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We demonstrate that modulations of the stiffness properties of an elastic plate along a spatial dimension
induce edge states spanning nontrivial gaps characterized by integer-valued Chern numbers. We also show that
topological pumping is induced by smooth variations of the phase of the modulation profile along one spatial
dimension, which results in adiabatic edge-to-edge transitions of the edge states. The concept is first illustrated
numerically for sinusoidal stiffness modulations and then experimentally demonstrated in a plate with square-
wave thickness profile. The presented numerical and experimental results show how continuous modulations
of properties may be exploited in the quest for topological phases of matter. This opens new possibilities for
topology-based waveguiding through slow modulations along a second dimension, spatial or temporal.

DOLI: 10.1103/PhysRevB.101.094307

I. INTRODUCTION

The search for topological phases of matter has reached a
mature state with multiple realizations across different phys-
ical realms, including quantum [1], electromagnetic [2,3],
acoustic [4-6], and elastic [7] media. In mechanics, topologi-
cally protected wave transport has been demonstrated through
analogs to the quantum Hall effect (QHE) [8—15], the quantum
spin Hall effect (QSHE) [7,16-20], and the quantum valley
Hall effect (QVHE) [21-24]. The rich underlying physics
makes these robust waveguiding mechanisms promising for
applications in acoustic devices or structural components de-
signed to steer waves or isolate vibrations.

Recently, topological phases have been explored in sys-
tems of lower physical dimensions by exploiting synthetic
dimensions emerging from the exploration of relevant param-
eter spaces [25-28]. Notable examples include the observation
of edge states, commonly attributed to two-dimensional (2D)
QHE systems, in 1D quantum [29], electromagnetic [30],
acoustic [31,32], and mechanical [33-35] lattices follow-
ing the Aubry-André-Harper model of interactions [36,37].
Also, 4D quantum Hall phases have been realized using 2D
photonic lattices [38] and ultracold atoms [39], while 6D
phases in 3D systems have been theoretically investigated in
Refs. [28,40]. In this context, topological pumping has been
pursued in a variety of physical systems, whereby adiabatic
transitions of edge states are induced by smooth parameter
variations along spatial [30,34,38,39,41] or temporal [15,42—
46] dimensions. While previous experimental studies demon-
strate pumping in photonic lattices and cold atomic gases, a
realization using elastic waves is currently missing.

In the quest for topological phases of matter, elastic solids
such as thin, elastic plates are promising platforms due to the
convenience they offer in terms of manufacturing and testing,
and their rich spectral properties which are characterized by a
large number of wave modes of distinct polarizations [20]. At
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the same time, the abundance of polarizations makes imple-
menting topological waveguiding in elastic plates a challeng-
ing and nontrivial development, when compared to acoustic
[4] and electromagnetic [2,3] counterparts. Toward overcom-
ing these challenges and expanding the range of possibilities
for topology-based elastic waveguiding, topological pumping
is here experimentally demonstrated for the first time in a
continuous elastic plate. The investigations herein leverage
prior work on discrete lattices of continuous elastic waveg-
uides [34] whereby modulations of physical properties along a
spatial dimension were shown to induce edge states spanning
nontrivial gaps. Smooth phase variations of the modulation
profile along a second spatial dimension induce transitions of
the edge modes from being localized at one boundary, to a
bulk mode, and, finally, to a localized mode at the opposite
boundary. In here, harmonic stiffness modulation profiles are
first investigated to illustrate pumping numerically. Square-
wave thickness modulations are then employed in the ex-
perimental demonstration of the concept. While the majority
of studies has so far focused on discrete lattice systems,
our results provide a general strategy to achieve topological
pumping through continuous property modulations and open
new paths toward exploring higher-dimensional topological
phases exploiting higher dimensions in continuous systems.

