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Spin-1 Weyl point and surface arc state in a chiral phononic crystal
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The spin-1 Weyl point is formed by three bands touching at a single point in three-dimensional (3D)
momentum space, with two of the bands showing conelike dispersion while the third band is flat. Such a triply
degenerate point carries a higher topological charge ±2 and can be described by a three-band Hamiltonian. We
first propose a tight-binding model of a 3D Lieb lattice with chiral interlayer coupling to form the spin-1 Weyl
point. Then we design a chiral phononic crystal that carries these spin-1 Weyl points and special straight-type
acoustic Fermi arcs. We also demonstrate computationally the robust propagation of topologically protected
surface states that can travel around a corner or defect without reflection. Our results pave the way to the
manipulation of acoustic waves in 3D structures, and they provide a platform for exploring energy transport
properties in 3D spin-1 Weyl systems.
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I. INTRODUCTION

In the past decade, Weyl semimetals [1–3] have become
a research focus in the field of three-dimensional (3D) topo-
logical states, which are characterized by the touching of
two bands with linear dispersion in all directions of 3D
momentum space, namely the Weyl point. Weyl points behave
like monopoles of Berry flux in reciprocal space, which
carry a nonzero topological charge (or Chern number) [4].
Such topological invariants result in a robustness of the Weyl
points that are stable against small perturbations and cannot
be easily gapped. Previous research in Weyl materials has
demonstrated a variety of exotic phenomena, such as robust
surface states [1] and a chiral anomaly [5]. In parallel, Weyl
points have also been realized in other classic systems of
electromagnetic [6–10], acoustic [11–16], and stress waves
[17,18], leading to novel applications such as negative re-
fraction [14] and the collimation effect [15]. In addition to
a single Weyl point with a topological charge (±1), double
Weyl points carrying higher topological charges (±2), which
are formed by the degeneracy of two bands with quadratic
dispersion in a certain momentum plane, have also been
discovered [2,8,9,14,17].

Recently, a new type of triply degenerate point of topolog-
ical charge (±2), referred to as the spin-1 Weyl point [19], has
started to attract significant attention. It is formed by the linear
degeneracy of three bands having conelike dispersion with a
flat band located at the touching point. This can be described
by a simple three-band k·SHamiltonian with a spin-1 vector S
[19]. Spin-1 Weyl points have been theoretically predicted in
condensed-matter systems [19–22], cold atoms [23–25], and
then verified in real materials [26–30]. Yang et al. designed
and fabricated the first 3D phononic crystal with space group
P213 (No. 198) that carries the acoustic spin-1 Weyl point
[31]. They demonstrated experimentally the double Fermi
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arcs and topologically protected negative refraction of the
surface states. However, the unit cell employed is fairly com-
plicated with a nonsymmorphic structure. Also, the system
hosts both charge-2 threefold- and fourfold-degenerate points
in the Brillouin zone, where the wave propagation is affected
by both kinds of degenerate points. The question naturally
arises as to whether one could design a simple structure to
study the acoustic wave transport properties in 3D spin-1Weyl
systems.

In this paper, we realize the spin-1 Weyl points in a 3D
acoustic system. We start with a tight-binding model for a
Lieb lattice with chiral interlayer interaction. Previous studies
have shown that a 2D Lieb lattice [32], along with other
types of 2D lattices such as a T3 lattice [33] and a kagome
lattice [34], can form spin-1 Dirac points. We construct a 3D
Weyl structure by stacking up the 2D subsystems with the
help of the synthetic gauge flux, which is introduced by the
appropriate coupling in the third dimension [11]. We verify
that this 3D chiral Lieb lattice can support one pair of spin-1
Weyl points of topological charge ±2 in the first Brillouin
zone. The associated Fermi arcs and topological surface arc
states are also demonstrated in the proposed architecture.
The nearly straight Fermi arcs indicate that we can realize a
collimated and robust propagation of surface waves [15].

II. TIGHT-BINDING MODEL OF A 3D LIEB LATTICE

We begin with a tight-binding model of the 3D Lieb lattice
with chiral interlayer coupling, as shown in Fig. 1(a). The
unit cell has an in-plane lattice constant a and an out-of-plane
lattice constant H , containing three sites A (red sphere), B
(blue sphere), and C (green sphere). Therefore, we can write
the Hamiltonian of the tight-binding model in momentum
space as

H (k)=

⎡
⎢⎣

ε1 + γ 2tn1cos
( kya

2

)
2tn1cos

( kxa
2

)

2tn1cos
( kya

2

)
ε2 + 2tn4cos(kya) α + iβ

2tn1cos
( kxa

2

)
α − iβ ε2 + 2tn4cos(kxa)

⎤
⎥⎦.
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FIG. 1. (a) Schematic of the 3D Lieb lattice with chiral interlayer
couplings. (b) Illustration of in-plane short- and long-range intralayer
hoppings. (c) First Brillouin zone of the system. (d) 2D reduced
reciprocal kx-ky plane with fixed kz = 0. (e) Band structure of the
three-band Hamiltonian with purple and orange points indicating the
spin-1 Weyl points. (f) 3D dispersion surfaces near the spin-1 Weyl
points at theM and R points.

