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Abstract This paper develops an efficient and parallel implementation of dy-
namically data-driven application systems (DDDAS) inference using an ensem-
ble Kalman filter based on shrinkage covariance matrix estimation. The pro-
posed implementation works as follows: each model component is surrounded
by a local box of radius size r and then, local assimilation steps are carried
out in parallel at the different local boxes. Once local analyses are obtained,
they are mapped back onto the global domain from which the global analy-
sis state is obtained. Local background error correlations are estimated using
the Rao-Blackwell Ledoit and Wolf estimator in order to mitigate the impact
of spurious correlations whenever the number of local model components is
larger than the ensemble size. The numerical Atmospheric General Circula-
tion Model (SPEEDY) is utilized for the numerical experiments with the T-63
resolution on the Blueridge cluster at Virginia Tech. The number of processors
ranges from 96 to 2,048. The proposed implementation outperforms in terms
of accuracy the well-known local ensemble transform Kalman filter (LETKF)
for all the model variables. The computational time of the proposed implemen-
tation is similar to that of the parallel LETKF method (where no covariance
estimation is performed) for the largest number of processors.
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1 Introduction

Dynamically data-driven application systems (DDDAS [? ? ]) is a paradigm
whereby simulations and measurements become a symbiotic feedback con-
trol system. An important application of DDDAS is the solution of inference
problems where information from physical measurements is combined with a
mathematical model to obtain estimates of the state or parameters of a phys-
ical system. Algorithms to solve such DDDAS inference problems are known
as “data assimilation” methodologies [? ? ? ? ? ? ? ? ].

In sequential data assimilation, the goal is to estimate the current state
x∗ ∈ Rn×1 [? ] of a system which (approximately) evolves according to some
numerical model operator,

x∗current =Mtprevious→tcurrent (xprevious)

where, for instance, M mimics the behaviour of the ocean or the atmosphere,
and n denotes the number of model components. The estimation is performed
based on a prior estimate xb ∈ Rn×1 of x∗,

x ∼ N
(
xb ,B

)
, (1)

and the noisy observation,

y = H · x∗ + ε ∈ Rm×1 ,

where m is the number of observed components from the vector state x∗, B ∈
R
n×n is the unknown background error covariance matrix, and H ∈ Rm×n is a

linear observation operator. Likewise, ε ∈ Rm×1 follows a Normal distribution
with moments,

ε ∼ N (0m, R) ,

where 0m is the m-th dimensional vector whose components are all zeros, and
R ∈ Rm×m is the estimated data error covariance matrix. Consider the three
dimensional variational (3D-Var) cost function [? ],

J (x) =
1

2
·
∥∥x− xb

∥∥2
B−1 +

1

2
· ‖y −H · x‖2R−1 , (2)

which is nothing but the negative log of a posterior error distribution when
prior and observational errors are Normal distributed. A better estimate xa ∈
R
n×1 of x∗ can be sought via the minimization of (2),

xa = arg min
x

J (x) , (3)

where xa is well-known as the analysis state.
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In ensemble based methods, the moments of the background error dis-
tribution are estimated via the empirical moments of an ensemble of model
realizations. However, several challenges are present during this estimation
process: model dimensions are in the order of millions which make impractical
the direct minimization of the cost function (2) [? ], since the dimension of
the model state is several times the ensemble size, background error corre-
lations are poorly captured by the ensemble members [? ? ] and therefore,
analysis corrections are impacted by spurious correlations, besides, high reso-
lution numerical grids make mandatory the use of high performance comput-
ing in the context of operational data assimilation where, typically, domain
decomposition is performed [? ? ? ? ]. In general, ensemble based methods
overcome these situations by considering local analyses during the assimila-
tion process [? ], however, for subdomain sizes larger than the ensemble size,
sampling errors impact the local analysis increments, which is typical when
sparse observational networks are involved during the assimilation process. As
an alternative to local analyses and covariance matrix localization [? ], en-
semble methods based on shrinkage covariance matrix estimation [? ? ] can
be used in order to neglect the impact of spurious correlations at the same
time that other ensemble capabilities are exploited. Since the main motivation
of shrinkage covariance matrix estimation is to estimate covariance matrices
of high-dimensional Normal distributions based on a few samples [? ? ? ],
this estimator can be exploited in the context of operational data assimilation
where covariance matrix of high-dimensional background error distributions
are estimated based on a few model realizations.

