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Abstract

This paper discusses an efficient parallel implementation of the ensemble Kalman
filter based on the modified Cholesky decomposition. The proposed implemen-
tation starts with decomposing the domain into sub-domains. In each sub-
domain a sparse estimation of the inverse background error covariance matrix is
computed via a modified Cholesky decomposition; the estimates are computed
concurrently on separate processors. The sparsity of this estimator is dictated
by the conditional independence of model components for some radius of influ-
ence. Then, the assimilation step is carried out in parallel without the need
of inter-processor communication. Once the local analysis states are computed,
the analysis sub-domains are mapped back onto the global domain to obtain the
analysis ensemble. Computational experiments are performed using the Atmo-
spheric General Circulation Model (SPEEDY) with the T-63 resolution on the
Blueridge cluster at Virginia Tech. The number of processors used in the ex-
periments ranges from 96 to 2,048. The proposed implementation outperforms
in terms of accuracy the well-known local ensemble transform Kalman filter
(LETKF) for all the model variables. The computational time of the proposed
implementation is similar to that of the parallel LETKF method (where no co-
variance estimation is performed). Finally, for the largest number of processors,
the proposed parallel implementation is 400 times faster than the serial version
of the proposed method.

Keywords: ensemble Kalman filter, covariance matrix estimation, local
domain analysis
2010 MSC: 62L20, 62M05, 62M20, 62P35

1. Introduction

In operational data assimilation, sequential and variational methods are re-
quired to posses the ability of being performed in parallel [? ? ? ]. This
obeys to current atmospheric and oceanic model resolutions in which the total
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number of components arises to the order of millions and the daily information5

to be assimilated in the order of terabytes [? ? ]. Thus, serial data assimila-
tion methods are impractical under realistic operational scenarios. In sequential
data assimilation, one of the best parallel ensemble Kalman filter (EnKF) imple-
mentations is the local ensemble transform Kalman filter (LETKF) [? ]. This
method is based on domain localization given a radius of influence ζ. Usually,10

the assimilation process is performed for each model component in parallel mak-
ing use of a deterministic formulation of the EnKF in the ensemble space. In
this formulation, the unknown background error covariance matrix is estimated
by the rank-deficient ensemble covariance matrix which, in ensemble space, is
well-defined. The LETKF relies in the assumption that local domain analyses15

avoid the impact of spurious correlations, for instance, by considering only small
values for ζ. However, in operational data assimilation, ζ can be large owing
to circumstances such as sparse observational networks and/or long distance
data error correlations (i.e., pressure fields) In such cases, the accuracy of the
LETKF can be negatively impacted owing to spurious correlations.20

We think there is an opportunity to provide a more robust parallel ensemble
Kalman filter implementation via a better estimation of background error corre-
lations. When two model components (i.e., grid points) are assumed to be con-
ditionally independent, their corresponding entry in the estimated inverse back-
ground error covariance matrix is zero. Conditionally dependence/independence25

of model components can be forced making use of local domain analyses. For
instance, when the distance of two model components in physical space is larger
than ζ, their corresponding entry in the inverse background error covariance ma-
trix is zero. This can be exploited in order to obtain sparse estimators of such
matrix which implies huge savings in terms of memory and computations. Even30

more, high performance computing can be used in order to speedup the assimi-
lation process: the global domain can be decomposed according to an available
number of processors, for all processors, local inverse background error covari-
ance matrices are estimated and then, the stochastic EnKF formulation [? ]
can be used in order to compute local domain analyses. The local analyses and35

then mapped back onto the global domain from which the global analysis state
is obtained.

This paper is organized as follows. In section 2 basic concepts regarding
sequential data assimilation and covariance matrix estimation are presented, in
section 3 a parallel implementation of the ensemble Kalman filter based on the40

modified Cholesky decomposition is proposed; experimental results are discussed
in section 4 and future research directions are presented in section 5. Conclusions
are drawn in section 6.

