On the Nernst-Planck-Navier-Stokes system
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ABSTRACT. We consider ionic electrodiffusion in fluids, described by the Nernst-Planck-Navier-Stokes sys-
tem in bounded domains, in two dimensions, with Dirichlet boundary conditions for the Navier-Stokes and
Poisson equations, and blocking (vanishing normal flux) or selective (Dirichlet) boundary conditions for the
ionic concentrations. We prove global existence and stability results for large data.

1. Introduction

We consider electrodiffusion of ions in fluids in the presence of boundaries. Ions of different valences
carry charges, are advected and diffuse under the influence of an electric potential, their own concentration
gradients and a fluid flow. The fluid is forced by the electric forces created by the ions. These situations arise
quite frequently in nature and are present in a large number of biological and industrial processes, such as
electrodialysis, electrodeposition and electrochromatography. The subject is more than a hundred and thirty
years old but in recent years there has been a resurgence of interest due to the ability to control transport of
ions through charge selective membranes at nanometer scales. It has become clear that the geometry of the
device and the nature of the boundary conditions can be the source of significant changes in the transport
of ions. The physical and biophysical applications of the system are extremely broad, and the system has
been investigated extensively in the physical literature. An introduction to some of the basic physical and
mathematical issues can be found in [16].

The situation is described by the Nernst-Planck equations

Osc; +divj; =0 €))

where ¢; are the ¢-th ionic species concentrations, ¢ = 1, ... N, and where the fluxes j; are given by
€z
"kpT

The ion concentrations ¢; = ¢;(x,t) are nonnegative functions, with z representing position, 2 € Q C R,
an open bounded set with smooth, orientable boundary, and ¢ representing time, ¢ > 0. The domain is
connected but not necessarily simply connected. The velocity u = u(z, t) is a divergence-free field. D; are
positive constant diffusivities (D; > 0, possibly different from each other), e is elementary charge, z; are
valences (z; € R, unrestricted to be integers, and with both positive and negative signs required, so that 0
is in the interior of the convex hull of the valences), kp is Boltzmann’s constant and 7" is temperature. The
potential W solves a Poisson equation

jJi =uc; — D;Ve; — D VY. (2)

— AV =p 3)
in €. The function p is the charge density,

p=e)  zc “)
i=1
and ¢ is a positive constant, the dielectric permittivity of the solvent. The velocity u obeys the Navier-Stokes
equations

8tu+u-Vu—uAu+Vp:ﬁE (®))
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in € with the divergence-free condition
V-ou=0 (6)
and with E the electric field
E=-VU. (7)
Here v > 0 is the kinematic viscosity and p the pressure. There are two kinds of boundary conditions for
the ionic concentrations. The vanishing of all normal fluxes

where n is outer normal at the boundary of 2, is termed “blocking boundary conditions”. These boundary
conditions model situations in which boundaries are impermeable: the ions are not allowed to cross them.
Different boundary conditions are termed “selective” or “permselective”. They model situations in
which some ionic species are selectively crossing some boundaries or membranes, while being blocked from
crossing others. In this case M < N of the ionic concentrations have mixed Dirichlet - no-flux boundary

conditions, and the rest of the ionic species (i = M + 1,..., N) have blocking boundary conditions (8),
Ci|Si =Y, (jln)‘ag\sl :0, iIl,...M, (9)
(Ji-n)oa =0, i=M+1,,...,N,

where S; C 0f2 are portions of the boundary for ¢ = 1,..., M, and ; > 0 are positive constants. The

subsets S; can be quite general: they do not need to be connected, nor do they need to be distinct from one
another as 7 varies. Selective boundary conditions occur at membranes which maintain a fixed density of
certain ions, and are impermeable to others. A simple example of a situation like this is when there are
only two species of ions, of equal and opposite valences, in a doubly connected domain (like an annulus for
instance), where one boundary is a selective membrane for one of the ionic species and is blocking for the
other. The other boundary might be selective for both ionic species, or blocking for both, or again, blocking
for one and selective for the other. These boundary conditions will have different dynamical consequences
in the presence of applied voltage and fluid.
The electric potential satisfies Dirichlet boundary conditions

Vg =V (10)

where V' (x) are imposed voltages (the boundary 0f2 need not be connected). We normalize the potential by
introducing ®,

e
d=—U 11
T an
and denote
N
p = Z Z2;Ci. (12)
i=1
The NPNS system is therefore
(O +u-V)e; = Didiv (Ve; + 2ie;V®) = Didiv (¢;V(log ¢; + z,®)) (13)
together with
—eAD =p (14)
and the forced Navier-Stokes equations
ou+u-Vu—vAu+ Vp=—kgTpVo, (15)
V-u=0, (16)
with
SkiBT N 2\ 2
=2 = I\ 17
e=—r5— =) XD, (17)

i=1



where Ap is the Debye screening length ([16]) defined as

ekgT
\l coe? ) il Z

and cp is a reference bulk concentration of ions. We did not rescale the equations, we just slightly changed
the dependent variables potential and charge density. We note that € is essentially the Debye length squared.
The boundary conditions for u are homogeneous Dirichlet,

ujg0 = 0, (19)
and the blocking boundary conditions (8) for ¢; thus become
ciOn(logc; + 2:®) 90 = 0, (20)
where
O =n-V (2D
is normal derivative at the boundary. The boundary condition for & is
€
Digo=W = % 22
|00 kel (22)

with W = W (x) a given smooth enough function of space. We distinguish between two kinds of selective
boundary conditions for the concentrations c¢;. The first, which we term “uniform selective”, require not
only the +; to be constant (in space and time) but also that the boundary voltage W () to be constant on the
portions S; of the boundary where ; are prescribed,

W(a;)‘ S; — w;. (23)

For instance, if one of the ionic species concentrations, say c;, has one boundary selective and one boundary
blocking, then a constant boundary condition for ® is needed on the selective boundary. If the rest of the
ionic species concentrations cs, . . ., ¢y have blocking boundary conditions then the situation is uniformly
selective, in our language. The non-uniform selective boundary conditions we term “general selective”. In
their case W (z) may be an arbitrary (smooth enough) function of space. For instance, if in the preceding
case the boundary condition for & was varying in space on the selective membrane, then we would be in a
general selective situation. Or, if one ionic species has two distinct constant Dirichlet boundary conditions
at two membrane boundaries, then we are in a general selective situation.
The Boltzmann steady states are defined to be

Gla) = — 24)

with Z; > 0 constants (which may depend on ®*). We choose the notation Z; in analogy with statistical
mechanics. The Z; are normalizing constants. The function ®*(x) is time independent and obeys the
semilinear elliptic equation

— eAD* = p* (25)
with
N
pr = Z zic; (26)
i=1
and with boundary condition
[on = W. 7)

This equation is known as the Poisson-Boltzmann equation. Let us observe that ¢}, ®* are steady solutions
of the NPNS system with v = 0. Indeed, in this situation the forcing term in the Navier-Stokes equations
(15) is a gradient and it can be included in the pressure, while the time independent equations (13) are
satisfied.
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The NPNS system is nonlinear, and the blocking boundary conditions are nonlinear and nonlocal. While
blocking boundary conditions lead to stable configurations, instabilities occur for selective boundary con-
ditions. These have been studied in simplified models mathematically and numerically ([18], [22]) and
observed in physical experiments [17]. A recent numerical study [6], which partly motivated ours, dis-
cussed additional “patterned” boundary conditions, and described the effect of the geometry of nonuniform
boundary conditions on the instabilities. That numerical study is performed in a strip, with periodic lateral
boundary conditions. There are two ionic species, anions and cations, and the boundary conditions for an-
ions are blocking while the boundary conditions for cations are selective. The boundary conditions for the
electric potential are Dirichlet: a constant voltage is applied at one of the boundaries. The case when both
boundaries for cations are selective corresponds in our language to general selective boundary conditions:
N = 2,51 = 09 is formed by both the upper and the lower boundary, ¢, is constant on .Sy, but W is
not, taking two different values. Another interesting case is one in which the upper boundary for cations
is selective and the lower boundary is patterned with alternating segments of permeable and impermeable
membranes. Both situations lead to instability and chaotic behavior, and correspond in our language to
general selective boundary conditions. Interestingly, if the upper boundary is blocking, but the lower one is
selective, or even patterned selective, then we are in situations which we call “uniform” selective, because
the voltage is constant on the selective part of the boundary. These, and more complicated cases with many
boundary components and many ion species are proved in this paper to be nevertheless unconditionally
globally uniformly stable situations.

The mathematical study of semilinear elliptic equations is classical (please see [10] for instance for
general existence, regularity and uniqueness results, including for quasilinear elliptic equations in bounded
domains, and [15], [8] for some results directly connected to the physical problem of ionic diffusion. We
comment in more detail on particular aspects relevant to the Poisson-Boltzmann equation in Appendix A).
The coupled NPNS system is semilinear parabolic, so its local well posedness is not unexpected. The issue
is whether or not solutions exist globally and what is their asymptotic behavior. This issue is mostly a
question of boundary conditions, although dimensionality enters as well. Global existence and stability
of solutions of the Nernst-Planck equations, uncoupled to fluids has been obtained in several situations
in [1], [4], [9] for blocking boundary conditions. Local existence for the system coupled to the Navier-
Stokes equations in the whole space was obtained in [13] and global existence of weak solutions in 3D
with blocking boundary conditions was obtained in [14] and in [7]. Global existence for small data and
forces was obtained in [19] and [20] in some cases. The global existence and stability of the system in
2D has been studied in [2] with blocking boundary conditions for the ions and a Robin boundary condition
for the electric potential. Neumann boundary conditions for the potential simplify the analysis, but they
are not relevant for the physical situation at hand. Robin boundary conditions retain enough features of
the Neumann boundary conditions to still facilitate the analysis, while being more physically relevant. The
Dirichlet boundary conditions for the potential are however the natural and most commonly used physical
boundary conditions for the electrical potential. The method of proof and the result of [2] do not apply to
the case of Dirichlet boundary conditions for the potential.

