
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020 2977

Optimal Wireless Resource Allocation With Random
Edge Graph Neural Networks

Mark Eisen , Member, IEEE, and Alejandro Ribeiro

Abstract—We consider the problem of optimally allocating re-
sources across a set of transmitters and receivers in a wireless
network. The resulting optimization problem takes the form of
constrained statistical learning, in which solutions can be found in a
model-free manner by parameterizing the resource allocation pol-
icy. Convolutional neural networks architectures are an attractive
option for parameterization, as their dimensionality is small and
does not scale with network size. We introduce the random edge
graph neural network (REGNN), which performs convolutions
over random graphs formed by the fading interference patterns
in the wireless network. The REGNN-based allocation policies are
shown to retain an important permutation equivariance property
that makes them amenable to transference to different networks.
We further present an unsupervised model-free primal-dual learn-
ing algorithm to train the weights of the REGNN. Through numer-
ical simulations, we demonstrate the strong performance REGNNs
obtain relative to heuristic benchmarks and their transference
capabilities.

Index Terms—Power allocation, deep learning, graph neural
networks, interference channel.

I. INTRODUCTION

W IRELESS systems are integral to large scale intelligent
systems, from robotics to the Internet of Things (IoT).

The design of such systems requires optimal balancing of the
numerous utilities and constraints that define the operating point
of large networks of wireless connected devices. At a high level,
such optimal design problems can be viewed as the allocation
of a finite set of resources to achieve strong average perfor-
mance over the randomly varying wireless channel. While these
optimization problems can be easily formulated, they tend to
be intractable as they are most often non-convex and infinite
dimensional [1]. Some simplification is attained by working in
the Lagrangian dual domain [1], [2] and subsequently using
dual descent methods [3]–[5], or, alternatively, with heuristic
optimization and scheduling methods [6]–[9].

All such approaches invariably require accurate system mod-
els and may require prohibitively large computational cost. As

Manuscript received September 4, 2019; revised January 31, 2020 and March
31, 2020; accepted March 31, 2020. Date of publication April 20, 2020; date of
current version June 4, 2020. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Olivier Lezoray. This work
was supported in part by ARL DCIST CRA under Grant W911NF-17-2-0181
and in part by Intel Science and Technology Center for Wireless Autonomous
Systems. (Corresponding author: Mark Eisen.)

Mark Eisen is with the Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
mark.eisen@intel.com).

Alejandro Ribeiro is with the University of Pennsylvania, Philadelphia, PA
19104 USA (e-mail: aribeiro@seas.upenn.edu).

Digital Object Identifier 10.1109/TSP.2020.2988255

emergent applications demand growth in scale and complexity,
modern machine learning and statistical regression techniques
have been explored as alternatives to solve wireless resource
allocation problems. Machine learning methods train a learning
model, such as a neural network (NN), to approximate the
behavior of resource allocation strategies for a wide variety of
problems. A common approach is to exploit supervised learn-
ing techniques to train a NN that approximates the behavior
of an existing heuristic to reduce computational cost during
execution [10]–[13]. The use of supervised learning, however,
is limited by the availability of heuristics and hindered by their
suboptimality. Supervised learning methods require these solu-
tions to build training sets and may meet heuristic performance
but never exceed it.

Perhaps the more compelling justification for statistical learn-
ing solutions to wireless resource allocation problems lies in
their reliance on data over models. That is, by treating the
resource allocation problem itself as a form of statistical re-
gression, we obtain a means of training policies that solve the
optimal allocation problem directly rather than via a training
set [14]–[19]. This unsupervised approach exceeds the capa-
bilities of supervised learning in that it can be applied to any
arbitrary resource allocation problem and has the potential to
exceed performance of existing heuristics. In addition, it is
possible to make unsupervised learning model-free by relying on
interactions with the wireless system. We probe with a candidate
resource allocation policy, observe its outcome, and use this
information to discover a better policy [17].

There nonetheless remains the practical challenge of training
models that can meet the scale of modern wireless systems. Fully
connected neural networks (FCNNs) may seem appealing due
to their well known universal approximation property [10], [17].
However, FCNNs are also well known to be unworkable except
in small scale problems. Scalability is attained in the processing
of signals in time and space with convolutional neural networks
(CNNs). Recognizing this fact has led to proposals that adapt
CNNs to wireless resource allocation problems [12], [13], [16].
A particularly enticing alternative is the use of a spatial CNN
that exploits the spatial geometry of wireless networks to attain
scalability to large scale systems with hundreds of nodes [20].

In this paper we develop a different alternative to scalability
that leverages graph neural networks (GNNs) [21], [22]. GNNs
are neural network architectures replacing the convolutional
filter banks of CNNs with graph convolutional filter banks de-
fined as polynomials on a matrix representation of a graph [22].
We propose here a variation which we call a random edge

1053-587X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5877-7950
https://orcid.org/0000-0003-4230-9906
mailto:mark.eisen@intel.com
mailto:aribeiro@seas.upenn.edu

2978 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

graph neural network (REGNN). REGNNs take as inputs the
state of communication links and the state of the nodes of the
network to produce resource allocation functions through the
composition of layers which are themselves the composition of
graph convolutional filter banks with pointwise nonlinearities.
Through a combination of design choices as well as theoretical
and numerical analyses this paper demonstrates that REGNNs
have the following three properties:

Scalability: REGNNs are defined by a number of parameters
that is chosen independent of the number of nodes in the
network. This enables training in large scale systems. We
demonstrate in numerical experiments the possibility to scale
to networks with several hundred nodes.
Permutation invariance: We prove that if REGNN parame-
ters are optimal for a certain network, they are optimal for all
of its permutations. This allows transference across different
networks for as long as they are not far from permutations of
each other.
Transference: A given REGNN can be executed in any
graph independent of shape and size. In particular, this makes
it possible to train and execute in different networks. We
demonstrate in numerical experiments the ability to transfer a
REGNN across families of networks as well as the ability to
train in networks of moderate size (with a few tens of nodes)
and execute with good performance in large scale networks
(with hundreds of nodes).

In conjunction with the model-free algorithmic learning ap-
proach developed in [17], we obtain a unified framework for
learning effective resource allocation policies in large scale
wireless systems. We point out related prior work that also con-
siders graph neural network architectures for wireless resource
allocation [23]–[25] – see Remark 4.

We begin the paper by introducing a generic formulation
of wireless resource allocation problems in which we seek a
instantaneous resource allocation policy given a set of ran-
dom fading states and random node states (Section II). Such
a formulation has many applications, ranging from multi-
ple access to wireless control systems (Section II-A). The
problem generally cannot be solved exactly, but can be ad-
dressed through statistical learning techniques by parameter-
izing the resource allocation policy. We propose the use of
random edge graph neural networks (REGNNs) to param-
eterize the policy by viewing the random fading links be-
tween transceivers as a graph with random edges (Section III).
This parameterization is a generalization of the popular convo-
lution neural networks and has low-dimensionality that makes
it scalable for large wireless networks.

Any policy of practical use should have the ability to be imple-
mented on varying network topolgies. We present in Theorem 1
a so-called permutation invariance of the REGNN with respect
to the underlying graph structure of its inputs (Section IV).
We further establish the permutation equivariance of both the
optimal unparameterized resource allocation policy (Section IV-
A) and the learned REGNN (Section IV-B). We present an
unsupervised, model-free primal-dual algorithm to train the
REGNN filter tensor weights without requiring explicit model

knowledge (Section V). We conclude with a comprehen-
sive set of numerical simulations that demonstrate the strong
performance of learned REGNN resource allocation policies
(Section VI), including their ability to transfer to varying net-
work topologies (Section VI-B).

II. OPTIMAL RESOURCE ALLOCATION IN WIRELESS

COMMUNICATION SYSTEMS

Consider a wireless system made up of a set of m transmitters
andn receivers. Each transmitter i ∈ {1,m} is paired with a sin-
gle receiver r(i) ∈ {1, n}. Multiple transmitters may be paired
with the same receiver. We denote as Rj := {i : r(i) = j} the
set of transmitters i paired with receiver j. Fig. 1(a) illustrate
ad hoc networks in which n = m and the pairing of transmitters
and receivers is bijective. Figs. 1(b) illustrates a cellular uplink
in which m > n and the map is surjective with Rj containing
the users in the catchment area of base station j. To model a
cellular downlink we need to replicate the base station node to
produce a bijective map from base stations to nodes. Although
not required we have in mind large scale wireless systems with
n ranging from several tens to several hundreds.

Time is slotted with connections between agents in a time slot
characterized by fading channel coefficients. We use hii(t) to
denote the channel between transmitter i and receiver r(i) and
hij(t) to denote the channel between transmitter i and receiver
r(j) at time slot t. All channels are arranged in the matrixH(t) ∈
Rm×m with entries [H(t)]ij = hij(t). In addition to channel
states there are also separate state variables xi(t) representing a
random state of the communication between i and r(i) – such
as, e.g., the number of packets that arrive in the time slot. These
node states are collected in the vector x(t)with entries [x(t)]i =
xi(t). Our goal is to map state observations H(t) and x(t) to a
resource allocation function p(t) = p(H(t),x(t)). Allocating
resourcesp(t)when the system state pair isH(t),x(t) produces
a vector reward of the form

r(t) = f (p(t);H(t),x(t)) , (1)

where f is a function from the joint space of resource allocations
and states to the space of rewards. This abstract model encom-
passes several problems of practical importance as we illustrate
in Section II-A.

