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Abstract
We investigate non-Hermitian elastic lattices characterized by non-local feedback interactions. In
one-dimensional lattices, proportional feedback produces non-reciprocity associated with complex
dispersion relations characterized by gain and loss in opposite propagation directions. For
non-local controls, such non-reciprocity occurs over multiple frequency bands characterized by
opposite non-reciprocal behavior. The dispersion topology is investigated with focus on winding
numbers and non-Hermitian skin effect, which manifests itself through bulk modes localized at
the boundaries of finite lattices. In two-dimensional lattices, non-reciprocity is associated with
directional wave amplification. Moreover, the combination of skin effect in two directions
produces modes that are localized at the corners of finite two-dimensional lattices. Our results
describe fundamental properties of non-Hermitian elastic lattices, and suggest new possibilities for
the design of meta materials with novel functionalities related to selective wave filtering,
amplification and localization. The considered non-local lattices also provide a platform for the
investigation of topological phases of non-Hermitian systems.

1. Introduction

Meta materials and phononic crystals are periodic structures designed to manipulate acoustic and elastic
waves [1, 2]. Potential applications include vibration attenuation [3], noise reduction [4], wave focusing [5],
cloaking [6], and the design of seismic barriers [7]. Recent breakthroughs in topological insulators in solid
state physics [8] and photonics [9] have motivated the search for topology-based functionalities in
mechanical and acoustic meta materials. This has culminated in the consolidation of topological mechanics
[10] and acoustics [11] as active research fields [12]. Topological states have been successfully observed in
several platforms [13–21], and have been pursued to achieve robust, diffraction-free wave motion.
Additional functionalities have been explored in the context of topological pumping [22–26],
quasi-periodicity [27–29], and non-reciprocal wave propagation in active [30–36] or passive non-linear
[37–40] systems. These works and the references therein illustrate a wealth of strategies for the
manipulation of elastic and acoustic waves, and suggest intriguing possibilities for technological
applications in acoustic devices, sensing, energy harvesting, among others.

Considerable efforts have been recently devoted towards the exploration of non-Hermiticity in various
physical platforms such as in optical [41, 42], opto mechanical [43], acoustic [44], and mechanical [45, 46]
systems. Non-Hermitian systems are non-conservative systems where loss and/or gain are inherently present
from interactions with the environment. In this context, the realization that parity-time (PT) symmetric
non-Hermitian Hamiltonians may exhibit purely real spectra [47] has sparkled renewed interest in
non-Hermitian physics [48, 49]. Indeed, a large portion of recent studies has focused on PT symmetry and
the role of exceptional points [50], whose intriguing properties lead to unconventional phenomena such as
unidirectional invisibility [44, 51], single-mode lasers [52] and enhanced sensitivity to perturbations [53,
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54]. Understanding the topological properties of non-Hermitian systems has also been the focus of many
research efforts [55–59]. Initial interest revolved around exceptional points exhibiting unique topological
features with no counterparts in Hermitian systems, such as Weyl exceptional rings [60], bulk Fermi arcs
and half-integer topological charges [61]. Further observations of a seemingly breakdown of the
bulk-boundary correspondence principle [62, 63] has led to proposals for a general classification of the
topological phases of non-Hermitian systems [55, 56, 64]. A particular point of interest is the observation of
the non-Hermitian skin effect [65–71], whereby all Eigen states of one-dimensional (1D) systems are
localized at a boundary, in sharp contrast with the extend Bloch modes of Hermitian counterparts. This
intriguing feature of non-Hermitian lattices has recently been experimentally demonstrated using topo
electrical circuits [72] and quantum walks of single photons [73]. Further theoretical investigations have
also shown higher order skin modes localized at corners and edges of 2D and 3D non-Hermitian lattices
[74, 75].

While most studies have so far focused on non-Hermitian optical and condensed matter systems, a few
works have explored non-Hermiticity in elastic and acoustic media, most of which focus on PT phase
transitions and exceptional points [44, 76–82]. More recently, feedback control has been pursued to
establish non-reciprocal interactions in a mechanical meta material that emulates the non-Hermitian
Su–Schrieffer–Heeger (SSH) model [45]. Such setting was used to experimentally demonstrate the existence
of zero-frequency edge states in the non-Hermitian topological phase, and also to realize unidirectional
wave amplification [46]. Motivated by these notable contributions, we here investigate a family of 1D and
2D elastic lattices with non-local, proportional feedback interactions and explore a series of unconventional
phenomena stemming from their non-Hermiticity. Starting from a wave propagation perspective, we
demonstrate that the frequency bands of 1D lattices are entirely non-reciprocal, due to the presence of gain
and loss in opposite propagation directions. Such behavior is tunable based on the non-locality of the
feedback interactions, which can be exploited to establish multiple frequency bands with interchanging
non-reciprocal behavior. We also show that the bulk Eigen modes of finite lattices are localized at a
boundary according to the non-Hermitian skin effect, and that their localization edge is well predicted by
the winding number of the complex dispersion bands, which is aligned with recent findings on quantum
lattices [55]. Our analysis is then extended to 2D lattices where non-reciprocity manifests itself as a
preferential direction for wave amplification, which is defined by the control interactions. We show that the
non-local control in 2D lattices establishes multiple non-reciprocal frequency/wavenumber bands with
different preferential directions of amplification. Finally, we investigate skin modes in finite lattice strips and
show that their combined effect in two directions leads to modes localized at the corners of finite 2D
lattices. Our work provides fundamental perspectives on a new class of non-Hermitian elastic lattices with
feedback interactions and contributes to recent efforts in exploring non-Hermiticiy for the design of meta
materials with novel functionalities [45, 46].