In this paper we prove global existence for both blocking and selective boundary conditions for the ionic
concentrations, in two spatial dimensions, for arbitrary data. In the cases of blocking boundary conditions
and in the case of uniform selective boundary conditions we prove unconditional global stability: for all
initial data, valences, voltages, species diffusivities, dielectric constant and arbitrary Reynolds numbers,
the solutions converge as time tends to infinity to unique selected Boltzmann states. The Boltzmann states
are uniquely determined by the initial average concentrations of the species and boundary conditions. The
Navier-Stokes equations are forced, and the forces converge in time to potential forces, but they are not, in
general, potential forces at any finite time. Thus the fact that the attractor is a singleton (per leaf) is nontrivial,
and it follows from the remarkable dissipative structure of the equations: The system has a “free energy”
which decays in time. This energy is the sum of natural relative entropies (or Kullback-Leibler divergences),
relative to Boltzmann states, added to the mean-square gradient difference of electrical potentials and to the
kinetic energy of the fluid. This dissipative structure is determined by two factors: one is the nature of
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the equations themselves, and the other is the boundary conditions for the ionic species and the fluid. The
use of relative entropy in PDE is of course not new. A relative entropy of this kind is used in Fokker-
Planck equations. We find however that the structure here is remarkable in that it applies to a system of
many measures. In the Nernst-Planck system there are many concentrations which all play the role of the
one probability density function in the Fokker-Planck equation, and many Boltzmann states which play the
role of the one Maxwellian which is the reference probability density. The additional element is of course
the coupling to the fluid, and that is where the nature of the electric force turns out to be essential for
the structure to be dissipative. The boundary conditions (either blocking or uniformly selective) allow to
conclude that the energy is nonincreasing in time. The time evolution of the energy has a boundary term and
this term vanishes for blocking boundary conditions and for uniformly selective boundary conditions. In the
case of different boundary conditions the energy is still useful for the analysis and helps to establish global
existence, but is no longer guaranteed to decay in time in general.

The energy measures in some sense a distance to the Boltzmann states. Interestingly, it does not matter
which Boltzmann states we refer to in order to compute the energy and show it is nonincreasing. This fact
is explained by the conservation of the averages of concentrations for the blocking boundary conditions
and the choice of normalizing constants Z; for the species with uniformly selective boundary conditions.
The difference between two energies relative to different admissible Boltzmann states is constant in time.
(Please see Remark 2 for details). The time monotone behavior of the energy provides some global a
priori bounds, which we then improve upon, using the fact that the equations are semilinear parabolic. The
limitation to two dimensions arises here, not chiefly because of the Navier-Stokes equations, which we
could consider in the relevant low Reynolds regime, but because of the fact that we need global exponential
bounds for the Poisson equation when the charge density has the bounds provided from the energy decay.
These are available in two dimensions. Sufficient regularity is thus established and the time integrability
of the energy dissipation provides enough information to deduce the convergence on time sequences of
solutions to some functions. We identify these functions as Boltzmann states associated to potentials solving
appropriate nonlocal Poisson-Boltzmann equations. Uniqueness of the latter, given the conserved quantities
in the system is used to prove finally the asymptotic behavior is the stated one.

The paper is organized as follows: in Section 2 we describe in detail the dissipative structure and explain
the role of the Boltzmann states. We give results about the Poisson-Boltzmann equations in Section 3. In
Section 4 we give a priori bounds and decay to Boltzmann states for blocking boundary conditions, in
Section 5 we describe the stability of uniform selective boundary conditions and in Section 6 we describe
the global existence for the general selective boundary conditions. In Appendix A we discuss proofs for
Poisson-Boltzmann equations, and in Appendix B we present a proof of local existence.

2. Dissipative Structure

We define the energy

E=E(ci, ®;¢;,9%) :/
Q

N

1
> Eici + 5(p— p)(® — ) | da (28)
i=1

This energy is relative to some fixed selected Boltzmann states,

ci(z) = Z7 e 5% (@) (29)

K3 3

with ®* obeying the Poisson-Boltzmann equation (25), with boundary conditions (27), and charge density

N
pH(x) =) zci (), (30)
=1

(see 26). Above we used p = > z;¢; (see 12). The potential ® in £ is computed solving the Poisson problem
(14)
—eADd =p (31
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with boundary condition (22)
) g = W. (32)
We define E; by

E; = —log <> — 24 (33)

Let
2

D= Z D, / dx (34)
where 2 5 are densities of the first variations (Frechet derivatives) of £. We have the following variational
d1s51patlve structure theorem.

THEOREM 1. Let ¢; > 0 solve the 2D Nernst-Planck-Navier-Stokes equations (12), (13), (14), (15),
(16) with Dirchlet boundary conditions for the Navier-Stokes velocity (19) and the electric potential (22)
and either blocking (vanishing normal flux) boundary conditions (8) or uniform selective (constant Dirichlet
and vanishing normal flux) boundary conditions (9) for the ion concentrations. Let £ be defined in (28) with
respect to arbitrary Boltzmann states in the case of blocking boundary conditions, and with respect to
Boltzmann states selected below in (66) for uniform selective boundary conditions. Then

/Q|u|2d:v+5] —D—M/ |Vu|*dz (35)

Sc;

da
dt | 2kgT
holds for all t > 0, where D is given by (34).

Proof of Theorem 1. We have the relations

O(Eicy ;
dc; c;
and NE.c*
(Eic) _y _ &, (37)
oc; cl
Computing the first variations (Fréchet derivatives) of £ gives the densities
o0& C;
— =1 = (D — D* 38
oc; Og<cf>+z( ) (38)
because . )
S(p=p) @ —2") = —(p—p*)(=Ap) ' (p—p*) (39)

2 2¢
where (—Ap)~! is the inverse Laplacian with homogeneous Dirichlet boundary conditions, which is a
selfadjoint operator, and because

dp
— = z. 40
de, Zq (40)
Note that in view of (29) we have
6
(&
and therefore the equations (13)
Dic; = Didiv (¢;V (log ¢; + z;P)) (42)
are, in view of the relation (41), the same as
0&
(SCZ‘

We denoted above by D; the material derivative
Diy=0+u-V (44)
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with respect to the time dependent divergence-free velocity u. The form (43) of the equations in terms of
the energy £ is a fundamental property of the Nernst-Planck system. The dissipative variational structure
follows using only the fact that ® and ®* obey the same Dirichlet boundary conditions. Defining the energy
density by
al 1

Ez}}&ﬁ+2@ﬁx@@) (45)

we compute D, (E;c}) using (36), (37) and (29):
Di(Eic}) = log ( ) Dic; 4+ Dic; — ¢;iDylog ey .
(46)

= log ( ) Dyc; + Dic; + zic; Dy ®*.

Adding we obtain

N
Dy <Z Ezc;‘> Z log < ) Dyc; + Z Dyc; + pDy®*. 47
i=1

=1
In view of (38) we have thus

N N N
Dy <Z Ec> => s Dici+ > " Dic; — (® — ®*)Dip + pDi " (48)
i=1 im1 %G i=1
Therefore
D,E = Z Dtcz + Z Dici + P (49)
=1
where )
P = §Dt[(p — )N (P — DY) + pDy®@* — (D — D*) Dyp, (50)
and thus ) ) )
P = §Dt [p®" — p*® + p* "] + ith(I) - g(DtP)Q (51
Now we claim that we have
P=pu-Vo+Q (52)
where, importantly,
/Qm:o (53)
Q

holds for all ¢. Indeed,

Q = 1D [p®* — p*® + p*®*] — Ldiv (up®) + 5 (p0,® — O,p)
= 1[®*0ip — p* 04D + pOy® — POyp] + Sdiv [u (p@* — p*® + p*®@* — pd)]

_ %KP = p)0® = (2 = ®)yp] + 5div [u (pB* — p*® + p*®* — p@)] oY
=5l(p—p")0(P — *) — (& — ©*)0(p — p")] + %div [u(p + p*)(P* — )]
where we used that
Thus
Q= %KP — ") (=Ap) (Bi(p— p*) = (=Ap) " (p— pP))(B(p — )] + %div (ug)  (56)
with

0= (p+p) (@ - D). 57)
The fact that (53) holds follows from the facts that (—Ap)~! is selfadjoint and the fact that u is divergence-
free and has vanishing normal component on the boundary of {2. No boundary conditions on ¢; are used.
We have thus
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N N
o€ N
DiE = z; TciDtci + ; Dyt 4+ pu - VO + Q (58)
where () satisfies (53). Consequently, we have
Al
DtE:;(SCiDtc,-—F-u—I—R (59)
where
F=—pVd (60)
and with
N
R=7) Dici+Q. 1
i=1
In view of (53) and of
Oe; =0 (62)
we have that R satisfies
/ R(z,t)dx =0 (63)
Q

for all t. We stress that no boundary conditions for ¢; were used so far. Now we use the coupling to the
2D Navier-Stokes equations whose kinetic energy is forced by F'. Adding the energy balance in the Navier-
Stokes equations multiplied by @% we obtain from (43), (59) and (63) after integration by parts

N
i ) B v ) 0 [ O€
& [mr [z +e] =2 kﬁrzyvm<M+—;1Daéﬂaéqan(&2>da (64

If blocking boundary conditions (8) are employed, then

On, <5€> =0 (65)

no matter what Boltzmann states are considered, in view of (41) and the fact that Z; are constant in space
(and time, of course). We recall that in this case W is an arbitrary (smooth enough) function.
In the case of uniform selective boundary conditions (9) we choose

Zi = (v, fori=1,...M (66)
where we recall that
wi =W, s, (67)
are assumed to be constant on S;. The rest of Z;,7 = M + 1,..., N are arbitrary and W may vary in space
on the rest of the boundary 02 \ Ui]\i15i- In this case we have, in view of (41) and (9)
6E (68 )
—0On | — =0 (68)

forallt = 1,..., N. This concludes the proof of Theorem 1

REMARK 1. The energy in the left hand side of (35) is non-negative. The energy is the sum of rela-
tive entropies (or Kullback-Leibler divergences) for the pairs (c;, c}), the square of the H™! norm of the
difference of charge densities, and the kinetic energy of the fluid. It vanishes only if ¢; = ¢}, ® = ®* and
u = 0. The dissipation D also vanishes only at Boltzmann states. The dimension d of space does not enter
these calculations, and the only use of the Navier-Stokes equations is by considering D; as a derivation,
and using the energy equality. In d = 3, and for weak Leray solutions of the forced NSE, (35) holds with
inequality rather than equality, for almost all time. The fact that (59) with (63) holds represents a mathe-

matical confirmation that F is the correct electrical forcing of Navier-Stokes or Stokes equations: no other
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force would have fulfilled its role. In other words, we could derive the form of F' by the requirement that
Theorem 1 holds. The dimension of kgT is that of an energy, and (35) is dimensionally correct.