In fast fading scenarios the instantaneous value of the reward
r(t) in (1) is not directly experienced by end users. Rather,
end users experience the long term average across time slots.
Assuming stationarity and independence of subsequent state
realizations, this time average can be replaced by an expectation.
Let then m(H,x) represent a probability distribution of channel
and node states and approximate the long term average reward
by its limit which we can equate to the expected reward,

r = E [f (p (H,x) ;H,x)] =

∫
f (p (H,x) ;H,x) dm(H,x).

(2)

The goal of the optimal wireless system design problems we
study in this paper is to find the instantaneous resource alloca-
tion policy p(H,x) that optimizes the expected reward in (2).

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2979

Fig. 1. Resource allocation in large scale wireless networks. Wireless links connect transmitters to receivers (bold lines) but wireless transmission also generates
interference to other receivers (thin lines). We formulate optimal resource allocation as machine learning problem over the interference graph that we solve using
random edge graph neural networks (REGNNs).

Specifically, introduce a utility function u0(r) and a set of utility
constraints u(r) ≤ 0 to formulate the optimization problem

p∗(H,x) = argmax u0(r),

s.t. r = E [f (p (H,x) ;H,x)] ,

u(r) ≥ 0, p(H,x) ∈ P(H,x). (3)

In the problem in (3) we find an average reward r that maxi-
mizes the utility u0(r) while making sure the utility constraints
u(r) ≤ 0 are satisfied. We do so by searching for the resource al-
locationp∗(H,x) that produces such expected reward according
to (2). We have also added the constraint p(H,x) ∈ P(H,x) to
represent (simple) constraints on allowable resource allocations;
see, Section II-A. It is worth stressing that, due to the equivalence
between long term and average reward in (2), we are able to
solve long term resource allocation problems with the standard
statistical optimization problem in (3).

Note that most prior heuristic resource allocation methods
maximize an instantaneous reward instead of the average reward
considered in (3). Generally speaking, maximizing an instanta-
neous reward requires the solving of a constrained optimization
problem for each instance of the channel and node states H and
x—for complex problems with fast varying channel conditions,
it often poses an infeasible computational burden to solve the
problem for every channel instance. The formulation in (3)
defines a single policy p(H,x) that maximizes the ergodic
performance of the system; thus, the global optimization need
only be solved once offline. At execution, the instantaneous
resource allocation is obtained by passing instantaneous states
through p(H,x) at marginal computational cost [1].

The utilities in (3) are design choices and can be made convex.
The ergodic constraint [cf. (2)], however, incorporates the func-
tion f in (1) which is typically not convex. In addition, fading
channel realizations are a dense set and we are interested in cases
where the number of transmitters is large. This makes solution
of (3) intractable and motivates the use of various heuristics;
e.g., [6]. If we are considering heuristics in general, we can, in
particular, use data driven heuristics where we propose some

resource allocation, observe its outcome, and use this informa-
tion to update the resource allocation policy. To that end we
follow an interpretation of (3) originally developed in [17], in
which we identify it as a constrained statistical learning prob-
lem. Consider then a parameter θ ∈ Rq and a function family
Φ(H,x;θ) that we use to generate resource allocations

p (H,x) = Φ (H,x;θ) . (4)

To fix ideas, say that we choose the family Φ to consist
of quadratic plus linear functions of the form Φ(H,x,θ) =
(1/2)θT

1 Hθ1 + θT
2 x. Or, as done in many recent machine

learning applications, we make Φ(H,x,θ) the output of a
neural network; e.g., [10], [17], [18]. In any event, with a given
parametrization we can substitute (4) into (3) to obtain a problem
in which the optimization over resource allocations p(H,x)
is replaced with an optimization over the set of parameter
vectors θ,

θ∗ = argmax u0(r),

s.t. r = E [f (Φ (H,x;θ) ;H,x)] ,

u(r) ≥ 0, Φ(H,x;θ) ∈ P(H,x). (5)

Notice that in (5) we include the hard constraint Φ(H,x;θ) ∈
P(H,x). We point out that this constraint can often be satisfied
in practice through careful design of Φ(H,x;θ). In particular,
the parameterization can be augmented to include an additional
output operation that projects the allocation onto P(H,x).

The problems in (3) and (5) look similar but are different in
three important ways: (i) The original optimization problem in
(3) is a functional optimization problem given that, in general,H
and x belong to dense sets. The parametrized problem in (5) is
on the q-dimensional variable θ. (ii) The parametrized problem
in (5) can be solved without having access to a model for the
function f . It suffices to have the ability to probe the system
with a resource allocation Φ(H,x;θ) and measure the outcome
f(Φ(H,x;θ);H,x)] as we detail in Section V – see also [17].
This is impossible in (3) whose solution requires access to the
model f . (iii) The learning parametrization reduces the space of

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2980 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

allowable resource allocations so that the optimal solution of (5)
entails a loss of optimality relative to the solution of (3).

The latter point calls for judicious choice of the learning
parametrization. E.g., if we use a fully connected neural network
in (4) we can rely on universality results to claim a small loss of
optimality – along with other interesting theoretical claims [17].
However, fully connected neural networks do not work beyond
simple low dimensional problems and our interest is in problems
where we have m2 input variables in H and m input variables in
x with large m. We propose here to use graph neural networks
(Section III) which we will demonstrate provide an scalable
parametrization that permits finding good solutions to (5) with
large values of m (Section VI). Before introducing GNNs we
present some examples of resource allocation problems belong-
ing to the family of abstract problems introduced in (3).

A. Examples

Multiple access AWGN channel: Terminals communicat-
ing with associated receivers on a shared channel. A standard
instantaneous performance metric of interest here is the capacity
experienced by each user under noise and interference. The ith
element of f(p(H,x;H,x) may then denote the instantaneous
capacity achieved by transmitter i. In a channel subject to addi-
tive white Gaussian noise (AWGN) and multi-user interference
and assuming the use of capacity achieving codes this is given
by

fi(p;H,x) := log

(
1 +

hiipi(H,x)

1 +
∑

j �=i hjipj(H,x)

)
. (6)

Defining the performance as in (6) in the constraint in (3) reflects
a maximization with respect to the long term capacity experi-
enced by the users. A constraint of the form u(r) ≥ 0 enforces
a minimum average capacity for all users if u(r) := r− cmin

to achieve fairness. Power constraints can be enforced via the
set P = {p : 0 ≤ p ≤ p0} and the utility u0 can be chosen
to be the sum rate u0(r) =

∑
i ri or a proportional fair utility

u0(r) =
∑

i log(ri)—see, e.g., [26]. In this problem there is no
node state x that plays a role in the system’s design.

Multiple access with user demand: We augment the pre-
vious example to incorporate varying traffic demand or infor-
mation generation at each node. Here, the state xi reflects the
rate of information collection or the data arrival rate at the ith
transmitter. An additional performance metric is the average
arrival rate r′ := E(x). A necessary constraint on the system
is that average capacity exceeds observed or target average
collection rates r0. We achieve that with the constraint

u(r′) := r0 − r′ ≥ 0. (7)

Another form of user demand comes in the context of fairness,
in which the state x may reflect the achieved lifetime rates of
all of the users with ergodic average y := E(x). A weighted
sum-rate would thus prioritize users who have not been given
sufficient access to the channel, i.e.,

u(r,y) =
∑
i

ri
yi
. (8)

These problems make full use of the generality of (3) by contain-
ing both the fading channel states and associated performance
metric in the capacity function given in (6), as well as a node state
given by either data collection and associated coupled constraint
given by (7), or lifetime rate and associated weighted objective
given by (8). We point out that the weighted sum-rate problem,
in particular, is typically solved by the WMMSE method [6],
although such a method would rely on explicit model knowledge
and does not generally support additional system constraints.

Random access wireless control systems: A more complex
example modeled by (3) concerns resource allocation in a wire-
less control system. Consider that transmitters are sending plant
state information to a shared receiver/base station to compute
control inputs over a common random access channel that
is subject to potential packet collisions. Given the direct and
interference channel states and transmission powers, we define
a function q(pi, hii, pj , hij) → [0, 1] that gives a probability of
collision between transmitters i and j. We are interested in the
probability of successful transmission of transmitter i, i.e.,

qi(p;H,x) :=
∏
j �=i

(1− q(pi, hii, pj , hij)) . (9)

Likewise, consider the node state xi to be the state of the plant
at the ith transmitter. If transmission is succesful, the system
state evolves with stable gain 1 > γc > 0; otherwise, it evolves
with unstable gain gain γo > 1. We are often concerned with
a quadratic cost that measures the one step distance from the
origin of the plant state, which can be written as the following
cost (or negative reward), i.e.

fi(p;H,x) := qi(p;H,x)(γcxi)
2+(1− qi(p;H,x))(γoxi)

2.
(10)

The cost metric (10) can be used to define a utility that maximizes
the expected negative cost, i. e. u0(r) := −1T r and constraints
that impose a minimum long-term cost κmax for each plant, i.e.
ui(rt) := ri − κmax ≤ 0.