Here, ε1 stands for the on-site potential on A sites, while
ε2 denotes the on-site potential on B and C sites, α =
[tn2 + 4tccos(kzH )]cos( kxa2 )cos( kya2 ), β = 4tcsin(kzH )sin( kxa2 )

sin( kya2 ), and γ = 2tn3[cos(kxa) + cos(kya)]. tc represents the
interlayer hopping, while tni highlights the intralayer hopping.

Figure 1(b) provides more details on the definition of
different intralayer hopping parameters. Specifically, tn1 and
tn2 are the short-range hopping, which refers to the nearest-
neighbor (between A and B/C sites) and next-nearest-
neighbor (between B and C sites) hopping, respectively. In
this study, we introduce not only short- but also long-range
hopping to improve the accuracy of the tight-binding model.
To this end, we introduce tn3 (tn4), which stands for the long-
range hopping between A sites (B/C sites). The first Brillouin
zone and the reduced 2D reciprocal kx-ky plane are given in
Figs. 1(c) and 1(d).

Without loss of generality, we first consider a simplified
tight-binding model with only intralayer nearest-neighbor
hopping tn1 and chiral interlayer hopping tc. In Fig. 1(e),
we show a typical band structure of the tight-binding model
along the high-symmetry lines in the first Brillouin zone with

hopping parameters ε1 = ε2 = 0, tn1 = 1, and tc = 0.1. Evi-
dently, the three bands degenerate at the M point as indicated
by the purple point in Fig. 1(e). To investigate the topological
property of this triply degenerate point, we expand the general
form Hamiltonian around the M( π

a , π
a , 0) point, which gives

H (�k) = εS0 − tn1�kxS1 − tn1�kyS2 − 4tc�kzS3.

Here, ε = ε1 − 4tn3 = ε2 − 2tn4 is the eigenenergy of the
triply degenerate point, �k = (�kx,�ky,�kz ) is a small
k-vector deviating from the M point, S0 is the 3 × 3 unit
matrix, and S1, S2, S3 are three of the Gell-Mann matrices
given as [35]

S1 =
⎛
⎝
0 0 1
0 0 0
1 0 0

⎞
⎠, S2 =

⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠,

S3 =
⎛
⎝
0 0 0
0 0 −i
0 i 0

⎞
⎠.

Such a linearized Hamiltonian describes a spin-1 Weyl
point of topological charge +2, which is a natural general-
ization of the regular Weyl point [19,35]. Note that the triply
degenerate points exist only if the system parameters (ε1, ε2,
tn3, and tn4) satisfy the equation ε = ε1 − 4tn3 = ε2 − 2tn4.
This indicates that the spin-1 Weyl point in this model is
not guaranteed by the symmetry properties of the unit cell.
Instead, it is a result of accidental degeneracy and requires
very fine tuning of the system parameters, most importantly
the on-site potentials.

Near the degenerate point in Fig. 1(e), the first and third
bands have linear dispersion, while the second band remains
nearly flat, which is typical behavior of the spin-1 Weyl
point. Similarly, there exists another spin-1 Weyl point with
topological charge −2 at the corner of the first Brillouin zone
(R point). Figure 1(f) shows the 3D dispersion surfaces near
the two spin-1 Weyl points, which gives a better visualization
of the Weyl cones that interact with a nearly flat band in gray.

III. SPIN-1 WEYL POINT IN PHONONIC CRYSTAL

Although the tight-binding model is just a simple toy
model, it provides a keen insight into the physics and a
guideline for designing realistic phononic systems. Inspired
by the recent work on acoustic type I or type II Weyl points
[11,13,15,16], we design a chiral phononic crystal following
the stacking-up approach. Each layer of the structure can be
viewed as a 2D Lieb lattice that carries a Dirac point, which is
intersecting with a flatband. By introducing the appropriate
interlayer coupling, we can construct the triply degenerate
spin-1 Weyl point in 3D reciprocal space.

