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Abstract-This letter proposesa novel and highly efficientdistri­ 
butionsystem stateestimation (DSSE) method with nonlinear mea­ 
surements fromsupervisory control and data acquisition (SCADA) 
systems. Conventional DSSE based on the weighted least square 
(WLS) criterion requires multiple Monte Carlo simulations for 
overall accuracy evaluation and high calculation cost due to a 
nonlinear iterative process. The proposed method uses the Taylor 
series of voltages for constructing a linear DSSE model in the 
interval formand thensolvesthismodel by intervalarithmetic. This 
method obtainsaccurate and robust estimates via a single random 
sampling of measurements and is computationally efficient. The 
comparative analysis in the IEEE 34-busdistribution system points 
toimproved estimation results relative to the nonlinear WLS-based 
method. 

J11dex Terms-Distribution system state estimation, interval 
arithmetic, SCADA systems, Monte Carlo simulation. 

 
 

I. INTRODUCTION 

ISTRIBUTION systems are undergoing radicalchanges in 
operation and control due to renewable integration, which 

emphasizes the importance of distribution system state estima­ 
tion (DSSE) [l].TheDSSE procedure converts redundant meter 
readings and other available information into an estimate of 
systemstates.The measurements can be the voltage magnitudes, 
power injections, and power flows from supervisory control and 
data acquisition (SCADA) systems, or voltage and current pha­ 
sor recorded by phasor measurement units (PMUs) [2]. Monte 
Carlosimulations (MCSs)[3] are widely used to obtain measure­ 
ments samplings including noises owing to the assumption that 
thesenoises follow Gaussian distributions.Also, traditional non­ 
linear DSSE methods adopt the Gauss-Newton method based 
on the weighted least square (WLS) criterion to perform the 
iterative estimation process. Besides, to correctly evaluate the 

MCSs is tremendous, which brings a heavy computation load to 
the WLS-based methods [l]. 

To mitigate the deficiency of MCSs, analytical methods such 
as nonlinear programming [4], [5] and interval arithmetic [6] are 
proposed to provide the upper and lower bounds of all possible 
state variables that meet all constraints from measurements. For 
instance, the authors of [4] used a constrained nonlinear pro­ 
gramming approach to obtain the rangesof statesin transmission 
systems, while [5] extends this boundary optimization method 
to distribution systems with PMU installation. For higher com­ 
putational efficiency, [6] solves a linear DSSE model by interval 
arithmetic to obtain estimated states. However,  the  methods 
in [5] and [6] require the installation of PMUs in distribution 
systems. Due to lack of PMUs in some distribution systems, 
the metering data recorded by SCADA systems and pseudo­ 
measurements collected at loads or distributed generators (DGs) 
are widely used in the existing DSSE methods [2]. Moreover, 
these measurements lead to nonlinear DSSE models that are 
iteratively solved, and thus the process is time-consuming. This 
letter presents a highly efficient DSSE method to handle the 
uncertainty of random measurement noises. The main contri­ 
butions of this paper are concluded as (i) constructing a novel 
DSSE model to avoid multiple runs of the WLS-based DSSE 
procedure and (ii)accelerating accurate state estimates by inter­ 
val arithmetic with no requirements of PMU data. 

 
II. METHODOLOGY 

A. WLS-Based Method 

In classical state estimation, the relationship between mea­ 
surements and state variables are depicted as 

estimation performance, the number of the required samples in z=h(x)+e (1) 
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Fig. 1. Schematic diagram of the proposed linearization. (a) The complex 
planeof Vk. (b) Approximation loss F(Vk)- 

 
 

Optimal states are iteratively solved by the Gauss-Newton 
method until .6.x in adjacent iterations is sufficiently small. 

8J/8x = H(x  f W   [z -  h (x)] = 0 (3) 
1 

.D.x= ( H (x  f  W  H (x )r H (x f W [z - h (x ) ] (4) 

x(t+l) =xCt> + .6.x (5) 

where H (x ) is the Jacobian matrix and H ( x ) = 8h(x)/8x. 
Incurrent distribution systems, widely used SCADA systems 

provide the metering data of voltage magnitudes and powers, 
and pseudo-measurements are used to achieve the system ob­ 
servability. Also, the substation acts as a phase reference, and 
the states are chosen as voltage magnitudes and phase angles at 
all buses. The formulation of the nonlinear functions h (x) can 
be found in [2] and references therein. 

 
B. Proposed DSSE Algorithm 

Define .DV.  k  = 1 -  Vk, where Vk denotes the voltage phasor 

2) The measurement function of the power injection at bus 
k holds below, and similar to (8), further expressed as a 
linear one. 

sk  = A + jQk = vk    L  [Yik (Vi -  vk)]* (9) 
lE'.N(k) 

sk (2 -  vk)  =  L [Y1k (Vi - vk)]* (10) 
lE'.N(k) 

where Pk and Qk denote the real and reactive powers at bus k, 
and 'N(k) is the set of all buses connected to busk. 