2. Preliminaries

2.1. Modified Cholesky decompositon45

Let S = {s1, s2, . . . , sN} ∈ Rn×N , the matrix whose columns are n-th
dimensional random Gaussian vectors with probability distribution N (0n, Q),

2



where the number of columns N denotes the number of samples. Denote by
x[j] ∈ RN×1, the vector holding the j-th component across all the columns of S,
for 2 ≤ j ≤ n. The modified Cholesky decomposition [? ] arises from regressing50

each variable x[j] on its predecessors x[j−1], x[j−2], . . ., x[1], that is , fitting
regressions:

x[j] =

j−1∑
q=1

βjq · x[q] + ε[j] ∈ RN×1, (1)

where ε[j] denotes the error in the regression of the j-th component. Let
Djj =

{
var

(
ε[j]
)}
∈ Rn×n be the diagonal matrix of error variances and let

Tjq = {−βjq} ∈ Rn×n denote the unitary lower-triangular matrix containing55

the negative value of regression coefficients, for 2 ≤ q < j ≤ n. An approxima-
tion of the inverse covariance matrix Q−1 ∈ Rn×n reads:

Q−1 ≈ Q̂−1 = TT ·D−1 ·T , (2)

and making use of basic linear algebra, an approximation of Q ∈ Rn×n is:

Q ≈ Q̂ = T−1 ·D ·T−T . (3)

2.2. Local ensemble transform Kalman filter

Localization is commonly used in the context of sequential data assimila-60

tion in order to mitigate the impact of spurious correlations in the assimilation
process. In general, two forms of localization methods are used: covariance
matrix localization and domain localization, both have proven to be equivalent
[? ]. In practice, covariance matrix localization can be very difficult owing
to the explicit representation in memory of the ensemble covariance matrix.65

On the other hand, domain localization methods avoid spurious correlations
by considering only observations within a given radius of influence ζ: in the
two-dimensional case, each model component is surrounded by a local box of
dimension (2 ·ζ+1, 2 ·ζ+1) and the information within the scope of ζ (observed
components and background error correlations) is used in the assimilation pro-70

cess and conversely, the information out the local box is discarded. In figure 1,
local boxes for different radii of influence ζ are shown. The red grid point is
the one to be assimilated, blue points are used in the assimilation process while
black points are discarded. Based on this idea, the local ensemble transform
Kalman filter is proposed (LETKF) [? ] The global formulation of the LETKF75

is defined as follows: for a given background ensemble

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (4)

and ensemble perturbation matrix

Ub = Xb − xb ⊗ 1TN ∈ Rn×N , (5)
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Figure 1: Local boxes for different radius of influence ζ.

where n is the number of model components, N is the ensemble size, xb[i] ∈ Rn×1
is the i-th ensemble member, for 1 ≤ i ≤ N , xb is the ensemble mean, 1N is the
N -th dimensional vector whose components are all ones and ⊗ denotes the outer80

product of two vectors, an estimated of the analysis error covariance matrix in
the ensemble space reads:

P̂a =
[
(N − 1) · IN×N + ZT ·R−1 · Z

]−1
(6a)

where Z = H ·Ub ∈ Rm×N , H ∈ Rm×n is the linear observational operator, m
is the number of observed components and, R ∈ Rm×m is the estimated data
error covariance matrix. The optimal weights in such space reads:85

ra = P̂a · ZT ·R−1 ·
[
y −H · xb

]
, (6b)

therefore, the optimal perturbations can be computed as follows:

Wa = ra ⊗ 1TN +
[
(N − 1) · P̂a

]1/2
∈ RN×N (6c)

from which, in model space, the analysis reads:

Xa = xb ⊗ 1TN + U ·Wa ∈ Rn×N . (6d)

The set of equations (6) are applied to each model component in order to com-
pute the global analysis state.

