


A. Trajectory optimization for humanoid locomotion

Starting from the seminal work of Kajita et al. [1], TO has

become the dominant approach to generate motions for hu-

manoid robots. This work uses the linear inverted pendulum

model (LIPM) [2] and an infinite horizon linear quadratic

program (named preview control) to generate center of mass

(CoM) trajectories given the predefined footstep locations.

This work has been extended in different ways, adding

inequality constraints on the ZMP [3], adaptive footstep

locations [4], and friction cone constraints [5]. However, this

model can only describe the underlying dynamics of walking

on flat terrain with zero angular momentum around the CoM.

For more complex motions such as walking on uneven

terrains and multi-contact scenarios, researchers use the

centroidal momentum dynamics [6]. Although this model

describes the unactuated part of the robot dynamics exactly

[7], it is nonlinear and renders the corresponding optimiza-

tion problem non-convex [8], [9], [10]. At the same time,

in the centroidal dynamics model, constraints on the state

(CoM position, velocity and angular momentum) as well as

the control (centroidal wrench) are a function of full body

motion and joint torque constraints. In fact, this problem is

inherent in the use of any simplified model.

One systematic way to find this constraint set is to learn

the feasible set in the centroidal space from extensive full-

body simulations [11]. However, this approach needs too

many simulations for learning all the constraints and it

does not cover all the uncertainties in a real simulation

or experiment (e.g. uncertainty in contact locations and

timings, or change in the environment). Even if one could

use the full body model of a humanoid to take all the robot

constraints into account exactly in a computationally efficient

manner [12] (which makes the problem high-dimensional

and non-convex), the models will always fail to capture

perfectly reality and uncertainty in the models of robot and

environment can still make the solution brittle.

B. Bayesian optimization for humanoid locomotion

Bayesian optimization is a form of black-box optimization.

Black-box and derivative-free optimization has a long history

in numerical optimization as well as in statistics [13]. In

robotics, BO has been applied to different problems, e.g.

locomotion of a quadruped parameterized by a walk engine

[14], locomotion of a hexapod [15], balancing of an inverted

pendulum [16], finding task priority in inverse dynamics

for controlling dual-arm manipulators [17], and scheduling

contact for a one-leg hopper [18]. For example, [16] applied

BO to tune performance cost of an unconstrained infinite-

horizon LQR for controlling an inverted pendulum on an

experimental setting. Contrary to [16], here we employ BO

to tune the cost of a constrained trajectory optimization for

a humanoid robot where the cost trades off performance

against robustness.

Application of BO to humanoid locomotion is limited

to simplified cases such as planar bipeds [19], [20], [21].

In [19], the authors employed BO to learn a parametrized

walking policy of a small-sized planar biped robot optimizing

eight parameters: four control signals to the knee and hip

joints as well as four parameters of a finite state machine.

[20] applied BO to a more complex model of a planar biped

robot, where they used 16 neuromuscular policy variables to

parameterize walking of a planar biped robot. The parameter-

ization comprises of 10 variables for stance phase feedback

gains and 6 parameters for swing phase. They applied their

approach to a simulation of a 7-link robot walking on uneven

as well as sloped surfaces. They applied a generalized version

of this approach on the simulation and experiment of the

biped robot ATRIAS [21]. Both [19] and [20] mentioned

that only a very low percentage of the parameter space leads

to a feasible gait, which shows the difficulty of generating

feasible motions for humanoid robots using only black-

box optimization. Contrary to these works, we resort to

using constrained gradient-based trajectory optimization to

generate feasible trajectories and use Bayesian optimization

on top of it to make the trajectories robust by automatically

tuning the cost weights. Also, [22], [23] used BO to find the

parameters of a whole-body controller for a humanoid robot,

yielding robust performance for the control. Our work can be

seen as complementary to these work, because we propose

to use BO to find the best cost weights of TO for a given

whole-body controller.

C. Contribution

The main contribution of this paper is to propose a

framework that combines gradient-based and gradient-free

optimization for generating robust humanoid locomotion.

This framework uses a simplified model and deterministic

proxy constraints for the TO problem, where the cost terms

trade off performance against robustness. Writing the prob-

lem in this way, we could have different cost weights that

push solutions away from the boundaries of the constraint

sets. Then we use the full-body simulation of a humanoid

robot (with disturbances and uncertainties) and exploit BO

to efficiently find a set of TO cost weights that achieve the

task at best while satisfying the full robot constraints. Fig. 1

shows a block diagram of the proposed framework.

II. OPTIMAL CONTROL PROBLEM

A. First Stage : Convex Trajectory Optimization for Walking

This section describes the TO approach [5] that we use

for generating CoM trajectories given a desired walking

velocity. Note however that in principle any other algorithm

could be used. In [5] walking is formulated as a trade off

between three cost terms: desired velocity tracking, foot tip-

over avoidance, and slippage avoidance.

min....
Xi,X

f
i

N
∑

i=1

α‖Ẋi − Ẋref
i ‖2 + β‖Zi − Zref

i ‖2 + γ‖µi‖
2

s.t. µi ∈ friction cone , ∀i = 1, ..., N.