This paper is organized as follows: following this introduction, the analysis of wave propagation and
topological properties of 1D lattices with feedback interactions is presented. Next, results are extended to
2D lattices where directional wave amplification and corner modes are demonstrated. Finally, we
summarize the main results of the work and outline potential future research directions.

2. One-dimensional elastic lattices with feedback interactions

We consider 1D elastic lattices of equal masses m, separated by a unit distance, and connected by springs of
equal stiffness k (figure 1). Control interactions are introduced by considering an additional force, applied
to the nth mass, that reacts proportionally to the elongation of a spring at location n − a (a ∈ I). This force
is expressed as fn = kc(un−a − un−(a+1)), where kc denotes the proportional control gain, and un is the
displacement of mass n along the x axis. In the absence of external forces, the governing equation of motion
for mass n is expressed as

mün + 2kun − k(un+1 + un−1) − kc(un−a − un−(a+1)) = 0. (1)

For a lattice of N masses, the equations of motion can be written in matrix form:

Mü + Ku = 0, (2)

where u = [u1, u2, . . . , uN]T, and M, K respectively denote the mass and stiffness matrices. The lattice is
non-Hermitian since the stiffness matrix K is real but not symmetric, i.e. KT �= K. Although active
components would be required for the implementation of the feedback interactions, the stiffness matrix K
includes the additional interactions associated with kc in equation (1). Numerical simulations are
performed through standard procedures, whereby, for example, transient time domain responses can be
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Figure 1. One-dimensional lattice of equal masses m connected by springs of stiffness k with feedback control interactions. A
force fn = kc(un−a − un−(a+1)) is applied to each mass along the lattice, corresponding to a reaction proportional to the
elongation of a spring a units behind.

evaluated by numerical integration of equation (2), for assigned forcing. Also, Eigen frequencies, mode
shapes and dispersion properties can be obtained through the solution of Eigenvalue problems obtained by
applying boundary conditions to finite lattices, or by imposing Bloch conditions on a unit cell.

2.1. Dispersion relations and non-reciprocity
We impose a Bloch-wave solution of the form un = Uei(ωt−μn), where ω and μ respectively denote angular
frequency and non-dimensional wavenumber. Substitution in equation (1) yields the dispersion
relation

Ω2 = 2(1 − cosμ) − γc(1 − eiμ)eiμa (3)

where Ω = ω/ω0, with ω0 =
√

k/m, and γc = kc/k. The feedback interaction makes the right-hand side of
equation (3) generally complex, which results in complex frequencies Ω = Ωr + iΩi that come in pairs
{Ω,−Ω}. Without loss of generality, we focus on the solution Ω with positive real part (Ωr > 0), which
corresponds to a wave un = Uei(Ωrτ−μn)e−Ωiτ , (τ = tω0), that travels along the positive (negative) x
direction when μ is positive (negative), and that is exponentially attenuated (amplified) in time when Ωi is
positive (negative).

We first investigate the case of local control (a = 0), i.e. with the feedback force proportional to the
elongation of the left adjacent spring. Figure 2(a) displays the dispersion for γc = 0.1 (solid red lines),
superimposed to the dispersion Ω =

√
2(1 − cosμ) of a lattice with no feedback γc = 0 (dashed black

lines). A remarkable feature of the dispersion lies in its imaginary component: positive wavenumbers are
associated with loss due to positive Ωi values (shaded pink areas), while negative wavenumbers are
associated with gain due to negative Ωi values (shaded green areas). Therefore, the lattice with γc = 0.1
amplifies waves traveling to the left and attenuates waves traveling to the right, while an opposite behavior is
observed for γc = −0.1 (figure 2(c)). The non-reciprocity associated with gain and loss is confirmed by
time domain simulations, where a 5-cycle sine burst of center frequency Ω = 0.3 (figures 2(e) and (f)) is
applied to the center mass of a chain of N = 1500 masses. The resulting transient responses are displayed in
figures 2(b) and (d) in the form of waterfall plots. For visualization purposes, the displacement along the
lattice for each time instant is normalized by the instantaneous L∞ norm (along x), which is employed in
the associated log-scale color map. A wave packet is amplified as it propagates to the left for γc = 0.1, and
to the right for γc = −0.1. The frequency/wavenumber (2D-FT) content of the wave packets shows the
displacement in reciprocal space û(μ,Ω):contours plots superimposed to the theoretical dispersion
curves in figures 2(a) and (c) confirm the expected non-reciprocal behavior highlighted by the
concentration of the spectral content of the transients in the gain (green) portions of the reciprocal space.