II. ANALAYSIS OF EDGE STATES AND TOPOLOGICAL
PUMPING IN MODULATED PLATES

We consider elastic plates characterized by a bending
stiffness which is periodically modulated along the x direc-
tion, i.e., D(x,y) = D(x + A, y), where 1, is the modulation
wavelength. Two configurations are investigated in this work
(Fig. 1). The first one employs a conceptual harmonic stiffness
modulation of the form

D(x, y) ZDO{I +ap COS[KmX—HP(Y)]}, (1)
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FIG. 1. Stiffness modulations and plate configurations. (a) Plate (shaded gray solid) characterized by a harmonic stiffness modulation
D(x,y) = Do{l + a,, cos[k,,x + ¢(y)]} (colored surface). The schematic illustrates a linear phase change from ¢; to ¢. (b) Schematic of plate
with square-wave modulation of thickness A(x, y) = ho(1 + a,, sgn{cos[k,,x + ¢(y)]}). The phase also varies linearly from ¢; to ¢,. (c) Top
view of modulation in (a) illustrating the shift of the profile characterized by a tilting angle «. (d) Top view and perspective view (inset) of
square wave modulated plate employed in experiments. The sample is characterized by parameters 1,, = 1.6cm, hy = 4.7 cm, a,, = 0.38,
L, =31.2cm, and L, = 43.7 cm and phase varying linearly from ¢; = 0.7z to ¢y = —0.77.

where «,, = 27w /A, while a, and ¢, respectively, denote
amplitude and phase of the modulation. The phase ¢(y)
determines the stiffness value D(0, y) at the left boundary of
the plate. If smoothly varied along y, then it produces the tilted
modulation profile shown in Figs. 1(a) and 1(c). This choice
follows previous work where sinusoidal modulations define
the coupling within continuous waveguides in the context of
topological adiabatic pumping [34].

The second configuration corresponds to a thickness profile
h(x, y) described by a square wave of the form [Fig. 1(b)]:

h(x,y) = ho(1 + ap sgn{cos[xux + ()1}, @

which produces a periodic modulation of the plate
bending stiffness according to the expression D(x,y) =
Eh(x,y)’/[12(1 — v?)], where E,v are respectively the
Young’s modulus, and the Poisson’s ratio of the plate material.
This choice is driven by fabrication considerations in the
experimental activities of this work.

The effects of the harmonic stiffness modulation [Eq. (1)]
are investigated analytically by considering Kirchhoff-Love’s
plate theory [47]. According to the theory, the harmonic mo-
tion at frequency w, w(x, y, w), in the direction perpendicular
to the plate plane x, y is governed by the following equation
of motion:

[D(w,xx + Vw,yy)],xx + 2[(1 - 1))l)w,xy],xy (3)

+ [D(w,yy +vw )]y = w’mw,

where () , denotes a partial derivative with respect to g and
m = ph is the mass density. We investigate the dispersion
properties of the plate w = w(ky, ky, ¢), where the phase
modulation ¢ is explicitly denoted as a free parameter. To this
end, we impose plane-wave solutions w(x,y) = w(x)e/Y,

where w(x) =Y, W,/ ¥ p =N ... +N reflects
the x-wise periodicity of the plate. Application of the plane-
wave expansion method (PWEM) (see Supplemental Material
[48]), leads to an eigenvalue problem in the form:

K(ky, ky, §)b = mo* i, )

where K is the N x N stiffness matrix and @ =
{W_n, ..., Wxy}7. Solution of the eigenvalue problem in
Eq. (4) yields the dispersion properties, described in terms of
eigenvalues w; and associate wave modes w; defined by the
components of the eigenvector ;.

We begin our study by evaluating dispersion along x for
assigned values of ;. Results for k, = 0, shown in Fig. 2(a),
correspond to letting (), =0 in Eq. (3), which yields an
expression akin to the equation governing the transverse mo-
tion of 1D elastic Euler Bernoulli beams [49]. In Fig. 2(a),
Uy = Kyhy, While Q = w/wy is a nondimensional frequency,
with wg = k24/Do/m. The results, obtained for a,, = 0.8,
effectively correspond to the dispersion characteristics of a
family of 1D, decoupled elastic beams characterized by stiff-
ness modulations that differ by the phase parameter ¢. The
dispersion eigenvalues feature two bands separated by a gap
that remains constant with ¢. Indeed, continuous shifts of the
stiffness along x can be interpreted as a translation of the
Am-periodic unit cell along x, which does not affect the eigen-
frequencies. However, these shifts do affect the eigenvectors,
as it is revealed by the analysis of the topology of the bands.
Such analysis relies on the evaluation of band’s Chern number
in the (i, ¢) € T2 = [0, 27] x [0, 27] space [34,50], which
is given by