Figure 2(a) shows the unit cell of the structure with a lattice
constant a = 20mm in the xy plane. The unit cell consists of
a scattering pillar and a perforated plate base with slanted air
tubes. Figure 2(b) is a top view of the upper pillar, which con-

tains a cylinder (radius=
√

b2+t2
2 ) in the center and four wings.

The hollow channels (filled by air) between the neighboring
solid pillars form the in-plane acoustic waveguide in analog
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FIG. 2. (a) Schematic of the unit cell of the chiral phononic
crystal. (b) Top view of the upper pillar of the unit cell. (c) Lower
perforated plate base of the unit cell. (d) Distribution of the spin-1
Weyl points within the first Brillouin zone. (e) Bulk band struc-
ture of the phononic crystal in the reduced 2D reciprocal kx − ky
plane for fixed kz = 0, kz = π/2H , and kz = π/H . (f) Bulk band
structure along the MR direction. The results calculated by the full-
wave simulation in COMSOL and the long-range tight-binding model
are shown in (e) and (f) as solid black lines and dashed red lines,
respectively.

to the 2D Lieb phononic lattice. The wings have width L =
10mm and thickness t = 2mm. The distance between the
centerlines of the two parallel wings is b = 5mm. The colored
letters (A, B, andC) give us a rough mapping relation between
the in-plane waveguides and the tight-binding model shown
in Fig. 1(a). Figure 2(c) shows the perforated plate base. The
four purple regions represent the slanted air tubes that bring
the chiral interlayer couplings. These holes are generated by
sweeping a surface [shown in the Fig. 2(c) inset] in a spiral
manner for 90◦. The details of the intralayer and interlayer
waveguides are demonstrated in Appendix A. Both the upper
pillar and the base plate are of height hp = hb = 5mm, such
that the unit cell is of height H = 10mm in total in the z
direction.

The distribution of the spin-1 Weyl points in the first
Brillouin zone is shown in Fig. 2(d). As we can see, there
exists a spin-1 Weyl point with topological charge +2 at the
M point on the kz = 0 plane and a spin-1 Weyl point carrying
topological charge −2 located at the R point on the kz =
±π/H planes. The topological charges of the Weyl points

are numerically calculated by the Wilson loop method [36]
(see Appendix B for details). Considering that the Weyl points
at the M (R) points are shared by four (eight) neighboring
Brillouin zones, there is one pair of spin-1 Weyl points with
opposite charges (±2) existing in the first Brillouin zone.

To confirm the existence of the spin-1Weyl points, we con-
duct numerical simulations of the acoustic wave dispersions
using the commercial finite-element analysis (FEA) software
COMSOL MULTIPHYSICS. We show the computational results of
the frequency band structures of the unit cell on a 2D reduced
reciprocal plane for fixed kz = 0, kz = π/2H , and kz = π/H
in Fig. 2(e). For comparison, we also include the results based
on the long-range tight-binding model (dashed curves), which
are in excellent agreement with the FEA results. See
Appendix C for details, including the improvement of the
tight-binding model’s accuracy by implementing the long-
range model over the short-range one.

In Fig. 2(e), we observe that the first three bands of the bulk
dispersion diagram are degenerated at the M and R points.
While kz is different from 0 and ±π/H , the degeneracy at the
Weyl points is broken by the synthetic gauge flux introduced
by the chiral interlayer couplings. Such a trend can be ob-
served through the unit-cell band structure along the MR line
at the boundary of the first Brillouin zone [see Fig. 2(f)]. When
we fix kz = π/2H , the degeneracy is lifted, and two band
gaps merge between the first three bands. By evaluating the
rotational symmetry of the eigenmodes at the high symmetric
points in the reduced 2D Brillouin zone [37], we see that
the two band gaps are both of nonzero Chern number (−1),
which indicates that they are topologically nontrivial. Based
on the bulk-edge correspondence of topology, we expect to
see topologically protected localized modes at the boundary
of the system.

IV. SURFACE ARC STATES AND ACOUSTIC FERMI ARCS

To demonstrate the topologically protected, directional
surface arc states in the system, we construct a supercell
consisting of 20 unit cells. The strip is finite in the y direction
and has hard boundary conditions on the positive and negative
y ends. We apply periodic boundary conditions in both the x
and z directions. By fixing kz = π/2H and varying kx from
−π/a to π/a, we obtain the projected band structures in the x
direction, as shown in Fig. 3(a). We can observe that surface
arc states emerge in both of the nontrivial band gaps. The
red curves represent the modes that are localized at the top
ends, while the blue curves stand for the modes localized at
the bottom ends. Four localized eigenmodes corresponding to
the stars in Fig. 3(a) are plotted in Fig. 3(b). By looking at
the slope of the bands that represent the surface arc states, we
can determine the sign of their group velocities. We know that
the bottom-end (top-end) modes will propagate in the positive
(negative) x direction. Then the Fermi arc can be obtained by
looking at the equifrequency contour of the band structure of
the supercell in the 2D Brillouin zone spanned by kx and kz.
Here, the fixed frequency works as an equivalent Fermi energy
in the acoustic systems.