Next, we investigate the role of non-local interactions defined by a > 0 values. The dispersion for a = 1
and γc = 0.1 (figure 3(a)) features an imaginary frequency curve with two distinct regions of gain or loss
for each propagation direction. The behavior is entirely non-reciprocal: positive and negative wavenumbers
with the same absolute value correspond to attenuation along one direction, and amplification along the
other, as highlighted by the shaded green and pink regions. In fact, one can verify in equation (3) that
Ω2

r (μ) = Ω2
r (−μ) and Ω2

i (μ) = −Ω2
i (−μ). By using basic properties related to the square roots of a complex

number (not described here for brevity), one can confirm reciprocity for the real part of the dispersion
(Ωr(μ) = Ωr(−μ)), and non-reciprocity for the imaginary part (Ωi(μ) = −Ωi(−μ)). Due to this property,
the amplification and attenuation wavenumber ranges defined by the imaginary part of the dispersion can
be translated to the real frequency dispersion curves by matching the corresponding wavenumber intervals
(figure 3(a)). The procedure highlights two non-reciprocal frequency bands; the first amplifies waves
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Figure 2. Non-reciprocal amplification and attenuation of waves in lattices with local feedback interactions (a = 0). The
dispersion Ω(μ) for γc = 0.1 and γc = −0.1 are respectively shown in (a) and (c) (solid red lines), superimposed to the
dispersion of the passive lattice with γc = 0 (dashed black lines). Attenuation and amplification zones are identified by shaded
pink and green areas revealing non-reciprocal behavior: the lattice with γc = 0.1 amplifies waves traveling to the left and
attenuates waves traveling to the right, while γc = −0.1 results in a opposite behavior. Transient simulation results reported as
waterfall plots in (b) and (d) illustrate the non-reciprocal behavior, which is further confirmed by their dispersion estimated
through FT operations (contours in (a, c)). The force applied to mass n = 750 is displayed in the time and in the frequency
domains in (e) and (f), respectively.

traveling to the left, while the latter amplifies waves traveling to the right. In general, when considering
higher a values the number of non-reciprocal bands increases, usually being equal to a + 1. For example,
the dispersion for a = 3, γc = 0.1 displayed in figure 3(c) exhibits a total of four non-reciprocal frequency
bands, as highlighted by shaded green and pink regions.

Non-reciprocity with non-local feedback is confirmed by the transient time domain simulations results
displayed in figures 3(b) and (d). A broad-band input signal (figures 3(e) and (f)) applied to the center
mass of the lattice illustrates de-multiplexing of the input signal resulting from the amplification and
propagation of one wave packet along each direction for a = 1 (figure 3(b)), and of two wave packets along
each direction for a = 3 (figure 3(d)). The corresponding 2D-FTs are superimposed to the dispersion curves
in figures 3(a) and (c), confirming the predicted amplification bands. We also note that amplification of
wave packets is intensified around wavenumbers associated with local minima of Ωi, corresponding to the
largest time amplification exponents.
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Figure 3. Non-reciprocal amplification and attenuation of waves in lattices with non-local feedback interactions (a > 0). The
dispersion Ω(μ) for a = 1 and a = 3 are displayed in (a) and (c), respectively. The non-local feedback interactions result in
multiple frequency bands with non-reciprocity in amplification and attenuation (shaded green and pink areas). Transient time
domain simulations to a broad-band input force (e, f) illustrate the non-reciprocal behavior: one wave packet is amplified and
propagates along each direction in (b), while two wave packets are amplified and propagate along each direction in (d). Their
dispersion (contours in (a, c)) estimated through FT operations are in good agreement with the non-reciprocal bands. The
broadband input force applied to mass n = 750 is displayed in the time and in the frequency domains in (e) and (f), respectively.

