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We investigate the dynamic behavior and topology of quasiperiodic resonant metastructures. We show
that the quasiperiodic arrangement of resonators introduces frequency band gaps in addition to the locally
resonant band gap defined by the natural frequency of the resonators. The concept is illustrated on a
beam with an array of mechanical resonators. Numerical evaluation of the spectrum as a function of
the quasiperiodic arrangement of resonators reveals a structure reminiscent of a Hofstadter butterfly and
allows the study of key topological properties. The results illustrate the occurrence of additional band gaps
that are topologically nontrivial and that host edge-localized modes in finite structures. The occurrence of
these gaps and of the associated edge states is demonstrated experimentally by measuring the frequency
response of the beam and by evaluating the spatial distribution of selected operational deflection shapes.
The results unveil the potential of deterministic quasiperiodic structural designs to induce wave localiza-
tion and attenuation over multiple frequency bands, which may find applications in vibration isolation and
energy harvesting, among others.

DOI: 10.1103/PhysRevApplied.13.014023

I. INTRODUCTION

Locally resonant (LR) metamaterials and metastructures
have been broadly investigated in recent decades. Theo-
retical and numerical studies have shown that linear local
resonators produce subwavelength frequency band gaps
that enable low-frequency attenuation of sound and vibra-
tions [1–7]. Most investigations have considered nomi-
nally identical resonators that are regularly, or periodically,
placed within the structure. In these cases, the LR band-gap
center frequency is defined through the natural frequency
of the resonators, while its width is mostly determined
by the added inertia [7]. Attempts at extending the reso-
nant gap through nonuniform resonators, both in terms of
their natural frequency and of their spacing, can be found
in Refs. [3,8,9], among others. Parallel to these efforts,
there is considerable interest in the conditions that gov-
ern the onset of localization [10–12]. Vibration localization
can be beneficial both in terms of isolating components
and limiting exposure but can also be the source of catas-
trophic failures [13] and therefore is of great relevance to
the engineering community.

Inspired by the discovery of topologically nontrivial
phases in electronic [14] and photonic [15] systems, var-
ious classes of topological phenomena such as quantum
Hall and quantum spin Hall effects have been studied and
realized in acoustic and mechanical systems [16]. These
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works exploit defect-immune modes localized at edges or
interfaces for robust acoustic and/or elastic waveguiding.
Recently, topological phases have also been explored in
lower-physical-dimensional systems by exploiting virtual
dimensions in relevant parameter spaces [17–20]. In par-
ticular, quasicrystalline or quasiperiodic structures have
been linked to topological insulators [21–23]. Quasiperi-
odicity defines a broad class of geometrical patterns, of
which periodic assemblies are particular cases. Thus, the
study of quasiperiodic (QP) arrangements of inclusions can
extend the range of capabilities of periodic metamaterials
and metastructures [24].

A recent line of work considers a framework to investi-
gate QP systems based on the evaluation of their spectral
properties, the evaluation of the density of states, and the
estimation of topological invariants that may character-
ize nontrivial gaps and the onset of associated edge states
[25–28]. For example, recent work in mechanics [25] has
demonstrated that topological boundary modes can emerge
solely from the patterning of a metamaterial, in a man-
ner that is entirely independent of the structure of the
resonators and their coupling. The experimental observa-
tions in Ref. [25] also show the onset of localized modes
at the boundary of finite arrays of discrete mechanical
resonators, implemented in the form of a chain of magnet-
ically coupled spinners. Topological boundary and inter-
face modes in QP acoustic waveguides are also observed
in Ref. [26], while reconfigurable QP acoustic crystals [27]
are employed to experimentally observe their spectrum in
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the form of a Hofstadter butterfly [29]. Furthermore, the
numerical results in Ref. [28] have shown how a Hof-
stadter spectrum also characterizes continuous structural
beams supported by a QP array of ground springs and
how localized modes can be predicted through topological
considerations on such a spectrum. The studies referenced
above provide insights into modes that are localized at
edges or interfaces and suggest new methodologies for
wave transport and localization. Also, this body of work
generally contributes to the literature that regards QP
geometries as projections of higher-dimensional manifolds
onto lower-dimensional lattices and that explores topolog-
ical properties of higher-dimensional periodic systems, to
assess properties in the lower-dimensional physical space.

