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A B S T R A C T

Although spatial heterogeneity of soil properties, topography, and climate is commonly incorporated into eco-
hydrological models, the spatial and temporal variability in plant functional traits is typically overlooked. The
objective of our study is to evaluate the impact of trait parameter variability on modeled ecohydrological
processes. We implemented a model-data fusion approach to constrain spatiotemporally dynamic parameters in
plant functional traits at two desert shrubland sites located along a topographic and climate gradient in the
Mojave Desert. Our results showed that the estimates for specific leaf area and rooting depth for the broadleaf-
evergreen-shrub plant-functional-type showed spatial variability, with lower specific leaf area and deeper
rooting depth found at the low elevation site. We also found that the specific leaf area estimates changed over
time at both sites in response to water stress, but with different sensitivities, possibly depending on species and/
or climate. The spatial variability in trait parameter estimates was greater than temporal variability and played a
more important role in accurately simulating ecohydrological processes, but including the temporal variability
in specific leaf area further improved seasonal predictions. In simulations forced by future climate projections
under the Representative Concentration Pathway 4.5 (RCP 4.5) and 8.5 (RCP 8.5) greenhouse gas emissions
scenarios, spatial variability in trait parameters impacted predictions of both carbon and water fluxes, while
temporal variability in trait parameters resulted in predictions of higher ecological function and water use
efficiency. The higher water use efficiency led to improved ecohydrological function in simulations under RCP
4.5, but it showed little capacity for buffering intensive water stresses under the more pessimistic RCP 8.5
scenario, indicating that with spatiotemporally variable trait parameters, the impact on predicted ecohy-
drological processes depends on the climate projections. Overall, our modeling results prompt further field-based
examination of temporal and belowground trait variability in desert shrublands, and they raise the question of
how combined spatiotemporal variabilities of multiple traits may support ecohydrological function under water
stress.

1. Introduction

Ecological and hydrological processes are strongly coupled through
complex biophysical and biogeochemical functions at multiple spatial
and temporal scales, and this coupling is critical for understanding
ecosystem resilience and vulnerability (Rodriguez-Iturbe et al., 1999;
Wagener et al., 2010). On the one hand, water flow drives and controls
plant physiological properties and plant community composition and
distribution. On the other hand, vegetation plays a key role in reg-
ulating the water cycle through canopy interception, transpiration, and
influence on surface properties (Chapin et al., 2002). Ecohydrological
models have been developed to describe the coupled interactions be-
tween vegetation dynamics and hydrological processes (Rodriguez-

Iturbe, 2000; Chen et al., 2015). In addition to abiotic hydrological
processes, these models incorporate vegetation modules to describe
biophysical processes (canopy interception and evapotranspiration)
(e.g., Abbott et al., 1986; Wigmosta et al., 1994; Liang et al., 1994), and
some also represent plant biochemical processes (e.g., photosynthetic
fluxes), physiological growth (e.g., changes in leaf area index), and
dynamic changes in plant-type distribution (e.g. Band et al., 1993).

Previous ecohydrological investigations reveal that plant-water in-
teractions exhibit spatiotemporal heterogeneity due to variability in
climate, terrain, and vegetation type (Grayson et al., 1997; Mohanty
and Skaggs, 2001; Waring and Running, 2010). To address this, most
ecohydrological model implementations take in spatially distributed
inputs of meteorological time series, soil hydraulic parameters, and
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vegetation properties (e.g. Band et al., 1993; Wigmosta et al., 1994;
Oleson et al., 2010). For representing vegetation properties, a major
complication is the daunting number of vegetation species globally
(Alton, 2011). To help make the problem more tractable, the concept of
plant functional types (PFTs) was developed to represent main eco-
systems (e.g. Oleson and Bonan, 2000; Bonan et al., 2002). Different
model grid cells can be assigned different PFTs, and in more process-
based models, the different grid cells can have different simulated
carbon fluxes and states (e.g., vegetation carbon stock) that change over
time. The major simplification is that all species assigned to a particular
PFT are assumed to share the same, static set of plant parameters over
time to represent plant functional traits, which are key characteristics
controlling plant growth, reproduction, and survival under different
environmental conditions (van Kleunen and Fischer, 2007).

While convenient, this PFT-based modeling approach ignores ob-
servations that environmental variations may cause trait variations
within one PFT that can be even larger than average trait differences
between PFTs (Kattge et al., 2011). Aboveground functional traits have
been found to vary spatially in correlation with temperature (Reich and
Oleksyn, 2004), radiation (Niinemets 2007; Serbin et al., 2014), and
rainfall (Castro-Díez et al., 1997; Schulze et al., 2006; Gouveia and
Freitas, 2009; Gotsch et al., 2010; Mclean et al., 2014). Belowground
trait variability is less well-studied compared to aboveground traits, but
a few studies also report strong interactions between belowground
traits (e.g. root traits) and spatially variable temperature (Zadworny
et al., 2016) and water availability (Schenk and Jackson, 2002). Al-
though less extensively documented than spatial trait variability, tem-
poral trait variability can be comparable in magnitude (Serbin et al.,
2014), and it has been found to represent a “plasticity” that reflects
adaptations and evolution in response to environmental changes. A
clear example is seasonal or drought-driven phenology, which directly
causes temporal changes in physiological (e.g. photosynthetic capacity)
(Grassi et al., 2005; Muraoka et al., 2010), morphological (e.g. leaf
thickness) (Fullana-Pericàs et al., 2017), and phenological (e.g. flow-
ering time) traits (Belanger et al., 1995; Zhang et al., 2007; Yang et al.,
2016). Major trends in leaf phenology are captured to some degree in
most ecohydrological models, but most other plant traits are re-
presented by temporally constant parameters. This ignores findings that
plants can also adapt to seasonal drought by modifying root char-
acteristics (e.g. root depth; Marron et al., 2002), the carbon allocation
scheme (e.g. root to shoot ratio; Smirnoff, 1998), and leaf morpholo-
gical structure (e.g. specific leaf area; Nouvellon et al., 2010) – changes
that can result in slower growth rate but improved water use efficiency.
Over longer time periods, functional trait plasticity may also acclimate
to temperature change (Smith and Dukes, 2013) and resources limita-
tion (Reich et al., 2014).