1
C=—

=— [ Vx (! -Vuw)dD, Q)
27i Jp
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FIG. 2. Dispersion properties and topological pumping for elastic plate with harmonic stiffness modulation D(x,y) = Do{l +
am cos[k,,x + ¢(y)]}. (a) Dispersion surfaces Q(u,, ¢) for p, = 0 showing two bands separated by a gap, with information on Chern
numbers and gap label. (b) Frequency spectrum of the finite plate with L, = 20,, and u, =0 as a function of ¢: Black straight lines
corresponding to finite structure modes are superimposed to the bulk bands (shaded gray regions), while an edge mode (red curve) spans
the gap. (c) Representative left-localized, bulk, and right-localized modes corresponding to the points marked in (b). (d) Variation of the
finite plate spectrum in (b) as a function of u,. The red surface represents the dispersion of the edge state, while shaded gray volumes are
the bulk bands. The red line at u, = 0 highlights the transition of the edge state from left-localized (dashed) to right localized (solid) at
¢ = m. (e) Steady-state response |w(x, y)| of the modulated plate at frequency 2 = 10.97, where the associated colormap also represents
normalized displacement. Topological pumping occurs through a transition of the edge state from left localized (¢; = 0.57) to right localized
(¢y = 1.57) due to the phase modulation ¢(y) = ¢; — ;. (f) Cross section of dispersion diagram in (d) at frequency €2 = 10.97 as a function
of ¢ € [0.57, 1.57]. Black (straight) lines and red curves, respectively, denote bulk and edge modes of the finite plate. The contours of the
spectrogram of the displacement field | (y, u,)| reveal that pumping occurs through a transition along the wave-number branch of the edge
state.

where D =T?, V = (3/dpr)e,, + (3/0¢)es, and ()* de-
notes a complex conjugate. The Chern number is evaluated
numerically over a discretized (u,,¢) space according to
the procedure described in Ref. [51], which gives the label
assigned to the first band in Fig. 2(a). A label for a gap r is
then assigned by computing the algebraic sum of the Chern
numbers of the bands below it [34,50], i.e., Cgf’) = Z;: 1 Cas
which yields C, =1 for the gap considered in Fig. 2(a). In

of ¢ for k, = 0. The modes (black straight lines) belonging
to the bulk bands, which are shown for reference as the
shaded gray regions, do not vary as a function of ¢. An
additional mode (red line) traversing the gap and varying with
¢ corresponds to a topological edge state localized at either
the left or right boundary depending on the value of ¢, with
the right (left) localization of the mode being denoted by
the solid (dashed) red line. The transition of the edge state

finite structures, a nonzero gap label signals the presence
of topological edge states spanning the associated gap as a
result of a parameter sweep. The existence of an edge state
as ¢ varies in the [0, 2] range is verified by computing the
spectral properties of a plate bounded along the x direction,
which are evaluated by constructing an eigenvalue problem
similar to that of Eq. (4), where a solution of the kind
w(x,y) = ey b, sin(f%), n=1,..., N is imposed to
satisfy the conditions at the plate x boundaries, i.e., w(x =
0,Ls;y) = w(x =0, L,;y) = 0 [48]. Figure 2(b) shows the
modes of a finite plate of length L, = 20%,, as a function