III. RANDOM EDGE GRAPH NEURAL NETWORKS

For the learning parametrization in (5) we introduce random
edge (RE) graph neural networks (GNNs). To that end, recall
the definition of x = [x1; . . . ;xm] as a vector whose entry
xi represents the state of the communication from node i to
receiver r(i) and reinterpret x as a signal supported on the nodes
i = 1, . . . ,m. Further reinterpret the channel matrixH ∈ Rm×m

as an adjacency matrix representation of a graph linking node i
to node j. REGNNs rely on graph convolutional filters supported
on the graph H to process some input signal z ∈ Rm. Formally,
let α := [α0; . . . ;αK−1] be a set of K filter coefficients and
define the graph filter A(H) as a polynomial on the graph
representation that is linearly applied to an input signal z to
produce the output signal,

y = A(H)z :=

K−1∑
k=0

αkH
kz. (11)

In the graph signal processing literature, the filter A(H) =∑K−1
k=0 αkH

k is said to be a linear shift invariant filter and the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2981

matrixH is a graph shift operator (GSO) [27]. If we particularize
H to represent a cyclic graph, the operation in (11) reduces to
the conventional convolution operation.

For an intuitive understanding of the graph filter in (11),
consider that a single shift operationHzwill aggregate informa-
tion at each node from its immediate neighbors scaled by their
associated edge weights; likewise, a k-shift operation Hkz will
aggregate information from thek-hop neighborhood. This can be
considered as a multi-hop message passing of local information
between nodes. A benefit of larger graph filters in a GNN is
that each set of node features z will be a generated from a more
complete picture of the network. For instance, a graph filter
of length K = 2 will generate a feature using the fading state
information of a node and its neighbors, but will not directly
consider the fading state information of the more distant nodes
in the network—see Remark 2 for a discussion of this locality
in regards to the proposed architecture.

To define a REGNN we compose L layers, each of which
is itself the composition of a graph filter with a pointwise
nonlinearity. Introduce then a layer index l in (11) so that we have
Kl filter coefficients αl = [αl0; . . . ;αl(Kl−1)] defining graph

filters Al(H) =
∑Kl−1

k=0 αlkH
k. We apply the filter Al(H) to

the output of layer l − 1 to produce the layer l intermediate
featureyl = A(H)zl−1. This intermediate feature is then passed
through a pointwise nonlinearity function σ : Rm → Rm to
produce the output of the lth layer as

zl = σ [yl] = σ [Al(H)zl−1] = σ

[
Kl−1∑
k=0

αlkH
kzl−1

]
(12)

A REGNN is defined by recursive application of (12). The input
to this recursion is the node state vector, i.e. z0 := x. The output
is the lth layer signal zL. We emphasize that the nonlinear
function σ in (12) is applied individually to each component.
Namely, for any input vectorvwe must have [σ(v)]i = σ([v]i).
Common choices forσ are rectified linear units (ReLu), absolute
values, or sigmoids [21], [22].

To increase the expressive power of REGNNs we consider
multiple features per layer. That is, instead of processing the
output of layer l − 1 with a single graph filter, we process it
with a bank of Fl graph filters. This process generates multiple
features per layer, each of which we process with a separate
graph filter bank. Suppose then that the output of layer l − 1
consists of Fl−1 features zfl . These features become inputs to
layer l, each of which we process with a Fl filters Afg

l (H)

defined by coefficients αfg
l := [αfg

l0 ; . . . ;α
fg
l(Kl−1)]. Applying

each of these filters to each of the input features produce the lth
layer intermediate features

yfg
l = Afg

l (H)zfl−1 =

Kl−1∑
k=0

αfg
lk H

kzfl−1. (13)

The lth layer filter bank therefore produces a total of Fl−1 × Fl

intermediate features yfg
l . To avoid exponential growth of the

number of features all features yfg
l for a given g are linearly

aggregated and passed through the pointwise nonlinearity σ to

produce the lth layer output

zl = σl

[
Fl∑
f=1

yfg
l

]
= σl

[
Fl∑
f=1

Afg
l (H)zfl−1

]
. (14)

The REGNNs we consider in this paper are defined by recursive
application of (14). The input to layer l = 1 is the (single feature)
signal x = z10. The output of the REGNN is the (also single
feature) signal zL = z1L. For future reference we group all filter
coefficients in the filter tensor A = {αfg

lk }l,f,g,k and define the
REGNN operator as,

Φ(H,x;A) = zL. (15)

The operator in (15) is a graph neural network [21], [22] if we
fix the graph H. Here we call it a random edge (RE)GNN to
emphasize that H is an input to the operator Φ.

Our goal is to solve (3) using as inputs the class of functions
that can be represented by the REGNNs in (15). This translates
to solving the optimization problem

A∗ = argmax u0(r),

s.t. r = E [f (Φ (H,x;A) ;H,x)] ,

u(r) ≥ 0, Φ(H,x;A) ∈ P(H,x). (16)

The REGNN receives as input a random graph signal input x ∼
m(x) and a random underlying graph shift operatorH ∼ m(H).
According to (16), the filter coefficients in the tensor A are
trained relative to the statistics of both of these quantities; the
graph signal x and the underlying graph H.

Notice that to solve (16) we need to specify the class of
admissible GNN representations Φ(H,x;A). This requires
specifying the number of layers, L, the number of features at
each layer, Fl, and the length of the filters used at each layer,
Kl. We say that L, Fl, and Kl specify the REGNN architecture.
The total number of parameters that specify this architecture is
q =

∑L
l=1

∑L
l=1 Kl × Fl × Fl+1, which simplifies to LKF 2 if

all layers useFl = F features and filters of lengthKl = K. This
number is (much) smaller than the number of parameters that
would be required to train a fully connected neural network. We
further point out that the feasibility condition Φ(H,x;A) ∈
P(H,x) can often be easily addressed by utilizing the final
output layer activation σL to project onto P(H,x).

Perhaps most importantly, and as will be seen in the following
section, the use of graph filters creates a permutation equivari-
ance that matches the permutation equivariance of the optimal
solution of (3). This equivariance suggests that REGNNs likely
generalize across different network realizations; something we
will verify in the numerical experiments in Section VI.

Remark 1 (Graph shift operator): The graph H is an asym-
metric graph with self loops in which the weight in the edge (i, j)
is the fading channel realizationhij . Notice that this edge weight
is not the strength of the channel linking node i to node j but the
strength of the channel linking transmitter i to the receiver r(j)
associated to node j. Further observe that this is a random graph
whose realizations are drawn from the distribution m(H). The
mapping of interference patterns to the graph structure can be
visualized in Fig. 2.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2982 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 2. Communication network and interference graph. Random edge graph
neural networks (Section III) run on the interference graph (bottom), not the
communication graph (top). Nodes 1-5 communicate with AP1 and nodes 6-10
with AP2 while node 1 also interferes on AP2 and node 6 on AP1. In the
interference graph nodes that communicate or interfere with an AP form a clique.
The APs are not nodes of the interference graph.

Remark 2 (Locality of Graph Filters): Observe in (11) that
thekth filter tap scales the input by thekth order of the graph shift
H. This term reflects a k-hop shift of the elements in z, with each
hop weighted by the associated edge. As the order k increases,
node states from larger neighborhoods are incorporated. Thus,
the locality of a node, or the weight of its k hop neighborhood,
provides a guide for selecting filter size K, as incorporating
higher order information will have diminishing impact as the
kth order neighborhood shrinks in size or weight.

Remark 3 (Convolutional Neural Networks): Just as the
standard convolution operation is a particular case of the graph
filter in (11) for the cyclic graph, the REGNN generalizes
the standard convolutional neural network (CNN) to include
random and arbitrary graph structures. CNNs have been
empirically observed to be strikingly effective in many learning
tasks ranging from image classification [28] to recommender
systems [29]. Their success is not attributed only to their low
dimensionality, but by the fact that they contain a translation
equivariance property necessary for, e.g., image classification.
As the REGNN is a generalization of the CNN, it is reasonable
to expect that they contain similar equivariances—namely,
an invariance to permutations. In Section IV-A we establish
a permutation equivariance of optimal wireless resource
allocation, and proceed to establish the same property in
REGNNs.

Remark 4 (GNNs in Wireless Communications): The use of
GNNs for learning resource allocations in wireless communica-
tions is first proposed in [23] and subsequently appears in [24],
[25]. This paper extends [23] with a comprehensive evaluation
of scalability, permutation equivariance, and transference. This
paper differs from [24], [25] in that the latter two use a simpler
GNN architecture in which the graph filters in (11) are of order
K = 1. The use of high order linear graph filters improves the

expressive power of GNNs [30]. We also point out that [24]
considers only short term resource allocation problems while
both [24], [25] solve resource allocation problems without con-
straints. In this work we consider long term resource allocation
with constraints as defined in (3).