Despite the growing recognition of plant trait variability, it is still
unclear to what degree current constant-parameter PFT-based models
are biased in their simulations of ecohydrological processes, nor how
these biases may affect our ability to predict future changes in coupled
carbon and water cycles. Some recent studies explicitly incorporated
spatial trait variability into ecohydrological models using statistical
methods (Verheijen et al., 2013; Ali et al., 2015; Butler et al., 2017),
and they demonstrated that model simulations were sensitive to trait
variability. However, much remains unknown about the drivers of trait
variability: correlations between trait variability and climatic variables
are relatively weak (Wright et al., 2005; Moles et al., 2014; Šímová
et al., 2018). Focusing on under-characterized temporal trait varia-
bility, previous work by Liu and Ng (2019) presented a new framework
for constraining temporally dynamic trait parameters. In an im-
plementation of a Mojave Desert shrubland site, they found estimates of
the leaf trait parameter specific-leaf-area (SLA) to be temporally dy-
namic in response to water availability, allowing greater simulated
water use efficiency than with a temporally constant parameter.
Prompted by this finding that temporal trait parameter variability could
impact simulations of coupled plant-water conditions (as represented

by water use efficiency), the current study builds upon that work with
the goal of evaluating how different characteristics of trait variability –
spatial versus temporal – may affect ecohydrological process simula-
tions, and whether these variabilities could have implications for pre-
dicting ecohydrological vulnerability or resilience of desert shrublands
with models. Focusing on two study sites spanning a climate and terrain
gradient in a Mojave Desert watershed, we applied a model-data fusion
approach (Raupach et al., 2005; Liu and Gupta, 2007) to address the
following questions: (1) How do the spatial and temporal variability in
estimated trait parameters compare in this watershed? (2) Which type
of trait variability - spatial versus temporal - plays a more important
role in accurately simulating ecohydrological processes? (3) How does
the spatiotemporal variability in trait parameters affect our predictions
of ecosystem response to future climatic change?

2. Method

2.1. Overview

To investigate how spatial and temporal variability in plant trait
parameters affects simulated ecohydrological fluxes and states, we
conducted three model-data fusion experiments that statistically use
observations to estimate model parameters and their uncertainties for
two sites along a topographic and climate gradient in the Mojave
Desert. The first experiment (“E1”) followed the standard constant
parameterization approach, in which all functional traits shared iden-
tical plant parameter values within one PFT. Correspondingly, a model-
data fusion approach was applied where observations from the two sites
were used to estimate a single set of plant trait parameters that applied
identically to both locations. In contrast, the second experiment (“E2”)
acknowledged that there could be spatial differences in plant trait
parameters between the two sites. In this experiment, the model-data
fusion framework was implemented separately at each of two different
study sites to generate different plant estimates at each location. The
third experiment (“E3”) further allowed trait parameters to have tem-
poral variability. It used the previously developed stochastic model-
data fusion approach from Liu and Ng (2019) to constrain potential
temporal patterns in plant trait parameters at each of the two study
sites. A schematic flow chart depicting the three parameterization ex-
periments is shown in Fig. 1. We then simulated the ecohydrological
fluxes and states for the two sites under future climate projections from
the Representative Concentration Pathway 4.5 (RCP 4.5) and 8.5 (RCP
8.5) greenhouse gas (GHG) emissions scenarios (van Vuuren et al.,
2011) using the parameter estimates derived from the three experi-
ments.

2.2. Study sites

With the strong link between plant function and water availability
and less complexity in vegetation composition, desert shrublands are
relatively ideal for investigating spatiotemporal variability in trait
parameters and their response to environmental stressors. We selected
two desert shrubland sites, “Kelmet” (860 m.a.s.l.) and “Globe”
(1250 m.a.s.l.), located at a distance of 13 km from each other in Kelso
Valley in the Mojave National Preserve, southeastern California, USA
(Fig. 2a). As the two sites have different climatic and geological con-
ditions as well as similar vegetation types but distinct species compo-
sition, they enable us to test our hypothesis that in response to en-
vironmental changes, plant functional traits within a PFT may exhibit
spatiotemporal variability, and that these should be represented in
ecohydrological models. Detailed information about the Kelmet site, as
well as a description of previous work in Kelso Valley, can be found in
Liu and Ng (2019). The Globe site was instrumented with a Hobo
weather station (Onset Computer Corporation, Bourne, MA) that pro-
vided hourly precipitation, air temperature, and relative humidity
measurements from 2005 through 2010. The model also requires solar
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radiation, wind speed, and air pressure data; these were taken from
Kelmet, the closest fully instrumented location, with solar radiation
values decreased by 50 W/m2 when precipitation occurred at Globe but
not Kelmet. To generate a longer meteorological time series that is re-
presentative of Globe, we extended the record back to 1 January 1961
using regional data (see Section S1 in Supplementary Information for
details), similar to the reconstruction approach for Kelmet (Liu and Ng
2019).

In Kelso Valley, prominent rainfall occurs in the winter season with
occasional convective storms in the summer. Reconstructed meteor-
ological forcing time series from 1961 to 2010 indicate that the higher
elevation Globe site is cooler and wetter (annual average temperature:

18.4 °C and precipitation: 291 mm/year) than the lower elevation
Kelmet site (annual average temperature: 20.1 °C and precipitation:
103 mm/year) (Fig. 2b). Also, younger, coarser, and more homo-
geneous soils are present at the lower elevation Kelmet site compared to
the Globe site (Miller et al., 2009). At the Kelmet site, 15% of the
ground is covered by the broadleaf evergreen shrub Larrea tridentata,
with the co-dominant drought-deciduous shrub Ambrosia dumosa, cov-
ering about 5%. Vegetation at the Globe site is more diverse, with
Prunus fasciculata and Ambrosia eriocentra as the major shrubs present
(see Section S2 in Supplementary Information for more details); overall,
the broadleaf-evergreen-shrub and broadleaf-deciduous-shrub PFTs
cover about 8% and 12% of the ground at Globe, respectively. Although

Fig. 1. Schematic flow chart for the three parameterization experiments. Calibration data include leaf area index (“LAI”) and soil moisture (“SM”) at the Kelmet site
(indicated with rounded rectangles) and the Globe site (indicated with ovals). The Model-Data Fusion method is carried out using different implementations of the
Ensemble Kalman Filter (“EnKF”) with the CLM 4.5 ecohydrological model. Outputs include estimates of soil and plant trait parameters (“param”).

