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Towards Highly Efficient State Estimation With Nonlinear Measurements in

Distribution Systems

Ying Zhang, Student Member, IEEE, and Jianhui Wang, Senior Member, IEEE

Abstract-This letter proposesa novel and highly efficientdistri-
butionsystemstateestimation (DSSE) method withnonlinear mea-
surements fromsupervisory control and data acquisition (SCADA)
systems. Conventional DSSE based on the weighted least square
(WLS) criterion requires multiple Monte Carlo simulations for
overall accuracy evaluation and high calculation cost due to a
nonlinear iterative process. The proposed method uses the Taylor
series of voltages for constructing a linear DSSE model in the
interval formand thensolvesthismodel by intervalarithmetic. This
method obtainsaccurate and robust estimates via a single random
sampling of measurements and is computationally efficient. The
comparativeanalysisinthe IEEE 34-busdistributionsystem points
toimproved estimation results relative to the nonlinear WLS-based
method.

J11dex Terms-Distribution system state estimation, interval
arithmetic, SCADA systems, Monte Carlo simulation.

I. INTRODUCTION

ISTRIBUTION systems are undergoing radicalchangesin

D operation and control due to renewable integration, which
emphasizes theimportance of distribution system stateestima-
tion (DSSE) [1].TheDSSE procedure converts redundant meter
readings and other available information into an estimate of
systemstates. The measurements can be the voltage magnitudes,
power injections, and power flows from supervisory control and
dataacquisition (SCADA)systems,or voltageand current pha-
sor recorded by phasor measurement units (PMUSs) [2]. Monte
Carlosimulations (MCSs)[3] are widely used to obtain measure-
mentssamplingsincludingnoisesowingto the assumption that
thesenoises follow Gaussian distributions.Also, traditional non-
linear DSSE methods adopt the Gauss-Newton method based
on the weighted least square (WLS) criterion to perform the
iterative estimation process. Besides, to correctly evaluate the
estimation performance, the number of therequired samples in
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MCSs is tremendous, which brings a heavy computation load to
the WLS-based methods [1].

To mitigate the deficiency of MCSs, analytical methods such
as nonlinear programming [4], [5] and interval arithmetic [6] are
proposed to provide the upper and lower bounds of all possible
state variables that meet all constraints from measurements. For
instance, the authors of [4] used a constrained nonlinear pro-
gramming approach to obtain the rangesof statesin transmission
systems, while [5] extends this boundary optimization method
to distribution systems with PMU installation. For higher com-
putational efficiency, [6] solves a linear DSSE model by interval
arithmetic to obtain estimated states. However, the methods
in [5] and [6] require the installation of PMUs in distribution
systems. Due to lack of PMUs in some distribution systems,
the metering data recorded by SCADA systems and pseudo-
measurements collected at loads or distributed generators (DGs)
are widely used in the existing DSSE methods [2]. Moreover,
these measurements lead to nonlinear DSSE models that are
iteratively solved, and thus the process is time-consuming. This
letter presents a highly efficient DSSE method to handle the
uncertainty of random measurement noises. The main contri-
butions of this paper are concluded as (i) constructing a novel
DSSE model to avoid multiple runs of the WLS-based DSSE
procedure and (ii)accelerating accurate state estimates by inter-
val arithmetic with no requirements of PMU data.

Il. METHODOLOGY
A. WLS-Based Method

In classical state estimation, the relationship between mea-
surements and state variables are depicted as
z=h(x)+e (1)
where the state vector x E JR: !, and the measurement vector
zER: ' m 2:n h(x) is a measurement function about x;
e denotes the vector of measurement noises that usually obey
Gaussian distributions, i.e.,e ™ N (O, R), and R denotesthe
covariance matrix of these measurement noises.
The WLS criterion is used to minimize the sum of weighted
measurement residuals, J:
J={z-h(x)[W[z-h(x)] @
where W represents the weight matrix of these measurements,
andW = R-1,
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Fig. 1. Schematic diagram of the proposed linearization. (a) The complex
planeof VK. (b) Approximation loss F(Vk)-

Optimal states are iteratively solved by the Gauss-Newton
method until . 6.x in adjacent iterations is sufficiently small.

8J/8x=Hx fW [z- h(X)]=o0 3)

I
Dx=(Hx fWHx)r HfW/[z-h(x)]®
x(t+) =xCr> + 6.x (5)

where H (x )is the Jacobian matrix and H (x ) = 8h(x)/Sx.
Incurrentdistributionsystems, widelyused SCADA systems
provide the metering data of voltage magnitudes and powers,
and pseudo-measurements are used to achieve the system ob-
servability. Also,thesubstation actsasaphasereference,and
the states are chosen as voltage magnitudes and phase angles at
all buses. The formulation of the nonlinear functions h(x) can
be found in [2] and references therein.