IV. PERMUTATION INVARIANCE AND EQUIVARIANCE

Once trained, a GNN can be executed in any network inde-
pendently of dimension or shape. Indeed, if we are given the
filter coefficients to use in (13) we can implement the GNN
for any graph H. This is important for us because the graph
H is randomly drawn along with input x from the distribution
m(H,x). But it is also important because it allows execution
on different networks, i.e., on networks that are drawn from a
different distribution m̂(Ĥ, x̂). If we draw graphs Ĥ and states
x̂ from distribution m̂(Ĥ, x̂) these can be substituted into (14) to
produce hidden layer signals ẑl and and outputs that according
to the notation in (15) we can write as

Φ(Ĥ, x̂;A) = ẑL. (17)

Although (17) is just a restatement of (15) with different nota-
tion, we write it to emphasize that in (17) the graph Ĥ and the
state x̂ are drawn from a different distribution whereas the filter
tensors are the same in both equations. We say that the tensor that
we learn for distribution m(H,x) is transferred to distribution
m̂(Ĥ, x̂).

Transference of REGNNs can be attempted for any pair of
network distributions but we do not expect good performance
for transference between arbitrary network pairs. To characterize
cases where we do expect good transference performance we
will show here that optimal filter tensors are invariant to permu-
tations. We begin by defining permutation matrices of dimension
m as those matrices Π that belong to the set

ϕ =
{
Π ∈ {0, 1}m×m : Π1 = 1, ΠT1 = 1

}
. (18)

A permutation matrix Π satisfying the conditions in (18) is one
for which the product ΠTv reorders the entries of any given
vector v and in which the product ΠTMΠ reorders the rows
and columns of any given matrix M. We further introduce two
assumptions on the permutation invariance of the functions and
constraints that define the optimal resource allocation problem
in (3).

Assumption 1: The utility u0 is permutation invariant so that
for all permutation matrices Π ∈ ϕ it holds u0(Π

T r) = u0(r).
Assumption 2: The constraint u(r) ≥ 0 is permutation in-

variant in the sense that for all Π ∈ ϕ it holds

u (r) ≥ 0 ⇐⇒ u
(
ΠT r

) ≥ 0. (19)

Assumption 3: The reward function f [cf. (1)] is permutation
equivariant. I.e., for all permutation matrices Π ∈ P it holds

f
(
p̂; Ĥ, x̂

)
= ΠT f (p; H,x) . (20)

where Ĥ = ΠTHΠ and x̂ = ΠTx are state permutations and
and p̂ = ΠTp is a resource allocation permutation.

Assumption 1 states that the utilityu0 does not change if nodes
are reordered. Assumption 2 states the same for the constraint

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2983

u(x) ≥ 0. It may be that the components of the vector function
u(ΠTx) are reordered upon permutation, but any constraint that
appears inu(x) appears inu(ΠTx). Assumption 3 requires that
a reordering of the nodes results in a consistent reordering of the
reward function. Since the utilities u0 and u are design choices
we can enforce Assumptions 1 and 2 to hold. Most usual choices
for these utilities satisfy these assumptions. Assumption 3 de-
pends on the physical model of the system. It is not a stringent
requirement. All examples in Section II-A satisfy Assumption 3.

We can now state the following theorem.
Theorem 1: Consider wireless networks defined by proba-

bility distributions m(H,x) and m̂(Ĥ, x̂) such that there exists
a permutation matrix Π such that if we define Ĥ = ΠTHΠ
and x̂ = ΠTx it holds

m̂(Ĥ, x̂) = m̂(ΠTHΠ,ΠTx) = m(H,x). (21)

Further assume that Assumptions 1, 2 and 3 hold. The solutions
A∗ and Â∗ of (16) for distributions m(H,x) and m(Ĥ, x̂) are
equivalent,

Â∗ ≡ A∗ (22)

Theorem 1 states permutation invariance of optimal filter
tensors. If two networks are permutations of each other, the
respective optimal REGNN filters are the same. Therefore, a
REGNN that is trained over the network distribution m(H,x)
can be transferred to the network distribution of a permuted
network m̂(Ĥ, x̂) without loss of optimality. This is a useful
property as it is not unreasonable to expect different large
scale networks to be close to mutual permutations as we have
already mentioned and illustrated in Fig. 1. This implication of
Theorem 1 is explored numerically in Section VI-B.

Theorem 1 is a direct consequence of the fact that, both,
REGNNs and Problem (3) are equivariant to permutations as
we show in Sections IV-A and IV-B.

A. Permutation Equivariance of Optimal Resource Allocation

A function or policy that demonstrates permutation equiv-
ariance is one such that a permutation of inputs results in
an equally permuted output. If Assumptions 1, 2 and 3 hold
the following proposition asserts permutation equivariance of
resource allocation policies in (3).

Proposition 1: Consider wireless networks defined by prob-
ability distributions m(H,x) and m̂(Ĥ, x̂) along with resource
allocations p and p̂. Assume there exists a permutation matrix
Π for which (21) holds and that for the same permutation matrix

p̂(Ĥ, x̂) = ΠTp(H,x). (23)

Define the respective long term rewards r =
Em[f(p(H,x);H,x)] and r̂ = Em̂[f(p̂(Ĥ, x̂); Ĥ, x̂)] as
per (2). If Assumptions 1–3 hold,

u0(r̂) = u0(r), and u (r̂) ≥ 0 ⇐⇒ u (r) ≥ 0. (24)

In particular, the optimal resource allocations in (3) is permuta-
tion equivariant in that for any permutation matrix Π ∈ ϕ,

p∗ (ΠTHΠ,ΠTx
)
= ΠTp∗ (H,x) . (25)

Proof: To prove the result in (24) we prove that r̂ = ΠT r.
This follows readily from their definitions and the hypothesis.
Begin by writing

r̂ =

∫
f
(
p̂
(
Ĥ, x̂

)
; Ĥ, x̂

)
dm̂(Ĥ, x̂), (26)

and observe that we have assumed p̂(Ĥ, x̂) = ΠTp(H,x).
Substitute this assumption into (26) to obtain

r̂ =

∫
f
(
ΠTp (H,x) ; Ĥ, x̂

)
dm̂(Ĥ, x̂), (27)

Implement the change of variables Ĥ → ΠTHΠ and x̂ →
ΠTx. Since the permutation matrices are isometric, this change
of variables transforms (27) into

r̂ =

∫
f
(
ΠTp (H,x) ;ΠTHΠ,ΠTx

)
dm̂

(
ΠTHΠ,ΠTx

)
,

(28)

As per assumption (3) we know that the function f is
permutation equivariant and that, therefore, f(ΠTp(H,x)
;ΠTHΠ,ΠTx) = ΠT f(p(H,x);H,x). As per (21) we
know that the state distributions satify m̂(ΠTHΠ,ΠTx) =
m(H,x). Substituting these two facts into (28) leads to

r̂ =

∫
ΠT f (p (H,x) ;H,x) dm(H,x), (29)

Extracting the permutation matrix from inside the integral and
using the definition of r = E[f(p(H,x);H,x)] leads to

r̂ = ΠT r. (30)

Given that (30) holds, the result in (24) follows from direct
application of Assumptions 1 and 2. This statement says that
permutations of a network and associated permutations of re-
source allocation functions result in feasible rewards that attain
the same utility. Therefore, (25) holds as a particular case of (30)
for the optimal resource allocation functions p∗ and p̂∗. �

In Proposition 1, we establish that the optimization problem
in (3) is permutation equivariant and that, in particular, optimal
policies are permutation equivariant. We point out that this
property for the resource allocation policy follows intuition,
as the labeling of the nodes is generally arbitrary–see Remark
6—and the structure of the policy should indeed reflect that. By
identifying such a structural property of the policy we wish to
model, we further identify a potentially lower-dimensional class
of parameterizations to perform optimization over. A generic
parameterization such has the FCNN may contain instances that
are permutation equivariant, but it will not hold this property by
default. We proceed to establish the permutation equivariance
of the class of REGNNS.

B. Equivariance of Random Edge Graph Neural Networks

In comparison to its fully connected counterpart, the REGNN
may appear limited by its lack of universal approximation
capabilities. However, what we lose in universality we gain
in structure. That is, in learning the weights of a REGNN in
(16) we restrict our attention to a class of parameterizations
that maintain desirable structure. The convolutional structure

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2984 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

of the REGNN architecture allows us to establish the same
permutation equivariance property demonstrated for optimal
resource allocation policy in Proposition 1—a permutation of
the underlying graph and input signal of an REGNN will produce
an equally permuted output. This result is stated formally in the
following proposition.