S. Liu and G.-H.C. Ng Journal of Hydrology 588 (2020) 125088

3



the plant species are different between the sites, most are categorized as
broadleaf evergreen shrub or broadleaf deciduous shrub PFTs. This
means that under the current PFT-based model paradigm, identical
broadleaf evergreen shrub and broadleaf deciduous shrub parameters
would be used for the two sites. In this study, we examine whether plant
trait parameter estimates exhibit spatiotemporal variability at the two
sites that affect ecohydrological process predictions. To use as model
constraints on plant trait and soil hydraulic parameter estimates, soil
moisture at 15 and 35 cm soil depths were measured at both sites from
2 July 2007 to 31 December 2010 using Hobo soil moisture probes
(Onset Computer Corporation, Bourne, MA) (Kelmet observations were
described in Ng et al., 2015), and 1-km, 8-day resolution leaf area index
(LAI, ratio of the total surface area of all leaves to the ground area
below) retrieval from Moderate Resolution Imaging Spectroradiometer
(MODIS) (Myneni et al., 2002) were compiled over that period at both
sites.

2.3. Ecoyhdrological model

We used the Community Land Model version 4.5 (CLM4.5) (Oleson
et al., 2010) to simulate coupled soil moisture and leaf area index (LAI,
ratio of the total surface area of all leaves to the ground area below).
CLM4.5 consists of multiple land surface processes including surface
radiation transfer, energy/water balance, soil and snow hydrology, and
plant physiology, as well as carbon–nitrogen cycling, mostly using
process-based methods. Specifically, the hydrological processes re-
presented in the model include interception, canopy through-fall, in-
filtration, evaporation, transpiration, surface runoff, subsurface drai-
nage, vertical soil moisture flux through vadose zone soil, and
groundwater discharge and recharge. The model also determines
changes in vegetation states (carbon and nitrogen pools in various plant
compartments) based on simulated ecosystem processes such as pho-
tosynthesis and respiration. CLM 4.5 requires hourly meteorological
forcing data (air temperature, humidity, rainfall, and radiation), soil
texture for its 10 computational layers down to a 3.8 m depth, and
percent cover for the model's pre-set PFTs. The broadleaf evergreen
shrub and broadleaf deciduous shrub PFT parameterizations in CLM
were developed to represent shrubs in arid and semiarid regions in the
world, including deserts in southwestern U.S. (Zeng et al. 2008).
CLM4.5 requires inputs for meteorological values, including air tem-
perature, precipitation, radiation, air pressure, and humidity, which we

provided at an hourly frequency. An interpolation module within CLM
4.5 further downscaled the meteorological data for the model’s half-
hourly computational time-stepping (Oleson et al., 2010).

It should be noted that recently, some ecohydrological models have
further incorporated plant hydraulics (water transport within the plant)
(e.g., CLM5 (Lawrence et al., 2018)) and/or plant demography (evo-
lution of plant age distribution) (see review by Fisher et al., (2018)),
which are likely capable of providing a more accurate representation of
the ecohydrological response to climate variability. However, such
model approaches require many parameters that are highly uncertain,
currently posing obstacles to their widespread use. In this study,
prompted by the growing observations of leaf trait variability (Kattge
et al., 2011), we chose to focus on leaf traits as well as other traits
already included in common ecohydrological models, without in-
troducing plant hydraulics or demographic modules. Our approach can
be extended in the future to further consider parameters for models that
include such modules.

2.4. Model-data fusion approach for parameter estimation

We use the ensemble Kalman Filter (EnKF) method (Evensen, 1994)
to estimate plant trait parameters in the CLM4.5 model based on ob-
servations. Although the method was originally developed for esti-
mating model states (i.e., variables simulated by the model), we use the
“augmented state” extension, with which model parameters can also be
estimated (Evensen, 2009). EnKF has been commonly used in hydro-
logical applications (Reichle et al., 2002; Moradkhani et al., 2005; Liu
and Gupta, 2007; Reichle et al., 2008), and more recently also in eco-
logical studies (Raupach et al., 2005; Williams et al., 2005; Wang et al.,
2009; Luo et al., 2011). The basic idea of EnKF is that observations are
used to constrain the model over a sequence of “assimilation cycles”
that cover observational times. One assimilation cycle comprises two
steps: a model “forecast” step, in which an ensemble of model runs are
carried out to represent initial model information and its uncertainty,
and a model “analysis” step, which uses the following equation to
constrain (or “condition”) the model using an observation at time t (yt):

= + −X X K y HX( ),t
a

t
f

t t
f

where

= +
−K P H HP H R( )t

f T
t
f T 1

Fig. 2. Study sites in the Mojave Desert watershed (a); right figures shows the monthly mean precipitation and temperature from 1961 to 2010 at the Kelmet (lower
elevation) and Globe (higher elevation) sites (b).
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is known as the “Kalman gain.” Xtf and Xta are vectors of model state
variables at time t that includes states and parameters, with the “f”
superscript indicating the forecast state (before the observation con-
straint) and the “a” superscript indicating the analysis state (after the
observation constraint). H is the function that determines the re-
lationship between model states and observation data. To represent
uncertainties, Ptf is the forecast error covariance matrix and is de-
termined from the ensemble of model runs, and Ris the observation
error covariance matrix. The forecast step in the assimilation cycle at
time t+ 1 step uses the analysis vector Xta at previous time step (time t)
as the initial state; the assimilation cycle evolves until the final time
step of available observational data.

We used two different implementations of EnKF that were pre-
viously presented in Liu and Ng (2019). Both implementations included
two computational passes of the EnKF for the whole observational
period (from t = 0 to T) to help resolve inconsistencies that can arise
between state and parameters estimates when using Kalman filter type
methods with strongly nonlinear models. Experiments E1 and E2 uti-
lized the “static” implementation of the two-pass EnKF from Liu and Ng
(2019), which treats parameters as constant in time and consists of a
relatively straightforward extension of the standard EnKF over two
passes to constrain uncertainties. Experiment E3 used the “stochastic”
implementation of the two-pass EnKF, which was developed by Liu and
Ng (2019) to constrain temporally dynamic parameterizations of plant
functional traits and to identify potential trait variability. The main way
that the stochastic implementation of the EnKF differs from the stan-
dard static implementation is that instead of using only the final
parameter estimate at the last time step of the calibration period, we
focus on the time-varying parameter estimates over the entire time
period, and this enables us to identify how trait parameters co-vary
with environmental conditions. More implementation details can be
found in Liu and Ng (2019). Liu and Ng (2019) showed that the new
stochastic implementation can uncover temporal trait variability, and
its implementation at the Kelmet site yielded parameter time series
estimates that were correlated with soil water stress. A regression-based
parameterization based on this correlation allowed probabilistic pre-
dictions of trait variability and therefore the impacts on ecohy-
drological processes at Kelmet.