2.3. Ensemble Kalman Filter Based On Modified Cholesky90

In [? ], the modified Cholesky decomposition is used in order to obtain sparse
estimators of the inverse background error covariance matrix. the columns of
matrix (5) are assumed normally distributed with moments:

ub[i] ∼ N (0n, B) , for 1 ≤ i ≤ N, (7)

where B ∈ Rn×n is the true unknown background error covariance matrix.
Denote by x[j] ∈ RN×1 the vector holding the j-th model component across95

all the columns of matrix (5), for 1 ≤ j ≤ n, following the analysis of section
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2.1, i.e., S = U, an estimate of the inverse background error covariance matrix
reads:

B−1 ≈ B̂−1 = TT ·D−1 ·T ∈ Rn×n, (8)

and similar to (3),

B ≈ B̂ = T−1 ·D ·T−T ∈ Rn×n . (9)

Based on (1), the resulting estimator B̂−1 can be dense. This implies no con-100

ditional independence of model components in space which, in practice, can be
quite unrealistic for model variables such as wind components, specific humidity
and temperature. Thus, a more realistic approximation of B−1 implies a sparse
estimator B̂−1. Readily, the structure of B̂−1 depends on the structure of T this
is, on the non-zero coefficients from the regression problems (1). Consequently,105

if we want to force a particular structure on B̂−1 some of the coefficients in (1)
must be set to zero. Thus, we can condition the predecessors of a particular
model component to be inside the scope of some radius ζ. This will depend on
the manner how the model components are labeled. In practice, row-major and
column-major formats are commonly used in the context of data assimilation110

but, other formats can be used in order to exploit particular features of model
discretizations and/or dynamics. For instance, making use of row-major for-
mat, consider we want to compute the corresponding set of coefficients for the
grid point 6 in figure 2 for ζ = 1. The local box surrounding the grid point 6
provides the model components inside the scope of ζ. Readily, the predecessors115

of 6 are the model components labeled from 1 to 5 according to the labelling
system utilized.

(a) In blue, local box for the model com-
ponent 6 when ζ = 1.

(b) In blue, predecessors of the model
component 6 for ζ = 1.

Figure 2: Local model components (local box) and local predecessors for the model component
6 when ζ = 1. Column-major ordering is utilized to label the model components.

In general, the analysis increments of the EnKF reads:

Xa = Xb + δXa ∈ Rn×N , (10)

where δXa is known as the analysis increment. According to the primal formu-
lation of the EnKF, B̂−1 is used in order to compute the analysis correction:120

δX =
[
B̂−1 + HT ·R−1 ·H

]−1
·HT ·R−1 ·

[
Ys −H ·Xb

]
∈ Rn×N(11)
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while, in the dual formulation B̂ is implicitly used:

δX = X ·VT ·
[
R + V ·VT

]−1 · [Ys −H ·Xb
]
∈ Rn×N , (12)

where

T ·X = D1/2 ∈ Rn×n , (13)

Ys ∈ Rm×N is the matrix of perturbed observation with data error distribution
N (0m, R), and V = H · X ∈ Rm×n. The primal approach can be employed
making use of iterative solvers in order to solve the implicit linear system in125

(11). On the other hand, the dual approach relies most of its computation in
the solution of the unitary triangular linear system in (13). In general, there
are good linear solvers in the current literature, some of them well-known and
used in operational data assimilation such as the case of LAPACK [? ] and
CuBLAS [? ]. Compact representation of matrices can be used as well in order130

to exploit the structures of B̂−1 and T in terms of memory allocation.

3. Proposed parallel implementation of the ensemble Kalman filter
based on modified Cholesky decomposition

We consider the use of domain decomposition in order to reduce the dimen-
sion of the data assimilation problem. To start, the domain is split according to135

a given number of sub-domains. Typically, the number of sub-domains matches
the number of threads/processors involved in the assimilation process. With no
loose of generality, consider the number of sub-domains ∆ to be a multiple of n.
The total number of model components at each sub-domain is n/∆ but, in order

to estimate B̂−1, boundary information is needed which adds (2 · ζ + 1)2 model140

grid points to the procedure of background covariance matrix estimation. If we
consider ∆ sub-domains, at the k-th sub-domain, for 1 ≤ k ≤ ∆, the analysis
reads:

Xa
[k] = Xb

[k] + B̂[k] ·HT
[k] ·

[
R[k] + H[k] · B̂[k] ·HT

[k]