This paper is organized as follows: Section 2 discusses efficient implementa-
tions of ensemble based methods and shrinkage covariance matrix estimation,
in Section 3, the proposed implementation is formulated, Section 4 presents ex-
perimental results for the Atmospheric General Circulation Model (SPEEDY)
and, in Section 5, the conclusions are stated.

2 Preliminaries

In this section, we briefly discuss some relevant concepts for the formulation
of our proposed ensemble Kalman filter implementation.

2.1 Shrinkage covariance matrix estimation

Consider S samples from the distribution,

c[s] ∼ N (0p, M) ,

for 1 ≤ s ≤ S, where p is the dimension of the underlying probability distri-
bution, and M ∈ Rp×p is a covariance matrix. These samples can be stored
column-wise in a matrix as follows,

C =
[
c[1], c[2], . . . , c[S]

]
∈ Rp×S . (4)
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The empirical covariance matrix,

M̃ =
1

S − 1
· Ĉ · ĈT ∈ Rp×p ,

where

Ĉ = C− c̄ · 1TS ∈ Rp×S ,

with

c̄ =
1

S
·
S∑
s=1

c[s] ∈ Rp×1 ,

can be used in order to estimate M ≈ M̃. However, for cases in which p� S,

M̃ is a low-rank estimate of M and therefore, spurious correlations owing to
sampling errors are induced. A better estimate of M based on the samples
(4) can be obtained making use of estimates based on shrinkage covariance
matrices [? ? ? ]. This estimator has the form,

M̂ = λ · [η · Ip] + (1− λ) · M̃. (5)

where [η · Ip] is known as the target matrix, η > 0, and λ ∈ (0, 1). Thus,
shrinkage covariance matrix estimators are nothing but convex combinations
of some target matrices and sample covariance matrices. The optimal choice
of λ comes as the solution of the optimization problem,

λ∗ = arg min
λ

E
[∥∥∥M− M̂

∥∥∥2] .
To the best of our knowledge, the best choice, under Gaussian assumptions on
the samples, is proposed by the Rao-Blackwell Ledoit and Wolf estimator [?
], it suggests a closed-form λ∗ as follows,

λ∗ = min

1,

S−2
p · tr

(
M̃2
)

+ tr
(
M̃
)2

(S + 2) ·
[
tr
(
M̃2
)
− tr(M̃)

2

p

]
 .

When λ∗ is plugged in (5), the resulting estimator is well-conditioned [? ] and
even more,

E
[∥∥∥M− M̂

∥∥∥2] < E
[∥∥∥M− M̃

∥∥∥2] .
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2.2 Ensemble Kalman filter

In the ensemble Kalman filter, an ensemble of model realizations,

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (6)

is built in order to estimate the moments of the background error distribution
via the empirical moments of the ensemble (6),

xb ≈ xb =
1

N
·
N∑
i=1

xb[i] ∈ Rn×1 , (7a)

and

B ≈ Pb =
1

N − 1
· S · ST ∈ Rn×n , (7b)

where N is the ensemble size, xb is the ensemble mean, Pb is the empirical
background error covariance matrix, and the matrix of member deviations
S ∈ Rn×N is given by,

S = Xb − xb · 1TN ,

where 1N ∈ Rn×1 denotes the N dimensional vector whose components are
all ones. When an observation y ∈ Rm×1 is available, the analysis ensemble
can be computed as follows,

Xa = Xb + Pb ·HT ·
[
R + H ·Pb ·H

]−1 ·D ∈ Rn×N , (8)

where the matrix of innovations on the observations D ∈ Rm×N is obtained
by,

D = Ys −H ·Xb ,

and the i-th column of the matrix of perturbed observations Ys ∈ Rm×N
reads,

y[i] ∼ N (y, R) , for 1 ≤ i ≤ N .

