologies share a broad range of materials, thus enabling seam-
less integration and stacking of integrated devices. Indeed, hybrid
photonic memristive neuromorphic circuitry could enable systems
capable of (sub)nanosecond-fast and energy-efficient inference tasks
in trained networks.

On the other hand, promising improvements in the field of
nonvolatile photonic memory pertain to the fabrication of more
effective and efficient photonic memories in which a concurrent
minimization of the losses and maximization of the modulation
keep the information longer in the optical-domain, i.e., avoids cum-
bersome O-to-E-to-O conversions. This, however, requires wisely
engineering the material process, e.g., interfacial phase change mate-
rials (GeTe/Sb,Te;)”” and optimized alloy, such as Ge,Sb,SesTe;.”
Moreover, the fabrication of frequency selective memories based
on phase change materials can dramatically increase the parallelism
and consequently opening new frontiers in optical computing and
communication. This vibrant field would also demand for strate-
gies and device configurations which would enable an efficient non-
volatile all-optical control in photonic multilevel perceptron, pos-
sibly integrated, e.g., photonic crystal cavities’* or plasmonic slot
waveguide.”'"*

Moreover, such platforms could be used to realize new neuro-
morphic architectures which could rely on hybrid devices based on
single photon detection'”’ or modulation. Finally, regarding the tar-
get applications for photonic neural networks, unlike GPUs which
are suitable for big-data and high throughout tasks, photonic neu-
ral networks would be quite suitable for those specific tasks that rely
on real-time (<microsecond) responses to inference machine learn-
ing tasks such as those found in military applications of ranging,
synthetic aperture radar, or automated target recognition, to name
a few, and a proper task-to-hardware mapping including trade-offs
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in network complexity and size against performance (i.e., accuracy,
delay) is yet outstanding.
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