with variations of ¢ is related to the gap label C, = 1. In
particular, its absolute value |C,| = 1 indicates that the edge
state traverses the gap once for ¢ € [0, 27 ], while its positive
sign relates to a left-to-right transition that occurs when the
branch of the edge state touches the upper boundary of the
gap at ¢ = 7. Representative left-localized (point I) and right-
localized modes (point III) are displayed in Fig. 2(c), along
with the mode extending to the bulk in correspondence to the
branch touching the bulk band (point II). These observations
are in agreement with the behavior of edge states and their
correspondence to the gap labels in discrete lattices [34,50].
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Next, we discuss the dispersion properties for values k, #
0. These values do not affect the structure of the eigenvalue
problem in Eq. (4) and only introduce a frequency shift.
This is illustrated in Fig. 2(d), which displays the dispersion
of a modulated plate with a, = 0.8. Since the dispersion
relations here are functions of three parameters Q2(fiy, ty, @),
their graphical interpretation is problematic. In the plot under
consideration, we represent the range spanned by the disper-
sion relations for u, € [0, 7] by the shaded gray volumes.
The bands variation in terms of w, and ¢ illustrates the
preservation of the gap at frequencies that increase monoton-
ically with p,. The modes of a finite plate with L, = 204,
populate these bulk bands, here omitted for simplicity, and
also include a mode spanning the gap, which is represented
by the red surface in the figure. The red lines superimposed
at (t, = 0 illustrate the transition experienced by the edge
state as in Fig. 2(b), which now occurs as a function of pu,
along the entire surface of the edge state. We verify that the
topological properties are preserved with i, by computing the
Chern number C for distinct, fixed w, values. To this end,
we consider the (i, ¢) € T? = [0, 2] x [0, 27] space to
compute the gap labels in Fig. 2(d) for the probed (., values.
Since C, is invariant with p,, the occurrence of the edge state
(represented by the red surface) is observable in the entire
(1y, §) space.

The transitions of the edge states can be exploited to im-
plement a topological pump that employs an adiabatic (slow)
variation of ¢ along a second dimension [30,34,44,52]. For a
finite plate of length L,, we consider a smooth, linear phase
modulation of the kind ¢(y) = ¢;(1 — Liv) + qbley [Fig. 1(a)].
A top view of a representative harmonic stiffness modulation
is displayed in Fig. 1(c), where a positive tilting angle o =
tan~!' [—(¢ r — @)/ (kmLy)] resulting from a choice with ¢; >
¢y is illustrated. We first demonstrate topological pumping
numerically by considering a plate with L, = 3L, and phase
variation with ¢; = 0.57 and ¢y = 1.57. Similarly to prior
work [30,34], the chosen interval ¢ € [0.57, 1.57] exploits
a restricted portion of the branch of the edge state whereby
a single transition from the left boundary (¢; = 0.57) to
the right boundary (¢; = 1.5) is induced. This is in con-
trast with alternative experimental realizations where several
pumping cycles are induced through periodic property modu-
lations [42,43]. To verify this, we compute the forced response
of the plate when harmonically excited by a distributed force
per unit area g(x, y,t) = f(x)8(y — y.)e'". The force is ap-
plied near the bottom boundary (y, = A,,/2) and has a spatial
distribution f(x) that corresponds to the left-localized edge
state obtained for ¢; = 0.5 [see Mode I in Fig. 2(c)]. This
favors the excitation of the desired topological mode, while
minimizing the contribution from bulk modes coexisting at
the same frequency. The response of the plate is evaluated
through a Galerkin [49] approximation of the displacement
field w(x, y), similarly to that employed to obtain the modes
of the finite plate (see details in the Supplemental Material
[48]). The response of the plate for an excitation frequency of
2 = 10.97 [Fig. 2(e)] consists of a topological pump whereby
energy is transferred from the bottom left boundary to the
upper right boundary of the plate via an edge state transition.
Additional examples are reported in the Supplemental Mate-

rial [48]. The topological pumping results from an adiabatic
evolution along the wave-number branch of the edge state
at a given frequency [34], which is illustrated for the pump
of Fig. 2(e) by considering a cross section of the dispersion
diagram at frequency 2 = 10.97 [blue plane in Fig. 2(d)]. The
results in Fig. 2(f) are displayed for ¢ € [0.57, 1.57], which
is the interval considered for the phase modulation ¢(y).
Shaded gray areas correspond to the intersection between
the blue plane and the bulk bands (shaded gray volumes)
of Fig. 2(d) and represent the dispersion i, (2 = 10.97, ¢)
obtained from the projection of the bands occupied for u, €
{0, m}. These bands are populated by modes of the finite plate
with L, = 20A,, (black straight lines), while the intersection
between the blue plane and the red surface in Fig. 2(d) defines
the edge state (red line) that spans the gap as a function of
¢. The previously described forcing profile selectively excites
the left-localized edge state (for ¢; = 0.57) at the bottom
boundary of the plate, while a smooth phase modulation
¢ (y) = ¢i — ¢y drives the left-to-right transition of the edge
state along y, which occurs along the branch defined by
the red curves in Fig. 2(f). We verify such a transition by
computing 2D Fourier transforms (FT) while performing an
appropriate windowing of the displacement field to capture
wave-number changes along y. The procedure consists on
premultiplying the displacement field w(x, y) by a Gaussian
window centered at y = y, i.e., G(x, y) = e~ 0™0"/2 \where
c is a parameter controlling the Gaussian’s width. A FT oper-
ation then quantifies the displacement field in reciprocal space
W(o, Mx, 1y) around the location y = yo. The dependence of
Wy is then eliminated by taking the L' norm along ., which
produces W(y, uy). The corresponding spectrogram, obtained
for ¢ = 0.07, is displayed in the form of contour plots in
Fig. 2(f), where the colors represent the normalized magnitude
of the displacement field |@(y, iy )|. The procedure confirms
that energy remains concentrated on the wave-number branch
of the edge state according to the modulation ¢(y), which
characterizes the topological pump displayed in Fig. 2(e).