II. QUASIPERIODIC PATTERN GENERATION

Motivated by previous contributions, here we inves-
tigate a LR beam with QP distributions of resonators.
Extending the results in Ref. [28], we consider elastic
beams in transverse motion equipped with local resonators
located at positions defined by the projection operation
described in Ref. [25]. This pattern-generating procedure
identifies families of structures ranging from periodic to
QP obtained through smooth variation of the parameters
defining the projection, which can be interpreted geomet-
rically as shown in Fig. 1. Accordingly, the location of
resonator s is given by

xs = sa + R sin(2πsθ). (1)

Here, a is the distance between the centers of adjacent cir-
cles defining the spacing between resonators in an under-
lying periodic arrangement, while the radius of the circle
R < a/2 and the angular increment θ define the projec-
tion. The rational and irrational θ values define periodic
and QP patterns, respectively. For θ = 0, the system has a
periodicity of a and the resonators are placed uniformly on
the beam. For rational θ = p/q (p and q are coprime inte-
gers), the system has a periodicity of qa. In contrast, no
periodicity or translational symmetry exists for irrational θ

values. In addition, all resonators are here assumed to have
the same mass m and stiffness k. The governing equations

FIG. 1. The projection operation for placement of the local
resonators according to the procedure described in Ref. [25]).

for the beam and the sth resonator are

D
∂4w(x, t)

∂x4 + ρA
∂2w(x, t)

∂t2
− k

∑

s

ws(t)δ(x − xs) = 0,

(2)

m
∂2[w(xs, t) + ws(t)]

∂t2
+ kws(t) = 0, (3)

where w(x, t) is the transverse displacement of the beam
and ws(t) is the displacement of the sth resonator relative
to the beam. Also, D = EI is the beam bending stiffness,
where E is the Young’s modulus, and I is the second
moment of area of the beam cross section, while ρ is the
density and A is the cross-section area. We consider an
aluminum beam (mass density ρ = 2700 kg/m3, Young’s
modulus E = 69 GPa) of cross section 0.8 × 25.2 mm2.
All resonators have a natural frequency of 90 Hz and the
added-mass ratio is 1.26. The added-mass ratio is defined
here as the ratio of the total mass of added resonators to
the mass of the plain beam without resonators. In addition,
a = 5.08 cm and R = 0.3a are chosen as fixed dimen-
sions in accordance with the considered experimental setup
described below.

III. TOPOLOGICAL BAND GAPS AND
EDGE-LOCALIZED STATES

The study is conducted in terms of variations in θ , which
is the considered free QP parameter. We first evaluate the
spectrum of an infinite beam, which is approximated by
considering all rational values of θ that are commensu-
rate with S = 600 cells. Periodic boundary conditions are
imposed on both ends of the beam, so that it geometrically
resembles a ring (for details, refer to Ref. [28]). Employing
an analysis approach based on Galerkin’s approximation
[28], we evaluate the resonant frequencies for all con-
figurations (θ = s/S, s = 1, 2, . . . , S) and plot them to
obtain the approximated bulk spectrum shown in black
in Fig. 2(a). The resonant frequencies of the ring dis-
cretize the bulk spectrum. The density of the discretization
increases as the number of unit cells S increases. Variation
of vibrational frequencies in terms of the QP parameter
leads to a pattern that is reminiscent of the Hofstadter but-
terfly [29]. In addition, estimating the spectral properties of
a finite simply supported beam of length L = aS, including
S = 30 unit cells, leads to the finite-structure frequencies
denoted by the red dots in Fig. 2(a). Both the bulk and
the finite spectra are characterized by a LR band gap that
is topologically trivial, as demonstrated by the fact that it
remains constant as θ varies. Depending on the bound-
ary conditions of the finite structure, the modes localized
at the edge may or may not appear inside the LR band
gap. This gap separates two spectral regions, which feature
several additional band gaps the center frequencies and
widths of which depend on the value of θ . These additional
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(a) (b)

(c) (d)

FIG. 2. (a) Bulk (black) and finite-beam (red) spectra as a function of θ . The finite-beam spectrum, obtained for a finite simply
supported beams with 30 resonators, shows the presence of modes spanning the nontrivial gaps. The blue shaded area highlights the
LR band gap, which is estimated according to the formula derived in Ref. [7]. (b) A detail of the spectrum showing four frequencies
and corresponding bulk and edge-localized modes (the black curve represents the deflection of the beam, while the red circles denote
the displacements of the resonators). (c) A detail of the spectrum showing three labeled nontrivial topological band gaps with an
increasing number of topological modes (blue dashed lines separate regions between commensurate values of θ , while the blue shaded
area highlights the region between θ = 2/30 and θ = 3/30). (d) The IDS as a function of θ exhibits sharp linear jumps at the band
gaps. The slopes of three of these lines [highlighted by the white dashed lines and corresponding to the three gaps labeled in (c)] are
equal to m = 1, 2, 3, while that for the LR band gap (highlighted by the red dashed line) is m = 0, which indicates that this band is
topologically trivial.

gaps, which are topologically nontrivial, are crossed by
several modes of the finite structure, the distinctive feature
of which is their localized nature.