Similar to Liu and Ng (2019), we assumed in this study that model
uncertainty arises due to uncertainties in eight plant parameters (Table
S1); here, we further considered uncertainties in the following soil
hydraulic properties to account for the effect of different soil conditions
between the two study sites: the moisture retention curve exponent B,
saturated hydraulic conductivity Ksat , saturated matric potentialΨsat and
saturated volumetric soil moisture content θsat . In CLM4.5, these para-
meters are used for calculating the unsaturated hydraulic conductivity
and moisture retention curve. In all experiments, including E3, soil
hydraulic parameters were treated as static in time. The initial dis-
tribution of plant trait parameters, prior to any constraint on observa-
tions, was adopted from Liu and Ng (2019), where three of the plant
trait parameters were derived from the global plant trait database TRY
(Kattge et al., 2011) with lognormal distributions, and the other five
plant parameters, which are generally not found in TRY, were assumed
to follow the uniform distributions obtained from White et al. (2000)
(Table S1). It should be noted that LAI is a prognostic state variable in
CLM 4.5 instead of an input parameter/states in many other land-sur-
face models. The initial distributions of soil hydraulic parameters, prior
to any constraint on observations, were assigned based on the method
from Ng et al. (2014). The MODIS LAI and soil moisture measurement
at 15 cm and 35 cm depths were used for the observational constraints
in the EnKF implementation.

2.5. Downscaled future climate data under the RCP scenarios

We obtained the new statistically downscaled climate model da-
taset, Multivariate Adaptive Constructed Analogs version 2

meteorological data (MACAv2-METDATA), for our future model pre-
dictions. This data product contains daily downscaled meteorological
variables for the conterminous U.S. at 4-km resolution under the RCP
4.5 and RCP 8.5 scenarios. GHG emissions peak around the year 2040,
and then stabilize in RCP 4.5, while GHG emissions continue to rise
throughout the 21st century in RCP 8.5. The meteorological variables in
MACAv2-METDATA were statistically downscaled from global climate
model (GCM) data from the Coupled Model Intercomparison Project 5
(CMIP5, Taylor et al. 2012). Here, we used MACAv2-METDATA derived
from the Geophysical Fluid Dynamic Laboratory (GFDL)-ESM2M output
(Delworth et al., 2006), including 2 m air temperature, precipitation,
shortwave radiation, and vapor pressure deficit.

We then disaggregated the daily meteorological forcing data from
MACAv2-METDATA into 1-hourly time steps using the open source
toolbox MEteoroLOgical observation time series DISaggregation Tool
(MELODIST) (Förster et al., 2016). We tested the disaggregation algo-
rithms using observed meteorological time series (from 1961 to 2009)
for the Kelmet and Globe sites and found that they produced a rea-
sonable reconstruction of diurnal features at those sites (Fig. S1).

3. Results and discussion

3.1. Temporal and spatial variability in trait estimates

In all experiments, soil hydraulic parameters were assumed to be
spatially variable at the two sites to account for the observed difference
in soil properties with elevation (Bedford et al., 2009). Within a site, the
soil parameter estimates using the two-pass EnKF were similar across all
three experiments, which is unsurprising because the experiments dif-
fered only in their treatment of plant parameters. Results for E1 in Fig. 3
show that the higher elevation Globe site has greater values of B, Ψsat ,
andθsat, but lower Ksat , compared to the lower elevation Kelmet site.
These soil parameter estimates are consistent with having younger and
coarser soils deposited at lower elevations in the Mojave Desert (Rundel
and Gibson, 2005; Bedford et al., 2009; Miller et al., 2009).

Fig. 4 shows the plant trait estimates from the second (last) EnKF
pass for the broadleaf-evergreen-shrub PFT in each of the three ex-
periments at the two sites. Note that although only the final time
parameter estimate is used as the result in the static EnKF im-
plementations in E1 and E2, we show the entire observational period in
order to facilitate comparisons with the E3 result, which uses the full
time series of the temporally varying parameter estimate as the result.
Although all trait parameters for the broadleaf-evergreen-shrub PFT
were relatively well-constrained in the first pass of EnKF (the ranges of
parameter estimates were all reduced compared with their prior dis-
tributions, see Fig. S2), SLA and rootb (representing rooting depth)
parameters for the broadleaf-evergreen-shrub PFT had the greatest
uncertainty reduction in all experiments. When spatial variability was
allowed in traits in E2 and E3, we found a higher SLA and lower rootb
estimate at the Globe site compared to at the Kelmet site. In addition, in
E3, estimated SLA for the broadleaf-evergreen-shrub PFT at both sites
showed clear temporal dynamics using the stochastic implementation
(coefficient of variation of 0.25 and 0.19 for Kelmet and Globe site,
respectively), providing model evidence for SLA variability over time in
the broadleaf-evergreen-shrub PFT; none of the other plant parameters
showed appreciable temporal variability (coefficient of variation <
0.1), including SLA for the broadleaf-deciduous-shrub PFT.

Although direct trait observations were not available at our study
sites to validate the results of our model-data fusion approach, our
variable SLA and root depth estimates are consistent with data from
other studies. Spatial variations in plant functional traits have been
widely observed across global biomes, and plant functional type and
climate gradient are identified as the main drivers for the trait diver-
gence (Wright et al. 2005; Kattge et al., 2011; Osnas et al., 2018). In
particular, SLA variability has been found to be an indicator of plant
adaptation to climate variability, and the plant with high plasticity in
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SLA tend to have high resource-use efficiency under varying environ-
ment conditions (Niinemets, 2001; Poorter et al., 2009). Consistent
with our estimate of smaller SLA at the hotter and drier Kelmet site,
decreases in SLA with lower water availability have been observed
across space in evergreen species (Wright et al., 2001; Schulze et al.,
2006; Gouveia and Freitas, 2009), grasses (Oyarzabal et al., 2008; Meng
et al., 2015), and crops (Pandey et al., 1984; Craufurd et al., 1999). Dry
climate favors small, thick, and dense leaves (low SLA), and this
adaptation allows plant to increase water use efficiency (Niinemets,

1999). As for rooting depth, regional climate, topography, and local soil
properties can be potential drivers for its variations (Stone and Kalisz,
1991; Fan et al., 2017). Again consistent with our estimate of greater
rooting depth (larger rootb) at the Kelmet site, deeper roots are gen-
erally found in coarser and younger soils, which are characterized by
vertically homogeneous soil texture and low field capacity (Sperry and
Hacke, 2002; Schenk and Jackson, 2005). Hamerlynck et al (2002)
found that Larrea tridentata, the main vegetation species at the Kelmet
site, can utilize both deep and shallow roots to maintain continuous

Fig. 3. Boxplots showing the distributions
for estimated soil hydraulic parameters for
the Kelmet (red) and Globe (blue) sites over
the depth intervals of Z1: 0–1.8 cm, Z2:
1.8–4.5 cm, Z3: 4.5–9.1 cm, and Z4:
9.1–380 cm. Boxes represent the inter-
quartile range (from 25th to 75th percen-
tile), whiskers represent the extreme values
(within 1.5 times the inter-quartile range
from the upper or lower quartile), and cir-
cles represent outliers.