3) Themeasurement function of voltage magnitudes at bus 
k is approximated as 

 

Wkl = Jv;;,r + v;;,.,,::, v k,r (11) 

where Vk,r and Vi,x represent the real and imaginary parts of 
voltages at bus k, and the small angle differences of distribution 
lines are considered, e.g., 0.1 degrees per mile [6]. 

Reorganize the linear equations (8),(10), and (11) as 

BV+DV*=E (12) 

where V denotes the vector of the nodal voltage phasors, and 
B, D, and E are the corresponding coefficient matrices and 
suppressed here due to the limited space. Further, express (12) 
in rectangular coordinates as 

 

where the subscripts r and x denote the real and imaginary parts 
of complex numbers. For simplicity, (13) is expressed as 

at bus k. Considering the small voltage drops along the distri­ 
bution lines and the normal voltage limits (0.95~1.05 p.u.) in 
practical  systems [6], apply  the Taylor series of  .D.Vk around 
zero as 1/(1- .6.Vk)  = I:!:O (.6.Vkf.Further, the following 
equation is obtained by ignoring the high order terms [7]: 

Ax=b 

where x  = [ :] denotes the state vector; 

A=   [Br+ Dr- B., + D.,] 
B., +  D., B r - D r 

(14) 

1; (1 -  .6.Vk),::, 1 + .6.Vk = 2-  vk (6) 

Fig. 1 depicts the accuracy loss introduced by (6) as F(Vk) = 
11 / Vk - (2 - Vi)l,andforinstance,theerrorforl.6.Vkl = 0.lis 
around 0.01. The approximation relationship 1/Vk  = 2 -  Vk is 
usedfor constructing the measurement functions in the proposed 
DSSE model, which are shown below. 

1) The power flow measurements Pik and Qik at branch 
i- k are expressed as 

sik = Pik + jQik = VdYik (½ - vk)]* (7) 

where P;k and Qik denote the real and reactive powers at this 
branch;Yik denotes the nodal admittance between buses i and k, 
and the function [·]* represents the complex conjugate; V; and 
Vk denote the voltage phasors at these two buses. 

Apply (6) to (7), and a closed-form expression is obtained. 

                    (8) 

Formula (8) can be linearly expressed as SikV; + Yik *½* - 
Yik•vk• = 2sik· 

and A E lRmxn; rank (A ) = n, i.e., a full rank; b = L!:J and 
bE ]Rmxl_ 

Note that (14) does not consider measurement noises and 
involves various levels of approximation on the voltage mag­ 
nitudes and powers. Next, based on (14), we use interval arith­ 
metic  to  handle these accuracy  losses in  DSSE. We consider 
the measurement noises by updating (14) to an interval equa­ 
tion, where an interval number is defined as [a] = [a1, au] = 
{a E JR la1 a au}, and interval vectors and matrices are 
constructed similarly [8]. According to the 3a rule of a Gaussian 
distribution, where a denotes the standard deviation, 99.73% 
of values from the distribution are within three times of stan­ 
dard deviations [2]. Hence, themaximum measurement errors 
(i.e.,=f3a) are superposed ontothecorresponding measurements 
to obtain the lower and upper bounds of A and b, i.e., [A] and 
[b].By thisrelaxation, these measurement intervals enclose their 
true values. 

For the interval equation  (A](x] = (b], the interval solution 
hull (x] is the interval vector with the smallest radius containing 
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all  possible solutions of  Ax  = b, where A1    A    Au   and 
bi b   bu. Also, anequivalence relation witha dummy vector 
[y] exists below: 

 
[ A   l[   x   ] =     [ b  ] <=> [ AO ] 

[ 
-I   l [[xl] = [[bl ] 

[Af [y] O 

 
(15) 

 
 
 

NodeNo. 
 

Fig. 2. Comparison in the estimation errors of the proposed method and the 
where IE lRmxm is an identity matrix, and [y] E lRmxl. Com­ 
pactly express (15)as [A][X] = [B], and the interval symbol [] 
is omitted below, e.g., the augmented state vector X = [x y]T. 

Equation (15) is solved by a  Krawczyk-operator  algorithm 
[6]. An initial interval solution x <0> is calculated by 

MAEs that may happen in a random sampling of measurements. 
 

TABLE II 
COMPARISON IN Es11MATION ACCURACY AND COMPlJfATION TIME 

 
Maximum Errorsor RMSEs [p.u.j 

Algorithm Type Real Part Imaginary Part CPU Time
 

X ( O)    =   ([ -  a  , a], ... , [-a,a]f (16) 

where a  =        11      '"' and (3 =  JII  -   CA.1100     ;   C   is   a  precondition­ 
ing point matrix, c-1 = M id[A ], and Mid[·] denotes the 
midpoint  of an  interval; II • lloo denotes the  infinite  norm of a 
vector, and x (o ) contains the final solution. 