The equifrequency contours at f = 7.8 kHz (lying in the
first band gap) and f = 10 kHz (lying in the second band gap)
are plotted in Figs. 3(c) and 3(d), respectively. The colored
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FIG. 3. (a) Projected band structure of the supercell along the
x direction for fixed kz = π/2H . (b) Calculated eigenmodes of
surface arc states at 7.8 or 10 kHz corresponding to the stars in (a).
Color intensity represents the magnitude of acoustic pressure field.
Equifrequency contours at (c) f = 7.8 kHz and (d) f = 10 kHz,
respectively. The red (blue) lines represent the acoustic Fermi arcs
on the positive (negative) xz plane.

lines represent the acoustic Fermi arcs that connect two Weyl
points with opposite charges. Specifically, the red (blue) lines
stand for the surface Fermi arcs on the positive (negative)
xz plane. The gray regions represent the projected bulk bands.
As we can see, Fermi arcs exist in both band-gap regions,
implying that our structure can support unidirectional surface
states in multiple frequency bands. Also, the nearly straight
Fermi arcs suggest that the wave packages have group velocity
parallel to the x directions, which forms the collimation effect
of the surface waves.

We then construct an infinite system to verify the robust-
ness of the surface arc states against the defect and sharp
bend (Fig. 4). Such an infinite structure is periodic in the
z direction and has finite boundaries in both the x and y
directions. We introduce a 3 × 3 defect on both the right
and left boundaries. The top boundary is set to be radia-
tive so that the sound waves can leak out to the outside
environment, as marked by the green edge in Fig. 4. A
point source is located at the center of the bottom boundary
denoted by the red stars. For fixed kz = −π/2H and f =
7.8 kHz, we can see that the surface waves only travel in
the clockwise direction and can pass around the defect and
right angle corner without backscattering [see Fig. 4(a)].
If we set kz = +π/2H , the surface waves will travel to
the opposite direction [see Fig. 4(b)]. Similarly, the surface
arc states at f = 10 kHz are demonstrated and confirmed in
Appendix D.

FIG. 4. One-way propagation of the topologically protected sur-
face arc states at f = 7.8 kHz for (a) kz = −π/2H and (b) kz =
+π/2H . Color intensity represents the magnitude of the acoustic
pressure field.

V. CONCLUSION

In conclusion, a three-band tight-binding model of a 3D
Lieb lattice is introduced to predict the existence of the spin-1
Weyl points. Guided by the tight-binding model, we designed
a 3D chiral phononic crystal that carries spin-1 Weyl points
with topological charge ±2 in the first Brillouin zone. We
observed a special straight-type acoustic Fermi arc and the
collimated robust propagation of topological surface arc states
in the system. The key points of this work can be summarized
as follows:

(i) We propose a tight-binding model of a 3D Lieb lattice
with chiral interlayer hopping. In addition, we include both the
short- and long-range hopping terms, which ensures a deeper
understanding of the spin-1 Weyl points from the physics
aspect.

(ii) While most of the existing structures supporting Weyl
points and surface arc states are based on a woodpile- or
graphene-based design, our design explores a platform con-
sisting of square-shaped unit cells to study Weyl physics
in acoustic systems. Moreover, the unit cell is of simple
geometry and is designed with ease of assembly.

(iii) This study reports dual-band topologically protected
and collimated surface waves in the spin-1 Weyl structure.