However, since ensemble sizes are much lower than model resolutions, Pb is
a low-rank estimator of B and therefore, it is sensitive to sampling noise. Ef-
ficient EnKF implementations such as the local ensemble transform Kalman
filter (LETKF) [? ] overcome this situation by making use of domain localiza-
tion, this is, for each model component, a radius r is considered and a local box
is built, then, local information (observed components, local background error
correlations, etc) is utilized in order to perform the local assimilation. After
this, all local analysis components are mapped back onto the global domain
from which the global analysis is obtained. Figure 1 shows some local boxes for
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different radii of influence. Notice, local analyses can be computed simultane-
ously at different processors which makes practical the parallel implementation
of the analysis step.

(a) r = 1 (b) r = 2 (c) r = 3

Fig. 1: Local boxes for different radii of influence r about the red model com-
ponent. Blue model components denote components within the scope of r.

The global LETKF analysis equations are detailed below:

1. Compute the analysis covariance matrix in the ensemble space,

Â =
[
(N − 1) · IN + QT ·R−1 ·Q

]−1 ∈ RN×N ,
where IN is the identity matrix in the ensemble space, Q = H·U ∈ Rm×N ,
and U =

√
N − 1 · S ∈ Rn×N .

2. Calculate the analysis mean by the optimal increments from the ensemble
space,

xa = xb + U ·
[
Â ·QT ·R−1 ·

(
y −H · xb

)]
.

3. Generate the analysis ensemble,

Xa = xa · 1TN + U ·
[
(N − 1) · Â

]1/2
.

Note that, in the context of LETKF, background error correlations are
estimated based on the ensemble covariance matrix, whenever the number
of local components is larger than the ensemble size, local background error
covariance matrices are obtained and therefore, local analysis can be impacted
by spurious correlations. We think, there is an opportunity in order to avoid
this situation by estimating local background error correlations via shrinkage
covariance matrix estimators, which have proven to work under realistic model
scenarios [? ? ]. For instance, the ensemble Kalman filter based on the Rao-
Blackwell Ledoit and Wolf estimator [? ? ] performs the global assimilation as
follows,

1. Compute the ensemble covariance matrix (7b).
2. Compute the traces,

α = tr
([

Pb
]2)

, and, β =
[
tr
(
Pb
)]2

. (9a)



Parallel DDDAS using EnKF with shrinkage covariance matrix estimation 7

3. Set

µ =
α

n
, and, γ = min

1,
N−2
n · α+ β

(N + 2) ·
[
α− β

n

]


4. Build the shrinkage covariance matrix,

B̂ = γ · In + (1− γ) ·Pb ∈ Rn×n. (9b)

5. Compute the analysis ensemble,

Xa = Xb + B̂ ·HT ·
[
R + H · B̂ ·HT

]−1
·D . (9c)

Efficient implementations of this filter wherein the explicit computation of the
equations (9) are avoided can be seen in [? ]. For instance, it is enough to note
that, for (9a),

tr
([

Pb
]2)

=
N−1∑
i=1

σ4
i , and ,

[
tr
(
Pb
)]2

=

[
N−1∑
i=1

σ2
i

]2

where σi is the i-th singular value of S, for 1 ≤ i ≤ N . Recall that, Pb = S·ST .

Now, we are ready to present an efficient implementation of the ensemble
Kalman filter based on shrinkage covariance matrix estimation.