Proposition 2: Consider graphs H and Ĥ along with signals
x and x̂ such that for some permutation matrix Π we have Ĥ =
ΠTHΠ and x̂ = ΠTx. The output of a REGNN with filter
tensor A to the pairs (H,x) and (Ĥ, x̂) are such that

Φ(Ĥ, x̂;A) = ΠTΦ(H,x;A). (31)

Proof: This is a restatement of [30, Proposition 2]. We sketch
a proof assuming the number of filters isFl = 1 at each layer l for
completeness. Consider first the layer l = 1 and take as inputs
the permuted node state z0 = x̂ = ΠTx and permuted graph
Ĥ = ΠTHΠ. The output of the first layer for the REGNN is
given by (14) as

z′2 = σ1[A1(Ĥ)x̂]. (32)

By using the fact that ΠTΠ = ΠΠT = I for any permutation
matrix Π, it follows that Ĥk = ΠTHkΠ. By expanding the
term A1(Ĥ) as in (12) we obtain

z′2 = σ1

[
K1−1∑
k=0

α1,kΠ
THkΠΠTx

]
. (33)

= σ1

[
ΠT

K1−1∑
k=0

α1,kH
kx

]
= σ1[A1(H)x]. (34)

Because the non-linearity σ1(·) is pointwise, it follows that
z′2 = ΠTσ1(α1 ∗H x) = ΠT z2, where z2 is the output of the
first layer under unpermuted inputs. As the output of a single
layer is permutation equivariant to its input, it follows that the
output of the composition of layers l = 1, . . . , L is permuta-
tion equivarient, i.e. Φ(Ĥ, x̂;A) = ΠTΦ(H,x;A) as stated
in (31). �

Proposition 2 establishes the permutation equivariance of
REGNNs. This structural property comes from the multiplica-
tive relationship between the channel states H and the node
states x used in the graph filter in (11). In the context of
wireless networks, this implies that a relabelling or reordering
of the transmitters in the network will produce an appropriately
permutation of the power allocation without any permutation
of the filter weights. This essential structural property is not
satisfied by general FCNNs, in which a restructuring of the
network would require an equivalent permutation of the inter-
layer weights. While their full generality implies that such a
permutation equivariant property can be satisfied by a FCNN,
this property would have to be learned during training. We
further note while that alternative parameterizations may also
be shown to exhibit a similar permutation equivariance, our
numerical study in Section VI of REGNNs shows their particular
effectiveness in learning for large scale networks.

The results in Propositions 1 and 2 lead directly to our primary
result in Theorem 1 as we formally show next.

Proof of Theorem 1: Suppose we are given the tensor A∗

that is optimal for (16) for distribution m(H,x). This tensor
produces a resource allocation Φ(H,x;A∗) and an optimal
reward r∗. Permute the GNN inputs with Π to produce the
resource allocation Φ(Ĥ, x̂;A∗), which according to the result
(31) of Proposition 2 satisfies

Φ(Ĥ, x̂;A∗) = ΠTΦ(H,x;A∗). (35)

From this fact and the hypotheses of Theorem 1, which we are
trying to prove, we have that the hypotheses of Proposition 1
hold. Thus, the reward

r̂ = Em̂

[
f
(
Φ(Ĥ, x̂;A∗); Ĥ, x̂

)]
(36)

is feasible in problem (16) with state distribution m̂(Ĥ, x̂) and
attains utility u(r̂) = u(r∗).

Consider now the optimal tensor Â∗ that is optimal for (16) for
distribution m̂(Ĥ, x̂). This tensor produces a resource allocation
Φ(Ĥ, x̂; Â∗) and an optimal reward r̂∗. Repeating the argument
that leads to (35) and (36) we conclude that the reward

r = Em̂

[
f
(
Φ(H,x; Â∗);H,x

)]
(37)

is feasible in problem (16) with state distribution m(H,x) and
attains utility u(r) = u(r̂∗).

Since we know that r̂∗ is optimal for distribution m̂(Ĥ, x̂)
and that r̂ is simply feasible we must have

u(r̂∗) ≥ u(r̂) = u(r∗), (38)

where the second equality follows from Proposition 1 as already
shown. Likewise, since r∗ is optimal for distribution m(H,x)
and r is feasible, it must be that

u(r∗) ≥ u(r) = u(r̂∗). (39)

For (38) and (39) to hold the inequalities must be equalities.
Thus, A∗ must be optimal for distribution m̂(Ĥ, x̂) and, con-
versely, Â∗ must be optimal for distributionm(H,x). The result
in (22) is implied. �

Remark 5 (Permutation Matrix is Unknown): The permuta-
tion equivariance results in Propositions 1 and 2, which imply
the permutation invariance result of Theorem 1, do not require
knowledge of the permutation Π that equalizes the distribu-
tions m(H,x) and m̂(Ĥ, x̂) in (21). This is worth remarking
because if the permutation is known, designing operators that
are permutation invariant is elementary – just undo the permu-
tation and apply the corresponding operator. REGNNs achieve
permutation invariance without knowing the permutation that
relates m(H,x) and m̂(Ĥ, x̂). This is as it should be to enable
transference—see Section VI-B.

Remark 6 (Homogeneity vs Heterogeneity): However advan-
tageous, permutation invariance hinders the ability to handle
heterogeneous agents. Consider, for example, a weighted utility
u0(r) = wT r that assigns different weights to the rewards of
different agents but assume that otherwise, the hypotheses of
Propositions 1 and 2 and Theorem 1 hold. This utility violates
Assumption 1 but this assumption is not needed in Proposition
2. Thus, we know that outputs of the REGNN are permutation

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2985

equivariant [cf. (31)] and that, in particular, the resource allo-
cations satisfy r̂ = ΠT r [cf. (30)]. We then have that u0(r̂) =
u0(Π

T r) = wTΠT rwhich equivocates the weight assignment.

V. PRIMAL-DUAL LEARNING

To find the optimal filter tensor A∗ we find a saddle point
of the Lagrangian associated with the optimization problem in
(16). To define the Lagrangian let λ be a multiplier associated
with the constraint r = E[f(Φ(H,x;A);H,x)] and μ ≥ 0 a
multiplier associated with the constraint u(r) ≥ 0. Recall that
the constraint Φ(H,x;A) ∈ P(H,x) in (16) is addressed in
the output layer of the REGNN and is thus not considered in the
Lagrangian function. The Lagrangian of (16) is the following
weighted combination of objective and constraints

L(A, r,λ,μ)

= u0(r) + λT
[
E [f (Φ (H,x;A) ;H,x)]− r

]
+ μTu(r).

(40)

A saddle point of the Lagrangian in (40) is a primal dual pair
(A, r)†, (λ,μ)† such that for all variables (A, r), and (λ,μ) in
a sufficiently small neighborhood we have

L (
A, r, (λ,μ)†

) ≤ L (
(A, r)†, (λ,μ)†

) ≤ L (
(A, r)†,λ,μ

)
.

(41)

Namely, the saddle point is locally maximal on the primal
variables and locally minimal in the dual variables. There
several saddle points satisfying (41) because the Lagrangian
L(A, r,λ,μ) in (40) is associated to a nonconvex optimization
problem [31, Ch. 5]. We know that one of them contains the
optimal tensor A∗. Since a global search is intractable we are
going to settle for a local search. We remark that this search
need not find the optimal tensor A∗ but we have observed good
empirical results.

The primal-dual method we use here alternates between gra-
dient descent steps in the dual variables (λ,u) with gradient
ascent steps in the primal variables (A,x). In specific, let k be
an iteration index and ε denote a stepsize. The primal update on
the reward function r is rk+1 = rk + ε∇rL(Ak, rk,λk,μk),
which, using the explicit Lagrangian expression in (40) results
in the update

rk+1 = rk + ε [∇r u0(rk) + [∇r u(rk)]μk − λk] . (42)

Similarly, the update in the dual variable μ takes the form
μk+1 = [μk − ε∇µL(Ak, rk,λk,μk)]

+ where we add a pro-
jection on the nonnegative orthant to account for the fact thatμ is
nonnegative. Since the Lagrangian is linear in the dual variables
the gradient is simple to compute and the update reduces to

μk+1 = [μk + εu(rk)]
+ . (43)

The updates in (42) and (43) are both relatively easy to carry out
as they depend on the utility funtions u0 and u. Taking gradients
with respect to the filter tensor A and the multiplier Λ is more
challenging because of the expectation operators. The gradient

descent update with respect to λ, for example, takes the form

λk+1 = λk − εE [f (Φ (H,x;Ak) ;H,x) − rk] . (44)

This is an update that can’t be computed if the distribution
m(H,x) is unknown. This is a problem that is resolved by using
stochastic updates in which we sample a realization (Hk,xk)
and update λk according to

λk+1 = λk − ε [f (Φ (Hk,xk;Ak) ;Hk,xk) − rk] . (45)

The same idea of stochastic updates is used when taking gradi-
ents with respect to the filter tensor. This yields the filter update

Ak+1 = Ak + ε [∇A f (Φ (Hk,xk;Ak) ;Hk,xk)]λk (46)

It is germane to point out that to implement (45) we do
not need to know the model f mapping resource allocations
and network states to user rewards. It suffices to observe the
state of the network (Hk,xk) and implement the resource
allocation Φ(Hk,xk;Ak) according to the current filter ten-
sor iterate Ak. We can then observe the reward outcome
f(Φ(Hk,xk;Ak);Hk,xk) and use it to implement the La-
grange multiplier update in (45).

The same is not quite true for the update in (46) because
it requires gradients of f which cannot be directly queried by
probing the system. This is a challenge that also arises in policy
gradient methods where it is resolved with the introduction of
randomized policies [32]. Mimicking that approach we rein-
terpret Φ(H,x;A) as the parameter of probability distribution
Ψ(H,x;A). A likelihood ratio identity allows us to express the
gradient in (46) as

∇AE [f (Φ (H,x;Ak) ;H,x)]

= E
[
f (Φ (H,x;Ak) ;H,x)∇A logΨ(H,x;Ak)

T
]
.