The present results paved the way for manipulating acous-
tic waves in a 3D structure, which can be potentially extended
to other artificial systems of photonic lattices [38] and me-
chanical lattices [39].
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APPENDIX A: VIEWS OF THE FILLING
AIR IN THE UNIT CELL

In this Appendix, we provide more details of the filling air
in the unit cell. Figure 5(a) contains the oblique and top views
of the chiral interlayer air channels, which introduces the
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FIG. 5. Oblique and top views of (a) chiral interlayer air channels
and (b) intralayer acoustic waveguide. The colored letters and sur-
faces demonstrate the mapping relations between the real phononic
crystal unit cell and the effective tight-binding model. In (b), the gray
area represents the in-plane acoustic waveguide, while the white area
indicates the solid pillar.

synthetic gauge flux in the system. As we can see, all the top
holes rotate 90◦ in a spiral manner with respect to the bottom
holes. Figure 5(b) shows the in-plane 2D acoustic waveguide,
which is formed by the air between two neighboring perfo-
rated plates. The scattering pillars help to form an effective
2D Lieb lattice. Then, these neighboring 2D waveguides are
coupled by the interlayer air channels, thereby forming a 3D
chiral Lieb lattice.

FIG. 6. Evolution of the Wannier centers on the spheres enclos-
ing the spin-1 point. (a) Wannier centers for the first three bands near
the M point. (b) The same as (a) for the first three bands near the R
point.

APPENDIX B: CALCULATION OF THE CHERN NUMBERS
WITH THEWILSON LOOP METHOD

The Chern number (or topological charge) can be cal-
culated by integrating Berry curvature on a closed surface
enclosing a band degenerate point. Following the method in
Refs. [3,10,31], we numerically determine the Chern number
by tracking the evolution of the Wannier centers on a sphere
surrounding the spin-1 Weyl point using the Wilson loop
method [36]. The calculatedWannier centers on the horizontal
loops varying from the north pole to the south pole of the
enclosing sphere are presented in Fig. 6. As we can see in
Fig. 6(a), theWannier centers of the spin − 1Weyl point at the
M point for the first, second, and third bands shift by +4π , 0,
and −4π , respectively. This implies that such a spin-1 Weyl
point has a positive charge of +2. Similarly, by looking at
Fig. 6(b), we can conclude that there exists a spin-1 Weyl
point of charge −2 located at the R point in the first Brillouin
zone.

APPENDIX C: UNIT-CELL BAND STRUCTURE
CALCULATED BY THE TIGHT-BINDING MODEL AND

FULL-WAVE SIMULATIONS

In Fig. 7, we compare the frequency band structures of the
unit cell obtained by tight-binding models and the full-wave
simulations using COMSOL MULTIPHYSICS. The solid black
lines are the results of FEA simulations, which is the same as
those plotted in Figs. 2(e) and 2(f). The results of the sim-
plified (i.e., the short-range model with tn2 = tn3 = tn4 = 0)
and the full (i.e., long-range) three-band tight-binding model
are shown as blue dotted and red dashed lines, respectively.
The hopping parameters used in a tight-binding model of both
cases are determined by fitting the results with the results
of COMSOL full-wave simulations. As we can see in Fig. 7,
the simplified Hamiltonian (blue dotted line) only works
within a small range near the spin-1 Weyl point with the
fitting parameters given as ε1 = ε2 = 8.516, tn1 = −1.524,
and tc = −0.410. However, by taking into account more
hopping terms, the full tight-binding model (red dashed line)
can capture the band structures of real phononic crystal very
well in the whole Brillouin zone. Here, we set ε1 = 8.5448,
ε2 = 7.9962, tn1 = −1.436, tn2 = −0.509, tn3 = −0.232,
tn4 = 0.021, and tc = −0.448 in the full tight-binding model
calculation.

FIG. 7. Bulk band structure of the unit cell obtained by tight-
binding models and full-wave simulations in the reduced 2D recip-
rocal kx-ky planes and K-H lines in the first Brillouin zone.
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FIG. 8. Surface arc states at f = 10 kHz, which lies in the second
topological nontrivial band gap for (a) kz = +π/2H and (b) kz =
+π/5H . Color intensity represents the magnitude of the acoustic
pressure field.

APPENDIX D: SURFACE STATES AT f = 10 kHz

In the body of the paper, we show the equifrequency
contours of a supercell at f = 10 kHz in Fig. 3(d). It is
clear that, for several kz ranges, the structure supports bulk
modes and surface modes simultaneously. In this case, we can
hardly excite the clear surface modes since they are coupled
with the bulk modes and will easily leak to the bulk. To
demonstrate such an effect, we conduct numerical simulations
under surface excitation at f = 10 kHz for kz = +π/2H or
kz = +π/5H (see Fig. 8). Similar to the setup in the main
context, the structure is infinite in the z direction with a
radiative boundary placed on the top edge, denoted by the
green line. For kz = +π/2H , the surface states can be clearly
observed as all the energy is well-confined to the boundary
of the structure. However, when we set kz = +π/5H , we can
barely see the surface waves near the excitation point, and the
energy quickly leaks into the bulk of the system.
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