REMARK 2. The right hand side of (35) is independent of the choice of reference Boltzmann state,
in view of (41). This might seem puzzling, but is explained by the fact that the difference between two
energies £, and & corresponding to two different admissible choices of Z; is time independent. Indeed,
this difference is the sum of time independent quantities and constant multiples of fQ ci(z, t)dz (for all i
in the case of blocking conditions and for v = M + 1,..., N for uniform selective boundary conditions)
which are conserved under the evolution. This follows from the calculation below. Let c;, ®* be the unique
Boltzmann state corresponding to constants Z;, and let d;,VU* be the Boltzmann state corresponding to
different constants U; > 0, which still satisfy the conditions (66) in the case of selective boundary conditions.
Define q* = sz\; 1 zid;. Let Fy denote the energy density of the state c;, ®, relative to the first Boltzmann
state given by (45), and Es the energy density corresponding to the second state. The difference of densities
is

N N
d; 1 1 1

Ey—-E = ilog | =L ) + =@ (¢" — p*) + =p (¥* — ®* A+ = (ptPT — T . (69

1= B ;C 0g<cj>+2 (¢" = ")+ 50 >+;(cz D5 (01T g ). (69)
Using (29) and its analogue, we have

d* 7.
log (=~ ) =2 (®* = ¥*) +log | — |, 70
og () == (0" =)+ 108 () (70)

and from (69) it follows that

N N
El—E2=Z§10i10g<Ui)+2P(q) -V )4'5‘1)((1 -P )+;1(Cz‘ —di)+ 5 (p"®" = ¢" V7). (T1)
Now we write

D =Py + Py (72)
with
— APy =p, Do po =0, (73)
and
and rewrite (71) as
o Z\ 1 1
Ey— Ey = ;1 = —p(®* —U*) + =D (¢* — p*) + K* 75
1 — B ;Clog<Ui>+2p( )+ 5% (¢ = p") + (75)
where
1 al 1
* * * * % * * * *
K—2<I>W<q—p>+;<c@-—di>+2(p<b — ¢ (76)
is time independent. Therefore
al Z\ 1 1
Ei — Ey = og [ =) + —p(=Ap)H(p* —¢") — — ((-Ap)~! ")+ K* 77
| — B ;czog<Ui>+2ep( p) "= ") = 5 (FAp)'p) (" —a) + K7, (77)

and, integrating and using the selfadjointness of (—Ap)~1 we have

N
Z4
E—& =) log ()/c z,t dx+/K*d:z:. (78)
e ; Ui) Ja (1) Q

The integrals fQ ¢i(z,t)dx are time independent for all i = 1,. .., N, if blocking conditions are used, and
fori=M+1,..., N, ifuniform selective boundary conditions are used. In the latter case, in view of (66),
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log (%) = 0fort=1,..., M. Thus, it makes no difference which admissible Boltzmann state is chosen
to define the energy for (35) to hold.

REMARK 3. The decay of energy (35) implies that any time independent solution of the system is a
Boltzmann state. The velocity vanishes and the gradient of pressure balances the electrical forces, which
are a gradient, in steady state. It is interesting to note the fact that the electrical forces are a gradient only
in steady state, not on the way to steady state. Because of this, the decay of velocity is non-trivial, as the
Navier-Stokes are forced.

3. Poisson-Boltzmann equations

In this section we describe the semilinear elliptic equations defining Boltzmann states. They all are of
the form (25) with (24), (26) and Z; = Z;(®*). The simplest case is when Z; are just given fixed positive
constants, independent of ®*. In that case the problem is a local semilinear elliptic problem of the form

— eAD* + G'(®*) =0 (79)
in the bounded domain Q C R?, with smooth boundary 92. The nonlinearity G(®*) is given by
N
=Yzt (80)
i=1

with Z; > 0 and z; € R given constants. The derivative G' (®*) is
N

/ Z; *
G(®)=—-) e, 81
(®%) ; 7€ (81)
The boundary condition for ®* is (27). We note that G is positive and convex. Because 0 is in the interior
of the convex hull of z;, in other words, because there are both positive and negative z;, it follows that
limy 400 G'(¢p) = £00.

THEOREM 2. Let Q C R% d = 2,3 be bounded domain with smooth boundary and let W be a smooth
enough function on 09X (for instance W € H*(0Q) with s > % ). Then there exists a unique weak solution
®*e AN loc( ) Of

— eAD* = —G' (D) (82)
with boundary condition (27), with

N
S &
=1

and with given positive numbers Z; > 0. If W € W%’p(ﬁﬁ) with p > d then ® € W?P(Q) and
consequently ®* € WH>°(Q).

Both existence and uniqueness follow because of the convex variational structure. Boundedness follows
using the maximum principle and regularity follows from classical methods ([10]). The admissible set A is
defined in (233), see Appendix A where we give the proof.

A different case of Poisson-Boltzmann equation we need is

* 0 €
— eAD ZzZI T

The constants [ ZQ are given positive numbers and the boundary conditions are (27). Equation (84) is obtained
from (25) (24), (26) with constants Z; given by

Zy=IH7! / e 5 d. (85)
Q

z; &*

(84)
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We also need the more general case

M —2z; O*
— AP =Yz e Y Z zZIO € — (86)
=1 i=M+1 x

with Z; > 0 and Iio > 0 given numbers. In fact (86) include both (82) (83), when M = N and (84) when
M = 0 (with the convention that when the set of indices is empty the sum vanishes).

THEOREM 3. Let Q C R% d = 2,3 be a bounded domain with smooth boundary and let W €
W2P(00) withp > d. Let0 < M < Nandlet Z; > 0,i=1,....MandI° > 0,i = M+1,...,N
be given positive constants. Then there exists a unique a solution ®* € WP (Q) of (86) with boundary
conditions (27)

The existence of solutions follows from a variational structure. This is no longer a convex variational
problem, nor a local PDE. Boundedness of solutions follows from the maximum principle. Regularity of
bounded solutions follows from classical elliptic regularity arguments ([10]). Uniqueness follows from a
monotone structure of the equations. We present the monotone structure and ideas of proofs in Appendix A.

4. Global unconditional stability for blocking boundary conditions
We treat in this section the boundary conditions
Ji-naa =0 87)
for the fluxes
Ji = uc; — Di(Ve; + zie; V). (88)
Thus, we consider the system

Ou+u-Vu+ Vp =vAu — (kpTk)pV,

divu = 0,

p= ZiNzl 2iCi, (89)
—eAd = p,

i +u-Ve; = Dy (Ac; + zdiv(e; V),

in Q x [0, c0), with boundary conditions

ujpn =0,
Q190 =W, (90)
(Vci + Zicivq))wg -n=20

where n is the external normal at J€2. Above and in what follows we write T’k to denote temperature, which
is a fixed constant, in order to avoid confusion with 7" representing time.
We use the following local existence result.

THEOREM 4. Let Q C RY d = 2,3 be a bounded domain with smooth boundary. Let z; € R,
1<i< Nandlete >0,D; >0,i=1,...N. Let ¢;(0) be nonnegative functions 1 <i < N, let W be a
smooth function defined on 95 and let ug € H'(Q)? be divergence-free. Let p = 2q > 2d. There exists Ty
depending only on the parameters of the problem €, D;, z;, v, the domain ), the initial energy £(0) and on
the norms

llci(0) |l e () HWHszaQ) uoll 20 1D

such that a unique strong solution of (89) with initial data c;(0) € LP(Q) N W24(82), ug € WHP(Q) exists
and satisfies

sup |lci(t) || ze(e) < 3lci(0)llzr(e) (92)
0<t<Ty
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and
sup_[l[ei(D)llw2a(q) + 10cci(t)l|La)] < Cq (93)
0<t<Tpy
and
7o 2 2
| 0@ ey + 1 ikt < %)

with constants C),, C,, depending on
lci(0) | e (02), i (0) [[w2.a 0y [lwollwe()- 95)
The proof is presented in Appendix B.

REMARK 4. Note that the time of existence depends only on the initial energy and the norms of ¢;(0),
ug, W listed in (91), but not on the higher norms which are subsequently controlled. There is no special
meaning to the time t = 0: the result holds from any tq for a short time, determined as above. We also
remark that although no attempt was made to find the most generous initial data regularity conditions,
nevertheless no compatibility conditions for the initial data are required.

We now show that if ¢;(x, t) are positive at t = 0, then they remain positive, as long as the solutions are
regular. In order to show this we take a convex function F': R — R that is nonnegative, twice continuously
differentiable, identically zero on the positive semiaxis, and strictly positive on the negative axis. We also
assume

F'(y)y* < CF(y) (96)
with C' > 0 a fixed constant. Examples of such functions are
2m
oy for y <0,

with m > 1. (In fact m = 1 works as well, although we have only ' € W?2°°(R) in that case.) We multiply
the equation (42) by F’(¢;) and integrate by parts using (87). We obtain
d
% F(Cz)dl' = —Di/ F”(Ci) UVCZP + z,»ciV@ . VCZ] dx. (98)
Q Q

Using a Schwartz inequality and the convexity of F', F” > 0, we have

d CD;
o | Fletmar< S

If ¢;(x,0) > 0 then F'(¢;(x,0)) = 0 and (99) above shows that F'(¢;(x,t)) has vanishing integral. As F
is nonnegative, it follows that F'(¢;(x,t)) = 0 almost everywhere in x and because F' does not vanish for

negative values it follows that ¢;(x, t) is almost everywhere nonnegative.
The following result provides global existence in two dimensions.