Fig. 4. Plant parameters (SLA and Rootb) estimation at the Kelmet site using the three parameterization methods (E1, E2, and E3).
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photosynthetic activity, presumably by extracting shallow water during
wet seasons and deeper water stores during droughts.

Less is known about temporal trait variability compared to spatial
variability, likely because of challenges in repeat measurements. This
gap prompted previous work by Liu and Ng (2019), which found SLA
parameter estimates for the broadleaf-evergreen-shrub PFT exhibited
temporal pattern and the variation was significantly correlated with
available soil water at the Kelmet site. Here, our results show that the
temporal variation of SLA estimates associated with water availability
(in terms of soil wetness factor, β) also occurs at the high elevation
Globe site (Fig. 5), indicating that the potential for water-stress driven
SLA spatiotemporal variability in the broadleaf-evergreen-shrub PFT
could be widespread across the watershed. Though less studied than
spatial variability, both biotic (e.g. leaf aging, Reich et al., 1991; Laclau
et al., 2009) and abiotic factors (e.g. radiation, Serbin et al., 2014) have
been found to be correlated with temporal SLA variability across a
range of biomes (Dawson and Bliss 1993; Abrams 1994; Reich et al.,
1997; Damesin et al., 1998; Wilson et al., 2000; Damesin and Lelarge,
2003; Xu and Baldocchi, 2003; Liu and Stützel, 2004; Grassi et al.,
2005; Misson et al., 2006; Ma et al., 2011; Nouvellon et al., 2010;
Dwyer et al., 2014). During drought seasons, plants commonly decrease
SLA by modifying their anatomical tissues for less water requirement
(Poorter et al., 2009). In addition to changes in leaf-scale SLA, water
availability may also alter the plot (meters) and ecosystem (10′s of
meters)-scale SLA. In water-limited environments, drought events can
trigger the selective fall of older high-SLA leaves or the dormancy of
high-SLA species, resulting in lower average SLA values. For evergreen
species that experience seasonal drought, previous studies (Misson
2006; Gratani and Varone, 2006; Nouvellon et al., 2010) found that SLA
can be about 20%–28% lower during drought periods, which is con-
sistent with our finding that soil water availability can be the driver for
SLA temporal variation at the water-limited study sites. In addition to
changes within individual plants, these seasonal shifts in SLA may also
reflect changes in community-level distributions, as different species
have been noted to exhibit unique relationships between SLA and water
use strategy (Castro-Díez et al., 2000; Hassiotou et al. 2010; Ma et al.,
2011; De la Riva et al. 2016; Peguero-Pina et al. 2017).

3.2. Comparison of variability in estimated SLA between sites

3.2.1. Temporal variability in estimated SLA
To examine how the temporal variability in estimated SLA compares

across sites, we followed the approach of Liu and Ng (2019) and built
linear regression relationships for each of the two sites based on the
estimated parameters from E3 with two explanatory variables:

−SLA t( 30), SLA at the previous 30-day time step and β̄, the soil

wetness factor averaged over the preceding 30 days. Fig. S3 shows that
both regression models can well match the SLA estimation for the
Kelmet and Globe sites, respectively. Note that the regression coeffi-
cients of the two equations are different (see the caption of Fig. S3 for
the statistical significance in their differences), with higher sensitivity
of SLA to soil water availability and a lower auto-correlation coefficient
value at the Kelmet site. Assuming that this difference in the estimated
SLA sensitivity between sites captures actual conditions, it may reflect
the different species compositions at the two sites. Varying sensitivity of
SLA in response to water stress within one PFT has been reported in
previous experimental studies (Anyia and Herzog, 2004; Ramírez et al.,
2012; Yin et al., 2004; Nielsen et al., 2019). For example, Liu and
Stützel (2004) found that water stress decreased the SLA in four vari-
eties of vegetable amaranth but with different sensitivity. In a semi-arid
Mediterranean ecosystem, Ramírez et al (2012) conducted a manip-
ulative drought field experiment with broadleaf evergreen shrubs and
reported greater SLA response to water availability in species with
higher SLA. In contrast to Ramírez et al (2012), however, we found
higher SLA sensitivity in Kelso Valley to occur at the site with lower
estimated SLA for the broadleaf-evergreen-shrub PFT (Kelmet) rather
than higher SLA (Globe). It is possible that only two years of indirect
coarse-resolution LAI and spatially sparse soil moisture data in our
study may be inadequate for fully constraining the actual SLA sensi-
tivity to soil water availability. Another possibility that has not been
previously explored is that climatic differences between sites may
trigger varying levels of trait sensitivity to environmental stressors, in
addition to species type. Further research into trait variability across
species and climates is needed. Overall, our results suggest that
moisture-driven temporal trait variability may occur widely across
desert shrublands, but that their implementation in models could re-
main a challenge due to unique location and/or species-specific re-
lationships.

3.2.2. Spatial versus temporal variability in estimated SLA
The little attention paid to temporal trait variability relative to

spatial prompted us to next evaluate how the two types of variability
compare in our results for the E3 experiment. We found that the spatial
differences in estimated SLA across the two sites were greater than the
temporal range from 1961 to 2010 at both sites (Table 1). The positive
relationship between temporally variable SLA estimates and simulated
soil wetness found above (Fig. 5) suggests that wetter and cooler con-
ditions at Globe compared to Kelmet could be driving the similarly
positive spatial gradient in estimated SLA variability based on water
availability at the two sites. The apparent SLA sensitivity to water
availability (calculated by the change in SLA per change in soil wetness
factor in the model) is in fact much greater over space than over time at
each site; the spatial difference in soil wetness is even smaller than the
temporal difference, even though the spatial difference in SLA is greater
than the temporal difference. This indicates that estimated SLA changes
more in between the study sites than would be expected due to the

Fig. 5. Statistical relationship between estimated SLA and 30-day averaged soil
wetness factor at the Kelmet and Globe sites.

Table 1
Comparison of the apparent SLA sensitivity to water availability (in terms of the
soil wetness factor β), over space (between Kelmet and Globe) and over time
(from 1961 to 2010), for simulations from the spatiotemporal test E3. For
calculating spatial calculation, we used the difference in long-term average SLA
and soil wetness factor between the two sites, and for the temporal calculation,
we used the minimum to maximum range in 30-day average SLA and soil
wetness factor over the 50-year simulation period at each site.