III. EXPERIMENTAL OBSERVATION OF TOPOLOGICAL
PUMPING IN SQUARE-MODULATED PLATE

Topological pumping is experimentally demonstrated in
a plate with square-wave thickness modulation h(x,y) =
ho(1 + a,, sgn{cos[k,x + ¢(¥)]}) with modulation parame-
ters A, = 1.6 cm, hy = 4.7 cm, a,, = 0.38, ¢; = 0.77, and
¢r = —0.7m [Fig. 1(b)]. The plate is rectangular of dimen-
sions 31.2 cm x 43.7 cm, and it is made of aluminum
[Fig. 1(d)]. A linear phase modulation produces the tilted
thickness profile in Fig. 1(d).

The plate dispersion properties are computed using a finite-
element (FE) model implemented in the COMSOL MULTI-
PHYSICS environment [48]. The computations provide infor-
mation on all wave modes, whose polarizations are tracked
by computing a polarization factor [20] that quantifies the
relationship between in-plane (u,v) and out-of-plane (w)
components of the displacement field. The polarization factor
is employed to discriminate and isolate out-of-plane polarized
wave modes, which are weakly coupled to the in-plane ones.
We compare the results to experimental data consisting of
the out-of-plane velocity field w(x, y, t) of the plate’s surface
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FIG. 3. Dispersion properties and experimental observation of topological pumping in plate with square-wave modulation of the thickness
h(x,y) = ho(1 + a,, sgn{cos[x,,x + ¢(¥)]}). (a) Dispersion properties and edge state (red surface) for a finite plate with L, = 31.2 cm and
free-free boundary conditions along x. Bulk bands are represented by shaded gray volumes, along with Chern number and gap labels
information. (b) Detail of dispersion for ¢ € [—0.77, 0.7x], corresponding to the interval considered for the phase modulation of thickness.
The experimentally measured frequency response spatially averaged over the plate surface is displayed alongside the dispersion. Each resonant
peak defines a wave-number branch highlighted by dashed and solid red lines in the dispersion surface, along which topological pumping
occurs at the corresponding frequency. [(c)—(e)] Experimentally measured velocity field |w(x, y)| for selected resonant peaks II, IV, and V. The
transitions from localization at the left boundary to localization at the right boundary that characterize topological pumping are quantified by
the spectrograms displayed in (f)—(h), which confirm that energy is concentrated around the wave-number branches of the edge states.

measured by a scanning laser Doppler vibrometer (see details
in the Supplemental Material [48]).

The numerically computed dispersion relations are shown
in Fig. 3(a), where, as previously, the red surface corresponds
to the edge state, while the shaded gray volumes denote the
bulk bands. Similarly to the case of harmonic modulation,
the existence of an edge state spanning the gap is associated
with the nontrivial band topology identified by integer-valued

Chern numbers. Chern numbers and gap labels are numer-
ically evaluated using the Bloch modes obtained through
the FE model according to the procedure outlined in the
Supplemental Material [48], which yields the labels displayed
in Fig. 3(a). We find that the first spectral gap produced by the
square modulation is also characterized by a gap label C; = 1,
which signals a left to right transition of the edge state, again
highlighted by the dashed and solid red curves at x, = 0. This
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FIG. 4. Experimental observation of transient topological pumping in square-modulated plate. Panels (a)—(c) display snapshots of the
measured velocity field for three subsequent time instants, where the transition from left-localized (a), to bulk (b), and, finally, to right-localized

mode (c) as the wave propagates along y can be observed.