]
(14)

·
[
Ys

[k] −H[k] ·Xb
[k]

]
∈ Rnsd×N ,

where nsd = n/∆ + (2 · ζ + 1)2, and at sub-domain k: Xb
[k] are the model

components, H[k] ∈ Rmsd×nsd is the linear observational operator, msd is the145

number of observed components in the sub-domain, Ys
[k] ∈ R

msd×N is the sub-

set of perturbed observations, B̂−1[k] ∈ R
nsd×nsd is the local inverse estimation

of the background error covariance matrix and R[k] ∈ Rmsd×msd is the local
data-error covariance information. Thus, for all 1 ≤ k ≤ ∆, the analysis sub-
domains (14) are computed, the (2 · ζ + 1)2 boundary points are discarded and150

then, n/∆ analysis points are mapped back onto the global domain. Readily,
the dual approach can be used as well. One desired property of the proposed
EnKF implementation is that boundary information is not exchanged during the
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assimilation process, each sub-domain works independently in the estimation
of B̂−1[k] and posterior assimilation of Ys

[k]. In the Algorithm 1, the parallel155

ensemble Kalman filter based on modified Cholesky decomposition is detailed.
The analysis step of this method is shown in the Algorithm 2 wherein, the
model state is divided according to the number of sub-domains ∆ and then,
in parallel, information of the background ensemble, the observed components,
the observation operator, the estimated data error correlations at each sub-160

domain are utilized in order to perform the local assimilations. The analysis
sub-domains are then merged into the global analysis state as can be seen in
line 9 of the Algorithm 2. This is done as follows:

1. Once each processor finishes the assimilation step, the boundary informa-
tion is discarded and the analysis sub-domain is sent to the main thread.165

2. The main thread receives the analysis sub-domains from the different pro-
cessors.

3. The local analysis are positioned in their corresponding places of the global
domain.

Notice, atomicity is not needed for this operation since analysis sub-domains170

do not intersect owing to all information concerning to boundaries is discarded
after the assimilation step. The local assimilation process is detailed in the
Algorithm (3).

Algorithm 1 Parallel ensemble Kalman filter based on modified Cholesky de-
composition (PAR-EnKF-MC)

Require: Initial background ensemble Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N .

Ensure: Analysis ensemble at each assimilation time.
1: while There are observations to be assimilated do
2: Retrieve y.
3: Ys ← create perturbed observations(y,R)
4: Xa ← perform assimilation(Xb, Ys, R, H) . Parallel analysis step
5: for all k ← 1→ N do . Parallel forecast step
6: xb[k] ←Mtprevious→tcurrent

(xa[k])
7: end for
8: end while
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Algorithm 2 Assimilation step for the PAR-EnKF-MC

Require: Background ensemble Xb ∈ Rn×N , perturbed observations Ys ∈
R
m×N , linearized observation operator H ∈ Rm×N , estimated data error

covariance matrix R ∈ Rm×m.
Ensure: Analysis ensemble Xa ∈ Rn×N .

1: procedure perfofm assimilation(Xb, Ys, R, H) . Ensemble members
are stored columnwise

2: Decompose the model states Xb into ∆ sub-domains
3: for all k ← 1→ ∆ do
4: Xb

[k] ← components from domain k(Xb, k)

5: H[k] ← components from domain k(H, k)
6: Ys

[k] ← components from domain k(Ys, k)

7: R[k] ← components from domain k(R, k)

8: Xa
[k] ← perform local assimilation(Xb, Ys, R, H)

9: Xa ← build analysis state(Xa, Xa
[k], k)