(47)

The substitution in (47) is useful in that it replaces the gradient of
the expectation of f with the expectation of the gradient of logΨ.
As in the stochastic update in (45), we can estimate the gradient
with sampled realization (Hk,xk), while the gradient of logΨ
can be calculated assuming a given distributionΨ(Hk,xk;Ak).
This results in the stochastic policy for the filter tensor A

Ak+1 = Ak+

ε
[
f (Φ (Hk,xk;Ak) ;Hk,xk)∇A logΨ(Hk,xk;Ak)

Tλk

]
.

(48)

We stress that (48) is model-free because, like (45), it is com-
puted only by probing f(Φ(Hk,xk;Ak);Hk,xk) and thus
does not need explicit knowledge of f or the state distribution
m(H,x).

We train REGNNs using the updates in (42), (43), (45), and
(48). The resulting scheme is summarized in Algorithm 1. To
initialize the training process we specify the REGNN architec-
ture. We use the shorthand REGNN[L, (F1,Kl), . . . , (FL,KL)]
to signify a REGNN with L layers in which the lth layer
contains Fl features generated by filters of length Kl. After
initializing REGNN filter tensor A0 and other primal and dual
variables in Step 2, we perform our learning iterations in Step 3.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2986 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Algorithm 1: Primal-Dual REGNN Training.

1: Parameters: REGNN[L, (F1,Kl), . . . , (FL,KL)]
2: Input: Initial states A0, r0,λ0,μ0

3: for k = 0, 1, 2, . . . do {main loop}
4: Sample states (Hk,xk) ∼ m(H,x).

Probe f(Φ(Hk,xk;Ak);Hk,xk).
5: Update primal and dual variables [(42), (43), (45),

(48)]

rk + ε [∇r u0(rk) + [∇r u(rk)]μk − λk]

[μk + εu(rk)]
+

λk − ε [f (Φ (Hk,xk;Ak) ;Hk,xk) − rk] ,

Ak + ε
[
f (Φ (Hk,xk;Ak) ;Hk,xk)

∇A logΨ(Hk,xk;Ak)
Tλk

]
6: end for

Each learning iteration k consists of first computing of draw-
ing samples of states H and x and probing the system
f(Φ(Hk,xk;Ak);Hk,xk) using the current REGNN policy
specified by Ak in Step 4. In Step 5 we perform the primal-dual
gradient updates in (42), (43), (45), and (48) using the probed
performance. The process is repeated until convergence.

VI. NUMERICAL RESULTS

In this section, we provide a numerical study of the perfor-
mance of resource allocation policies that parameterized with
REGNNs and trained with the model-free primal-dual learn-
ing method. We simulate the performance of the policy on a
number of canonical resource allocation functions that take the
form of (3) and compare against existing heuristic approaches.
Where applicable, we point out the compared heuristics that
rely on accurate model knowledge to be implemented, which
as discussed in Section V, is not required to implement the
primal-dual learning method. We study the canonical problem of
binary power control between m transmitter/receiver pairs over
an AWGN channel with noise power σ2 and interference—see
the first example in Section II-A for a discussion of this problem.
In addition to maximizing the sum-rate capacity, a practical con-
straint of interest is a maximum average power budgetPmax to be
shared between transmitters connected to a common power sup-
ply. The complete resource allocation problem can be written as

P ∗ : = max
p(H,x),r

m∑
i=1

ri,

s.t. ri=E

[
log

(
1 +

|hii|2pi(H)

σ2 +
∑

j �=i |hji|2pj(H)

)]
,

E
[
1Tp(H,x)

] ≤ Pmax, p(H,x) ∈ {0, p0}m.
(49)

As discussed in Section II-A, the problem in (49) does not utilize
any node state x and associated cost constraint. This is however
an instructive problem to study, as it is well studied and has

numerous developed heuristic solutions with which the compare
as baselines. Observe also that the power allocation is a binary
selection of transmitting with power p0 or not transmitting.

A. Ad-hoc Networks

We begin studying the performance of the model-free training
of an REGNN in the wireless ad-hoc, or paired network. For all
sets of simulations, we construct the ad-hoc wireless network
as follows. For a set of m pairs, we construct a random ge-
ometric graph by dropping transmitter i uniformly at random
at location ti ∈ [−m,m]2, with its paired receiver at location
ri ∈ [ti −m/4, ti +m/4]2 around its paired transmitter—see,
e.g., Fig. 1(a) for an example. Given the geometric placements,
the complete fading channel state between transmitter i and
receiver j is composed of hij = hp

ijh
f
ij , where hp

ij is a constant

path-loss gain and hf
ij is the time varying fast fading. The path

loss is related to the geometric distance as hp
ij = ‖ti − rj‖−2.2

and the fast fading hf
ij is drawn randomly from a standard

Rayleigh distribution at each scheduling cycle and the noise
power is initially fixed at σ2 = 1.

In employing the primal dual learning method in Algorithm 1,
we consider the model free version in which gradients are
estimated via the policy gradient approximation. We construct
an REGNN architecture with L = 8 hidden layers, each with
Fl = 1 graph filters of length Kl = 5 and a standard ReLu
non-linear activation function i.e. σ(z) = [z]+. The final layer
is passed through a sigmoid function to normalize the outputs,
which are then used as the parameter of a the policy distribu-
tion Ψ(H,x;A)—chosen here as a Bernoulli distribution. The
primal dual method is performed with a geometrically decaying
step size for dual updates and the ADAM optimizer [33] for the
primal updates.

In general, we make our comparisons against existing heuris-
tic methods for solving (49). We primarily consider (i) the
popular WMMSE heuristic [6] as a baseline, while also making
comparisons against naive heuristics that either (ii) assign equal
power Pmax/m to all users or (iii) randomly select Pmax/p0
users to transmit with full power. Furthermore, we simulate
the learning and performance of the convolutional REGNN
architecture to a fully connected neural network (FCNN) for
medium scale networks. In Fig. 3, we show the performance,
or sum-capacity, achieved throughout the learning process of
the REGNN and FCNN trained with the primal-dual learning
method and the performance of the three heuristic baselines
for a medium scale wireless system with m = 20 pairs. It can
be observed that both the REGNN and FCNN outperform the
performance of WMMSE for the medium scale system. We
stress that this performance is obtained by the NNs using the
model-free gradients, meaning that knowledge of the capac-
ity function was not assumed. Explicit knowledge of capacity
functions is needed, however, for the WMMSE algorithm. We
further point out that, although there is generally no clear way
to interpret resource allocation decisions made my a learning
model with which we can attribute the gains relative to WMMSE,
the WMMSE method does not explicitly solve the constrained
resource allocation problem in (49) as can be done by the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2987

Fig. 3. Performance comparison during training of REGNN form = 20 pairs.
With only q = 40 parameters, the REGNN outperforms the WMMSE algorithm
and matches the performance of the FCNN.

primal-dual learning method. In these simulations, satisfaction
of the sum-power constraint in (49) was enforced in WMMSE
by subtracting power equally across selected transmitters.

Observe that the REGNN, with only q = 40 parameters,
matched the performance of the FCNN with two fully con-
nected layers of size 64 and 32 for a total of q = 20× 64 +
64× 32 + 32× 20 ≈ 4000 parameters—a 100 factor increase
than that used by the REGNN. We also point out that, while
20000 iterations are needed for convergence here, and it can
be further observed in Fig. 3 that the REGNN requires more
iterations than the FCNN to achieve stronger performance. We
first stress that the issue of number of iterations until convergence
is not critical in this setting, as the training is done offline;
the runtime complexity of the REGNN is lower than that of
a FCNN. The proceeding simulation experiments demonstrate
that the REGNN is capable of scaling to larger systems. In
Section VI-B, we will demonstrate how the REGNN is more-
over able transfer to networks of different configurations and
sizes. This could not be possible with a FCNN, whose input
dimension is of a fixed size. Therefore, while in the particular
case shown in Fig. 3, it takes longer to train the REGNN, it can
be considered overall much slower to train a FCNN, as it nec-
essarily needs to be retrained for each new configuration of the
network.

In Fig. 4, we show the performance while learning a REGNN
in a larger scale system with m = 50 transmitter/receiver pairs.
At this scale, the parameter dimension of the FCNN makes
it challenging to train; the input dimension of channel states
is 2500. Here, we see that the learned REGNN substantially
outperforms all three heuristics, including WMMSE. Observe
that while WMMSE achieves a sum-capacity of roughly 2.7 in
the medium scale system, the algorithm performs worse when
more transmitters are added, obtaining a sum-rate of only 1.8.
The REGNN, meanwhile, is able to still achieve a sum-rate of
3.0, all while only learning 40 parameters. In Fig. 5, we evaluate
the gains of the learned REGNN over the baselines in different
SNR regimes. To vary the average SNR, we set the AWGN noise
parameter 1/σ2 to vary between {0.5, 1, 2}, where a larger value
reflects a higher average SNR. As can be seen, the REGNN

Fig. 4. Performance comparison during training of REGNN form = 50 pairs.
With only q = 40 parameters, the REGNN strongly outperforms the WMMSE
algorithm.

