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Probabilistic Deep Autoencoder for Power System Measurement
Outlier Detection and Reconstruction

You Lin~, Student Member, IEEE, and Jianhui Wang

Abstract—A probabilistic deep autoencoder is proposed to
reconstruct power system measurements in this paper, which can
be utilized in outlier detection and reconstruction. A nonpara-
metric distribution estimation method is employed to capture the
uncertainty information of the measured data. The estimated
confidence intervals of the measured data are extracted from
the estimated distribution and used as input to the first layer
of neural networks. Through multilayer encoding and decoding
processes, the intervals of measurements are reconstructed, which
are further applied to detect and replace outliers. Simulation
results verify the effectiveness of the proposed method.

Index Terms—Power system measurements, outlier detection,
data reconstruction, probabilistic deep autoencoder.

I. INTRODUCTION

CCURATE measurements are essential for improving

the effectiveness of power system analysis techniques.
Outliers and missing data are severe problems that impact the
accuracy of such analyses. Methods have been proposed for
detecting outliers and estimating the missing values [1]. In
previous studies, the detection strategies are either based on
the unconditionally estimated distributions or not effective for
large-dimensional datasets [2]. Hence, these outlier detection
models are not adaptive to the varying dependent conditions
of the target to be detected. It is essential to find new detection
strategies applicable to big data in power systems. Moreover,
most of the data reconstruction methods are deterministic
which ignore the important probabilistic information of the
reconstructed data [3]. In comparison, many of the popular
probabilistic machine learning models are mostly utilized for
generating similar data that have the same characteristics as
the original dataset instead of reconstructing the replacement
of the bad data, such as variational autoencoder [4] and gen-
erative adversarial net [5]. These methods have a complex
distribution inference in the latent layers, thereby resulting
in the difficulty in solving the model parameters. Therefore,
it is essential to propose new probabilistic machine learn-
ing methods for outlier detection and data reconstruction. In
this paper, an easy-to-execute conditional estimation approach
with a probabilistic deep autoencoder (PDAE) is proposed
to construct the intervals utilized for measurement outlier
detection and reconstruction. The proposed method has good
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accuracy and provides quantitative ranges for the data to be
reconstructed.

II. METHODOLOGY
A. Framework

Firstly, we estimate the distributions of each measurement
and corresponding confidence intervals with a coverage prob-
ability p e [0, 1] using a kernel density estimation (KDE)
model. Secondly, constructing an activation function using the
KDE estimated distribution and a coverage probability p corre-
sponding to a given normalized measurement. The activation
function is utilized in the first layer of the proposed PDAE
model to provide the estimated lower and upper bounds which
will be the input to the second layer of the PDAE model.
Meanwhile, the multilayer structure is further constructed.
Then, intervals with lower and upper bounds of the measure-
ments are obtained. Measurements outside the intervals are
regarded as outliers. The estimated intervals will be the most
possible ranges of the reconstructed data points to replace the
outliers in the dataset.

B. Pre-Estimated Confidence Intervals From Nonparametric
Estimation

1) Data Normalization: Given the measured time series
Xo= {xf}‘:\;l, normalize the data into range [0, 1]. N is the
number of measurements for each feature.

2) Probability Distribution: To estimate the probability
density function f(y) of the target variable y with its corre-

sponding explanatory vector x,, the KDE model [6] can be

formulated as,
N Xy—Xi —yi
| K ()R ()

TORyyixy =5~ o &
N k(R
where bandwidth parameter vector H = [hy, ha, . . hplT:

hi,ha, ..., hp and hy are respectively the bandwidth param-
eters of the D-dimensional explanatory vector x, and 1-
dimensional target y; D is the dimensionality of the explana-
tory vector xy; K is the kernel function and a Gaussian kernel
function is utilized in this paper; and

D
Xy —Xi Xyj — Xij
H =1 h;

For the measured time series x = (x,}‘;v: 1» the target to
be estimated is the measured value x; at time f, and its cor-
responding explanatory vector is the past D measurements.
That is, y = x4, and xy = [x;_1,...,X_p]. By estimating
hi,ha, ..., hp and hy, the probability distribution f(x;) of x;
can be obtained from (1).

3) Confidence Intervals: From the above-estimated distri-
bution f(x;), the (o x 100) percent confidence interval can be
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Framework of the proposed PDAE model.

calculated from its a-quantile gf and (1 — a)-quantile q} -
Here, « e [0,0.5] and p = 1 — 2. Therefore, the esti-
mated (p x 100) percent confidence interval I? from the above
distribution f(x;) can be represented by (3).

1 =[] = [ 0] ®

where, x7 , and x{;, are the lower and upper bounds of the
normalized measurement x; at time f, respectively.

Therefore, given an input x;, the (p x 100) percent con-
fidence interval If can be calculated from the distribution
function f(x;) and the pre-defined coverage probability p.

C. Probabilistic Deep Autoencoder

The PDAE framework we propose is a multilayer neural
network to extract the features and then reconstruct the input
upper and lower bounds of the statistical data intervals. It
consists of an input layer, multiple hidden layers, and an out-
put layer. The framework of the proposed PDAE model is
shown in Fig. 1. The M-layer PDAE model is formulated as
follows.

First layer L;: The first layer is a data pre-processing
layer based on the pre-estimation model in Section II-B. The
objective of the first layer is to refine the original normal-
ized data using the KDE-estimated lower and upper bounds
of the normalized measurement. The input Xiup(f) of this
layer is the normalized original data. That is, Xiupu () = x;.
The activation function consists of the pre-defined coverage
probability p and the KDE-estimated distribution function
f(x(1)) obtained from (2) with respect to the input. The out-
put of the first layer consists of the lower bound xf‘t and
upper bound xf;‘r of x;, along with the original normalized
value x;.