2.2. Bulk topology and non-Hermitian skin effect
Next, we investigate the topological properties of non-Hermitian lattices and their relation to bulk modes
localized at the boundaries of finite lattices. Starting with local feedback interactions (a = 0), figures 4(a)
and (g) display the complex representation of the dispersion for γc = 0.1 and γc = −0.1, respectively,
where both real and imaginary frequency components are plotted against the wavenumber μ. The
projections of the dispersion bands on the complex plane in figures 4(b) and (h) reveal closed loops (red
lines) parameterized by μ, with arrows denoting the direction of increasing μ. As recently demonstrated in
[55], the winding number of the loops define a topological invariant associated with the localization of bulk
modes for finite lattices. The winding number of a dispersion band Ω(μ) is given by [83]

ν =
1

2πi

∫ π

−π

Ω′

Ω− Ωb
dμ, (4)
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Figure 4. Dispersion topology and non-Hermitian skin effect in lattices with local feedback interactions (a = 0). The complex
dispersion bands Ω(μ) for lattices with γc = 0.1 and γc = −0.1 are displayed in (a) and (g), and their projection on the complex
plane define closed loops as displayed in (b) and (h). Shaded blue and red areas represent regions with winding number ν = −1
and ν = 1, respectively. In contrast, the Hermitian lattice (γc = 0) exhibits a real dispersion (d), whose projection on the
complex plane defines a flat band (e). Bulk modes of a finite lattice with N = 100 masses are localized at the left (c) or right (i)
boundaries for the non-Hermitian lattices, when their Eigen frequencies (black dots in (b, h)) lie inside regions with ν = −1 or
ν = 1, respectively. In the Hermitian case, the Eigen frequencies of the finite lattice lie on top of the flat band (black dots in (e)),
and define globally spanning bulk modes (f).

where Ω′ = ∂Ω/∂μ, and the base frequency Ωb is an arbitrary point in the complex plane not belonging to
the dispersion band [55], i.e. Ωb �= Ω(μ). Geometrically, the winding number counts the number of times
the dispersion loops encircles the base frequency, and is positive for counter clockwise rotations. In the
dispersion of figures 4(b) and (h), shaded blue and red areas denote regions for which any point has a
winding number of ν = −1 or ν = 1, respectively. Their values are confirmed by numerical integration of
equation (4) for a given point inside the loop, and by using the property that points inside a simply
connected region have the same winding number [83], which clarifies the arbitrary nature of the base
frequency Ωb. Points outside the dispersion loops are trivially associated with a zero winding number
ν = 0.

Hence, the feedback control interactions define distinct phases characterized by winding numbers which
exhibit opposite behaviors for lattices with γc = 0.1 and γc = −0.1. These behaviors manifest as localized
bulk Eigen modes in finite lattices, a phenomenon known as non-Hermitian skin-effect (NHSE) [65–71]. As
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Figure 5. Dispersion topology and non-Hermitian skin effect in lattices with non-local feedback interactions (a > 0). The
complex dispersion bands Ω(μ) for lattices with a = 1 and a = 3 are displayed in (a) and (d). Their projection on the complex
plane define the closed loops shown in (b) and (e). The non-locality of the feedback interactions result in multiple phases defined
within a single band, as highlighted by shaded blue and red areas representing regions with winding number ν = −1 and ν = 1,
respectively. Bulk modes of a finite lattice with N = 100 masses whose Eigen frequencies (black dots) lie inside regions with
ν = −1 or ν = 1 are respectively localized at the left or right boundaries, as confirmed by the representative examples in (c)
and (f).

an illustration, the Eigen frequencies of a finite lattice with N = 100 masses under free-free boundary
conditions are displayed as black dots in figures 4(b) and (h), while representative Eigen modes marked by
the blue circles are displayed in figures 4(c) and (i). Aligned with recent findings in quantum lattices [55],
our results show that Eigen frequencies belonging to regions with ν < 0 define bulk modes localized at the
left boundary (figure 4(c)), while ν > 0 values produce localization at the right boundary (figure 4(f)). This
behavior is also in agreement with the non-reciprocal wave properties reported in figure 2: the phase with
ν = −1 is related to waves amplified to the left and attenuated to the right, hence the modes of a finite
lattice are localized at the left boundary, while the opposite holds true for ν = 1. In contrast, the Hermitian
lattice (γc = 0) exhibits a real dispersion band (figure 4(d)), whose projection on the complex plane defines
a band with zero imaginary component (figure 4(e)). The Eigen frequencies of a finite Hermitian lattice
discretely sample the band (black dots in figure 4(e)), and define globally spanning bulk modes
(figure 4(f)). The topology of the Hermitian lattice is trivial, since its dispersion does not form a closed loop
in the complex plane. Indeed, in Hermitian systems, edge states can only be found for frequencies inside a
band-gap [18, 22, 29], with the localization of bulk modes at the boundaries due to NHSE is a feature
unique to non-Hermitian systems.