Xf
i ∈ reachable area , ∀i = 1, ..., N.

Zi ∈ support polygon , ∀i = 1, ..., N. (1)

where X = [cx, cy]
T is the horizontal CoM position.

Z = [zx, zy]
T is the zero moment point (ZMP) position



and µ is the required coefficient of friction (RCoF). Ẋref

is the desired walking velocity, Zref is the desired ZMP,

which is taken at the center of the foot to maximize the

feasibility margins. As shown in [5], (1) can be written

as a quadratic program (QP), assuming the linear inverted

pendulum dynamics and polyhedral approximation of friction

cones. This program yields consistent CoM trajectory and

foot locations for a given desired walking velocity. Then,

we use polynomials to generate the swing foot trajectories.

Depending on the cost weights α, β, γ, we get different

CoM trajectories. For example, if β = γ = 0 the optimizer

generates a feasible CoM motion, while trying to achieve the

desired walking velocity. However, ZMP and RCoF might

reach their boundaries. As a result, even if the whole-body

controller can track this CoM trajectory, a slight disturbance

could cause a fall (or infeasibility in MPC setting). On the

other hand, with high values of β, γ the optimizer generates

CoM trajectories and foot locations leading to high margins

for ZMP and RCoF, at the expenses of the velocity tracking.

As a result, it is crucial to find the optimal values of these

weights, which generate enough constraint margins while

achieving the task at best.

B. Second Stage: iLQG for generating whole-body torques

In this section, we use an iterative linear quadratic Gaus-

sian (iLQG) controller to map the desired CoM and feet tra-

jectories from the first stage to the whole-body torques, while

penalizing the full-body constraints [24]. iLQG linearizes

the dynamics and computes a second-order approximation of

the cost around a nominal trajectory. In the backward pass,

feedforward and feedback terms are obtained, accounting for

box constraints on the control [25]. Finally, convergence of

the cost is achieved by applying a line search [24]. Note

that we use iLQG as a whole-body controller with a short

horizon of 0.4 s to track the desired trajectories from the

first stage. The humanoid robot has 27 DoFs, it is 1.37 m

tall and weighs 41 kg. Abdomen, shoulder and ankle joints

are 2-DoF, while elbows, knees and pelvis are 1-DoF and

hips are 3-DoF joints.

The cost function in our problem is comprised of the

following terms [26]:

• Quadratic costs of feet and COM velocity tracking

errors.

• Smooth-abs function [24] to track the desired feet and

COM positions.

• Quadratic costs to minimize joint torques, joint veloc-

ities, angular velocity of the pelvis, linear velocity of

torso in vertical direction, and finally angular velocity

of the feet around vertical direction.

• Quadratic costs to penalize the deviations between the

orientation of the pelvis, torso and the two feet.

• Quadratic costs to penalize deviations of the Z axis of

torso and both feet from the global vertical direction.

• Quadratic costs to penalize deviation of the global

height of the torso from the fixed value used for the

LIPM.

Fig. 2: Screenshots of simulation of a 27 DoF humanoid

robot, (top) without disturbance (bottom) with lateral push

III. HYPER-PARAMETER TUNING VIA BAYESIAN

OPTIMIZATION

A. Problem formulation for robust humanoid locomotion

We propose to close the loop in our system, i.e., we

formulate an overall optimization problem based on the

quantities in Fig. 1:

min.
δ

J(δ) :=
N
∑

i=1

‖Ẋ real
i (δ)− Ẋdes

i ‖
2 + λφ(hδ

N ),

s.t. Ẋ real
i (δ) is the output of simulation in Fig 1. (2)

δ = (α, β, γ) is the collection of the hyper-parameters used

in optimization problem (1). Ẋ real
i (δ) is the CoM velocity

obtained by solving the QP (1) and applying iLQG tracking

to the simulation of the robot full body with different

(unknown) disturbances. hδ
N is the CoM height at the final

time step, λ is a user-defined weight, φ(.) is a function used

to penalize falls, e.g. φ = max(|hδ
N − hdes| − threshold, 0).

In the next subsection, we detail how the optimization

problem (2) is solved using BO.

B. BO algorithm

We apply BO techniques that make use of Gaussian

processes (GP) to model the unknown process – the objective

function J in (2). The distribution of GP naturally contains

information about the uncertainty of J . Intuitively, BO trades

off exploration (high-variance) and exploitation (high-value).

This is achieved by maximizing an acquisition function

that captures this trade-off. An example of the acquisition

function is the upper (or lower)-confidence bound (UCB)

(cf. e.g. [27])

uUCB(x) = µ(x) + κσ(x), (3)

where µ(x) and σ(x), mean and standard deviation, are

computed by the current estimates of the Gaussian process

distribution. Intuitively, in the beginning, the algorithm ex-

plores where σ(x) is high. As we collected more data, σ(x)
decreases and the algorithm exploits good regions of the

objective function with high µ(x). We illustrate this effect

in Fig. 6.

For the BO problem we have used scikit-optimize1. We

used gp − hedge as acquisition function, which is a proba-

1https://github.com/scikit-optimize/

scikit-optimize



Algorithm 1 Pseudo code for Bayesian optimization

1: Given: A black-box function J for evaluation (without

analytical gradient), an acquisition function u (e.g. uUCB

in (3)).