2 V0|2 /Q Flei(, ) da. 99)

THEOREM 5. Let Q C R2 be a bounded domain with smooth boundary. Let z; € R, 1 < i < N, let
€>0,D; >0,i=1,...N. Let ¢;(0) be nonnegative functions 1 < i < N, with ¢;(0) € LP(Q)NW?24(Q),
p=2q¢>4 let W € W%’p(aﬁ) be a function defined on 0X) and let uy € Wol’p(Q) be divergence-free.
Then there exists a unique global strong solution with initial data c;(0), ug, defined on [0, 00) of the Nernst-
Planck-Navier-Stokes system (89) with boundary conditions (90). There exist constants I, depending on the
parameters €, D;, z;, the domain ), the initial energy £(0), and the norms

i)y, W llEs@0)s  lluwollL2)s (100)

forp>2,s> %, such that

i(t <T 101
lglgjvoglfwﬂcz( Mirr) < Ty, (101)
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The bounds

sup || ®(t)[lw2r () < Tp. (102)
0<t<oo
hold for p > 2 and in particular,
sup || ®(t)[lwree) < I's (103)
0<t<oo
holds. In addition
. 0o < 005
X, sup i)l o) < T (104)
and
A S [Vei()]lp2@) <T (105)
The functions
Gi(z,t) = ci(w, t)es @t
obey
max su G (V)| pooray < Too,s 106
1§i§Nogt<poo” )l o0 (106)
~ 2
B S IVl < T 1o
and -
/ / V& (z,t) | dadt < Ts. (108)
0o Jao
Moreover, -
| [10@ 01 + 185 Ol ) < T (109)
and -
UA 18:0(8) 20 + IVODE) 320y | dt < T (110)
hold. The Navier-Stokes solution satisfies
T
sup [u(®) e+ [ ) Byt < C°T an
0<t<T 0

forany T' > 0, with C* depending on I';, above and ||uo|| g1 () and further

sup. [llei(®) w2 + 190 (8) 300 < Co(T) (112)
0<t<T
and
r 2 2
| 1000 o+ 1O eyl < (1) (113)

hold. The constants Cy(T') and Uy (T') depend on the initial data and T.

Proof of Theorem S. The proof follows from the a priori bounds established below and the uniform local
existence and uniqueness theorem, Theorem 4.
From (35) and the fact that [,(p — p*)(® — ®*)da > 0 it follows that

= i\ L Ci\T, c;lx, .
;/ﬂ <c;§(;c§) 10g< ci(x§)> - ci(aj) 4 1) ¢ (w)dx < £(0) + 2l<:BlTK’u0H%2(Q) (114)

(2 K3

holds for all time ¢. In view of (114) we know that

1
/ ci(z,t)log(ci(z,t) + 2)dr < C* [5(0) +

holds for all ¢, with C* depending only on bounds on ¢ and z;. We use here the fact that ¢ are positive,
bounded, and bounded away from zero, a fact that follows from L°°(£2) bounds for ®*, see Theorems 2 and

luolZ2(q) (115)
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3. We denote by I' various constants depending only on the initail energy and the initial L? norm of velocity.
With

1 2
consequently we have that
| et t)1os (o(a 1))+ 2)de < €T (117)
Q
holds uniformly in time, with a slightly different C*.
Step 1: > bound on ®.
From the Poisson equation
—eA(P - )=p—p" (118)
with homogeneous Dirichlet boundary conditions we obtain that
(-, 8) | oo () < C*T (119)
uniformly in time, with C'* depending on ¢, and the domain €2 and
L =Tt [ [ (@)llog (15" (2)| +2) da, (120)
Q

This follows from Lemma 1 below, which must certainly be known, but we do not have a ready reference
for it. We give a simple proof based on an idea in ([3]) and on the Legendre transform.

LEMMA 1. Let Q C R? be a bounded domain with smooth boundary. Let f satsify the bound

/Q (@) log(2 4 |f(2))de = B < o

and let u be the solution of
—Au=f
in Q with boundary condition u| o = 0. Then, there exists a constant C, depending on ) such that

sup |u(z)| < CB
z€eQ

holds.

Proof of Lemma 1. We extend f by zero outside the domain €2 and take R = %diam Q. Welet Bgpbea
ball of radius R containing {2 and set

R = I

—Au = |f|
holds in R2. Because % > 1 it follows that (z) > 0 in Bg and, from the maximum principle we have
that

Thus,

u(z)| < u(x)
in €. The proof of the lemma follows from the fact that the Legendre transform of plogp — p + 1, defined

on the semipositive axis p > 0, is e? — 1, and consequently, from pg < plogp — p + 1 + e? — 1 it follows
that

[log |z — yllf W)l < |fW)|log |f(y)] — | f(y)] + el el (121)

holds for any x,y € Bg. Integration and straightforward inequalities for the rest of the terms concludes the
proof.
We stress that this is result makes essential use of d = 2.
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Step 2: Local uniform L'(L?) bounds for c;.
We exploit the fact that

T
/ D(t)dt < oc. (122)
0
Because of (41) and (34) we have from (122) that
/T/ ci(z,t) )Vlog (c(x t)eziq)(z’t)) ’2d3:dt < E(0) + !
0 O (] 9 (3 b — QkBTK

Using the crucial information from the previous step that ® is bounded a priori in L*° (119) we deduce that
the useful auxiliary function

luollZoy=T-  (123)

Gi(x,t) = ci(w,t)e ™) (124)
obeys

T
/ /cj-(x,t)l |Véi(z,t)|? dedt < C*TeC Tt = C*Ty. (125)
0 Q

Together with (119) and (115), this implies that /¢; € L?(0,T; H*(Q)), and thus ¢; € LY(0,T; LY(Q))
for any ¢ € [1,00), with bounds depending only on the initial energy and growing linearly in 7. More
precisely, we have that /¢; € L>(0,T; L*(Q)) and V\/¢; € L?(0,T;L?(f2)) and so, for any interval
[to, to + 7] C [0, T] we have

to+71
/ IV ()7 gydt < C*Ta(1 +7) (126)

to
with C* independent of initial data and of time. Time enters in the right-hand side of the estimate because
unlike its gradient which is mean square time integrable, the /¢; norms are bounded but not decaying in
time. Returning to ¢; and using again (119) we obtain

to+7
/ Hci(t)HLq(Q)dt < C*Fg(l—i-T) (127)
to

with '3 depending only on the initial energy and L? norm of velocity via I, and on p* via I';. The constant
C* depends on ¢ because we used embedding theorems.

Step 3: Local uniform bounds for c; in L?(L?).
In view of the fact that v/¢; is bounded in L?(0, T; H'(Q2)) (125) we can interpolate using Ladyzhenskaya
(Gagliardo-Nirenberg) inequalities

/Q E@Bdz < C </Q \\/cNi(x,t)|2dx> IVED 2 - (128)

and, in view of the fact that v/¢; € L>(0,T; L?(f2)), we have

to+7
/ / Giidxdt < C*Ty(1+ 7). (129)
to Q
Using again (119) we have
to+71
/ / citdxdt < C*Ts(1 + 7). (130)
to Q

with constant I'; depending like above only on I" and bounds on p*.

Step 4: Global bound on c; in L>°(L?).
We use now (98) with F'(c) = % We have

d
a2

dt 0 1d1‘§ _2Di/ﬂ’vcilzdx""QDi’Zi’”Ci‘L4(Q)‘V(I)HL‘l(Q)HVCiHLQ(Q)- (131)
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We use the inequalities
1 1 1
leillzay < C [IVeillZaqgy + llell Zagy | il 22y (132)
and we estimate, recalling (14), (25),
V1) < [[V(® = @%)[1a) + V™| L4(n)- (133)
For [|[V(® — ®*)| 11(q) we bound
1 ok el ol
I9(@ — )]sy < CIV@® — ) [ Fp 0 — 9 lEay < CTE = 07 Fagqy (134

We used here that |V (®(t) — ©*) H%Q(Q) is bounded in time because it is part of the energy. Putting these
together we see that

s Jocldo < DHVCZ”LQ(Q

! T (135)
+Dir6||vci”L2(Q) chi”L2(Q) + ||Ci”L2(Q) ||Ci||L2(Q) Zj:l ||Cj||L2(Q) +1I'7
where the constants I'g, I'; depend on the initial energy, ¢, all |2;| and bounds on p*, ®*. From here we

obtain
d

AT <0G+ I6G(G? + A2) Az (A? +T7) (136)
for
N N
20 =3 IO G0 =3 [ Velapfd (137
j=1 j=17¢
with slightly modified I'g and I'7 and ¢ = min D;. Using Young inequalities we finally obtain
%/ﬁ < I'g(A* + A4?%). (138)
In view of (130) we have
to+T1
/ A%dt < NC*T'5(1 4+ 7), (139)
to
which, together with (138) shows that A remains bounded
sup  A%(t) < A(tg)?elo0H+m) (140)

to<t<to+T1

where I'g depends on the initial energy, e, all |z;| and bounds on p*, ®*. This is the first place where data

appear in the right hand side of inequalities on their own and not through the initial energy I'. Now we cover

the interval [0, 7] with intervals of length 5 where 7 > 0 is a fixed positive time step. In view of (139) with
to = 0 and 7 replaced by 7, because of the Chebyshev inequality there exists to € [0, 5] such that

A(tg)? < C*Ism L. (141)
Using this value we obtain from (140)

sup A%(t) < '+ =1, (142)
F<t<T

Now, because of (139) in the interval [7, 7] and the Chebyshev inequality, there is a new ¢y € [5, 7] such
that (141) holds, and thus, inductively

sup A%(t) < C*TyeloH) =1 (143)
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This bound is independent of time, and depends only on initial energy and an arbitrary positive initial time
5 > 0. We obtain also that ¢; € L>°(0, T L?(9)), by adding the inequality (140) for the first time interval,
starting at g = 0 and obtain thus:

sup A%(t) < C*(A(0)? + D5~ Hel*U+7) = (1 + A(0)?). (144)
0<t<T

The right hand side does not depend of 7'. Returning to (136) we see that

Y, ot 2 2
Z;/t Vel 22t < T-(1+ A(0)?) (145)

with slightly different I';. The mention of 7 in the constant is only as a reminder of how the bound is
achieved, but basically one thinks of 7 = 1, i.e. a fixed auxilliary time step.

This methodology of obtaining L>°(dt) bounds for some positive quantity from local uniform L*(dt)
bounds (like (139)) and a local uniform doubling inequality (like (140)) is well known. It was used for
instance in [5] to prove global strong solution bounds for Navier-Stokes equations in two dimensions and it
provides the proof of the uniform Gronwall lemma.