Spatial Temporal

Kelmet Globe

SLAΔ (m2/kg C) 0.00337 0.00221 0.00289
βΔ 0.08 0.51 0.48
SLA βΔ /Δ 0.0421 0.0043 0.0060
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water stress driven temporal variability inferred at each site over the
40-year modeling period.

The greater spatial compared to temporal gradients found in our
SLA estimates suggests that actual spatial trait variability may be more
prominent than temporal, and this may be attributed to a couple of
reasons. First, as suggested for the difference in temporal SLA char-
acteristics at the two sites, distinct species compositions between the
sites could exhibit divergent SLA characteristics (Niinemets, 2001;
Poorter et al., 2009). Second, it is possible that persistent differences in
climate and soil wetness conditions between the two sites have led to a
greater change in SLA over space than is physiologically possible over
the shorter, seasonal times scales of climatic changes within a site. An
implication of our findings is that although traits can vary both spatially
and temporally, easier-to-measure spatial variability characteristics
should not be directly substituted into models to represent temporal
variability. Verheijen et al (2015) recently developed regression models
to build statistical relationships between plant trait parameters and
climatic conditions using a global trait database and then used these to
predict the anually dynamic trait parameters.

3.3. Ecohydrological role of spatial and temporal trait parameter variability

Comparing simulation results using parameter estimates from E1,
E2, and E3 provides insights into the relative importance of spatial
versus temporal variability in parameters for simulating ecohy-
drological states. The parameter estimates from the E1 experiment
performed worse than those from E2 and E3 in reproducing the ob-
served LAI and soil moisture at both the Globe and Kelmet sites (Figs. 6
and 7, respectively). When allowing for spatial variability of trait
parameters in the E2 parameterization, simulated soil moisture im-
proved at both sites, and simulated LAI matched the time-averaged LAI
observations. However, the simulated LAI using trait parameter esti-
mates from E2 failed to capture the seasonal LAI variations at both sites.
When the temporally dynamic SLA estimates from E3 were in-
corporated in the model, simulations tracked LAI observation dynamics
much more closely than the simulation that only accounted for spatial

variations in parameters (E2) (Fig. 6).
Simulations could be expected to show a more substantial change

with the addition of spatially variable SLA compared to temporally
variable SLA, given the greater spatial difference in estimated SLA than
temporal (Table 1). Indeed, Table 2 quantitatively shows that the
greatest improvement (increase in the coefficient-of-correlation (R2)
and decrease in root-mean-square-error (RMSE)) in LAI and soil
moisture simulations occurred when spatial variability of trait para-
meters was allowed in CLM 4.5 (E1 to E2). Note that E1 already took
into account differences in soil and climate conditions between the
sites, and so E2 results point to the need for including spatial variability
in plant trait parameters to capture both ecological and hydrological
states. Further incorporation of temporally variable trait parameters in
E3 led to a subtler improvement in model performance (Table 2),
suggesting that ecohydrological process simulations were more sensi-
tive to the spatial variability of trait parameters. However, compared to
the results in E3, most of the LAI ensemble uncertainties with tempo-
rally constant traits in E1 and E2 failed to include the LAI observations
during the observation period at both sites (Fig. 6). This corroborates
findings at the lower elevation Kelmet site by Liu and Ng (2019) and
demonstrates the benefit of using temporally variable SLA for robustly
capturing LAI seasonal variation across a soil and climate gradient, such
that model ensemble predictions encompass actual conditions.

Overall, the simulations using the three sets of parameter estimates
demonstrate that both spatial and temporal variability in the SLA and
rooting depth parameters impact LAI and soil moisture simulations over
the observation period. This is consistent with the ecological functions
of the traits represented by these parameters: SLA is a key ecophysio-
logical trait affecting photosynthetic capacity and plant biomass (Reich
et al., 1997; Niinemets, 1999; Antúnez et al., 2001; Wright et al., 2004;
Quero et al., 2006), and rooting depth is a trait that is central to de-
termining ecosystem resilience to water stress and long-term coupling
between carbon and water cycles (Nepstad et al., 1994; Oliveira et al.,
2005; Maeght et al., 2013).

Fig. 6. Comparison of calibrated simulated LAI and MODIS LAI in the three parameterization schemes (E1, E2, and E3).
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3.4. Future scenario simulations with trait parameter variability

Using a 40-year historical period at the Kelmet site, Liu and Ng
(2019) showed that simulations with temporally variable SLA in the
broadleaf evergreen shrub PFT had greater simulated water use effi-
ciency compared to the case of time-static SLA. Here, we further eval-
uated how the combination of spatial and temporal trait parameter
variability impacts simulated ecohydrological fluxes, and we further

assessed how that variability might affect predictions of coupled carbon
and water fluxes under future climate change. To do this, we extended
experiments E1, E2, and E3 by implementing their respective parameter
estimates in simulations forced with RCP climate scenarios from 2011
to 2100 for the two sites. We first focused on the most pessimistic cli-
mate scenario, RCP 8.5, in order to bracket our predictions of ecohy-
drological changes with the various trait parameter inputs. For E1 and
E2, the estimated parameters at the final time step were used to run
CLM 4.5; for E3, the regression equations for time-varying SLA for the
two sites (Fig. S3) were incorporated into CLM 4.5.

Fig. 8a, 8b, 9a, and 9b show the projections of climate forcing under
the RCP 8.5 scenario at Kelmet and Globe. At both sites, temperature
was predicted to rise and precipitation to decrease from 2011 to the end
of 21st century with RCP 8.5. As a result, LAI was predicted to decrease
at both sites for all experiments (Fig. 10 and Table S2). Specifically,
across all experiments, LAI was estimated to decrease about 50% at
Kelmet and 30% at Globe, with the more dramatic drop at Kelmet re-
sulting from the more severe (warmer and drier) climatic conditions
projected at that low elevation site. It should be noted that the LAI
predictions in 2011 are higher than in the calibrated simulation period

Fig. 7. Comparison between calibrated simulated soil moisture (SM) (kg/m2) (grey line) and in-situ observations (red) in the E1, E2 and E3 parameterization
schemes.

Table 2
Model coefficient-of-correlation with observations (R2) and model root mean
square error (RMSE) for leaf area index (LAI) and soil moisture (SM) among the
three calibrated simulations (E1, E2, and E3) at the Kelmet and Globe sites.

