
A Design Methodology for Post-Moore’s Law Accelerators: The Case
of a Photonic Neuromorphic Processor

Armin Mehrabian1, Volker J Sorger1, and Tarek El-Ghazawi1

Abstract—Over the past decade alternative technologies have
gained momentum as conventional digital electronics continue
to approach their limitations, due to the end of Moore’s Law
and Dennard Scaling. At the same time, we are facing new
application challenges such as those due to the enormous increase
in data. The attention, has therefore, shifted from homogeneous
computing to specialized heterogeneous solutions. As an example,
brain-inspired computing has re-emerged as a viable solution
for many applications. Such new processors, however, have
widened the abstraction gamut from device level to applications.
Therefore, efficient abstractions that can provide vertical design-
flow tools for such technologies became critical. Photonics in
general, and neuromorphic photonics in particular, are among
the promising alternatives to electronics. While the arsenal of
device level toolbox for photonics, and high-level neural network
platforms are rapidly expanding, there has not been much work
to bridge this gap. Here, we present a design methodology to
mitigate this problem by extending high-level hardware-agnostic
neural network design tools with functional and performance
models of photonic components. In this paper we detail this
tool and methodology by using design examples and associated
results. We show that adopting this approach enables designers to
efficiently navigate the design space and devise hardware-aware
systems with alternative technologies.

I. INTRODUCTION

With the rise of artificial intelligence (AI) applications,

data-intensive workloads have surged. These, in part result

in plateaued speed and energy efficiency of digital von-

neumann computers. Many alternative technologies and com-

puting paradigms have been proposed. Photonics is one of

these technologies, which has been a major driver of data

communication over the past decades. One of the main chal-

lenges facing a new technology is the limited and inconsis-

tent availability of design and simulation tools. The field of

photonic computing suffers from a wide abstraction gap in

design and simulation tools. Most of such tools are currently

focused on the device [1] and low circuit level [2]. To compete

with conventional electronics, there needs to be a long-term

effort to devise tools that complete the design flow stack from

high-level specification and synthesis to device and technology

attachment. Even further, for neuromorphic applications, the

stack needs to incorporate top-level functionalities such as

those in training and inference of neural networks. Some

recent works in photonics have taken this route to bridge

the vertical gap by developing application-specific photonic

software stacks [3] [4].

Here, we propose a design methodology applicable to neu-

romorphic systems. Our methodology is based on extending

1Authors are with the department of Electrical and Computer En-
gineering of The George Washington University. (email:armin@gwu.edu;
sorger@gwu.edu; tarek@gwu.edu)

existing commonly used neural network packages, such as

Google Tensorflow. We propose to extend the hardware-

agnostic arithmetic units with functional and measurement

models of the technology, here photonics. Our approach is

distinguished from other similar works in three major ways.

First, our approach allows users to benefit and rely on low-

level and mid-level features of Tensorflow such as high-speed

back-end processing on a variety of hardware choices such as

CPUs and GPUs. Secondly, our work particularly emphasizes

on noise as a significant component of any analog circuit

including photonics. Lastly, familiarity with a widely-used

platform such as Tensorflow, shortens the learning time and

the time to import existing work into our tool.

II. DESIGN METHODOLOGY

As discussed in the previous section, we propose to ex-

tend Tensorflow with models of actual photonic components

commonly used in photonic neuromorphics. Our goal is

two fold, first, to investigate the effect of non-ideal analog

photonic components on the functional performance of a

neural network. Secondly, estimate the power consumption of

these analog photonic components in such networks to give

us a better understanding of the trade-offs of adopting the

neuromorphic photonics. In the rest of this section we first

introduce a few of the most commonly used photonic com-

ponents in neuromorphic photonics. Then, we briefly discuss

the overall hierarchy of the Tensorflow tool and where and

how it was extended. Lastly, we provide example mathematical

descriptions of the modeled components.

A. Photonic Components

The recent increased popularity of photonics is mainly

due to its low operating power and high bandwidth [5].