Step 5: Global L°°(LP) bounds for ¢; and bounds for V.
We improve the time integrability in (127) for p > 2. We write

= IR
/Ci(azjt)pd:p = / iz, )20 (x, )P0 < </ Ci(ﬂf,t)zdl‘> </ ci(a:,t)Q(p — dm)
Q Q Q Q

and therefore, in view of (127) with ¢ = M and (144), we have that

to+7 p -8
/ lei()l175°* dt < (D7 (1 + A(0)%) @279 T5(1 + 7) (146)
to
holds for any p > 2 and any 0 < § < 2.

By taking 2 < p < 4 and § small enough we have zﬁﬁ > 2. Using the bound

[V(® — @)oo () < Cllp = p" || e (147)
we obtain that
to+T7
[ Iv@- o<t (148)
to

holds with I'; depending on initial energy, 7 and A(0). Using (99) with F'(¢) = ¢P and arbitrary p > 2 we
obtain from (148)

sup_|¢illzri) < Ty (149)
0<t<T

with I, depending on initial energy, initial ||c;(0)| z»(q) but not on 7. This is obtained in the same manner
as the uniform bound (144): using controlled growth on overlapping short time intervals starting from values
bounded using Chebyshev inequalities. Then, returning to the elliptic equation solved by ® (31) we obtain
uniform in time bounds for the norms of ® in W27 (). In particular,

PG )llwree ) <TG (150)
holds for ¢ > 0.
Step 6: Uniform bounds for ¢;.
Now we turn to the equation satisfied by ¢;

01¢; = DiAc; — (u+ Dz V®)Ve; + 2((0y +u - V)®)c;. (151)
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The boundary conditions are homogeneous Neumann:

Oni(m,1)] 90 = 0. (152)
Because of (145) and (150) we have that, for any k = 0, 1, ... there exists ¢, € [k7, (k + 1)7] such that
IVE(ti)Z2(q) < Tr(1+ A(0))* (153)
If ¢;(0) € H(Q) we can take to = 0. We prove local uniform estimates
t+7
sup Va0 + [ IAGI it < T (154
L <t<tp+7 ty

These are obtained by multiplying (151) by —A¥¢; and integrating. We obtain

LA IVE (1) [20 + Dill AT ()220,

1 " 3
< C [l + Dil= VS0 | xge)] IVE (0 F2 0y |AG D] g (155)
1 10(1) + 11~ V1) sy [0 iy A () .

Now we use a Gronwall inequality based on several facts. In view of (150) and the consequence
T
/ lu(®)|z1(qydt <T (156)
0

of the energy inequality (35), the terms involving v and V@ are easily bounded. The term involving 0;® is
more interesting. We use the Poisson equation and the equations (42) to write

N
9P = L(—Ap)~ (Z zdiv (DiVe; + (Diz Vo — u)cl-)> . (157)
€
i=1
Because (—Ap) 1A is bounded in L*(Q2) and (—Ap)~tdiv maps L?(Q) to H} () C L*(), we have
N
10:2(6) a0y < C Y llei®)ll gy (1 + [w(®) Loy + V(D) Lae)- (158)
i=1

Because of (149) and (150), these inequalities imply
t
IVE(6)1172(0y +/t 1AE (5)[172(0)ds < TrlIVE () 1720 (159)
k

for t € [ty, 1 + 7] and this implies (154). Because [(k + 1)7, (k + 2)3] C [tx, t + 7], from (154) we
deduce by induction

sup ||V (1)[|72(q) < Tr (160)
0<t<T
and
T
| 1822 gyt < 1.1 61
0

Returning to the local estimates, we find new 3, € [k7, (k + 1)5] such that
IAE ()72 () < Tr (162)

for k > 0. We use now a local energy estimate for the Navier-Stokes equation:

t+7
swp  [VulO)lay+v [ [Bu(®)iqdt <T, (163
te<t<tp+T1 tr
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which is based on the fact that the forcing in (15) is bounded in L?(f2) and on standard estimates for the
nonlinearity and the Stokes operator. Using the embedding H?(2) C L>({2) we have thus

t+7 )
/t [u(t)]| o0 (ydt < Tz (164)
k
and, from (154),
tk—l-T
~ 2
/tk 16 ()| 700 (ydt < T'r. (165)

LG (0) [y + (0 — VD Jo | Ve, 02T, 172

1
p 2 - _ - 166
< Dl VR0 o) fo [VE(w, [ (e, 0 e + ][0 + uV D] oo |G (O e O

Consequently,

tp+7
Skt [ iy |2 IV R (1) [ 00 ) 2l 190 2(8) +u() VR (D) 00 ]t

sup [[ci(D)llze) < lICi(te)ll e (e

tp<t<tp+7
(167)
Passing p — oo we have
tp+7
sup  |[@i(t) ”LOO(Q) < Hgi(tk)HLoo(Q)eft,f [2i[10e @ () +u(t) VE(t)]| Loo () dt (168)
tkStStk“FT
Using (157) we have now enough information to bound,
N
10:® () || oo () < CZ[HVQ‘HLP(Q) + |DiziV® — ul| oo IVeill L2y + llpcill 2] (169)
i=1

with p > 2, where we also used the fact that (—Ap)~tdiv maps LP(Q2) to L>=(2) and (—Ap)~* maps
L%(Q) to L*®(Q). Because V¢; = e %%(Ve; — 2,6,V ®), the bound (150), the embedding H?(2) C
WP(Q) and (154) we have

t+7
| 10yt < T, (170)
tg
and consequently, by induction, we obtain the uniform bound
sup |[|¢i(t)[| oo () < 7. (171)
0<t<T
This then implies
sup |lei(t) | o) < s (172)
0<t<T
In view of (125) we have using (172)
T
/0 IVE ) 72(qdt <T (173)
with I' time independent. The Nernst-Planck equations (13) imply
N
Oip = zDydiv (e #*VE) —u-Vp (174)
i=1

and, together with the Poisson equation (14), the bound (119) and the embedding H'(2) C LP(f2) have
then the consequence that

T
/ 10:@(8) |70yt <T (175)
0
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holds for any p € [1,00). The L? boundedness of Dirichlet Riesz transforms imply that

T
/ IV @ (0|2 gydt < T (176)
0
also holds. Turning to the equation (151) we obtain
T
| 192000 + 1850 ) ¢ <T. (a7)
Indeed,
T
| 1Oy + 99O 0] 195 0yt < T (173)
and
T
| 1020+ ut) Ve®)E Ol < T (179)
0

because of (150), (156), (160), (171), (173) and (175). This concludes the proof of Theorem 5.
Using the global existence theorem we obtain the following decay result.

THEOREM 6. Under the conditions of Theorem 5 we obtain

lim / Ve (2, t)]* dz = 0. (180)
t—o0 0
Proof of Theorem 6. Let
N(t) = IV&®)][72(q)- (181)

The proof is done by contradiction. Assume by contradiction that there exists a sequence of times ¢, — o0
where

N(tn) = IVGi(tn)l[72(q) > 6 > 0. (182)

The time derivative of N(¢) is
N'(t) = 2/ OCi(z, t)(—ACi(z,t))dx. (183)

Q

In view of (109) we have that

/ IN'(t)]dt <T < occ. (184)
0
Thus the limit -
N(oo) = Jim N(t) = N(0) + / N(6)dt (185)
> 0

exists, and by the contradiction assumption N(co) > & > 0. Therefore there exists 7" > 0 such that
N(t) > % for all t > T This is absurd, because

/Oo N(t)dt <Ty < 0o (186)
0

by (108). This concludes the proof of Theorem 6.
We prove now convergence of solutions for infinite time.

THEOREM 7. Let the conditions of Theorem 5 be satisfied. Then the solution converges to a Boltz-
mann state, and the velocity converges to zero. The Boltzmann state is uniquely determined by the initial
concentrations

= / ci(0)dz, (187)
Q
and has the form
¢ =z temH® (188)
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with
Zy = (1971 / e A% dy (189)
Q
and with ®* solving
0 e—ZzCI)*
— eAD Z zZI e (190)
with boundary conditions (27).
Proof of Theorem 7. Because of the boundary condition d,,¢; = 0, we have that
[Ci(-, ) = mi(0)[|r2(0) < ClIVE(S )| 2@ (191)
where
mi(t) = |91 / i(z,t)dx. (192)
Q
Thus, in view of the convergence
Jim [[VE( 1) L2 (e) = 0 (193)
we have that
tliglo lci(-,t) — mi(t)HL2(Q) =0. (194)

Let s,, — oo be any sequence of times. By extracting a subsequence denoted t,,, in view of the previous
results, we may assume without loss of generality that there exist numbers M; > 0 and a function ®, such
that

lim m;(t,) = M;, (195)
n—o0
holds in H*(§2) and
nlgrolo [®(tn) = Poollwie() =0 (197)

holds in W1*°(Q) by compactness of the embedding W?2?(Q2) cC W1*°(Q) for p > 2. Then it follows
from the above that

Hm ||ci(tn) — Mie %% || g1 (q) = 0. (198)
n—oo
In addition,
/ il tn)da = 19 (199)
Q

follows from the zero flux boundary conditions, and thus we identify the constants M; as

-1
M; =10 ( / eZi‘Poodx) . (200)
Q

Passing to the limit in the equation (31) we have therefore that ®, solves (190). We remark that this
equation does not depend on the sequence s,. The proof of Theorem 7 is completed by the uniqueness of
solutions of (190) (see Theorem 10 in Appendix A).
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5. Unconditional global stability for uniform selective boundary conditions

In this section we consider uniform selective boundary conditions (9). We remark that we only use the
uniform aspect, i.e. the constancy of ; and of w; = W (), g,, for the decay in Theorem 1. The result is the
following.

THEOREM 8. Under the assumptions of Theorem 5 a unique global strong solution of the Nernst-

Planck-Navier-Stokes system (89) with uniform selective boundary conditions

U‘ on — 07

P90 = W(z),

W(z)s, =wi, i=1,..., M,

Ci|s; = Vi i=1,..., M,

(Onci —‘rzicianq))mg\si =0, 21=1,...,M,
L (8nci+zici8n<1>)|39:0, 1i=M+1,...,N
exists. The solution obeys the inequalities (101)-(113). As time tends to infinity, the velocity tends to zero

and the solutions c; converge to the Boltzmann state

¢ =z te s (202)

2

with Z; given by (66) fori = 1,... M and (189) fori = M + 1,..., N where I? are given by (187), and
with ®* solving the Poisson-Boltzmann equation

(201)

N
— eAD* =p* ="z (203)
=1

with boundary conditions (27).