3 Proposed Implementation

We consider the use of shrinkage covariance matrix estimation in order to es-
timate the background error correlations during the assimilation step of the
EnKF and even more, the use of domain decomposition in order to propose
a parallel implementation of the EnKF based on shrinkage covariance ma-
trix estimation. The covariance is estimated via the Rao-Blackwell Ledoit and
Wolf estimator [? ] which, under Gaussian assumptions on background errors,
provides better asymptotic properties than the Ledoit and Wolf estimator pre-
sented in [? ]. The analysis step of the parallel ensemble Kalman filter based
on shrinkage covariance matrix estimation (EnKF-SC) proceed as follows,

1. Following the idea of LETKF, local boxes of radius size r are built for
each model component. The k-th local box, for 1 ≤ k ≤ n, is formed by nk
model components and mk observed components. In such box, Xb

k ∈ Rnk×1

denotes the background ensemble, yk ∈ Rmk×1 is the local observation
with data error covariance matrix Rk ∈ Rmk×mk , and Dk ∈ Rmk×N is the
local innovation matrix. Each local box is potentially mapped to an unique
processor.
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2. Compute the local ensemble perturbation matrix,

Sk =
1√
N − 1

·
[
Xb
k − xbk · 1TN

]
∈ Rnk·N

where xbk ∈ Rnk×1 is the local ensemble mean,

xbk =
1

N
·Xb

k · 1N .

3. Compute the N − 1 singular values σ
(k)
j of Sk, for 1 ≤ j ≤ N − 1.

4. Compute,

αk =
N−1∑
i=1

[
σ
(k)
i

]4
, and , βk =

[
N−1∑
i=1

[
σ
(k)
i

]2]2
5. Set,

µk =
αk
n
, and, γk = min

1,
N−2
n · αk + βk

(N + 2) ·
[
αk − βk

n

]


6. Set ϕk = µk · γk and δk = 1− γk and compute the local analysis ensemble,

Xa
k = Xb

k + Ek ·Πk · Zk + ϕ ·HT
k · Zk

where

Ek =
√
δk · Sk ∈ Rnk×N ,

Πk = Hk ·Ek ∈ Rmk×N ,

Zk is given by the solution of the next linear system,[
Γ k + Πk ·ΠT

k

]
· Zk = Dk , (10)

with

Γ k = Rk + ϕk ·Hk ·HT
k ∈ Rmk×mk .

The linear system (10) can be solved making use of the iterative Sher-
man Morrison formula [? ? ] and therefore, direct matrix inversion can be
avoided.

It can be easily shown that, when covariance inflation [? ] is utilized in the

context of EnKF-SC, for the k-th local box, the following effect on B̂ is noted,

B̂k = ϕ · Ink
+
[
ρ2 · δk

]
· Sk · STk ∈ Rnk·nk .

where ρ > 1 is the inflation factor.
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4 Experimental Results

The proposed EnKF implementation is compared against the LETKF formu-
lation in terms of accuracy and parallel performance. The tests are performed
on the super computer Blueridge cluster at the university of Virginia Tech.
BlueRidge is a 408-node Cray CS-300 cluster. Each node is outfitted with
two octa-core Intel Sandy Bridge CPUs and 64 GB of memory, for a total of
6,528 cores and 27.3 TB of memory systemwide. Eighteen nodes have 128 GB
of memory. In addition, 130 nodes are outfitted with two Intel MIC (Xeon
Phi) coprocessors. Each of the 260 coprocessors on BlueRidge has 60 1.05
GHz cores and a theoretical peak performance of approximately 1 TeraFlop
(double-precision) per second. Each computing node has a total of 16 proces-
sors.

For the model operator, the Atmospheric General Circulation Model (SPEEDY)
[? ? ] is utilized, and the T-63 model resolution (96×192 grid components per
layer) is considered. SPEEDY is based on a spectral dynamical core. It is a
hydrostatic, s-coordinate, spectral-transform model in the vorticity-divergence
form, with semi-implicit treatment of gravity waves. The model variables are
the Specific Humidity sph(g/Kg), the Temperature (T ), the Zonal Wind Com-
ponent u (m/sg), the Meridional Wind Component v (m/sg). The total num-
ber of model components is 589,824.

– Starting in rest, the SPEEDY model is run for about three months from
which an initial state consistent with the physics and dynamics of the
model is obtained. We let this state to be the reference solution.

– The reference solution is perturbed with a random vector ν ∈ Rn×1 with
statistics,

ν ∼ N (0n, 0.05 · In) , (11)

from which an initial perturbed background state is obtained. This state
is propagated for about three months from which the initial background
state is obtained.