Recently, a multitude of neuromorphic photonic processors

have been proposed and even realized [6] [4] [7] [8] [9]. In

these architectures, basic arithmetic operations are realized by

photonic devices that mimic those functionalities. Table I lists

some of these arithmetic operations and their corresponding

photonic realizations.

We extend Tensorflow with two classes of models. First,

functional models, that transform ideal noise-free arithmetic

operations with their realistic analog photonic representations.

Secondly, power models that aim to compute power estimates.

While power models do not affect the functional performance

of a neural network such as the prediction accuracy, functional

models influence them.

Here we start by introducing a set of commonly adopted

photonic devices. We emphasize on two example devices used

113

2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)

2160-052X/20/$31.00 ©2020 IEEE
DOI 10.1109/ASAP49362.2020.00028

Authorized licensed use limited to: The George Washington University. Downloaded on September 08,2020 at 13:02:17 UTC from IEEE Xplore. Restrictions apply.

to realize photonic multiplication, namely micro-ring resonator

(MRR) and Mach-Zehnder interferometer (MZI). The two

devices realize the same functionality so we use them as an

example case for design space exploration.

MRRs play a significant role in photonics. A generic MRR

is a circular optical waveguide as shown in Figure 1 (a). The

MRR in Figure 1 is coupled to one Through and one Drop
waveguides. The portion of the light coupled to the ring will

loop through the ring and then couple back to the Through
waveguide and create anywhere between a destructive or a

constructive interference. The level of interference depends

on the wavelength of the incoming beam and the resonant

frequency of the ring. By applying a bias voltage Vbias the

resonant frequency of the ring is changed, thus affecting the

level of interference.

That being said, the two outputs of the MRR together can be

used to create differential weighting between an incoming light

beam and a bias voltage. It should be note that this weighting

is spectrally sensitive and even can be engineered to realize

selective parallel multiplications on different wavelengths.

Fig. 1: Schematic diagram of (a) a MRR device (b) a MZI

device.

Another alternative device that can be used for weighting

in photonics is the Mach-Zehnder Interferometer (MZI) [9].

Figure 1 (b) demonstrates a MZI device. The input light beam

is split into two beams through a beamsplitter. Each beam

incurs a different phase change by a phase shifter. At the

output, a combiner combines the two phase-shifted beams.

The output beam will have a different amplitude dictated by

the relative phase of the two beams, which similar to a MRR

can cause a range of interferences. Hence, by controlling the

amount of phase shift, a weighting mechanism between the

input beam and the phase shift is realized.

In photonics, the summation operation can be achieved

optically in two main ways; incoherently via a photodiode or

alternatively, coherently by combining two phase-stabalized

photonic beams. By feeding a set of input light beams to a

photodiode, we can add the power of the beams and generate

an electrical current proportional to the sum of the incident

beams.

Another important class of components in neural networks

is the nonlinear activation function. Without nonlinear acti-

vation functions the whole neural network collapses into a

linear transformation, incapable of finding complex nonlinear

tasks. There has been many recent works in photonics to

TABLE I: Mapping of primitive math operations to their

hardware realization.

Math Operation Photonic Representation

Multiplication MRR, MZI

Addition Photodiode

Connection Waveguide

Non-linear Activation Electro-Optic Modulator

build nonlinear activation functions for neural networks [10]

[11]. One way to build a nonlinear activation function in

photonics is to map the nonlinear activation function onto

the transfer function of an electro-optic modulator (EOM).

The advantage of this method is that when paired with a

photodiode, the output of photodiode is an electrical current,

which can directly be used to drive an electro-optic modulator

without the need of any direct electrical to optical conversion.

Furthermore, we can use a new laser source to be modulated

by our signal, which allows to keep signal cascadability high.

B. Google Tensorflow

Tensorflow at heart is a dataflow graph processor that can

map a computational graph across machines in a cluster and

across different computational devices, such as CPUs, GPUs,

and TPUs. While our design methodology is for the most part

focused on the inference, the availability of training algorithms

allow the designer to benefit from a wide variety of state-

of-the-art train-time tools on top of a familiar user interface.