10: end for
11: return Xa . The analysis ensemble is Xa.
12: end procedure

Algorithm 3 Local assimilation method

Require: Local background ensemble Xb
l ∈ Rnsd×N , local perturbed observa-

tions Ys
l ∈ Rmsd×N , local linearized observation operator Hl ∈ Rmsd×N ,

local estimated data error covariance matrix Rl ∈ Rmsd×m.
Ensure: Analysis ensemble Xa

l ∈ Rnsd×N .
1: procedure perform local assimilation(Xb

l , Ys
l , Rl, Hl) . Ensemble

members are stored columnwise
2: Estimate B̂−1l based on the samples Xb

l .
3: Perform the assimilation,

Xa
l ← Xb

l +
[
B̂−1l + HT

l ·R−1l ·Hl

]−1
·
[
Ys
l −Hl ·Xb

l

]
4: return Xa

l . The local analysis ensemble is Xa.
5: end procedure

We are now ready to test our proposed parallel implementation of EnKF
based on modified Cholesky decomposition.175

4. Experimental Settings

In this section we study the performance of the proposed parallel ensemble
Kalman filter based on modified Cholesky decomposition (PAR-EnKF-MC).
The experiments are performed using the atmospheric general circulation model
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SPEEDY [? ? ]. SPEEDY is a hydrostatic, spectral coordinate, spectral180

transform model in the vorticity-divergence form, with semi-implicit treatment
of gravity waves. The number of layers in the SPEEDY model is 8 and the T-63
model resolution (192× 96 grids) is used for the horizontal space discretization
of each layer. Four model variables are part of the assimilation process: the
temperature (K), the zonal and the meridional wind components (m/s), and185

the specific humidity (g/kg). The total number of model components is n =
589, 824. The number of ensemble members is N = 94 for all the scenarios.
The model state space is approximately 6,274 times larger than the number of
ensemble members (n � N). The tests are performed on the super computer
Blueridge cluster at the university of Virginia Tech. BlueRidge is a 408-node190

Cray CS-300 cluster. Each node is outfitted with two octa-core Intel Sandy
Bridge CPUs and 64 GB of memory, for a total of 6528 cores and 27.3 TB of
memory systemwide.

Starting with the state of the system xref
−3 at time t−3, the model solution

xref
−3 is propagated in time over one year:195

xref
−2 =Mt−3→t−2

(
xref
−3
)
.

The reference solution xref
−2 is used to build a perturbed background solution:

x̂b−2 = xref
−2 + εb−2, εb−2 ∼ N

(
0n, diag

i

{
(0.05 {xref

−2}i)2
})

. (15)

The perturbed background solution is propagated over another year to obtain
the background solution at time t−1:

xb−1 =Mt−2→t−1

(
x̂b−2

)
. (16)

This model propagation attenuates the random noise introduced in (15) and
makes the background state (16) consistent with the physics of the SPEEDY200

model. Then, the background state (16) is utilized in order to build an ensemble
of perturbed background states:

x̂
b[i]
−1 = xb−1 + εb−1, εb−1 ∼ N

(
0n, diag

i

{
(0.05 {xb−1}i)2

})
, 1 ≤ i ≤ N, (17)

from which, after three months of model propagation, the initial ensemble is
obtained at time t0:

x
b[i]
0 =Mt−1→t0

(
x̂
b[i]
−1

)
.

Again, the model propagation of the perturbed ensemble ensures that the en-205

semble members are consistent with the physics of the numerical model.
The experiments are performed over a period of 24 days, where observations

are taken every 2 days (M = 12). At time k synthetic observations are built as
follows:

yk = Hk · xref
k + εk, εk ∼ N (0m, Rk) , Rk = diagi

{
(0.01 {Hk xref

k }i)2
}
.
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The observation operators Hk are fixed throughout the time interval. We per-210

form experiments with several operators characterized by different proportions
p of observed components from the model state xref

k (m ≈ p · n). We consider
four different values for p: 0.50, 0.12, 0.06 and 0.04 which represent 50%, 12
%, 6 % and 4 % of the total number of model components, respectively. Some
of the observational networks used during the experiments are shown in Figure215

3 with their corresponding percentage of observed components from the model
state.

(a) p = 12% (b) p = 4%

Figure 3: Observational networks for different values of p. Dark dots denote the location of
the observed components. The observed model variables are the zonal and the meridional
wind components, the specific humidity, and the temperature.