2: Output: Current best minimizer δ∗ of J(δ)
3: Initialize with a dataset D = {(δi, yi)}i=1,2,..., best

objective value ybest = maxi yi
4: repeat

5: Find next query parameter δt by maximizing the

acquisition function u

δt = argmax
δ

u(δ|D).

This is carried out by a numerical optimization rou-

tine, e.g. L-BFGS.

6: Evaluate the objective function at δt

yt = J(δt).

If yt < ybest, set δbest ← δt, ybest ← yt
7: Add the new data point to the dataset

D ← D ∪ (δt, yt).

Update GP(µ(δ), σ(δ)) and the resulting acquisition

function u(δ|D).
8: until Computation budget reached.

bilistic combination of the UCB (3), expected improvement

and probability of improvement [28].

Algorithm 1 shows how problem (2) is solved in this

setting. It may be helpful to think of BO as using GP as

a surrogate for the unknown objective

y := J(δ) ∼ GP(µ(δ), σ(δ)),

where µ(δ), σ(δ) are respectively the mean and standard

deviation of the GP distribution evaluated at point δ. As we

obtain more data, the GP approximates the objective better.

Given the dataset D = {δi, yi}i=1,2,..., the GP distribution

at a new point δ∗ is computed using the formula:

µ(δ∗) = KT
∗
K−1y

σ(δ∗) = K∗∗ −KT
∗
K−1K∗, (4)

where K∗ = k(δ∗, δ), K = k(δ, δ),K∗∗ = k(δ∗, δ∗). The

notation δ denotes the vector of parameters already stored in

the data set, i.e., δ = (δ1, δ2, . . . ). k(x, x
′) is a kernel that

measures the similarity between x and x′. For example, it is

computed in one-dimension by

k(x, x′) = a exp

(

−
1

2b
(x− x′)2

)

,

where a, b are kernel parameters.

IV. RESULTS

To show the effectiveness of the proposed framework, we

present three scenarios in this section. In the first scenario,

we present a practical example that shows how the choice of

cost in the TO problem affects robustness and performance.

Then, in the second scenario we apply BO to the TO problem

with two cost weights and analyse how BO converges to the

optimal set of cost weights. Finally in the third scenario we

show how our approach can scale to cost functions with a

larger number of weights.2

A. Scenario 1: Walking with different cost weights

In this scenario, we show how the cost weights of the

TO problem (1) affect the performance of the robot dur-

ing walking in the presence of uncertainties. The desired

behaviour in this scenario is to start stepping with zero

walking velocity, then continue walking forward with the

desired velocity of vdes = 1m/s, and finally resume stepping

in place at the end of motion. In the first case, we set

the cost weights related to the ZMP and RCoF to zero

i.e. β = 0, γ = 0 and α = 1. As a result, the CoM

trajectory and footstep locations are computed using (1)

under ZMP and friction cone hard constraints. Although

there are several discrepancies between the simplified model

and the simulation environment (dynamics model, contact

model, etc.), the robot is able to achieve the task thanks to the

iLQG feedback controller, as shown in Fig. 3(a). However,

Fig. 5(a) shows that the ZMP generated by TO is on the

boundaries of the support polygon, which could lead to a

fall in the presence of external disturbances.

In the second case, we show the brittleness of the motions

obtained with β = 0, γ = 0. In this simulation, we exert a

lateral push Fd = 60N from ts = 4.9s to te = 5.1s to the

robot, which causes a fall with α = 1, β = 0, γ = 0 (Fig.

3(b), top; see also the supplementary video). However, by

setting β = 70, the robot is able to successfully walk (Fig.

3(b), bottom). In this case, adding a high ZMP cost moves

the desired ZMP trajectory from the boundaries (Fig. 5(b),

top) to the middle of the foot (Fig. 5(b), bottom).

In the third case, in order to show the effect of uncertainty

in the friction coefficient, we decrease the friction coefficient

in the simulation to 0.15, while in the TO we considered it

to be 0.4. In this case, with the same weight of the previous

case, the robot loses balance and falls down (Fig. 3(c), top;

see also the supplementary video), because the RCoF is

higher than the real friction coefficient (Fig. 4, top). However,

by increasing γ to 30 the RCoF is decreased (Fig. 4, bottom)

and the robot is able to walk without falling down (Fig.

5(c), bottom). This is achieved at the cost of decreasing the

step length (Fig. 5(c), bottom), which degrades the velocity

tracking (Fig. 3(c), bottom). In fact by increasing γ the step

length and walking velocity are automatically decreased to

decrease the RCoF (Fig. 4, bottom), which enables the robot

to finish the task without falling.

B. Scenario 2: Using BO to find optimal cost weights of TO

This subsection shows the application of BO (Section III)

to generate robust gaits in the presence of various distur-

bances. We set in this scenario α = 1 to create an incentive

2A summary of our humanoid simulations on different scenarios is avail-
able at: https://www.youtube.com/watch?v=iek_goPaF9w&

feature=youtu.be