Proof of Theorem 8. The proof follows the same steps as the proof of Theorem 5. It is based on the local
existence theorem Theorem 4, which is true with the present boundary conditions and a priori estimates
described below.

The positivity of ¢;(z, t) follows in exactly the same way as in the case of blocking boundary conditions:
the equation (98) holds because, fori = 1,..., M and x € S; we have that F’(~;) = 0 and for z € 9Q\ S;
the normal flux vanishes, and thus integration by parts is allowed. The steps 1, 2, and 3 of the proof for
blocking boundary conditions are still valid: they do not use boundary conditions for c¢;. In particular (119),
(127), and (130) still hold.

Step 4: Global bound on c; in L>(L?).

We introduce smooth time independent functions g; fori = 1, ..., M such that
9i| s; = Vi- (204)
The evolution equations (13) can be written as
Owc; = Didiv (Ve; + 2i¢;VO) —u - V. (205)
Multiplying by ¢; — g; and using the boundary conditions (9) which imply that
(ci — 9i)(Onci + 2i€iOn®) g0 = 0, fori=1,...N, (206)

we obtain after integration by parts

%% Q(c?(x, t) — 2gi(z)ci(x, t))dx + D; fQ |Vci(:z:,t)|2dﬂs

< Dilzillleill Loy IV Loy [[IVeill L2y + 1Vgill L2y + Dill Vel 2@ 1V il L2q)-
Because g;, Vg; are bounded, and the inequality (134) is still valid, the quantity

(207)

N
= 62 X — \xr)c;\ T X
vt =3 /Q (@ (e.1) - 2gi()ei(e, )d (208)
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obeys
d
<O+ (209)

and the local uniform bound ftzﬁT y(t)dt < T'(1 + 7). Using a similar argument as in Step 4 of the proof

of Theorem 5 we deduce the inequalities (144) and (145).

Step 5: Global L>° (L") bounds for ¢; and bounds for V.

The inequality (148) is obtained without use of boundary conditions for ¢; from (144), in the same manner as
for the blocking boundary conditions case, and so it is thus still valid. We take the equations (205), multiply
by F'(¢;) — F'(g;) where F(c) = P and integrate by parts. The boundary terms vanish, and thus, after
integrating by parts we obtain

d
& [ (F (et —ex(t) P (gi)) e = D / (Ver + 26V ) V(F' () — F(g:))d— / eV (F'(gs))de.
Q Q
(210)
Using (148) and (145) we obtain like in the case of blocking boundary conditions (149)
sup [lei(t) | r ) < T 211)
0<t
and consequently
sup | () lw2r) < Ty (212)
0<t

with I, time independent.

Step 6: Uniform bounds for ¢;.

These are obtained in the exact same manner as in the case of blocking boundary conditions. The auxiliary
functions ¢; obey time independent Dirichlet boundary conditions on S;, for ¢ < M and homogeneous
Neumann conditions on the rest of the boundary and for i > M + 1. Therefore

(0€:0n8:)| 00 =0, i=1,...,N, (213)

and thus there is no contribution from the boundary when we multiply the equation (151) obeyed by ¢; by
—Ag; and integrate. The rest of the arguments are repeated almost verbatim and we omit further details.

6. Global existence for general selective boundary conditions

The case of general selective boundary conditions is different because the decay in Theorem 1 is no
longer generally true. We can however use the dissipative structure to obtain time dependent bounds, which
allow for growth of norms but no finite time singularities. The approach is similar to the one for blocking
and uniform selective boundary conditions once the replacement of the first step is obtained.

THEOREM 9. Under the assumptions of Theorem 5 a unique global strong solution of the Nernst-
Planck-Navier-Stokes system (89) with general selective boundary conditions

U0 =0,
(I)\aﬁ = W($)>
Ci’Si:'}’i; iZl,...,M, (214)

(8nCi + Zicianq))wg\gi =0, +=1,...,M,
(8nci+zici8n(1))|3920, i=M+1,...,N

exists for any time T, and

sup [[[ei(t)llw2a(e) + 10eci(®)l|Lay] < Co(T) (215)
0<t<T
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and .
| 10l ey + Nttt < U(T) @16)
hold. The constants Cy(T') and U, (T') depend on the initial data and T.

Proof of Theorem 9. We start from the fundamental structure (59) for the energy density (45) relative to a
Boltzmann state with Z; > 0 chosen below. In view of (41) we observe that the general selective boundary
conditions imply that the densities

<55> = log~; + z;W (x) + log Z; 217)
oci |Si
are known on the boundary forz = 1, ..., M. We consider a smooth, time independent function W(az) of
x € () such that .
W(x)s, = W(z) (218)
and choose
Zi=(v)"" (219)
fort =1,..., M. The rest of Z; may be arbitrary positive numbers. We then write (59) as
YleE — .~
D,E = Z ((y — W + ziW> Dic; — F-u+ R, (220)
; C;
add 5 ‘ | and integrate. Moving the term zlwat c; to the left hand side, 1ntegrat1ng by parts using (43) and

the fact that on the selected portions S; of the boundary we have that 2 50_ zﬁ = 0, while on all the rest

the normal derivative 8ng—5 = (, we obtain

(o) 2 _ )

o v (221)
=— Zfil Jq zici(z, tyu(x, t) - VW (z)dx + sz\il D; [ ziciV (g—i) VWdzx.
Thus (o)
@ [5 + %B%ié“) Jar( )dx] + D+ e V@l (222)
= — [op(z, t)u(z,t) - VW(x)dx + Zfil Diz; [ iV (g—i) VWdaz.
- (]2
u(t —
F=E+ ngm - /Qp(:z, HW (z)de, (223)
u(®)||?
G=E+ T;K“” (224)
and
Dy =D+ k—THW 720 (225)
‘We remark that
|[F=G|<C(1+¢€) (226)

because W is bounded. The first term in the right hand side of (222) can be estimated as follows,

pr wyu(,t) - VW (@)de| = | [ (o, t) = p (@) + " (2, ) ulz, 1) - VIV (2)da
AP — D*)u - Vde‘ + Jo lp*||u(zx )| [VWda < € Jo V(@ —2%)|V(u- VW)|dz + CV/G
SCQ+C’(1+\/ 1)VG.

(227)



25

The second term is estimated using the dissipation D and the boundedness of VW,

(S, Dizi fo iV (2£) VWda| < CVDy S, f cila, )

(228)
< CVDVE+FC.
We have thus p
d—]t: <CF+C, (229)
and therefore
sup G(t) <T(T) (230)
0<t<T
and also
T
/ Dy (t)dt <T(T) (231)
0

for any 7 > 0 with I'(T") depending only on 7', initial data and boundary conditions. These estimates
replace step 1, and the rest follows without new ideas like in the proof of existence for the uniform selective
boundary conditions.

7. Conclusion

We proved global existence of solutions for two dimensional Nernst-Planck-Navier-Stokes equations in
bounded domains for arbitrary large initial data, arbitrary valences, voltages, different species diffusivities,
any dielectric constant and arbitrary Reynolds numbers, in the cases of both blocking and general selective
boundary conditions. Convergence to uniquely determined Boltzmann states and zero fluid velocity occurs
not only for blocking boundary conditions, but also for uniform selective conditions. The latter include
complex nontrivial configurations in which large voltage differences can be applied.

8. Appendix A: Poisson-Boltzmann Equations

We discuss here briefly ideas of proofs and remarks about the Poisson-Boltzmann equations encountered
in the text. N
Proof of Theorem 2. The boundary conditions for ®* are (27) with W the boundary trace of a function W,

W =W, aq (232)
with W € HY(Q) N L™ (). We let
A={dc H(Q)| G(®) € L'(Q), and yo(P) = W} (233)
where
0(®) = P50 (234)

is the trace map 7o : H1(Q) — H?2(99), and define, for & € A,
E(®) = /Q gyvq>|2 + G()dz. (235)
PROPOSITION 1. There exists ®* € A attaining the minimum of E:
E(®*) = ql?eiﬂ E(®). (236)

Proof of Proposition 1. Let o = infgc 4 E(P). Because E(P) > 0, there is no problem with the existence
and finiteness of & > 0. Let ®; € A be such that lim;_, F(®;) = «. The sequence ®; is bounded

in H'((2) and therefore the sequence ®; — W is bounded in H{ (£2). We can thus pass to a subsequence
so that ®; — W converge strongly in L?(€2), and consequently we can pass to a subsequence of ®; that
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converges weakly in H'(Q), strongly in L?(£2) and almost everywhere to a function ®*. Because of the
weak convergence in H!(Q2) we have

/!V(I)*[Qdacgliminf/ |V®;[*dz.
Q J=7o Ja

Because of the almost everywhere convergence and Fatou’s lemma for the nonnegative functions G(®;) we

have that
/G “)dx <hm1nf/ G(®;)dx
J]—00

and because of the subadditivity of lim inf we have

E(®*) <lim inf E(®;) = o

j—)OO

The inequalities above and the strong convergence in L? establish that ®* € H'(Q) and G(®*) € L} (Q).
Because the trace operator g is continuous between Hilbert spaces, hence weakly continuous, it follows
that o (®*) = W, and thus ®* € A. This concludes the proof of the proposition.