The following process at iteration j is used to gradually 

 
 

Proposed Method 1.54txJ0.; 1.45\xtO"' 20.30 [ms]  
WLS-based DSSE 1.68\xto·' I000 trials: 

  174.79 [s] 
 
 

proposed method. Fig. 2 implies that the WLS-based method 
in MCSs may produce the MAEs that reach up to around 

approach the final solution hull until JIX  (j  +  1>   -    x  U) 1100 e: 5.34 x 10- 3 p.u., while the proposed method obtains accurate 
estimates with the maximum error 1.54 x 10- 3 p.u. The root 

x  U + l ) =  (c B+ ( I - C A ) X(j)) n x U) (17) 

where e = 10- 4 . Starting from X C0 >, the iterative  process 
rapidly converges if III- CA.II < 1 according to the fixed point 
theorem [8], and II · II is any norm. 

The final stateestimate of x in the proposed DSSE model (14) 
is obtainedby Mid[ X (j  + 1)   ],   considering that the measurement 
noisesobeysymmetric Gaussian distributions about zeromeans. 

 
ill. NUMERICAL TEST 

We test the proposed algorithm on the IEEE 34-bus dis­ 
tribution system [9]. The system is modified by adding four 
DGs at buses 822, 838, 856, and 864, respectively, and the 
installed capacity of each DG is 200 kVA. The maximum errors 
of measurements are set as I% of these true values for the 
voltage magnitudes and powers from SCADA systems and 20% 
for pseudo-measurements. Table I displays the measurement 
placement scheme in the test system. 

 
A. Estimation Performance 

To evaluate the performance of the proposed method, we 
adopt the nonlinear WLS-based method in (l}-(5) as the base­ 
line. In Fig. 2, the maximum absolute errors (MAEs) of the 
real and imaginary parts of voltages in 1000 MCSs are used to 
evaluate the estimation accuracy of the nonlinear WLS-based 
method in [2]. Also, using measurements from one of these 
MCSs, we calculate the errors of the estimated voltages by the 

mean square errors (RMSEs) of these estimated voltages in all 
MCSs are used to evaluate the overall estimation performance 

of this nonlinear DSSE method. Moreover, the maximums of the 
RMSEs are compared with the MAEs of the proposed method 
at all buses, shown in Table II. In contrast to the WLS-based 
method in a Monte Carlo trial, the proposed method obtains 

the states more accurately. Also, the estimation accuracy of our 
method is close to that of the baseline method in 1000 MCSs, 

and however, the latter requires considerable sets of samplings. 
Table II compares the computational efficiency of the pro­ 

posed method with that of the WLS-based method. The CPU 
time of the proposed method accounts for about 12% of the 

average one that this nonlinear method takes in a single Monte 
Carlo trial, i.e., 20.30 vs 174.79 milliseconds. 

 

B. Robustness Analysis 

This section discusses influence factors, such as operating 
condition and measurement redundancy, to illustrate the robust­ 
ness of the proposed method. 

Considering the impacts of DG penetration on voltage pro­ 
file, we investigate the estimation results of the proposed 
method in various operation ranges, i.e., 0.90~ 0.95 p.u. and 
0.9~I.I p.u., shown in Table ill.Thceomparison between these 
cases illustrates that a narrower voltage range around 1.0 leads 
to higher estimation accuracy and computational efficiency of 
the proposed method. Table ill validates the robustness of this 
method for various operating conditions. 
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TABLEID 
ESTIMATION PERFORMANCE IN ROBUSTNESSANALYSIS 

 

Maximum errorsat all CPUTime 
Robustness Analysis nodes [p.u.] [ms] 

  Real Part Imaginary Part  

nonlinear WLS-based methods without the use of PMU data. 
Numerical simulations illustrate the accuracy and efficiency of 
the proposed method in tackling nonlinear measurements with 
Gaussian noises. 

Voltage .....0:... "-90- 0'""9;.5.:_    ..:l"'"6c'..:..2:5:._x :l.·.:03_    ---l"..;6.;.:.0;;-.7'-x--' l;.0.4:  ................ 2; 0'"'".;..3;4:'---_ REFERENCES 
Profile 0.9- 1.1 l. 83l x l0·3 1.793xl 04 21.41 

Measurement         1_.2_2_1         1.-'-'3--3_0x_l-0'-·'          l-.'6-'--39'-x_l_0_""  --------- 1-8'--.3'-_0   
Redun. 1.265 l. 029xJ0·3 l.642xJ04 17.11 

 

 

The measurement redundancy shown in Table I is 1.176, and 
we further test the proposed algorithm with other measurement 
redundancies by adjusting the number of measurements and 
their locations. Table III gives the estimation performance of 
these tests, which shows that the efficacy of this method does 
not depend on the measurement arrangements. Also, the higher 
measurement redundancy leads to the overall improvement in 
estimation accuracy and computational efficiency. 

 
IV. CONCLUSION 

This paper presents a highly efficient DSSE  algorithm 
using the Taylor series of complex numbers and interval 
arithmetic techniques. Compared with the prior work [6], 
which requires installing PMUs in distribution systems, this 
method provides a highly efficient substitute of the conventional 
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