Figure 2 depicts the hierarchical architecture of Tensorflow

and our extended photonic models.

Core Tensorflow is coded in C++ to take advantage of its

performance and portability. Given an input graph, it partitions

the graph into sub-graphs to be used by supported underlying

computing hardware. From Figure 2 it can be seen that,

many of standard kernels are fused in the low-level kernel

implementations to gain better performance for standard neural

network architectures. Within the low-level kernel layer, the

kernels form a gamut of operations from very simple tensor

definition to more complex convolutional and recurrent layers.

Since these fused kernels are accessible through high-level

Python and C++ clients, we can extend these base kernels

inside the training and inference libraries.

C. Extended Models

In the rest of this section, we provide example mathematical

models used in this work. First example is the power model

for the photodiode. Power in a photodiode is calculated using

the Responsivity as follows,

R =
Iph
Pin

= λ
q

hc
η [

A

W
] (1)

where Pin is the power of input incident light, Iph is the

photo-current, q is the electron charge, λ is the wavelength,

h is the Planck’s constant, and c is the speed of light. For a

114

Authorized licensed use limited to: The George Washington University. Downloaded on September 08,2020 at 13:02:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of the Tensorflow architecture and our extended photonic model library implementation.

photodiode, given the, technology the Responsivity is known.

In this work we use values from foundry processes [12].

Another example of a model we implemented here is the

noise models. Noise models fall under the functional models

class as they perturb the operation of otherwise an ideal

photonic neural network. For the same photodiode, there are

two types of noise sources namely Thermal noise and the Shot

noise, which are derived from,

Isn =
√
2q(Iph + ID)Δf and Itn =

√
4KBTΔf

RSH
(2)

where ID is the dark current, Δf is the bandwidth, KB

is the Boltzmann constant, T is temperature in Kelvins and

RSH is the total equivalent shunt resistance. Noise models

are particularly interesting because they let us explore the

design space of photonic neural networks with different noise

characteristics.

The last class of models are functional models that aim to

create a more realistic implementation of photonic devices or

adjust for functional imperfections of photonic hardware. For

example in MRRs, which are used to realize the weighting

operation, the actual transfer function of the Through port is

defined by,

TThrough =
Ipass
Iinput

=
r22a

2 − 2r1r2acosφ+ r21
1− 2r1r2acosφ+ (r1r2a)2

(3)

where a is the attenuation, r1 and r2 are coupling coefficients

with Through and Drop waveguides, and φ is the single pass

phase shift. As a result, when a becomes non-negligible the

weighting of the incident beam and the bias voltage incur some

level of precision loss.

III. RESULTS

In this section we present two class of results namely,

the functional performance and the power estimation. Fig-

ure 3 represents the comparison of the accuracy of various

common neural network architectures for the classification

task on the MNIST dataset. The CNN3, CNN5, and CNN9

represent three convolutional neural networks with 3, 5, and 9

convolutional layers and 16 kernels per layer. Similarly MLP3,

MLP5, and MLP9 are fully-connected multi-layer perceptron

networks. Similarly, VGG16, AlexNet, InceptionV3, and Resnet
are commonly used deep neural network models [13]. As we

expected the introduction of photonic device noise adversely

impacts the accuracy. However, it seems that MRR based

implementations suffer less compared to MZI counterparts. In

the second experiment we estimated photonic power for the

same class of neural network application with both MRR and

MZI implementations. Figure 4 summarizes the results. While

for most of the architectures the power estimation of MRR-

based and MZI-based systems closely follow each other, as

the number of network parameters increase, for instance for

VGG16 and AlexNet the gap between power consumption of

the two device implementations widens.