The analyses of the PAR-EnKF-MC are compared against those obtained
making use of the LETKF implementation proposed by Hunt et al in [? ? ] .
The analysis accuracy is measured by the root mean square error (RMSE)220

RMSE =

√√√√ 1

M
·
M∑
k=1

[
xref
k − xa

k

]T · [xref
k − xa

k

]
(18)

where xref ∈ Rn×1 and xa
k ∈ Rn×1 are the reference and the analysis solutions

at time k, respectively, and M is the number of assimilation times.
During the assimilation steps, the data error covariance matrices Rk are used

and therefore, no representativeness errors are involved during the assimilation.
The different EnKF implementations are performed making use of FORTRAN225

and specialized libraries such as BLAS and LAPACK are used in order to per-
form the algebraic computations.

4.1. Influence of the localization radius on analysis accuracy

We study the accuracy of the proposed PAR-EnKF-MC and the LETKF
implementations for different radii of influence. The relations between the ac-230

curacy of the methods and the radii for 96 and for 768 processors are shown
in Figures 4 and 5, respectively. The results reveal that the accuracy of the
PAR-EnKF-MC formulation can be improved by increasing the radius of influ-
ence ζ. This implies that the impact of spurious correlations is mitigated when
background error correlations are estimated via the modified Cholesky decom-235

position. However, the larger the radius of influence, the larger the local data
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assimilation problem to solve. This will demand more computational time which
can be mitigated by increasing the number of processors during the assimilation
step. On the other hand, in the LETKF context, since background error corre-
lations are estimated based on the empirical moments of the ensemble, spurious240

correlations affect the analysis when ζ > 2. Consequently, localization radius
sizes beyond this value decreases the performance of the LETKF.

(a) p ∼ 50% (b) p ∼ 4%

Figure 4: Relation between CPU-time (s) and accuracy of the compared EnKF implementa-
tions for different radii of influence when the number of computing nodes is 6 (96 processors)

(a) p ∼ 50% (b) p ∼ 4%

Figure 5: Relation between CPU-time (s) and accuracy of the compared EnKF implementa-
tions for different radii of influence when the number of computing nodes is 48 (768 processors)

4.2. Computational times for different numbers of processors

We compare the elapsed times and the accuracy of both implementations
when the number of processors (sub-domains) is increased. We vary the num-245

ber of compute nodes from 6 (96 processors) to 128 (2,048 processors), fix the
radius of influence at ζ = 5, and use an observational network with p = 4%.
The elapsed times for different numbers of computing nodes for the PAR-EnKF-
MC and LETKF are shown in Figure 6. As expected, the elapsed time of the
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LETKF is smaller than that of PAR-EnKF-MC formulation since no covari-250

ance estimation is performed. Nevertheless, the difference between the elapsed
times is small (in the order of seconds), while the PAR-EnKF-MC results are
more accurate than those obtained by the LETKF. Note that for this exper-
iment scalability is lost due to the limited model resolution in respect to the
communication costs. For instance, information of analysis sub-domains must255

travel across network connections in order to build the global analysis state.
For small sub-domains (large number of processors), the latency is larger than
the processing time required for computing the local analysis at each processor.
Thus we expect more speed-up as the model resolution is increased.

Computing nodes (x 16 processors)

0 50 100 150

T
im

e
 (

s
) 

0

50

100

150

200

250

300

EnKF-MC

LETKF

Figure 6: Elapsed times of the PAR-EnKF-MC and LETKF for different number of compute
nodes (×16 processors).