We introduce

B = Hj(Q)NL>®(Q) (237)
and observe that A + B C A (the sum of any element of A and any element of 3 belongs to .A). Then,
fixing ¢ € B we observe that the function s — FE(®* 4 s1)) is differentiable and has a minimum at s = 0.
Carrying out the differentiation we arrive at the variational formulation:

PROPOSITION 2. Let ®* be the minimum of E on A. Then, for any ¢ € B we have
6/ Vo&*Vipdr + / G'(®*)pdx = 0. (238)
Q Q

We use now the variational formulation to gain regularity in a well established manner. We define

f(z+ hei) — f(z)

O f (x) = Y (239)
where e; = (0,...,0,1,0,...,0) is the canonical basis of R%, and h # 0. We note that
(0h)" = -0, (240)

where the dual is with respect to the L? scalar product. We take a function x of one variable that is smooth,
even, compactly supported in the interval [—2, 2], is nonincreasing for positive x and equals identically 1 on

[-1,1] and identicallyOon[ ,—3]U[3,2]. We define x1(z) = [ x}(s)ds andrescale x, () = x} ().
and define xas(z) = [ X);(s)ds. Note that x5/ is odd. We take another function x € C§°(2). For any
1<i<d, M > 1 and h # 0, with |h| < Ldist(supp x, 92) we consider the test function

(@) = (05)" x(@)xm (0, 2" (2)]. (241)

We easily check that ¢ € B. Now we apply the variational formulation (238). Let us describe the terms
separately
efQ VO Vipdr = € fQ afqu)*(‘x)V[X(:U)XM(E)}l(I)*(a:))}dx ‘
=€ fo VORE" ()x(2) ¥ [\ar (B40° (2))]dx + € [ VOLO° (2) V() xar (048 (&)
= € Jo VO, & (x)x(x) X} (0, ®*(x))VI;,@* (x)dx + € fQ V8, 0*(x)Vx(x)x 0 (0, 0" (x))dx  (242)
= € Jo|V0, " () x (%)X} (0,2 (x))dz + € [ Vx(2)VFp (0, " (x))dx
=e€fq (VO &*|2x X (0% @*)dx — € Jo AxF(0;,@*)dz.

We used above the fact that 82 and V commute. The function Fy is given by

P
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We note that, from our definitions

1
Fu(®) < §<1>2. (244)
We obtained thus far:
€ / VO*Vipdr = ¢ / (V05 &% |2x Xy (04 % )da — € / AxFu (0], ®)d. (245)
0 0 Q
Regarding the second term in (238) we have
/ G/ (&" iz = / 0. C (@ () xar (048" () x () do (246)
Q Q
Now we observe that ' '
0,G'(®"(x)) = G"(9)0;,2" (x) (247)
with S some point on the segment [®*(x), ®*(z + h)]. Observing that
Pxm(®) =0 (248)
holds for any ® we obtain from the convexity of G that
/ G'(®*)pdx > 0. (249)
Q
Adding (245) and (249), using (238) and (244) we obtain
e/ |V, ®* 2 x X3 (05,@%)dx < €C), / 0% ®*|*dux. (250)
Q Q

Letting M — oo and using the Lebesgue dominated convergence theorem we obtain
e/ |V, ®*|*xdx < €O / 10, @*2dx < C B(®%). (251)
Q Q
As a consequence, for any relatively compact subdomain 2y CC €2 we have
€| @[ F2(0y) < CE(PY). (252)
This inequality implies, in d = 2, 3, that ®* € C*(€)). For higher dimensions we can show that G’ (®*) €
L2 (). In order to do so, we take the test function
() = x(@)xm (G'(2%(x))) (253)
with x € C§°(€2) and x s as above. It is easy to check that ¢/ € B and thus we can apply (238). We obtain
0=r¢c [, VOV + [, G (P = € [, |VP*[2x) (G (%)) G" (") xda
+e fQ Vo*xu (G (P*))Vxdx + fQ G'(D*)xm (G (D*)) xdx.

Now we note that

(254)

1
oxar(2) = 53 (@) 255)

which can be verified easily by differentiation, noticing that, in view of the fact that the functions are even
it is enough to check for nonnegative x, and using the fact that y57(x) < x for nonnegative x. We obtain,
using a Schwartz inequality:

1 2
e/ \V(I)*QXM(G’(é*))G”(Q*)de+2/ G (%) x 1 (G (D)) xdx 3062/ ‘v;‘v(b*?dx. (256)
Q Q Q

Letting M — oo and using the fact that zy5/(x) is a nonnegative function which is nondecreasing in M,
we obtain from the monotone convergence theorem and the convexity of G

1( %) 2 2 ’VX,Q |2
/G(CD V2xdz < Ce /yw 2da. 257)
Q Q X
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Thus, G'(9*) € L%OC(Q) and, using elliptic regularity we can bootstrap and obtain bounds for higher deriva-
tives in any dimension d. We will not pursue this here.

The existence and interior regularity have been established. The boundedness of the solution follows
from the maximum principle. Indeed, there exists a number M depending on Z;, z; and W, sufficiently
large so that sup,cgq |W(x)| < M, and G'(¢) > 0 for ¢ > M, G'(¢) < 0 for ¢ < —M. Then it is easily
verified that ®* cannot attain a maximum larger than A/, nor a minimum less than — M. It is here that we
used the fact that the z;-s include both positive and negative numbers.

The formal calculation for the uniqueness is simple: If ®7 € A, for i = 1,2, are two weak solutions

then

— €A(P] — 3) + G'(P]) — G'(93) = 0 (258)
with @7 — ®3 € H}(Q). Taking the scalar product with ®} — &3 and observing that
(G'(®1) — G'(23)) (@] — @3) > 0 (259)

holds pointwise because of the convexity of G, we obtain that
/ V(@] — ®5)2dx = 0. (260)
Q

The rigorous argument is as follows: by the interior regularity of solutions, (258) holds almost everywhere
in €, and the inequality (259) is pointwise true. Therefore the function

(A(®7 = 93))(P7 — P3)

! (€) is nonnegative almost everywhere. Thus, from interior regularity,

which a priori is known to be in L;

denoting ) = ®7 — ®5 we have
1
VP < 5Ay?

almost everywhere. The left hand side is in L*(2), as ¢ € H{ (), and the right hand side is in L], () by
interior regularity. Taking now w1, the positive eigenfunction corresponding to the first eigenvalue of —A
with homogeneous boundary conditions, we obtain

1
/ wy |Vip|2de < / w A2 dx = M wi?de.
Q 2 Ja 2

Q
The integration by parts is allowed because ¢ € H}(Q) and w; can be approximated in H'(Q2) by C§°
functions. This shows that ) = 0, because, as it is well known, wq(x) > Cd(z) > 0 where d(x) is the
distance from z to the boundary of the domain. This concludes the sketch of the proof of Theorem 2.
Let us turn now to the equation (84) which is the Poisson-Boltzmann equation (190) for the case of
blocking boundary conditions for the ionic species, namely,

N
A =S50
— € = ZZ i f —Ziq>* .
i=1 0¢

We recall that the constants I are given positive numbers and the boundary conditions are (27), and more-
over

—z; P*
261)

Zi=IH! / e 5 dx. (262)
Q

There are several approaches to show existence. Showing that the equation (85) can be solved by varying
the constants Z; to solve (262) with solutions of (79) is a nontrivial possible route. A proof of existence
using the fact that solutions are critical points of the energy

N
;/ |VO(x)|2dx + ZIZQ log (/ e‘ziq)(“”)dx) (263)
Q Q

i=1
is the most direct route. This is the approach in [8] where a special situation is treated, but the proof can be
adapted for the situation at hand. The energy is bounded below by Jensen’s inequality and an approximation
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is used to control the exponential integrals in the logarithms. This provides a variational solution. The Jensen
inequality is used to show that Z;(®) are bounded away from zero and infinity, uniformly on minimizing
sequences, and then boundedness of the variational solution is obtained via the maximum principle, in the
same manner as in the local case. Regularity of bounded weak solutions follows from the fact that the
equation is semilinear elliptic and the smoothness of the boundary and of the boundary conditions. The
uniqueness result is the following.

THEOREM 10. Any two Wl’OO(Q) solutions of (84) with the same Dirchlet boundary conditions (22)
must coincide.

Proof of Theorem 10. Indeed, let (I)Sjo) , 4 = 1, 2 be the two solutions and let ¢ be their difference,

=202 o) (264)
Then 1 satisfies
— eA(z) + 2221’0/ @) (¥(@) — (¥, P8 r2)) A =0 (265)
with homogeneous boundary conditions. Here
= 266
Py = fQ e—2®x ( )
and
®y = o) + A, (267)
Taking the scalar product of (265) with w we obtain
0= €| Vo172 + 210/ d)\/ P ( — (¢, p}) 2 Q)) da (268)

and therefore 1) = 0. This uses the fact that pg\ are probability densities (i.e. they are nonnegative and have
integrals equal to 1).
We consider now the Poisson-Boltzmann equation for the uniform selective boundary conditions,

M —z; &*
* — e
A =Yzl s 3 Al (269
=1 i=M+1

with boundary conditions (22). A direct existence proof can be constructed using the fact that solutions are
critical points of

/\V(I) |dx+/ZZ —#2@) gy 4 Z 19log (/ icp(x)dx), (270)

i=M+1
which is bounded below by Jensen’s inequality. Boundedness of solutions follows like above from the
maximum principle, regularity follows from the semilinear elliptic character and the uniqueness follows in
the manner of Theorem 10. It is interesting to note that the linearization of equation (86) at a state ¢ is the
linear elliptic nonlocal operator
N
Lo(¢) = —eAp + G"( @)+ Y T (% — (4, pi)r2())pi 271)
i=M+1

where G(®) = S, Z7te %% and p; = ﬁ% This operator with domain H?(2) N H{(Q) is

selfadjoint in L?(£2), positive and invertible when ® € L>(2). These properties can be used to produce a
nontrivial Newton iteration procedure for computing solutions of (86).
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Let us make a few remarks about (82). If W1 (z) < Wa(z) are two boundary conditions, and if &7, &3
denote the corresponding solutions, (assumed to be continuous up to the boundary) it follows from the
maximum principle that ®3(z) < ®5(z) everywhere. Indeed, from G” > 0 it follows from the equations
that ®; — ®5 cannot attain its maximum in the interior of the domain.

If Z; together with z; satisfy the neutrality condition

N
? j—

Z 7= 0, (272)

=1
then G'(0) = 0. In this case, using the fact that G’(0) = 0 and the fact that 0 solves the equation with zero
boundary conditions, it follows that if W (z) > 0 on the boundary, the corresponding solution is nonnegative
®*(z) > 0. Then, considering M/ = max |IW(z)| on the boundary it follows that ®*(z) < ®},(x) where
®%, solves the problem (82) with constant boundary condition equal to M. Because ®3,(z) > 0 and
G'(®) > 0 for @ > 0 it follows again from the maximum principle that ®%,(x) < M. Therefore, for any
W we have

- M < P*(z) < M. (273)

This bound is remarkable in that it does not depend on z;, Z;, once the neutrality condition is assumed.
The considerations above can be made rigorous, for instance by adding a small multiple of G?(®) to the
variational problem, and then removing it. The minimization of

/Q EN@F +Gr(0)] da 274)

with
G, (@) = G(®) +rG*(®) (275)

with 7 > 0 on the corresponding admissible set A, = {® € H*(Q) | G,.(®) € L' (), 0(®) = W} yields
bounded solutions with the same L°° bounds, and their regularity up to the boundary is classical. Removing
r we deduce the bounds (273) for ®* and then again we can apply classical results to obtain regularity up to
the boundary.