IV. CONCLUSION

In this paper we proposed a structured methodology and a

tool that can be adopted in the design of post-Moore’s law

accelerators using novel technologies. We considered the case

of photonic neuromorphic accelerator design, where there is a

lack of simulation tools that can bridge the design abstraction

gap. Rather than building our tool from grounds up, we

extended an existing and familiar open-source tool, namely

the Google Tensorflow. This allowed us to take advantage of

many optimized low-level and mid-level functionalities and

kernels, while extending Tensorflow libraries with functional

and measurement modules, as well as models to account for

photonic device-specific noise sources. We showed that our

tool can be used for design space explorations by selecting

candidate devices based on their power and functional perfor-

mance metrics.

115

Authorized licensed use limited to: The George Washington University. Downloaded on September 08,2020 at 13:02:17 UTC from IEEE Xplore. Restrictions apply.

(a) MRR

(b) MZI

Fig. 3: Comparison of the effect of photonic device noise on accuracy using (a) MRR and (b) MZI implementation.

Fig. 4: Power estimation of commonly used neural network architectures using photonic components.

REFERENCES

[1] F. Lumerical, “Solutions. lumerical solutions, inc,” 2014.

[2] L. Chrostowski, Z. Lu, J. Flückiger, J. Pond, J. Klein, X. Wang, S. Li,
W. Tai, E. Y. Hsu, C. Kim et al., “Schematic driven silicon photonics
design,” in Smart Photonic and Optoelectronic Integrated Circuits XVIII,
vol. 9751. International Society for Optics and Photonics, 2016, p.
975103.

[3] J. Anderson, E. Kayraklioglu, S. Sun, J. Crandall, Y. Alkabani,
V. Narayana, V. Sorger, and T. El-Ghazawi, “Roc: A reconfigurable
optical computer for simulating physical processes,” ACM Transactions
on Parallel Computing (TOPC), vol. 7, no. 1, pp. 1–29, 2020.

[4] V. Bangari, B. A. Marquez, H. Miller, A. N. Tait, M. A. Nahmias, T. F.
de Lima, H.-T. Peng, P. R. Prucnal, and B. J. Shastri, “Digital electronics
and analog photonics for convolutional neural networks (deap-cnns),”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 1,
pp. 1–13, 2019.

[5] D. A. Miller, “Attojoule optoelectronics for low-energy information
processing and communications,” Journal of Lightwave Technology,
vol. 35, no. 3, pp. 346–396, 2017.

[6] M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. De Lima, and P. R.
Prucnal, “Neuromorphic photonics,” Optics and Photonics News, vol. 29,
no. 1, pp. 34–41, 2018.

[7] A. Mehrabian, Y. Al-Kabani, V. J. Sorger, and T. El-Ghazawi, “Pcnna: a
photonic convolutional neural network accelerator,” in 2018 31st IEEE
International System-on-Chip Conference (SOCC). IEEE, 2018, pp.
169–173.

[8] A. Mehrabian, M. Miscuglio, Y. Alkabani, V. J. Sorger, and T. El-
Ghazawi, “A winograd-based integrated photonics accelerator for convo-
lutional neural networks,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. 26, no. 1, pp. 1–12, 2019.

[9] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11,
no. 7, p. 441, 2017.

[10] J. George, A. Mehrabian, R. Amin, P. R. Prucnal, T. El-Ghazawi,
and V. J. Sorger, “Neural network activation functions with electro-
optic absorption modulators,” in 2018 IEEE International Conference
on Rebooting Computing (ICRC). IEEE, 2018, pp. 1–5.

[11] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V.
Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation
function for photonic neural networks,” Optical Materials Express,
vol. 8, no. 12, pp. 3851–3863, 2018.

[12] E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue,
B. R. Moss, E. S. Hosseini, and M. R. Watts, “Aim process design kit
(aimpdkv2. 0): Silicon photonics passive and active component libraries
on a 300mm wafer,” in Optical Fiber Communication Conference.
Optical Society of America, 2018, pp. M3F–1.

[13] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

116

Authorized licensed use limited to: The George Washington University. Downloaded on September 08,2020 at 13:02:17 UTC from IEEE Xplore. Restrictions apply.