4.3. Influence of the number of processors (sub-domains) on accuracy of PAR-260

EnKF-MC analyses

An important concern to address in the PAR-EnKF-MC formulation is how
its accuracy is impacted when the number of processors (sub-domains) is in-
creased. As we mentioned before, the model domain is decomposed in order to
speedup computations but not for increasing the accuracy of the method (i.e.,265

the impact of spurious correlations can be small for small sub-domain sizes)
Two main reasons are that we have a well-conditioned estimated of B−1 and
even more, the conditional independence of model components makes the sub-
domain size to have no impact in the accuracy of the PAR-EnKF-MC. As can
be seen in figure 7, for the specific humidity variable and values of ζ and p, the270

PAR-EnKF-MC provides almost the same accurate results among all configu-
rations. The small variations in the RMSE values of the PAR-EnKF-MC obey
to the synthetic data built at different processors during the assimilation step.
For instance, the random number generators used in the experiments depends
on the processors id and therefore, the exact synthetic data is not replicated275

when the number of processors is changed. In the LETKF context we obtain
the exact same results for all configurations since it is a deterministic filter and
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even more, the assimilation is performed for each grid point in the sub-domain.
Lastly, figure 8 shows an estimate of a local inverse background error covari-
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Figure 7: RMSE of the LETKF and PAR-EnKF-MC implementations for the specific humidity
(sh) for different numbers of compute nodes. The number of compute nodes is next to the
method name.

ance matrix for some sub-domain. Figure 8a shows the non-zero coefficients in280

that particular sub-domain, figure 8b reflects the structure of B̂−1 based on T.
Figures 8c and 8d show the estimated background error covariance matrix B̂
from two different perspectives. As is expected, the correlations are dissipated
in space but, they still quite large as can be seen in figure 8d. Intuitively, when
the sub-domain size is small, high correlations are present between model com-285

ponents owing to their proximity. On the other hand, when the sub-domain size
is large, more disipation is expected on the correlation waves of B̂.

5. Future Work

We think there is an opportunity to exploit even more high performance com-
puting tools in the context of PAR-EnKF-MC. Here, most of the computational290

time is spent in the estimation of the coefficients in (1). The approximation of
those coefficients is performed making use of the singular value decomposition
(SVD) SVD implementations are highly proposed in the context of accelerating
devices such as Many Core Intel (MIC) [? ] and the Compute Unified Device
Architecture (CUDA) [? ]. Since the analysis corrections are computed at each295

sub-domain independently, each processor (sub-domain) can submit to a given
device the information needed in order to solve the linear regression problem
(1). Once the solution is computed, the device returns the coefficients to the
processor which assembles the received information in T. Generally speaking
the process is as follows:300
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(a) Structure of T (b) Suctructure of B̂−1

(c) B̂ (d) Surface of B̂

Figure 8: Structures of T and B̂−1 for a radius of influence of r = 5. The contourf and surface
of B̂ are shown as well. The vector state reads x = [u, v, T, sh]T .

• The domain is split according to ∆ processors (sub-domains)

• At each sub-domain a local inverse estimation of the background error
covariance matrix is computed:

– Submit the vectors x[.] to the assigned device in order to compute
the weights in the linear regression (1).305

– In the device, compute the coefficients making use of SVD.

– The subdomain receives the coefficients from the device.

• The non-zero coefficients are placed in their respective positions in T.

• Continue until the coefficients for all local components have been com-
puted.310

• Perform the local assimilation.

6. Conclusions

An efficient and parallel implementation of the ensemble Kalman filter based
on a modified Cholesky decomposition is proposed. The method exploits the
conditional independence of model components in order to obtain sparse esti-315

mators of B−1 via the modified Cholesky decomposition. High performance
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computing can be used in order to speedup the assimilation process: the global
domain is decomposed according to the number of processors (sub-domains), at
each sub-domain a local estimator of the inverse background error covariance
matrix is computed and the local assimilation process is carried out. Each sub-320

domain is then mapped back onto the global domain where then, the global
analysis is obtained. The proposed EnKF implementation is compared against
the well-known local ensemble transform Kalman filter (LETKF) making use
of the Atmospheric General Circulation Model (SPEEDY) with the T-63 reso-
lution in the super computer cluster Blueridge at Virginia Tech. The number325

of processors is ranged from 96 to 2,048. The accuracy of the proposed EnKF
outperforms that of the LETKF. Even more, the computational time of the
proposed implementation differs in seconds of the parallel LETKF method in
which no covariance estimation is performed. Finally, for the largest number of
processors, the proposed method is 400 times faster than its serial theoretical330

implementation.
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