transition occurs at ¢ = 7 along the entire surface of the edge
state, which is consistent with constant-valued Chern numbers
evaluated as a function of «; in the considered frequency range
(f € [0, 40] kHz). Figure 3(b) displays a zoomed view of the
dispersion in Fig. 3(a) for ¢ € [—0.7m, 0.77], with the obser-
vation that the interval [—0.75, O] coincides with [1.37, 27]
due to the periodicity with ¢. This interval corresponds to
the phase modulation of the manufactured plate, i.e., from
¢; = 0.7 to ¢y = —0.7m, which exhibits the transition of the
edge state occurring at the bottom boundary of the gap.

The experiment is conducted by clamping the plate at
its bottom right boundary while excitation is induced by a
pair of piezoelectric ceramic patches attached to the bottom
left boundary [48]. The patches are connected to opposite
electrical poles, which induces an out-of-phase (dipole) ex-
citation that favors the excitation of the left-localized topo-
logical mode (for ¢; = 0.77), while reducing the contribution
from bulk modes. The forced frequency response function,
corresponding to the response spatially averaged over the
plate surface, is displayed alongside the dispersion surfaces.
The finite size of the plate introduces a series of resonant
peaks that are observed in the frequency range within which
the edge state exists. At these frequencies, topological pump-
ing is observed through a transition along the wave-number
branch of the edge state, as illustrated by the dashed and
solid red lines in Fig. 3(b), respectively, denoting left- and
right-localized modes. The measured velocity fields for three
selected resonant frequencies are displayed in Figs. 3(c)-3(e),
where transitions from left to right localization characteriz-
ing the pump can be observed. For each of those recorded
responses, a spectrogram is computed as described in Sec. II
and displayed in Figs. 3(f)-3(h), which confirms the transition
along the wave-number branch corresponding to the edge
state. We remark that for the first peaks, such as in the case
reported in Fig. 3(c), the edge state is only defined within
a restricted domain of the parameter space. In such cases,
pumping still occurs through the wave-number branch of the
edge state but is defined in a shorter spatial domain centered at
the midportion of the plate, as confirmed by the spectrogram
of Fig. 3(f) corresponding to the pump of peak II.

The results reported in Fig. 3 confirm the existence of
steady-state topological pumping in the square-modulated
plate occurring for several operating frequencies within

[25, 30] kHz, while populating the dispersion surface asso-
ciated with the edge state. The potential of the modulated
plate as a waveguiding platform is further demonstrated by
realizing topological pumping in a transient regime. To that
end, an excitation in the form of a 7-cycle sine burst signal
of center frequency f = 26.7 kHz is employed, which aims at
transporting energy through the pump defined by peak IV in
Fig. 3(b). Figure 4 displays the measured velocity wavefield in
the modulated plate at three subsequent time instants: a clear
transition from left-localized wave [Fig. 4(a)], to bulk wave
[Fig. 4(b)], and, finally, to right-localized wave propagation
[Fig. 4(c)] is observed consistent with the expected topologi-
cal pumping behavior. A video animation of the full transient
response is provided in the Supplemental Material [48].

IV. CONCLUSIONS

In this paper, we present the first experimental demon-
stration of topological pumping in continuous elastic plates.
We illustrate a simple design principle based on continuous
property modulations which can be employed to induce the
existence of topological edge states and drive their edge-to-
edge transition. Although a simple linear phase modulation
was considered in this work, future work may explore the
effects of different modulation profiles beyond the liner one
considered herein, which may lead to pumping occurring
based on different rates and transition modalities along the
modulation direction. The results also provide opportunities
for exploring higher dimensional physics in mechanics by
exploiting synthetic dimensions in parameter space, which
can be mapped to real spatial or temporal dimensions. These
concepts have implications of technological relevance for
applications involving elastic wave manipulation, such as
guiding of bulk, surface and guided waves in acoustic devices,
ultrasonic imaging, and nondestructive evaluation.
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