Fig. 5. Performance comparison of an REGNN against baselines in different
SNR regimes. The average SNR is controlled by the AWGN noise parameter
1/σ2, larger values reflect larger average SNR. The REGNN has bigger gain
over WMMSE in higher SNR regimes.

has substantial gain over all methods in the middle and larger
SNR regimes, but only matches the performance of WMMSE
when the average SNR value is small. This follows from the fact
that WMMSE is known to approach the optimal value of the
sum-rate maximization problem as the SNR decreases [6] and
corroborates similar findings in comparisons with other machine
learning-based methods, e.g. [18].

B. Transference

As previously discussed, we are interested in exploring the
generalization abilities of an REGNN learned over some fixed
network. Recall that the filter-bank structure of an REGNN in
(15) allows the same neural network to receive inputs of varying
input dimension, or network size. The permutation invariance
result in Theorem 1 demonstrates that an REGNN trained on
one network performs as well on permutation of that network.
As we don’t expect to see exact permutations in practice, here
we numerically investigate the transference capabilities on ran-
domly drawn networks of fixed density. Consider the REGNN
leaned in the previous experiment in Fig. 4. As an instructive
example, consider another randomly drawn network of 50 pairs

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2988 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 6. Performance comparison of an REGNN that was trained in Fig. 4
in another randomly drawn network of equal size. Presented is the empirical
distribution of the sum-rate achieved over many random iterations for all
heuristic methods.

Fig. 7. Empirical histogram of sum rates obtained by (top, blue) REGNN
trained on network of sizem = 50 and (bottom, red) REGNN trained on network
of size m′ = 75 on 50 randomly drawn networks of size of m′ = 75. The
REGNN trained on the smaller network closely matches the performance of the
REGNN trained on the larger network.

as shown in Fig. 6. The performance of the REGNN trained
in Fig. 4 over many random iterations is shown here compared
to the heuristics as an empirical histogram of sum-rates over
all random iterations. We see that the same parameterization
learned for one network performs well with another network.
Intuitively speaking, this relates to the stability and permutation
equivariance of GNNs because random networks of size 50 may
be close to each other in expectation.

Another comparison of interest here is the relative perfor-
mance of a REGNN trained on a network of size m = 50
with an REGNN trained on a network of m′ > m. In Fig. 7
we show a histogram of the sum-rate performance over 50
randomly generated networks of size m′ = 75 and m′ = 100.
For a set of m′ pairs, we construct a random geometric graph
by dropping transmitter i uniformly at random at location ti ∈
[−m

√
m′/m,m

√
m′/m]2, with its paired receiver at location

ri ∈ [ti −m/4, ti +m/4]2 around its paired transmitter. This
is done to keep the density of the network constant as the number
of transceiver pairs grows.

The performance for each random network is itself evaluated
over 100 separate fast fading samples. As can be seen, the

Fig. 8. Empirical histogram of sum rates obtained by (top, blue) REGNN
trained on network of sizem = 50 and (bottom, red) REGNN trained on network
of size m′ = 100 on 50 randomly drawn networks of size of m′ = 100. The
REGNN trained on the smaller network closely matches the performance of the
REGNN trained on the larger network.

Fig. 9. Performance of REGNN trained in Fig. 4 in randomly drawn networks
of varying size. From networks of size m′ = 50 to 500, the REGNN is able to
outperform the heuristic methods.

performance of the REGNN trained on the smaller network of
size m = 50 almost matches the performance of an REGNN
trained on a network of size 75. The same procedure is per-
formed for networks of size m′ = 100. In Fig. 8, we show the
performance of the REGNN trained on a network of size 50
against the performance of a network trained on a network of size
100 on random networks of size 100. Again, the performance
of the REGNN trained on the smaller network only slightly
degrades relative to the REGNN trained on the larger network.
This highlights a potential to train REGNNs on smaller networks
to later be implemented on larger networks. We point out that this
is a powerful property for practical learning for such systems, as
we can potentially train our neural networks on smaller systems
when larger networks are either unavailable during training or
when computational expense is prohibitive.

To fully explore these capabilities for increasingly large net-
works, we again use the REGNN trained in Fig. 4 in random
wireless networks of increasing size. Note that, as we increase
the size of the networks, the density of the network remains
constant so that the statistics of the channel conditions are the
same. In Fig. 9, we show the average sum-rate achieved by the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2989

Fig. 10. Performance of REGNN trained in Fig. 4 in randomly drawn networks
of varying densities from factors ranging from r = 0.1 to 10. As the density of
the network increases, the REGNN is unable to match the performance of the
WMMSE algorithm.

REGNN over many random iterations for networks of increasing
size m′, where the geometric configurations generated using
the fixed-density random geometric graph as done previously.
We observe that, even as the network size increases, the same
REGNN is able to outperform the heuristic methods.

As a final numerical study for the pairwise network, we
compare the performance of the REGNN trained on a fixed
network of size m = 50 in new random networks of equiva-
lent number of pairs but varying density. In these experiments,
we draw random geometric graphs with some density factor
r by dropping transmitter i uniformly at random at location
ti ∈ [−r−1m

√
m′/m, r−1m

√
m′/m]2, with its paired receiver

at location ri ∈ [ti −m/4, ti +m/4]2 around its paired trans-
mitter. In this manner, as the density factor r increases, the
physical space of the network gets smaller and thus more dense.
In Fig. 10, we show the average sum-rate achieved by the
REGNN over many random iterations for networks of increasing
densities r. We observe that, for wireless networks of equal or
less density than the one used for training, the REGNN has strong
performance relative to the heuristics. However, as the networks
more dense, the REGNN is unable to match the performance of
WMMSE. This results follows from the fact that the statistics of
data seen in training begins to vary more greatly from that seen in
execution time as the networks increase in density. Indeed, as the
transmitters become closer together, the path-loss component of
the fading state decreases and the interference grows.

C. Incorporating User Demand

We proceed to perform simulations an extension to the binary
control problem in the paired ad-hoc network studied in the
Section VI-A—namely binary power control with varying user
demand. The problem was previously discussed in the second
example of Section II-A. For this setting, we assume that each
transmitter additionally maintains a local state xi that reflects its
current capacity demand, such as a packet arrival rate. Such a
problem is highly relevant in, e.g. sensor networks and robotics
applications. The resource allocation problem is closely related
to that in (49), but with an additional constraint the ergodic

Fig. 11. Convergence of training of an REGNN for the wireless sensor network
problem with m = 30 sensors/transmitters. In the top figure, we show the con-
straint violation for each of the transmitters converges to a feasible solution. In
the bottom figure, we show the objective function converge to a local maximum.

capacity achieved by each transmitter must exceed the aver-
age collection rate of its associated sensor. We may write this
problem as

P ∗ : = max
p(H,x),r

m∑
i=1

ri,

s.t. ri = E

[
log

(
1 +

|hii|2pi(H)

1 +
∑

j �=i |hji|2pj(H)

)]
,

E [x] ≤ r, p(H,x) ∈ {0, p0}m. (50)

The problem in (50) contains an additional complexity in the
ergodic constraint, which must be independently satisfied by
each transmitter. The optimal resource allocation policy is which
obtains sufficient capacity is achieved by each transceiver pair in
expectation, while then maximizing the sum-rate achieved over
the network.

We perform the primal-dual learning method to train a
REGNN in a system with m = 30 transmitter/receiver pairs,
who are placed randomly as in previous simulations. The collec-
tion rates η are drawn from a exponential distribution with mean
0.05. We train a REGNN with L = 10 layers, each with Fl = 1
filters of length Kl = 5. In Fig. 11 we show the performance
of the learning procedure. In Fig. 11(a), we show the constraint

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

2990 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 12. Performance comparison during training of REGNN for multi-cell
interference network with m = 50 users and n = 5 base stations. With q = 40
parameters, the REGNN outperforms the model-free heuristics but does not
quite meet the performance of WMMSE, which utilizes model information in
its implementation.

violation for all 30 sensors. with a negative value of E[x]− r
signifying a satisfaction of the capacity constraint, i.e. the sensor
is transmitting data faster that it collects. While we may observe
a wide variance in the capacities achieved by different sensors,
a close examination of Fig. 11(a) shows that all but 1 sensor
achieves constraint satisfaction (constraint satisfaction can be
seen with a negative constraint violation value). Likewise, in
Fig. 11(b), we show the REGNN-based resource allocation pol-
icy achieve an overall performance converges to local optimum
as the rate constraints are being satisfied.

D. Multi-Cell Interference Network

In this section, we consider a variation of the network archi-
tecture previously considered known as a multi-cell interference
network. In contrast to the pair-wise setting, in the mutli-cell
network there exist n receivers—or cellular base stations—who
service the transmissions of a total m cellular users, which
we assume are distributed evenly amongst the base stations.
An example of such a multi-cell configuration is provided in
Fig. 1(b) for n = 20 base stations, marked with large circles,
covering a variety of cellular users, marked with smaller circles.
The settings here is instructive not only in the real world prac-
ticality of its setting, but in its tendency to scale largely as the
number of base stations or number of users grows. In Fig. 12, we
show the performance obtained by the REGNN during training
compared to the heuristic methods on a network of n = 5 cells
with a total of m = 50 users. Here we see that the REGNN
almost matches the performance of WMMSE without requiring
model knowledge in its training or execution. As before, we
study the transference properties as the number of cells grow.
In Fig. 13, we plot the performance of the REGNN trained
in Fig. 12 on networks of increasing size by increasing the
number of cells. We observe that the performance of the REGNN
scales well up to n = 30 cells (m = 150 users) and matches the
performance of WMMSE without any model knowledge being
utilized.