The enlarged spectrum of Fig. 2(b) compares selected
modes corresponding, respectively, to the bulk and the
finite-structure frequencies. Notably, the modes in the
finite beam that appear in the band gap are edge local-
ized at the right boundary (x = L). Also, the response
of the resonators (shown in red circles) is of a localized
nature when the beam’s deflection is localized, while the

relative displacements of the resonators are in phase and
out of phase with respect to the beam at frequencies below
and above the LR band gap, respectively. The fact that
all of the modes spanning the nontrivial gaps are local-
ized at the right boundary is a consequence of the way
in which the finite beam is constructed from the pattern
defined previously in Eq. (1). All finite beams are con-
structed by placing the first resonator at the space location
at x = a + R sin(2πθ) and adding resonators to the right
boundary.
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(a) (b) (c)

FIG. 3. (a) The bulk spectrum (black) and the finite spectrum for a clamped-free beam with 30 resonators (red). (b) The numerical
frequency-response function of the beam spatially averaged between 20% and 30% of the beam span: the color map evolving from
blue to red corresponds to the log scale of the magnitude. The blue regions highlight the low-response ranges corresponding to the
band gaps. (c) The numerical frequency-response function of the beam spatially averaged between 90% and 100% of the beam span:
the response near the beam tip highlights the presence of resonances within the gaps, which correspond to edge states. The vertical
white lines in (b) and (c) correspond to the values of θ = 0.175 and θ = 0.25 considered in the experiments.

The existence of edge states can be predicted through the
analysis of the topological properties of the bands, which
are conveniently uncovered by estimating the integrated
density of states (IDS) for the system [25,28]. Nontriv-
ial gaps and the resulting onset of edge states spanning
them are associated with changes in the IDS as θ varies.
In the IDS representation of Fig. 2(d), a band gap appears
as a line, the slope m of which indicates the number of
topological boundary modes that span the band gap in the
interval between two subsequent commensurate values of
θ [28]. In this case, three IDS lines corresponding to the
three topological band gaps [labeled in Fig. 2(c)] are shown
as white dashed lines in Fig. 2(d), whereby m = 1, 2, 3,
respectively, are the slopes of the corresponding gaps. The
red dashed IDS line related to the LR band gap has a slope
of m = 0, which indicates its topologically trivial nature
and the lack of associated edge states spanning the gap [see
Fig. 2(a)].

IV. NUMERICAL ANALYSES: A CANTILEVER
BEAM

The finite system is implemented as a cantilever beam
with clamped-free boundary conditions, with excitation
applied at the free end. Numerical analyses (Fig. 3) are
performed to evaluate the presence of the LR band gap
and of additional gaps and to guide the selection of θ val-
ues for experimental investigation. On the finite structure,
band gaps are conveniently visualized by evaluating the
frequency-response function for the beam, averaged over a
portion of the length. The choice of the portion of the beam
to be averaged is driven by the need to show the response
far from the excitation and not too close to the clamped
boundary, so that the LR band gap, together with other

additional topological band gaps, is visible in the aver-
aged frequency response. For example, Fig. 3(b) shows
the frequency response corresponding to the ratio of the

(a) (b)

(c)

FIG. 4. The experimental setup, a cantilever beam with 30 res-
onators: (a) the front view of the beam; (b) a close-up of the
resonators; and (c) view of the tip of the beam, excited by a
electrodynamics shaker.

014023-4



TOPOLOGICAL EDGE STATES IN QUASIPERIODIC... PHYS. REV. APPLIED 13, 014023 (2020)

magnitude of the beam transverse deflection (output) to
the magnitude of the input (forcing), averaged between
20% and 30% of the span from the clamped end. As a
result, the color map in Fig. 3(b) is characterized by low-
response regions (in blue) that highlight the attenuation
occurring in the band gaps. This representation clearly out-
lines both the LR band gap and the additional topological
gaps as θ varies. In contrast, Fig. 3(c), obtained by averag-
ing the beam’s response near the excitation, i.e., between
90% and 100% of the span, clearly highlights the modes
of the finite systems, including the resonances localized in
the gaps associated with the finite system. Of these modes,
those in the LR gap are not topological and solely depend
on the considered types of boundary conditions. Compared

with the spectrum of the finite beam with simply supported
boundaries on both ends [Fig. 2(a)], the spectrum of the
clamped-free beam [Fig. 3(a)] has defect modes inside the
trivial LR band gap. The nontrivial additional gaps are
instead spanned by resonant modes as θ varies, regardless
of the boundary conditions.