Kelmet Globe

E1 E2 E3 E1 E2 E3

LAI (m2/m2) R2 0.18 0.19 0.29 0.12 0.14 0.17
RMSE 0.12 0.07 0.05 0.23 0.16 0.11

SM (kg/m3) R2 0.58 0.62 0.61 0.51 0.57 0.57
RMSE 3.76 1.04 1.05 4.71 1.45 1.43
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(from 2007 to 2010) at both sites, due to biases in the disaggregation
scheme and possibly also in the climate model. In particular, Fig. S1
shows an over-representation of small rain events by the disaggregation
scheme. Further, over-simulation of drizzle is a well-recognized pro-
blem in numerical weather prediction and climate models (Wood,
2005; Sun et al., 2006; Wyant et al., 2007; Hannay et al., 2009;
Stephens et al., 2010). While this raises uncertainties in the absolute
raw CLM outputs generated with climate model forcings, the simula-
tions are nonetheless useful for examining relative trends over the
century and relative differences among the three different experiments.

Demonstrating the sensitivity of future predicted ecohydrological
fluxes to trait parameter variability at Kelmet and Globe, Figs. 8 and 9
respectively compare the simulated annual LAI, transpiration, gross
primary productivity (GPP), and water use efficiency (WUE, defined as
GPP divided by transpiration) under the RCP 8.5 scenario for the three
experiments. Although the RCP 8.5 ensemble time series for the three
experiments show overlaps, accounting for spatial differences in the
broadleaf-evergreen-shrub trait parameters (E2 and E3 compared to E1)
resulted in consistently lower estimated mean SLA at Kelmet (Fig. 4),
and correspondingly lower simulated LAI, transpiration, and GPP
(Fig. 8 and Table S3), while it led to the opposite effect at the Globe site

(generally higher SLA, LAI, transpiration, and GPP predictions) (Figs. 4
and 9 and Table S3). Unsurprisingly, including spatially variable trait
parameters led to greater predicted differences in ecohydrological
variables between the two sites, compared to the default para-
meterization (E1) (Table S3). Figs. 8 and 9 further demonstrate that the
ensemble simulations using the temporally variable SLA estimates (E3
experiment) not only generated higher LAI seasonal variability due to
time-varying SLA (especially at Kelmet, Fig. S4), but interestingly, they
also show slightly higher long-term average LAI results than the si-
mulations with only spatially variable SLA estimates (E2) (4 to 7%
higher). The slightly higher LAI prediction with temporally dynamic
SLA in E3 (compared to E2) corresponds to greater long-term average
predicted GPP and WUE at both sites (insets in Figs. 8 and 9 and Table
S3). Overall, our model results suggest that spatial variability in plant
trait parameters can affect predictions of ecological and hydrological
function (appreciable changes in GPP and transpiration), while tem-
poral variability impacts may be more limited to the prediction of
ecological responses (appreciable changes in GPP but not in tran-
spiration, see insets in Figs. 8 and 9 and Table S3).

Our model-based evidence for trait variations affecting predicted
ecohydrological processes across Kelso Valley is consistent with

Fig. 8. (a) and (b): Projected temperature and precipitation at the Kelmet site under the RCP 8.5 scenario; (c)-(f): Comparison of annual predicted LAI, transpiration,
GPP and WUE among the base (blue, E1), spatial (red, E2) and spatiotemporal (black, E3) simulations at Kelmet under the RCP 8.5 scenario. The small inset figures
summarize the long-term average (2011–2099) annual variables based on the three simulations. The error bars show the ensemble standard deviation for the long-
term (2011–2099) mean.
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observations from other studies. Gouveia and Freitas (2009) assessed
intra-specific variation in a range of leaf attributes and leaf carbon
isotope concentration in an evergreen tree Quercuset suber along a
rainfall gradient and demonstrated that the changes in leaf thickness
associated with water availability strongly affected the water use effi-
ciency. Maxwell et al. (2018) measured the intrinsic water use effi-
ciency (iWUE) (defined as the ratio of net carbon assimilation to sto-
matal conductance) along a 1500 m elevation gradient with a wide
climatic range in a montane forest system and found that iWUE highly
depends on the dominant evergreen forest species, leaf trait char-
acteristics, and stage of soil development. Although these observational
studies reported only spatial gradients in leaf traits, iWUE may also
reflect temporal changes, because iWUE is derived from leaf carbon
isotope values, which record accumulated plant conditions over time
(Wieser et al., 2018). It should be noted that different species may have
distinct strategies in response to environmental stressors, resulting in
varying effects on ecohydrological processes. For example, some species
with lower SLA have thicker leaves that support greater photosynthesis
per area (De la Riva et al. 2016; Peguero-Pina et al. 2017), while other
species with lower SLA have increased leaf density and reduced me-
sophyll conductance and photosynthesis (Castro-Díez et al., 2000;
Hassiotou et al. 2010; De la Riva et al. 2016). Therefore, although
evergreen species tend to show higher WUE with lower SLA, this

relationship may not extend across different ecosystems. In terms of
nutrients, trait variations have been shown to influence nitrogen cy-
cling at the watershed scale due to differences within one PFT in litter
quality (e.g. the ratio of carbon to nitrogen) and nitrogen uptake rates
(Williard et al., 2005; Dawson et al., 2005). These previous studies
suggest that simulated ecohydrological responses to trait parameter
changes in our model may reflect actual sensitivities. Further research
is needed to corroborate findings with field data and to evaluate the
generality of the spatiotemporal trends found for Kelso Valley.

3.5. Sensitivity to future climate scenario

To assess the impact of trait parameter variability on model pre-
dictions under a range of climate scenarios, we conducted additional
simulations using the RCP 4.5 climate projections and compared results
against those using the RCP 8.5 climate inputs. In RCP 4.5, temperature
peaked around 2040 and then stabilized, following GHG emissions
(Figs. S5a and S6a). Although both RCP scenarios showed that pre-
cipitation decreases at the end of 21st century, the decrease in RCP 4.5
was generally less severe (Figs. S5b and S6b). Qualitatively, compared
to the case with only spatial trait variability, including spatiotemporal
SLA variability had similar effects on the predicted ecohydrological
variables as in the RCP 8.5 results – higher predicted time-averaged

Fig. 9. (a) and (b): Projected temperature and precipitation at the Globe site under the RCP 8.5 scenario; (c)-(f): Comparison of annual predicted LAI, transpiration,
GPP and WUE among the base (blue, E1), spatial (red, E2) and spatiotemporal (black, E3) simulations at Globe under the RCP 8.5 scenario. The small inset figures
summarize the long-term average (2011–2099) annual variables based on the three simulations. The error bars show the ensemble standard deviation for the long-
term (2011–2099) mean.
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LAI, GPP, and WUE, but approximately the same transpiration (Figs. S5
and S6 and Table S4).