Fig. 13. Performance of REGNN trained in Fig. 12 in randomly drawn multi-
cell networks of varying size. From networks of size 5 to 50 cells, the REGNN
matches the performance of the best performing heuristic method.

VII. CONCLUSION

We consider the problem of learning optimal resource alloca-
tion policies in wireless networks. The resource allocation prob-
lem takes the form of constrained statistical learning, which can
be addressed by training a parameterization of the resource allo-
cation policy using a model-free, primal-dual learning method.
Fully connected neural networks are unsuitable parameteriza-
tions for large scale problems due to their prohibitively large
parameter dimension. Given the randomly varying graph struc-
ture of fading channel states in a wireless network, we propose
the use of random edge graph neural networks (REGNNs) to pa-
rameterize the resource allocation policy. Such a neural network
structure has significantly smaller parameter dimension that
does not scale with the size of the wireless network. Moreover,
we demonstrate that such policies are permutation equivariant,
and can thus achieve similar performance on networks that
are close to permutations of one another. We demonstrate in a
series of numerical simulations how the REGNN is an effective
parameterization for resource allocation policies for large scale
wireless networks, both in learning strong performing policies
and for such policies to transfer well to networks of larger size.

REFERENCES

[1] A. Ribeiro, “Optimal resource allocation in wireless communication and
networking,” EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1, 2012,
Art. no. 272.

[2] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization
of multicarrier systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1310–
1322, Jul. 2006.

[3] J. Zhang and D. Zheng, “A stochastic primal-dual algorithm for joint flow
control and mac design in multi-hop wireless networks,” in Proc. 40th
Annu. Conf. Inf. Sci. Syst., 2006, pp. 339–344.

[4] K. Gatsis, M. Pajic, A. Ribeiro, and G. J. Pappas, “Opportunistic control
over shared wireless channels,” IEEE Trans. Autom. Control, vol. 60,
no. 12, pp. 3140–3155, Dec. 2015.

[5] X. Wang, T. Chen, X. Chen, X. Zhou, and G. B. Giannakis, “Dynamic re-
source allocation for smart-grid powered MIMO downlink transmissions,”
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3354–3365, Dec. 2016.

[6] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2011, pp. 3060–3063.

[7] C. S. Chen, K. W. Shum, and C. W. Sung, “Round-robin power control for
the weighted sum rate maximisation of wireless networks over multiple
interfering links,” Eur. Trans. Telecommun., vol. 22, no. 8, pp. 458–470,
2011.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

EISEN AND RIBEIRO: OPTIMAL WIRELESS RESOURCE ALLOCATION WITH RANDOM EDGE GRAPH NEURAL NETWORKS 2991

[8] X. Wu et al., “FlashLinQ: A synchronous distributed scheduler for peer-to-
peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1215–
1228, Aug. 2013.

[9] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach for
spectrum sharing in device-to-device communication systems,” IEEE J.
Sel. Areas Commun., vol. 32, no. 6, pp. 1139–1151, Jun. 2014.

[10] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless resource
management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–
5453, Oct. 2018.

[11] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas, “A
deep learning approach for optimizing content delivering in cache-enabled
HetNet,” in Proc. Int. Symp. Wireless Commun. Syst., 2017, pp. 449–453.

[12] D. Xu, X. Chen, C. Wu, S. Zhang, S. Xu, and S. Cao, “Energy-
efficient subchannel and power allocation for hetnets based on convo-
lutional neural network,” 2019 IEEE 89th Vehicular Technology Confer-
ence (VTC2019-Spring), Kuala Lumpur, Malaysia, 2019, pp. 1–5, doi:
10.1109/VTCSpring.2019.8746493.

[13] T. V. Chien, E. Björnson, and E. G. Larsson, “Sum spectral efficiency
maximization in massive mimo systems: Benefits from deep learning,” ICC
2019 - 2019 IEEE International Conference on Communications (ICC),
Shanghai, China, 2019, pp. 1–6, doi: 10.1109/ICC.2019.8761234.

[14] P. de Kerret, D. Gesbert, and M. Filippone, “Team deep neural networks
for interference channels,” in Proc. IEEE Int. Conf. Commun. Workshops,
2018, pp. 1–6.

[15] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep reinforcement
learning based framework for power-efficient resource allocation in cloud
RANs,” in Proc. IEEE Int. Conf. Commun., 2017, pp. 1–6.

[16] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power
control scheme based on convolutional neural network,” IEEE Commun.
Lett., vol. 22, no. 6, pp. 1276–1279, Jun. 2018.

[17] M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A. Ribeiro, “Learning
optimal resource allocations in wireless systems,” IEEE Trans. Signal
Process., vol. 67, no. 10, pp. 2775–2790, May 2019.

[18] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power
control via ensembling deep neural networks,” IEEE Trans. Wire-
less Commun., vol. 68, no. 3, pp. 1760–1776, Mar. 2020, doi:
10.1109/TCOMM.2019.2957482.

[19] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-
user cellular networks: Deep reinforcement learning approaches,” 2019,
arXiv:1901.07159.

[20] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless schedul-
ing,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–1261, Jun. 2019.

[21] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” 2015, arXiv:1506.05163.

[22] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” IEEE Trans. Signal
Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[23] M. Eisen and A. Ribeiro, “Large scale wireless power allocation with
graph neural networks,” in Proc. IEEE 20th Int. Workshop Signal Process.
Advances Wireless Commun., 2019, pp. 1–5.

[24] M. Lee, G. Yu, and G. Y. Li, “Graph embedding based wireless link
scheduling with few training samples,” 2019, arXiv:1906.02871.

[25] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “A graph neural net-
work approach for scalable wireless power control,” 2019 IEEE Globe-
com Workshops (GC Wkshps), Waikoloa, HI, USA, 2019, pp. 1–6, doi:
10.1109/GCWkshps45667.2019.9024538.

[26] X. Wang and L. Cai, “Proportional fair scheduling in hierarchical modu-
lation aided wireless networks,” IEEE Trans. Wireless Commun., vol. 12,
no. 4, pp. 1584–1593, Apr. 2013.

[27] A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing
on graphs,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Advances Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[29] H.-T. Cheng et al., “Wide & deep learning for recommender systems,” in
Proc. 1st Workshop Deep Learn. Recommender Syst., 2016, pp. 7–10.

[30] F. Gama, J. Bruno, and A. Ribeiro, “Stability properties of graph neural
networks,” 2019, arXiv:1905.04497.

[31] D. P. Bertsekas, Nonlinear Programming. New York, NY, USA: Taylor &
Francis, 1997.

[32] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Advances Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–13.

Mark Eisen (Member, IEEE) received the Ph.D
in electrical engineering and Masters in statis-
tics from the University of Pennsylvania in 2019.
Since August 2019, he has been working as a Re-
search Scientist at Intel Labs in Hillsboro, OR.
His research interests include machine learning,
wireless communications, networked control sys-
tems, and statistical optimization. In the sum-
mer of 2013, he was a Research Intern with
the Institute for Mathematics and its Applications at
the University of Minnesota and in the summer of

2018, was a Research Intern at Intel Corporation. Dr. Eisen was a recipient of
the Outstanding Student Presentation at the 2014 Joint Mathematics Meeting,
as well as the recipient of the 2016 Penn Outstanding Undergraduate Research
Mentor Award.

Alejandro Ribeiro received the B.Sc. degree in elec-
trical engineering from the Universidad de la Repub-
lica Oriental del Uruguay, Montevideo, in 1998 and
the M.Sc. and Ph.D. degree in electrical engineering
from the Department of Electrical and Computer En-
gineering, the University of Minnesota, Minneapolis
in 2005 and 2007. From 1998 to 2003, he was a mem-
ber of the technical staff at Bellsouth Montevideo.
After his M.Sc. and Ph.D studies in 2008, he joined
the University of Pennsylvania (Penn), Philadelphia,
where he is currently the Rosenbluth Associate Pro-

fessor at the Department of Electrical and Systems Engineering. His research
interests are in the applications of statistical signal processing to the study of
networks and networked phenomena. His focus is on structured representations
of networked data structures, graph signal processing, network optimization,
robot teams, and networked control. Dr. Ribeiro received the 2014 O. Hugo
Schuck Best Paper Award, and paper awards at CDC 2017, 2016 SSP Workshop,
2016 SAM Workshop, 2015 Asilomar SSC Conference, ACC 2013, ICASSP
2006, and ICASSP 2005. His teaching has been recognized with the 2017
Lindback Award for Distinguished Teaching and the 2012 S. Reid Warren, Jr.
Award presented by Penn’s undergraduate student body for outstanding teaching.
Dr. Ribeiro is a Fulbright scholar class of 2003 and a Penn Fellow class of 2015.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 08,2020 at 08:39:06 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/VTCSpring.2019.8746493
https://dx.doi.org/10.1109/ICC.2019.8761234
https://dx.doi.org/10.1109/TCOMM.2019.2957482
https://dx.doi.org/10.1109/GCWkshps45667.2019.9024538