V. EXPERIMENTAL INVESTIGATIONS

For the experiments, θ = 0.175 and θ = 0.25 ensure
a well-defined separation between the modes associated
with the LR gap and the additional band gap. The selected
two cases are highlighted by white lines in Figs. 3(b)
and 3(c) for reference. The experimental investigations

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. (a),(e) Details of the numerical bulk spectrum, with vertical magenta lines corresponding to θ = 0.175 and θ = 0.25. The
green and red dashed lines show the theoretical boundaries of the LR and nontrivial topological band gaps, respectively. (b)–(d) The
experimental results for θ = 0.175. (f)–(h) The experimental results for θ = 0.25. The magnitude of the beam frequency response is
spatially averaged between 20% and 30% (b),(f) and between 90% and 100% (c),(g) of the beam span. The green and red shaded areas
highlight the theoretical LR and topological band gaps. (d),(h) The measured deflection shapes of the beam. Modes “I,” “III,” and
“IV” are bulk modes at frequencies before the LR gap, between the LR and topological band gap, and after the topological band gap,
respectively. The corresponding frequencies are marked by the green diamond, blue square, and magenta asterisk in (b), (c), (f), and
(g). The mode labeled as “II” in (d) and (h) is edge localized, its frequency falls in the topologically nontrivial gap, and it is marked
by a red circle in (c) and (g).
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are presented to confirm the existence of the topologically
nontrivial band gaps and the occurrence of edge-localized
modes.

The finite system is physically implemented by employ-
ing a 1.524-m-long aluminum cantilever beam with 30
resonators (Fig. 4). Each resonator consists of a 8.26-cm-
long strip of spring steel, which is 0.5 mm thick and 6.35
mm wide. Each strip is clamped symmetrically along the
beam, thus forming two identical cantilevers. Two 6.35-
mm3 permanent magnets are placed at the tip of each
cantilever, to add a tip mass of 3.6 g. The resulting nat-
ural frequency of each resonator is measured to be around
90 Hz. The beam is clamped vertically on one end and
is excited by an electrodynamic shaker at the free end
[Fig. 4(c)]. The force applied by the shaker is recorded
by a force transducer, while the beam’s velocity field is
mapped by a scanning laser Doppler vibrometer (SLDV)
over a grid of 158 points along the beam length (from the
clamped boundary at top, x = 0, to the free end at bottom,
x = L), which corresponds to a spatial resolution of 9.65
mm.

The experimental frequency response of the beam
and the measured spatial distributions of selected opera-
tional deflection shapes are shown in Figs. 5(b)–5(d) for
θ = 0.175 and in Figs. 5(f)–5(g) for θ = 0.25. The spatial
distributions are normalized with respect to the displace-
ments at the free end, w(L). The LR band gap and the
topological band gap are clearly observed from on the
measured frequency response averaged between 20% and
30% of the beam span, i.e., away from the excitation loca-
tion. Overall, the frequency location and frequency width
of these bands agree well with the theoretical predictions
shown as green and red shaded areas in Figs. 5(b) and 5(f).
Both the center frequency and the width of the topologi-
cal band gap increase as the QP pattern parameter θ varies
from 0.175 to 0.25, which also agrees with the theoretical
trend. Furthermore, the measured frequency response aver-
age near the free end, i.e., between 90% and 100% of the
beam span, shows the presence of the localized modes that
correspond to response peaks within the gap highlighted
in Figs. 5(c) and 5(g). As expected from the theoretical
predictions, the measured localized mode (red circle) for
each case appears within the topological band gap and
the localized nature at the edge is confirmed well by the
corresponding operational deflection shape plotted in red
and labeled “II” in Figs. 5(d) and 5(h). In addition, for
each θ value considered, three bulk nonlocalized modes
are also presented to illustrate their global deflection pat-
terns. These modes are labeled “I,” “III,” and “IV” in the
figure and their corresponding frequencies are part of the
bulk spectrum in, respectively, the frequency range before
the LR band gap, that between the LR and the topologi-
cal band gap, and that after the topological band gap. It
is to be noted that, unlike the cluster of several modes
between LR band gap and the above additional nontrivial

band gap shown in the simulations [Fig. 3(b)], the exper-
imental measurements capture one distinguishable mode
III (blue square), which can be due to the damping effect.
The measured deflection shape of the beam at mode III has
deflections at both the free end and close to the clamped
boundary, hence confirming that it is a bulk mode.

VI. CONCLUSIONS

In conclusion, we investigate locally resonant metas-
tructures in the form of beams with QP distributions of res-
onators. By varying the parameter θ defining the locations
of the resonators, additional nontrivial topological band
gaps are created. In finite metastructures, these bands host
modes that are localized at the boundary and the frequency
of which can be chosen through proper selection of the QP
parameter defining the location of the resonators. The onset
of the LR band gap and of the additional nontrivial band
gaps with associated edge states is demonstrated through
numerical simulations and in experiments conducted on a
cantilever beam carrying an array of 30 resonators. The
findings of the study suggest the application of QP place-
ment of resonators or, in general, of mechanical inclusions,
as a potentially effective way of achieving vibration atten-
uation over multiple subwavelength frequency bands. In
addition, the ability to induce vibration localization at fre-
quencies defined by the placement of resonating inclusions
may find applications in vibration isolation and energy
harvesting.
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