B. Proposed DSSE Algorithm
Define.DVk =1 - Vk, where Vk denotes the voltage phasor

at bus k. Considering the small voltage drops along the distri-
bution lines and the normal voltage limits (0.95~1.05 p.u.) in
practical systems [6], apply the Taylor series of .D.Vkaround
zero as 1/(1- .6.Vk) = I:!:O (.6.Vkf Further, the following
equation is obtained by ignoring the high order terms [7]:

1;(1- .6.Vk),:;, 1+ .6.Vk=2- vk (©)

Fig. 1 depicts the accuracy loss introduced by (6) as F(Vk) =
11 / Vk - (2 - Vi)Landforinstance,theerrorforl.6.Vkl = 0.lis
around 0.01. The approximation relationship //Vk =2 - Vkis
usedfor constructing the measurement functionsin the proposed
DSSE model, which are shown below.

1) The power flow measurements Pik and Qik at branch

i- k are expressed as

sik = Pik + jQik = VdYik("2 - vK)]* 7

where P;k and Qik denote the real and reactive powers at this
branch; Yik denotes the nodal admittance between buses i and K,
and the function [']* represents the complex conjugate; V; and
Vk denote the voltage phasors at these two buses.

Apply (6)to(7),and a closed-form expression is obtained.

Sik (2—Vi) = [y (Vi = Vi) (8
Formula (8) can be linearly expressed as SikV; + Yik *V/2* -
Yikevke = 2sik-
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2) The measurement function of the power injection at bus
k holds below, and similar to (8), further expressed as a
linear one.

sk = A+ jOk= vk L [Yik (Vi- vk)]*  (9)

1E'.N(k)

sk(2- vk) = L [Y1k (Vi- vk)]*
IE"N(K)

(10)

where Pk and Qk denote the real and reactive powers at bus k,
and 'N(k) is the set of all buses connected to busk.
3) Themeasurement function of voltage magnitudes at bus
k is approximated as

Wki= Jv.r¥v:,, . ;0 vikr (11)

where Vk,r and Vi, X represent the real and imaginary parts of
voltages at bus k, and the small angle differences of distribution
lines are considered, e.g., 0.1 degrees per mile [6].

Reorganize the linear equations (8),(10), and (11) as
BV+DV*=F (12)

where V denotes the vector of the nodal voltage phasors, and
B, D, and E are the corresponding coefficient matrices and
suppressed here due to the limited space. Further, express (12)
in rectangular coordinates as

B,+D, —B;+D;| |V, _ E, (13)
B: + Dg: B‘r‘ - Dr V:L‘ E-’L‘
where the subscripts 7 and x denote the real and imaginary parts
of complex numbers. For simplicity, (13) is expressed as

Ax=b (14)
where x =[ :] denotes the state vector;

A= [Br+ Dr-
B, t D,

B.,t+ D]
Br-Dr

and 4 E IRmxn; rank (A ) =7, i.e., a full rank; b = L' J and
bE JRmx1_

Note that (14) does not consider measurement noises and
involves various levels of approximation on the voltage mag-
nitudes and powers. Next, based on (14), we use interval arith-
metic to handle these accuracy losses in DSSE. We consider
the measurement noises by updating (14) to an interval equa-
tion, where an interval number is defined as [a] = [a1, au] =
{a E JR lal a au}, and interval vectors and matrices are
constructed similarly [8]. According to the 3a rule ofa Gaussian
distribution, where a denotes the standard deviation, 99.73%
of values from the distribution are within three times of stan-
dard deviations [2]. Hence the maximum measurement errors
(i.e.,=f3a) are superposed ontothecorresponding measurements
to obtain the lower and upper bounds of 4 and b, i.e., [A] and
[b].By thisrelaxation, these measurement intervals enclose their
true values.

For the interval equation (A](x] = (b], the interval solution
hull (x]istheinterval vector withthe smallestradiuscontaining
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TABLE I
MEASUREMENT ARRANGEMENT IN TESr SYSTEM
Measurements Location
VI 800,820,832,834
SCADA P,Q_ 800-802, 808-812, 824-828,

832-858. 860-836
All load nodes and DG nodes

Pseudo-meas. P. O

all possible solutions of Ax = b, where 417 A Au and

bi b bu. Also, anequivalence relation witha dummy vector

[y] existsbelow:
/| [[)k] [[b] (15)

[Af Y] 0

where IE IRmxm is an identity matrix, and [y] E IRmxl. Com-
pactly express (15)as [A][X] = [B], and the interval symbol []
is omitted below, e.g., the augmented state vector X = [x y]T.

Equation (15) is solved by a Krawczyk-operator algorithm
[6]. An initial interval solution X <% s calculated by

W)= b o O

X0 = -, [-a,a]f (16)
where a =;“ "and (3= I - CAll ¢ s 4 precondition-
ing point matrix, C-! = M id[A ], and Mid[] denotes the

midpoint of an interval; || * [100 denotes the infinite norm of a

vector, and x (o) contains the final solution.
The following process at iteration j is used to gradually

x U 1y e
x U+1)= (¢cB+(I-CA)X(@)nxVU) 17

approach the final solution hull until IX (j + > -

where e = 10- 4. Starting from X C”>, the iterative process
rapidly converges if - CAll <1 according to the fixed point
theorem [8], and -1 5s any norm.