– Making use of the initial background state, an initial perturbed ensemble
is built. Samples from the distribution (11) are taken in order to create
the synthetic members. Of course, these members are not consistent with
the physics and the dynamics of the numerical model and therefore, they
are propagated for about three days in order to make them consistent.
From here, the initial ensemble is obtained. The reference solution and the
background state are then propagated in time until the initial time.

– Three different observational networks are utilized during the experiments,
they are shown in Figure 2 with their respective percentage of observed
components. The percentage of observed components are 12%, 6%, and
4%.

– The number of ensemble members for all experiments is N = 96. Notice,
the model resolution is approximately 6,144 times larger than the ensemble
size.
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(a) p = 12% (b) p = 6%

(c) p = 4%

Fig. 2: Observational networks for the assimilation steps. p denotes the per-
centage of observed components from the model state.

– Three radius sizes are utilized during the experiments: r = 3, 4, and 5.
– Data errors are assumed uncorrelated and to follow a Normal distribution

with zero mean and data error covariance matrix R = 0.012 · Im.
– Observations are taken every three days. The assimilation window contain

twelve observations distributed uniformly.
– To assess the accuracy of the proposed implementation, the results are

compared against those obtained by the LETKF [? ? ] in terms of Root-
Mean-Square-Error,

RMSE =

√√√√ 1

12
·

12∑
t=1

∥∥∥x∗[t] − xa[t]

∥∥∥2 ,
where t denotes time index, for 1 ≤ t ≤ 12.

– Numerical computations are performed making use of the BLAS [? ] and
the LAPACK [? ] libraries.

– The parallel implementations were carried out making use of FORTRAN
and the MPI framework.

– The number of computing nodes is ranged from 16 (96 processors) to 128
(2,048)

The results for all model configurations and variables are shown in the
Table 1. As can be seen, all RMSE values of the proposed implementation are
below to those obtained by the LETKF. This is expected since for large radius
sizes, spurious correlations impact the estimation of local analysis corrections
in the context of LETKF at the different local boxes. We can analyse Figure
3 where the RMSE of some model variables are shown for the LETKF and
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(a) r = 3 and p = 12% (b) r = 5 and p = 6%

(c) r = 4 and p = 12%

Fig. 3: RMSE of the LETKF and EnKF-MC implementations for different
model variables, radii of influence and observational networks.

the EnKF-SC within the assimilation window. As can be seen, the parallel
EnKF-SC is able to obtain good estimates of the background error correla-
tions among different assimilation steps while the opposite case is evident for
the LETKF, which obeys to spurious correlations in the local analysis correc-
tions. Note that, in Figure 3, the behaviour of errors for different values of p
and r in the EnKF-SC are similar, which implies the importance of estimating
background error correlations based on shrinkage covariance matrix estima-
tion. For instance, consider Figure 4 where snapshots of the first assimilation
step are taken. Notice, LETKF is able to recover the structure of the merid-
ional wind components regarding the reference state of the system. However,
contour levels are far from those observed in the reference solution. On the
other hand, the parallel EnKF-SC is able to recover the contour fields of the
reference solution and even more, the values of the meridional wind compo-
nents are close to those observed in the actual solution. Notice, spurious waves
near the poles are quickly dissipated by the proposed method while this is not
the case for the LETKF implementation. A similar case can be observed for
the zonal wind component in Figure 5. Spurious zonal wind components near
the poles are dissipated by EnKF-SC while those are held by the LETKF after
the first assimilation step.
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(a) Reference (b) Background

(c) EnKF-SC (d) LETKF

Fig. 4: Snapshots of the reference solution, background state and analyses
fields from the EnKF-SC and LETKF for the 5th layer of the meridional wind
component (v).

A very important concern is how the accuracy of the EnKF-SC is impacted
when the number of processors is changed. In Figure 6, this issue is addressed.
As can be seen, for each model variable, all solutions obtained by the EnKF-SC
are almost identical when different number of processors are utilized. The small
differences obey to the synthetic data generated at each local box. The random
seed for each local box is fed by the processor id and therefore, when more
processors are added, new random numbers are generated at some local boxes
and therefore, the synthetic data is not replicated. Hence, small differences in
the RMSE values can be shown. On the other hand, since the LETKF is a
deterministic filter, all results are equal.