The dispersion topology for non-local lattices (a > 0) is characterized by multiple phases within a single
band. Figures 5(a) and (b) displays the dispersion Ω(μ) for γc = 0.1 and a = 1, while results for a = 3 are
reported in figures 5(d) and (e). The dispersion loops feature multiple regions with interchanging winding
numbers: the lattice with a = 1 is characterized by two phases, while the lattice with a = 3 is characterized
by four phases, as highlighted by shaded blue and red areas denoting regions with ν = 1 and ν = −1. Bulk
modes of finite lattices (black dots) are localized at the left or the right boundary (figures 5(c) and (f))
when corresponding Eigen frequencies lie inside regions with ν = −1 and ν = 1, respectively. We remark
that, although free–free boundary conditions are used throughout this paper, the NHSE also occurs under
different boundary conditions, such as fixed–fixed or fixed–free, and the localization edges are always
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Figure 6. Bulk properties of finite lattice in a domain-wall configuration. Red and blue loops in (a) represent the dispersion of
sub-lattices A and B, respectively, while black dots correspond to the Eigen frequencies of the finite lattice with N = 200 masses.
The localization properties of the representative modes displayed in (b) are interpreted based on where their Eigen frequencies lie
in the complex plane. In the first region the effects of ν = 1 for sub-lattice A and ν = −1 for sub-lattice B lead to bulk modes
localized at the interface (mode I). In the second large region, modes are localized at both edges (mode III) since ν = −1 for
sub-lattice A and ν = 1 for sub-lattice B. Mode II lies in a region with ν = 1 for both sub-lattices and exhibits a slight tendency
of amplification towards the right boundary, while mode IV lies outside the dispersion loop of sub-lattice A and inside a region
with ν = 1 for sub-lattice B, resulting in localization at the right boundary.

correctly predicted based on the winding number of the complex dispersion bands. Two examples for the
lattice with a = 3 with different boundary conditions are presented in the appendix.

The characterization of bulk properties through winding numbers can also be applied to systems
coupled by a domain wall, which leads to the existence of bulk interface modes and of ‘double skin modes’
(modes localized at both boundaries). We illustrate this by considering a finite lattice of N = 200 masses,
where the first 100 masses are characterized by a = 1, γc = −0.1 (sub-lattice A), and the second half by
a = 1, γc = 0.1 (sub-lattice B). The spectral properties of the coupled system in figure 6(a), where the red
loop denotes the dispersion of sub-lattice A, while the blue loop that of sub-lattice B. Also, black dots are
the Eigen frequencies of the finite lattice, while a few selected modes marked by blue circles have their mode
shapes displayed in figure 6(b). The modes inside the first region (represented by mode I in figure 6(b)) are
localized at the interface, since in that region ν = 1 for sub-lattice A implies a tendency of localization
towards its right, while ν = −1 for sub-lattice B implies a tendency for localization towards its left. Modes
inside a second large region (represented by mode III in figure 6(b)) exhibit an opposite behavior: ν = −1
for sub-lattice A implies a tendency for localization to its left, while ν = 1 for sub-lattice B implies a
tendency to right localization. These modes are therefore ‘double skin modes’ simultaneously localized at
both boundaries. In a small region between the two larger regions, the modes are associated with ν = 1 for
both sub-lattices, and a slight tendency of amplification towards the right boundary is observed (mode II).
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Figure 7. Two-dimensional lattice of equal masses m connected by springs of stiffness k with feedback control interactions. A
force fn,m = kcx (un−a,m − un−(a+1),m) + kcy (un,m−a − un,m−(a+1)) is applied to each mass in the lattice, corresponding to a reaction
proportional to the elongation of springs a units behind in the x direction, and a units below in the y direction.

A final set of modes represented by mode IV lie outside the dispersion loop for sub-lattice A, and in a
region with ν = 1 for sub-lattice B, which results in localization to the right.

3. Two-dimensional elastic lattices with feedback interactions

We now extend the study to 2D lattices consisting of equal masses m connected by springs k, separated by a
unit distance in both x and y directions. Each mass moves along the perpendicular z direction (figure 7), so
that the springs react with a force proportional to the relative vertical motion of neighboring masses.
Feedback interactions are defined by an additional force applied to mass n, m proportional to the elongation
of a spring a units behind in the x and y directions. This force is expressed as
fn,m = kcx (un−a,m − un−(a+1),m) + kcy (un,m−a − un,m−(a+1)), where kcx and kcy are the proportionality
constants for elongations of springs aligned with the x and y directions, respectively. The governing
equation of motion in the absence of external forces is

mün,m + 4kun,m − k(un−1,m + un+1,m + un,m−1 + un,m+1)

− kcx (un−a,m − un−(a+1),m) − kcy (un,m−a − un,m−(a+1)) = 0. (5)

3.1. Dispersion relations, non-reciprocity and directionality
We impose Bloch wave solutions in equation (4) of the form un,m = Uei(ωt−μxn−μym), where μx and μy are
the wave vector components along x and y, respectively. This gives:

Ω2 = 2(2 − cosμx − cosμy) − γxeiμxa(1 − eiμx ) − γyeiμya(1 − eiμy ), (6)

where again Ω = ω/ω0, with ω0 =
√

k/m, while γx = kcx/k and γy = kcy/k. Similar to the 1D case, we
consider the solution with Ωr > 0 to describe dispersion, such that Ωi < 0 is associated with wave
amplification, while Ωi > 0 with attenuation.