The final stateestimate of X in the proposed DSSE model (14)
is obtainedby Mid[ X ¢ + 1| considering that the measurement
noisesobeysymmetric Gaussian distributions aboutzeromeans.

ill. NUMERICAL TEST

We test the proposed algorithm on the IEEE 34-bus dis-
tribution system [9]. The system is modified by adding four
DGs at buses 822, 838, 856, and 864, respectively, and the
installed capacity of each DG is 200 kVA. The maximum errors
of measurements are set as 1% of these true values for the
voltage magnitudes and powers from SCADA systems and 20%
for pseudo-measurements. Table 1 displays the measurement
placement schemein the test system.

A. Estimation Performance

To evaluate the performance of the proposed method, we
adopt the nonlinear WLS-based method in (1}-(5) as the base-
line. In Fig. 2, the maximum absolute errors (MAEs) of the
real and imaginary parts of voltages in 1000 MCSs are used to
evaluate the estimation accuracy of the nonlinear WLS-based
method in [2]. Also, using measurements from one of these
MCSs, we calculate the errors of the estimated voltages by the

2473

v K0
.E: 8

6

&a

fn?

01...10J.11.1JW&I.IL11.11&1J"-IULW.IJ.11 . IJW&I.IL11.1161J"-IULW.IJ.11.IJW&IAW.J
0

10 15 20 25 30 35

Node No.

2 -4

a ., x10

=8 —

£ L NoninearOSSE oo Thep v |

aéf

il

24}

o

o

Eat

k]

$o

g 0 5 10 15 20 25 30 35
NodeNo.

Fig. 2. Comparison in the estimation errors of the proposed method and the
MAEs that may happen in a random sampling of measurements.

TABLE II
COMPARISON IN Es1IMATION ACCURACY AND COMPIIfATION TIME

b Errorsor-RiviSEs-fpr -
CPU Time

Algorithm Type Real Part Imaginary Part
Proposed Method 1.54txJ0.; 1.45\xt0" 20.30 [m_ls_]
WLS-based DSSE 1.68\xto"' L84ax104 1000 trials:
: 174.79[s]

proposed method. Fig. 2 implies that the WLS-based method
in MCSs may produce the MAEs that reach up to around
5.34 x 10- 3 p.u., while the proposed method obtains accurate
estimates with the maximum error 1.54 x 10- 3 p.u. The root
mean square errors (RMSEs) of these estimated voltages in all
MCSs are used to evaluate the overall estimation performance
of this nonlinear DSSE method. Moreover, the maximums of'the
RMSEs are compared with the MAEs of the proposed method
at all buses, shown in Table II. In contrast to the WLS-based
method in a Monte Carlo trial, the proposed method obtains
the states more accurately. Also, the estimation accuracy of our
method is close to that of the baseline method in 1000 MCSs,
and however, the latter requires considerable sets of samplings.
Table II compares the computational efficiency of the pro-
posed method with that of the WLS-based method. The CPU
time of the proposed method accounts for about 12% of the
average one that this nonlinear method takes in a single Monte
Carlo trial, i.e., 20.30 vs 174.79 milliseconds.

B. Robustness Analysis

This section discusses influence factors, such as operating
condition and measurement redundancy, to illustrate the robust-
ness of the proposed method.

Considering the impacts of DG penetration on voltage pro-
file, we investigate the estimation results of the proposed
method in various operation ranges, i.e., 0.90~0.95 p.u. and
0.9~I.Ip.u., shown in Table ill. Themparison between these
cases illustrates that a narrower voltage range around 1.0 leads
to higher estimation accuracy and computational efficiency of
the proposed method. Table ill validates the robustness of this
method for various operating conditions.
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TABLEID
ESTIMATION PERFORMANCE IN ROBUSTNESSANALYSIS
Maximumerrorsat all CPUTime
Robustness Analysis nodes[p.u.]| [ms]
Real Part Imaginary Part
Voltage 8-90- 095 LleEx 10 IR B0 . 20" Y-
Profile 09-1.1  1.831x10- 1.793x10* 21.41
Measurement ___ 1.22 1 13310 1-6"8x10"" —----mmm- 1-8-30_
Redun. 1.265 1.029xJ0-3 1.64%)(]04 17.11

The measurement redundancy shown in TableI is 1.176, and
we further test the proposed algorithm with other measurement
redundancies by adjusting the number of measurements and
their locations. Table III gives the estimation performance of
these tests, which shows that the efficacy of this method does
not depend on the measurement arrangements. Also, the higher
measurement redundancy leads to the overall improvement in
estimation accuracy and computational efficiency.

IV. CONCLUSION

This paper presents a highly efficient DSSE algorithm
using the Taylor series of complex numbers and interval
arithmetic techniques. Compared with the prior work [6],
which requires installing PMUs in distribution systems, this
method provides a highly efficient substitute of the conventional
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nonlinear WLS-based methods without the use of PMU data.
Numerical simulations illustrate the accuracy and efficiency of
the proposed method in tackling nonlinear measurements with
Gaussian noises.
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