Lastly, Figure 7 shows the averaged time consumed for the compared imple-
mentations in order to perform a single assimilation step. As expected, since
no covariance matrix estimation is performed in the LETKF context, this
method is faster than the parallel EnKF-SC but, as the number of processors
is increased the gap between the two curves is decreased.
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(a) Reference (b) Background

(c) EnKF-SC (d) LETKF

Fig. 5: Snapshots of the reference solution, background state and analyses
fields from the EnKF-SC and LETKF for the second layer of the zonal wind
component (u).

Variable (units) r p EnKF-SC LETKF

u (m/sg)

3
12% 3.185× 102 1.661× 103

6% 4.854× 102 1.237× 103

4% 6.750× 102 9.997× 102

4
12% 3.161× 102 1.752× 103

6% 4.729× 102 1.608× 103

4% 6.261× 102 1.258× 103

5
12% 3.334× 102 1.861× 103

6% 4.729× 102 1.983× 103

4% 6.148× 102 1.601× 103

v (m/sg)

3
12% 2.463× 102 9.510× 102

6% 3.844× 102 8.334× 102

4% 5.615× 102 7.455× 102

4
12% 2.513× 102 1.048× 103

6% 3.786× 102 1.146× 103

4% 5.189× 102 9.026× 102

5
12% 2.729× 102 1.001× 103

6% 3.871× 102 1.574× 103

4% 5.139× 102 1.102× 103

T (K)

3
12% 2.728× 102 1.216× 103

6% 3.308× 102 6.458× 102

4% 3.966× 102 6.073× 102

4
12% 2.576× 102 1.816× 103

6% 3.097× 102 1.030× 103

4% 3.664× 102 7.464× 102

5
12% 2.561× 102 1.600× 103

6% 3.015× 102 1.472× 103

4% 3.511× 102 1.171× 103

sh (g/kg)

3
12% 7.750× 10 1.340× 102

6% 9.813× 10 1.417× 102

4% 1.222× 102 1.457× 102

4
12% 7.762× 10 1.639× 102

6% 9.692× 10 1.652× 102

4% 1.167× 102 1.739× 102

5
12% 8.094× 10 2.077× 102

6% 9.775× 10 1.949× 102

4% 1.158× 102 2.068× 102

Table 1: RMSE values for the EnKF-SC and LETKF making use of the
SPEEDY model.
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Fig. 6: RMSE values for different number of computing nodes ( x 16 processors)
for the compared implementations. There is no significant difference between
the RMSE values obtained by the parallel EnKF-SC for different number of
processors.

5 Conclusions

This paper proposes an efficient parallel implementation of the ensemble Kalman
filter based on shrinkage covariance matrix estimation. The proposed imple-
mentation exploits the use of shrinkage covariance matrix estimation in order
to mitigate the impact of spurious correlations. Even more, well-known capa-
bilities of ensemble based methods are exploited in order to perform in parallel
the assimilation step. Numerical experiments are performed making use of the
Atmospheric General Circulation Model (SPEEDY) with resolution T-63 for
a total number of 589,824 model components while the number of ensemble
members is set to 96 for all the experiments. The number of processors for
the parallel assimilation step is ranged from 96 to 2,048. Experimental results
reveal that the use of shrinkage covariance matrix estimation can mitigate the
impact of spurious correlation when sparse observational networks are utilized
and large local boxes are considered. Even more, in terms of accuracy, the
proposed method outperforms the well-known LETKF implementation for all
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Fig. 7: Average time of the parallel EnKF-SC and the LETKF implementations
for the assimilation step using different number of processors. As the number
of processors increases, the differences between elapsed times of the compared
implementations decreases.

model variables. Lastly, when the number of processors increases, the elapsed
time of EnKF-SC and LETKF (where no covariance estimation is performed)
get closer.
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