For local control (a = 0), figures 8(a) and (b) display the real and imaginary iso-frequency contours of
the dispersion surfaces of a lattice with γx = γy = 0.1. While the real part (figure 8(a)) closely resembles
that of a passive 2D lattice [2], the imaginary part of the frequency contours (figure 8(b)) exhibits
directional dependent attenuation and amplification zones. In particular, a region for which Ωi < 0 is
identified in the third quadrant of the μx,μy plane (figure 8(b)), revealing a range of directions of wave
amplification. This is further illustrated by considering the contour for Ω = 0.7, highlighted by the thick
black line in figure 8(a), which is approximately circular, possibly suggesting isotropic propagation.
However, the wave vector components at this frequency (also highlighted by the thick black circle in
figure 8(b)), cross regions of positive and negative imaginary frequency. The angular dependence of Ωi is
shown in figure 8(d), where it is plotted in polar form versus the propagation angle θ = tan−1(μy/μx). In
the figure, the thick blue lobe denotes amplification for Ωi < 0, while the thin red line defines the angular
range associated with attenuation. Maximum amplification is found for θ ≈ 225

◦
, which corresponds to

waves traveling towards the left bottom corner of a square lattice. Transient time domain simulations are
conducted on a lattice with 100 × 100 masses, with forcing consisting of a 5-cycle sinusoidal burst of
frequency Ω = 0.7 (similar to that of figures 2(e) and (f)) applied to the center mass of the lattice. The
response is evaluated by numerical integration of the equations of motion (equation (2)), similar to the
procedure applied to the study of 1D lattices, where the global mass and stiffness matrices M and K are
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Figure 8. Non-reciprocal amplification and attenuation of waves in 2D lattice with feedback parameters a = 0, γx = γy = 0.1.
Iso-frequency contours corresponding to the real part Ωr (a), and imaginary part Ωi (b) of the dispersion Ω(μx,μy). The thick
black line outlines the contour for Ωr = 0.7, and defines the wave vector components pairs μx,μy governing propagation at the
considered frequency. Angular variation of Ωi highlighting the angular range of amplification (thick blue line) and attenuation
(thin red line) (c). Snapshots of transient response to a tone-burst excitation at Ω = 0.7 applied to the center mass of the lattice
illustrating that waves traveling towards the bottom left corner are preferentially amplified (d, e).

assembled for the 2D lattice using equation (4). Snapshots of the lattice motion at two subsequent time
instants displayed in figures 8(d) and (e) confirm that waves are preferentially amplified as they travel
towards the bottom left corner of the lattice.

The direction of preferential amplification can be tuned based on the feedback parameters γx, γy, as
illustrated in figure 9, again for Ω = 0.7. Letting γx = 0.1 and varying γy changes the direction of
preferential amplification, as illustrated for 3 representative γy values (0.07, 0.03 and 0) in the imaginary
dispersion components polar plots of figures 9(a)–(c). Snapshots of the transient response in
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Figure 9. Tunability of non-reciprocal wave amplification in 2D lattices with feedback interactions (a = 0, γx = 0.1) for
Ωr = 0.7. Polar plots of the imaginary component of the dispersion showing angular ranges of amplification (thick blue line)
and attenuation (thin red line) displayed for γy = 0.07 (a), γy = 0.03 (b), and γy = 0 (c) demonstrate a transition of the
preferential wave amplification direction based on feedback control. Snapshots of transient response to a sine-burst excitation of
center frequency Ω = 0.7 are displayed in (d) and (e), illustrating the change in the directions of amplification for each case.

figures 9(d) and (e) confirm that waves are preferentially amplified according to the predicted directions.
Other combinations of γx, γy can tune the direction of amplification, suggesting that anisotropy in the
control laws (γx �= γy) can be employed for non-reciprocal directional amplification, which may
significantly expand the functionality of reciprocal directionality encountered in passive 2D lattices with
anisotropy in spring constants [2].