Importantly, although both climate scenarios show that predicted
WUE improves with temporally variable trait parameters (compared to
the case with only spatial variability) (Tables S3 and S4), under the RCP
8.5 climate change projection, this has a far less effect on predicted LAI
decline over 90 years (see similar percent change in LAI for all RCP 8.5
experiments in Fig. 10 and Table S2). The reason is that under RCP 8.5,
the higher WUE simulations with temporally variable SLA (in E3
compared to E2) corresponded to only a small boost to the change in
GPP over the 90-year period (boost of 0.2 gC/month at Kelmet and
Globe, respectively, Table S2) compared to the initial GPP values (about
5.1 and 7.5 gC/month at Kelmet and Globe, respectively, Table S2), due
to continuously warming and drying conditions. In fact, the 90-year
relative declines in average LAI, GPP, and transpiration predictions
under RCP 8.5 are very similar across all three experiments (Fig. 10 and
Table S2), indicating that the magnitude of ecohydrological change
simulated over the century with the most pessimistic climate scenario
will overwhelm any potential benefits (higher WUE) that may be af-
forded by spatiotemporally variable trait parameters. In contrast, with
the milder RCP 4.5 climate change projections, the improved WUE
predictions with temporally variable SLA (E3, compared to only spa-
tially variable traits in E2) correspond to a larger effect on predictions
of relative LAI and GPP change over 90 years (Fig. 10). For example, at
the Kelmet site, in the RCP 4.5 scenario, the higher WUE predictions
with temporally variable SLA can appreciably buffer the simulated GPP
(and LAI) decline from a 9.8% (and 14.7%) decline with only spatially
variable SLA to a 5.6% (and 8.6%) decline with spatiotemporally
variable SLA (Table S5 and Fig. 10). The simulation comparison be-
tween the two scenarios indicates that when considering spatiotempo-
rally variable trait parameters, the benefits for ecohydrological pro-
cesses depend on the long-term climate projections. Under the more
pessimistic RCP 8.5 climate projections, our simulations suggest that

the trait variability represented by our trait parameter estimates may
not be able to keep pace with the rates of warming and drying in our
desert shrubland sites. It should be noted, however, that over smaller
climatic variabilities, such as those that occur on the time scale of
seasons up to a few years, improved WUE with spatiotemporal trait
parameters can result in notably higher GPP, even under RCP 8.5. For
example, from the year 2073 to 2075 in the RCP 8.5 scenario, GPP at
Globe jumps up from 1.5 to 6.0 gC/mon (factor of 4) with spatio-
temporally variable trait parameters, compared to only from 1.5 to 4.7
gC/mon (factor of about 3) with constant traits.

4. Summary and conclusion

By using remotely sensed LAI and in-situ soil moisture measure-
ments, we implemented a model-data fusion approach that constrained
spatiotemporally variable parameters representing plant functional
traits of shrubs in a Mojave Desert watershed. We found that the
broadleaf evergreen shrub PFT at a lower elevation study site had lower
SLA (26%) and deeper rooting depth (17%) estimates than at a higher
elevation study site. In addition, we demonstrated that the SLA esti-
mates co-varied over time with soil water availability at both sites, but
with different levels of sensitivity to water stress. Spatial variability in
the estimated SLA parameter was found to be 26% greater than the
temporal variability in the watershed. Incorporating the spatially
variable trait parameters into the CLM 4.5 ecohydrological model was
more important than representing temporally variable parameters for
correctly capturing time-averaged LAI and soil moisture observations
and simulating ecohydrological fluxes/states; however, temporally
variable SLA parameters were needed to simulate the observed sea-
sonality in LAI.

Our model-based findings in a desert shrubland suggest that the
global bias of spatial plant trait observations compared to temporal
observations may be somewhat justified, if spatial trait variability

Fig. 10. Comparison of percent change in time-averaged, predicted LAI, transpiration and GPP between the two RCP scenarios at the Kelmet and Globe site. The
percent change in LAI is calculated as (Average2090-2100 – LAI2010-2000)/ LAI2000-2010 × 100%.
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generally exceeds temporal, as found in our estimates. However, results
at our two study sites suggest that temporally variable trait parameters
could be widespread, and incorporating them into models may be
needed for capturing seasonal responses to environmental stressors that
could improve predicted ecohydrological efficiency (as represented by
WUE). Unfortunately, our parameterization results showed that spatial
and temporal trait variability exhibit distinct characteristics, and con-
sequently, more commonly observed spatial trait variability should not
be directly adopted to also represent under-observed temporal varia-
bility in traits.

Our estimates of variable SLA and root-depth are generally con-
sistent with field-based studies of trait variability in other settings, in-
cluding previous findings that spatial and/or temporal trait variability
may represent adaptations that benefit ecological function. This in-
dicates that our model-based results may provide insights into actual
ecohydrological conditions in desert shrublands. Our modeling work
prompts additional measurements of plant traits such as SLA and root-
depth over both time and space across different shrub types. Such field
data can be used to test hypotheses raised by our model results, such as
whether differences in climate, terrain, and species in desert shrublands
could be driving spatial trait variability, and whether SLA may exhibit
sensitivities to water availability that are greater over space than time,
possibly due to inter-species or climatic differences, or to time-lags in
adaptations.

RCP future climate scenario tests showed that spatially variable trait
parameters impacted predictions of both carbon and water fluxes, while
additional temporal variability in SLA generated higher predictions in
LAI, GPP, and WUE. Increased WUE predictions with added temporal
trait variability resulted in discernible ecohydrological benefits under
the milder climate scenario (RCP 4.5), but simulations under the most
pessimistic greenhouse gas emissions scenario (RCP 8.5) showed that
this increase in WUE predictions was insufficient for appreciably buf-
fering against more extreme stresses. In particular, 90-year ecohy-
drological projections in the study watershed under RCP 8.5 showed
30–50% declines in LAI regardless of trait parameter variability.

Our plot-scale model findings about variable plant traits prompt
further extensions of our method to regional and global simulations of
coupled carbon and water dynamics. Our method can be implemented
to constrain incomplete trait distributions from general plant databases
such as TRY using global remote sensing data (e.g. LAI from MODIS as
in the current study, and possibly soil moisture from SMAP (Entekhabi
et al., 2010) in future work) along with any other available observa-
tions at different spatiotemporal resolutions. This approach has the
potential to effectively and efficiently build statistical relationships
between the data-constrained traits and biotic and abiotic factors in a
targeted region or even at the global scale.
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