To take advantage of as many features in dataset, the fea-
tures of the past D time periods are also considered. Thus, the
input of the first hidden layer is Xin(f) = [X1,X] ;. X[/ .- -,
XD, xir_D,xf;‘t_D]T, as shown in Fig. 1.
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Hidden layer L,,: With the input x,,(f, k), the output y,, (t, k)
of the mth encoding layer in the kth iteration can be calculated
from (4) and (5).

Yt k) = Sm(Won (k)X (1, k) + b (K)) 4)

The corresponding output of the (M-m)th decoding layer is

IY—m(E k) = gm(Wr_m(K)xp_m(t, k) + bpr_m(K))  (6)
Xp—m(t, k) = YM—m—1(L, k) @)

where, s(-) and g(-) are the activation functions; w and b are
the weights and bias of each layer, respectively.

Output layer Lpy: Output the reconstructed values of
xin(f), represented by yu(t, k) = Xin(f, k) = [X:(k), J‘cf‘t(k),
52 oy p R B 3 T

e cost function J(k) of the formulated model includes
the mean square error, the Ly regulation term Qyeign [7], the
sparsity term Qgparsity [7], and the dispersion regulation term
Qdfspersion-

N
1 2
J(k) e, E ||xin(t) — Xin(1, k)”z +A- Qweight +18 * Qsparsity
N t=1

=2y A Qdispemion (8)

where, Qispersion 18 @ penalty term for Xin(t, k) falling out-
side the estimated confidence intervals, which is calculated
from (9). If Xiy(t, k) falls outside the estimated confidence
interval If , the dispersion term will be larger than Xi,(%, k)
falling into the interval.

N D 2
Qdispersion = Z Z[ [Zif—d (k) — xf.,t—d - ng.r—d]

t=1 d=0

T [ZEL,;_d(k) - xg,r—d I xﬁa‘_d]z

Z
+ [ﬁU,!—d(k) = xf,,r—d = xf!,:—d] ] ©)

Solving the parameters using a gradient method, we can
obtain the reconstructed values of xi, (f), represented by Xin (1),
as shown in Fig. 1. %, 37 , and X7; , are the reconstructed values
of x;, x] , and x7 ,, respectively.

If the normalized measurement x; falls out of the recon-
structed interval, it is an outlier. If x; is an outlier or missing
value, its estimated possible range is [X Lt .if;_r].

Since D historical measurements are utilized, the proposed
model is designed for scenarios with discrete and a limited
number of consecutive outliers or missing values. However, the
method can be applied indirectly in scenarios including more
consecutive outliers or missing data points by preprocessing
the raw data by disrupting the data sequence.

III. NUMERICAL STUDY

Simulated power system measurements are utilized to verify
the effectiveness of the proposed PDAE model. Outliers with
a uniform distribution in the measurements are simulated.

Fig. 2 provides the reconstructed intervals with a cover-
age probability p = 40% which are marked with black solid
lines. Obviously, the reconstructed intervals have good cov-
erage of the replaced values of the outliers. In this figure,
only one outlier escapes the detection. The outlier detection
accuracy is 99.24%. We also analyze the outlier detection
accuracy sensitivity of the proposed PDAE model with respect
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Fig. 2.  Outlier detection and 40% coverage interval reconstruction with
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Fig. 3. Accuracy sensitivity of the proposed PDAE model with respect to
different coverage probabilities.

to different coverage probabilities in Fig. 3. It demonstrates
that the proposed PDAE model has good accuracy when the
interval coverage probability p € [25%, 80%]. Because if p
approaches 0, the reconstructed interval may be too narrow,
in which case more normal values may be detected as out-
liers. Vice versa, if p approaches 1, the reconstructed interval
may be so wide that more outliers will be detected as normal
values.

Three benchmark outlier detection methods including
z-score, DBSCAN, and iForest are utilized to verify the
performance of the proposed PDAE method. The outlier detec-
tion results of the proposed PDAE method and the benchmark
methods are shown in Fig. 4. The results show that DBSCAN
and the proposed PDAE model outperform z-score and iFor-
est models, while PDAE has a better performance in detecting
outliers scattered on the margin of normal values. To verify
the stability of all the benchmark methods, the average accu-
racy of four methods corresponding to 10 random tests are
respectively presented in Table I. The results demonstrate that
the proposed PDAE method is more accurate than the other
benchmarks.

In this paper, we utilize 20000 samples in the training pro-
cess to get a better balance in outlier detection accuracy and
training time. The training time of the proposed model is
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TABLE I
AVERAGE ACCURACY OF DIFFERENT OUTLIER DETECTION
METHODS FOR 10 TESTS
PDAE | z-score | DBSCAN | iForest
Average Accuracy (%) | 98.19 85.37 96.86 93.10

less than 7 mins using MATLAB 2018b in a computer with
2.5 GHz, 8 GB of RAM and an Intel Core i5 CPU processor.
Therefore, it can be utilized in online detection by updat-
ing the model every 7 mins or less time with more powerful
computers.

IV. CONCLUSION

A probabilistic deep autoencoder (PDAE) is proposed in
this paper, in which nonparametric estimated distributions
are utilized to construct the uncertainty intervals of measure-
ments in the first layer of neural networks. Deep autoencoder
structures are formulated based on the nonparametric esti-
mated uncertainty intervals of the measurements. Outliers
can be accurately detected with the proposed PDAE model.
The reconstructed intervals can provide good uncertainty
estimation to substitute outliers in the measurements.
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