Similar to the 1D case, non-local feedback interactions in 2D lattices produce multiple non-reciprocal
bands. This is illustrated for a lattice with a = 1 and γx = γy = 0.3 in figure 10. The real part of the
dispersion displayed in figure 10(a) is similar to that of the local case (figure 8(a)). In contrast, the
imaginary component of the dispersion (figure 10(b)) exhibits different regions of amplification and
attenuation when compared to the local case (figure 8(b)). Contours at three different Ωr values are
highlighted in figure 10(a): Ωr = 0.5–black circles, Ωr = 1.75–black dashed line, and Ωr = 2.5–black solid
line. The corresponding wave vector component pairs are also displayed in figure 10(b), while angular
variations of the amplification (thick blue line), and attenuation (red thin line) at these frequencies are
shown in figures 10(c)–(e): wave amplification occurs along different, and opposite directions within the
range of frequencies defined by the dispersion relation of the lattice. Such behavior is confirmed by
evaluating the transient response to a broad-band input (figures 3(e) and (f)) applied to the center mass of
the lattice. Two subsequent snapshots of the lattice motion (figures 10(f) and (g)), illustrate how the
broadband input is decomposed into approximately 4 wave packets that propagate along the distinct
directions predicted by the imaginary component of dispersion.

3.2. Bulk topology, skin modes and corner modes
We extend the winding number analysis conducted for 1D lattices to describe the topological properties of
2D lattices and demonstrate the presence of skin edge and corner modes. We illustrate that the dispersion
for a finite lattice is associated with modes localized at one of the boundaries, that are either amplified or
attenuated as they propagate along the other (infinite) direction. We then show that the combined effect of
localization for finite strips in two directions (x and y) produce modes that are localized at the corners of
finite lattices.

As a representative case, we consider a finite strip of N = 30 masses along the x direction, and infinite
along the y direction, with parameters a = 1, γx = γy = 0.3 (corresponding to the lattice described in
figure 10). The dispersion of the finite lattice strip is computed by solving an Eigenvalue problem of the
form K(μy)u = ω2Mu for distinct values of μy, where the stiffness matrix K(μy) is assembled by using
equation (4) with the assumption of waves traveling along y only, i.e. un,m = unei(ωt−μym), and with free–free
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Figure 10. Non-reciprocal wave amplification for 2D lattices with non-local feedback interactions (a = 1, γx = γy = 0.3). Real
(a) and imaginary (b) components of the dispersion are displayed along with contours associated with Ωr = 0.5–black circles,
Ωr = 1.75–black dashed line, and Ωr = 2.5 black solid line. Corresponding polar plots of the imaginary frequency components
showing angular ranges of angular amplification (thick blue line), and attenuation (red thin line) (c)–(e): the non-locality of the
feedback interactions result in multiple frequency/wavenumber bands where waves are amplified towards different directions.
The behavior predicted by the dispersion analysis is illustrated by snapshots representing the lattice response to a broadband
input (figures 3(e) and (f)) at subsequent time instants (f, g).

boundary conditions in x. The dispersion for μy = −π, i.e. Ω(μx,μy = −π) is shown in figure 11(a): its
projection on the complex plane defines a loop represented by red lines in figure 11(b). The Eigen
frequencies of the finite strip for μy = −π are represented by dots in figure 11(b), while a few representative
modes marked by blue circles in figure 11(b) have their mode shapes displayed in figure 11(c), revealing
localization at the boundaries. The localization of the strip modes for a given μy is related to the topology of
the dispersion Ω(μx) at that μy value. Hence, the winding number ν for a given μy is computed through
equation (3) with integration in μx

ν =
1

2πi

∫ π

−π

Ω′

Ω− Ωb
dμx, (7)

with Ω′ = ∂Ω/∂μx. In figure 11(b), blue and red zones again define regions for which ν = −1 and ν = 1,
and similar to the 1D lattices, modes of the finite strip whose Eigen frequencies lie inside such regions are
respectively localized at the left (blue dots) or right (red dots) boundary (figure 11(c)). One particular
mode marked by the black dot lies on top of the left end of the dispersion loop, and is characterized by
displacements of all masses uniform along x due to the free-free boundaries. Repeating this procedure for
μy ∈ [−π,π] leads to the complete characterization of the finite strip dispersion (figure 11(d)): blue and
red areas represent regions with bulk invariants ν = −1 and ν = 1 (the dispersion loops are not shown for
better visualization), hence modes of the finite strip spanning such regions are localized at the left (blue
dots) or right (red dots) boundary. The real and imaginary components of the finite strip dispersion are
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Figure 11. Bulk topology and skin modes of finite strip with N = 30 masses along x for lattice with feedback parameters a = 1,
γx = γy = 0.3. The dispersion Ω(μx,μy = −π) (a) defines a closed loop on the complex plane (red lines in (b)), identifying two
regions with winding numbers ν = −1 (blue) and ν = 1 (red). Modes of the finite strip for μy = −π are localized at the left or
right boundary (c) when their Eigen frequencies lie inside regions with ν = −1 (blue dots) or ν = 1 (red dots), respectively. The
procedure repeated for μy ∈ {−π,π} results in a representation of the bulk topology as red and blue regions representing
different winding numbers, and modes of the finite strip spanning such regions are therefore localized at the left (blue dots) or
right (red dots) boundary. The real and imaginary frequency components of the finite strip dispersion are displayed in (e, f)
revealing non-reciprocity in amplification/attenuation of the localized modes propagating along the y direction.

separately displayed in figures 11(e) and (f), revealing that the each mode exhibits non-reciprocity, similarly
to 1D lattices with a = 1 (figure 3(a)). This opens the possibility of establishing non-reciprocal wave
amplification as demonstrated in figure 3 at the edges of a 2D lattice.

The same procedure applied to the finite strip along x can be repeated for a finite strip with N = 30
masses along y instead, and infinite along the x direction. In line with recent work in quantum lattices [74],
we find that the combined effect of the localized strip modes for the x and y directions lead to the
localization of modes at one or more corners. Illustrative corner modes for a 30 × 30 lattice are displayed in
figure 12. The localization at these corners is also in line with the non-reciprocal wave amplification
behavior reported in figure 10, where wave amplification occurs either towards the bottom left corner,
upper right corner, or simultaneously towards the upper left corner and bottom right corner. Although
winding numbers of the dispersion bands can be used to predict the localization of strip modes (finite along
one direction but infinite along the other), to the authors knowledge they cannot be directly used to predict
the regions where modes of finite 2D lattices are localized, based solely on where their frequency lies in the
complex plane. We interpret their localization to occur due to a superposition of the effects leading to the
localization of the strip modes in both directions [74]. However, additional investigations are necessary to
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Figure 12. Representative modes localized at corners of finite 2D lattice with 30 × 30 masses and feedback parameters a = 1,
γx = γy = 0.3. The localization occurs due to the combined effect of localized skin modes for both the x and y directions.

identify a procedure that predicts regions of localization based on topological invariants such as winding
numbers.

4. Conclusions

We investigate a family of elastic lattices where non-local feedback interactions lead to a series of
unconventional phenomena associated with the physics of non-Hermitian systems. Among the key results,
we demonstrate non-reciprocity associated with attenuation and amplification for waves propagating in
different directions in 1D and 2D lattices, along with their topological properties associated with winding
number of the complex dispersion bands, and localization of bulk modes at edges and corners. While
idealized spring-mass lattices where used herein to elucidate the fundamental properties of elastic media
with feedback interactions, we highlight that already existing platforms used to experimentally realize active
materials with time-modulated properties [32–36] may potentially be modified to support feedback
interactions of the type introduced here. The presented results open new possibilities for the design of active
meta materials with novel functionalities such as those related to selective wave filtering, splitting,
amplification and localization, both in one and two dimensions. Our results also corroborate recent
observations [45, 46] that feedback control may be a fruitful strategy to investigate the physics and topology
of non-Hermitian systems. While this work focuses on single-banded systems (already exhibiting a series of
interesting properties), multiple possibilities are open for future work, such as exploring lattices with
different geometries, modulations of control parameters and/or modification of control laws (e.g. derivative
and integral controls), as well as the introduction of non-linearities.
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Appendix. Non-Hermitian skin effect under different boundary conditions

The non-Hermitian skin effect (NSHE) manifests as modes localized at the boundaries of finite lattices,
whose localization edge can be predicted based on the winding number of the complex dispersion bands. In
the manuscript, numerous examples were presented for lattices with free–free boundary conditions. The
NHSE can also be observed under different boundary conditions, such as fixed–fixed or fixed–free, as
illustrated in this appendix. Figures A1(a) and (c) show the complex dispersion loops (red lines) for the
lattice with a = 3, γc = 0.1, which are the same as figure 5(e). Eigen frequencies for a finite lattice with
N = 100 masses and fixed-free boundary conditions (u1 = 0) are displayed as black dots in figure A1(a),
while figure A1(c) exhibits Eigen frequencies for the fixed-fixed case (u1, uN = 0). While the frequencies are
generally distinct, the corresponding modes are localized at either the left or right boundary when Eigen
frequencies lie in regions with ν = −1 and ν = 1, respectively. Selected modes highlighted by blue circles in
figures A1(a) and (c) have their mode shape displayed in figures A1(b) and (d), illustrating the persistence
of the NHSE, predicted by the winding number of the dispersion loops, for different boundary conditions.
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Figure A1. Non-Hermitian skin effect under different boundary conditions for lattice with a = 3, γc = 0.1. The complex
dispersion loops (red lines) displayed in (a, c) identify the phases associated with different winding numbers ν = −1 (blue) and
ν = 1 (red). Eigen frequencies for a finite lattice with N = 100 and fixed-free boundary conditions (u1 = 0) are displayed as
black dots in (a), while the fixed–fixed case (u1 = uN = 0) is exhibited in (c). For both cases, the modes of the finite lattice (b, d)
are localized at either the left of right boundary when their Eigen frequencies lie in regions with winding number ν = −1 and
ν = 1, respectively.
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