Let us provide here an explicit calculation for a one dimensional case, similar to to one used in [12] in
a half-space, using the neutrality condition. Let

—e®" +G'(®) =0 (276)
on the interval [0, H] with boundary conditions
O(H)=W, @0)=0 (277)
with W > 0. Multiplying (276) by ®’ and integrating once we obtain
e(®)? =2(G(P) — A) (278)

with A a constant of integration. If we are to have smooth solutions, A must not exceed the minimum of
G(®) on the interval. Now G is convex and the global minimum of G is G(0) because G’(0) = 0. Because
0 is in the range of @ (it is a boundary condition) it follows that the minimum of G(®) is G(0). We write
A = G(0) — o® with @« > 0. We choose « such that
w
dd 2
/ d® =/ -H. (279)
0 VG(®)—G(0) + a2 €
The fact that we can solve this equation requires a small argument, based on the fact that when o« = 0 the
integral diverges and the fact that G is convex. Thus

C19% < G(®) — G(0)

for ® € [0, W] because of convexity, and
G(®) — G(0) < Cyd?
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for @ € [0, ®y] because of continuity of the second derivative of G, with C; > 0, C and ®( independent
of W. Therefore part of the integral in (279) is bounded below by

o dd 1 <c1>0\/02>
> log
0 V@2 + a2 ~ 20,

and the rest from above by

/W do R N <W>
o, VO192+a2 = /O |\ )
The sum therefore can be made arbitrarily large, as W is fixed (even if it depends on €) and « is chosen
small enough. On the other hand, if « is large enough, then the integral on the left hand side of (279) can
be made arbitrarily small. Thus, as « is varied, the range of the integral contains the target value in the right
hand side of (279).

We then set

AU (280)

¢ dw
P(®) = /0 JG@) - G0) + a2

and
* -1 2
P (y) =P -y (281)
and conclude the construction.

9. Appendix B

We sketch here for the sake of completeness our proof of Theorem 4. Local existence based on methods
of maximal regularity was presented in [2].
We consider an iteration:

Ore; = Di(Ac; + zdiv (¢;V®,)) —u - Ve (282)

with
—eAd, = p, (283)

and
ou+u-Vu+ Vp =vAu — (kpTk)poVP,, divu =0, (284)

boundary conditions

(Vci + ziciV<I>O)| 90 n=20 (285)
Qo g0 =W (286)

and
u) 9o = 0. (287)

We are assuming that p,(z, t) is given by a previous calculation, and we are interested in inductive bounds.
We do not mention explicitly the counting index of the iteration. We observe that the linear equations (282)
with time dependent boundary conditions (285) are equivalent to the linear equations

0i¢; = DiAc; — (u+ DiziNV®,)Ve; + zi((0p +u - V)Py)6 (288)
with homogeneous Neumann boundary conditions
Oni) 00 =0 (289)

for the dependent variable
G = cie”i . (290)

This observation clarifies the nature of the equations: Obviously, if p,, and consequently ®,, u are smooth,
then ¢;, and consequently ¢; are smooth. This allows us to perform calculations on the preferred form (282).
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We start by estimating norms ||¢; (¢)|| r(0) for p > d. Integrating by parts and using the boundary conditions
we have

e Oy = = [ (el + 26v8, - Ve e o9
and therefore
1 L1 252 22 2 .
=i 1O + 5 [ VP < RV O ey 292
Consequently, we have
lci()lzra) < ellci(0)|lr () (293)

forall 0 <t < T, provided

T
2
VO, ()13 00 qydt < s (294)
1ot < o
Let us consider the inductive situation, when
N
)= zc(z,1), (295)
and let us assume the time interval [0, Tp] we have that
sup |[¢f ()]l r() < Ap (296)
0<t<Typ
for some p > d. Using elliptic regularity, we have that
IV %0llzx() < Callpollzo) + 1W Ly s ) 297)
and, taking into account (295) and the assumption (296) we have that
sup ||V, ||pe() < Cw(Ap +1) (298)
0<t<To
where we took
N
Cw = Caf Z;m! il LS PR (299)
(2
a constant that depends only on the data of the problem. The condition (294) is then satisfied if
2
TCH(Ap+1)° < ————— (300)
e T
and, if that is the case, we guarantee (293) on the interval [0, T']. Therefore, choosing
Ap = el[ci(0) e (o (301)
we conclude that the assumption (296) is preserved in the iteration,
sup ||ci(t) || e ) < ellci(0)]lLe) = Ap (302)
0<t<Tp
if 5
T < Cir? (e]les(0 1) 303
0= (p _ 1) maxi(DiziQ) w (GHCZ( )HLP(Q) + ) ( )
Let us note that from (292) we have also
2p+1
v 22 dxdt < 7#’. 304

In order to provide further inductlve mformauon we require that p > 2d and that Ty satisfies the constraint
(303) with a possibly larger constant M,

Ty < M~ (el|ei(0) || oy +1) 2. (305)
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At this point we have required only
(p — 1) max;(D;2?)CF,

M > 5 (306)
We provide below the justification for the additional requirement
9 NP 2(p—q)
M > 16e“(q — 1) max(D;z;)CZ|Q|  »a (307)
(2

We remark that the condition (305) depends only on the norms ||c;(0)||z» (o) of the initial data and on
the parameters of the problem, but not on the iteration step, nor on higher regularity data, or velocity initial
data.

The equation (282) can be written as

Oc; +divj; =0 (308)
with
7i = —Di(Vci + ziciV%) + uc;. (309)
We take the time derivative and use the fact that the boundary conditions imply
Jijoq -n=0. (310)
The time derivative 0;c; obeys thus
O (0rci) +div Oy (ji) = 0 (31D)
with boundary condition
Oji) o ~m = 0. (312)
We multiply (311) by (0;¢;)|0rc;|7~2 for some ¢ > 2 and integrate by parts. We obtain
1d . -
“o Lo = [ @i V(@i G13)
qdt Jo Q
This yields
ﬁ% fQ |Oycildx = —D; fQ [|V8tci|2 + 2i(0pci ) VO, - V(‘)tci] |0rc;|92dx (314)
+ fQ ¢i [(Owu — D;iziV 0, D,) - VO] |0c; |92 d.
Consequently we have
0|9,y + B [ (VO] 0pei| 7 2da
q(qz)});lt tilLe(Q) 4 fQ | z’ ” Z| (315)

< P 100, (1) 3 1001 g + 5 i(@rt — DizeVO20)|[2 0 ki[5,

where we used a Holder inequality with exponents 2, g, qQqu and Schwartz inequalities. We have from (315)

2(g—1)

d
@Hatcz'lliq(m < (g = 1Dz [ Vo (t) |7 10rcill 7o () + D,

ch'(atu - Dizivatq)o)uiq(ﬂ). (316)

From (294) we obtain that

2 2 2 4e*(g—1) [T 2 2.2 2
10kci (D) |00y < €7110kci(0)[| Lo (e +T ; [Hc’iatuHLtl(Q) + Diz; ”Cz'vatq)o)”m(g)} dt (317)
holds for all ¢ < Tj. We treat the two integral terms in the right hand side of (317) differently. Because
- eA@tQ)o = tho (318)

with boundary condition
Or®o| 9o =0 (319)
we have, from elliptic regularity

[0:@o(t) w10 0) < CallOtpollLa(n)- (320)
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Let us assume that

sup |0:¢7(t) || Lo (o) < By-
0<t<T

Then it follows that
sup [ 9:®o ()|l () < C2By
0<t<Typ
with
N
C.=Co> |l
i=1

Thus for the second integral term in the right hand side of (317) we obtain that
To
4e*(q — 1) / Dz} ||ciV 1P, )|| 70 dt < 4e?(q — 1) Dizf C2 B ALTy
0

which implies

To 1
1e2(g - 1) / D322 V0P| et < B
0

if ¢ < p, in view of (307 ) of condition (305). For the first integral term we use p = 2¢ and bound

4e’(g—1) [T 2 4e’(g—1) o [T 2
5 | et gyt < ELE=22 [ ol oy

Now we use the bound ([11], [21])

To To
A|@wb@ﬁéc@mwmwm+é|wwﬁmmﬁ

(321)

(322)

(323)

(324)

(325)

(326)

(327)

which is valid on any time interval in d = 2 and on a short time interval, independent of iteration in d = 3.

Here
F = —(kpTk)poV®,
obeys in view of (298), (302)
IE@)lr ) < (kpTr)C:ApCw (4p + 1)

and consequently

4e?(q —1) To

E [ eidnl oy

CAe(g—1)

< D;
Consequently, using (305)

A2C [Hatu(o)uip(m + (kT )?CZAZCH (Ap + 1)2T0} .

2 Ty
46(1‘1);1) /0 e (0r) 1200yt < iBg
if we impose
By > CrAZ([w(0)Ifm iy + Ap) + 2¢2[0:¢i(0) 240
with C] depending only on the parameters of the problem. Then, returning to (317) we have
|uei(t) 30 < B2
for all ¢ < Tp. We return now to the equation (282) written as

Zq

1 1
—Ac¢; = —EatCi + (% Ve, — Eu)Vci — _PoCi

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)



35

and esitimate the right hand side in L? using (295), (296), (298), (302) and (317)

N
1 1 2
18Ol < 358+ (10w (A + 1) + Bl ) IVl + (230151 | 43
(2 (2 ]:1

(336)
In order to finish we use the variables ¢; defined in (290) which obey homogeneous Neumann boundary
conditions. They obey therefore elliptic bounds

[Cillw2a) < Ca (1AG | Loy + 1€l Lag)) (337)
and, integrating by parts we see that
Vel 7o) < Calléillzay (1AG I L) + 1Gill Lacy) - (338)
Returning to the variables ¢; we have, in view of (296) and (298)
[@illzagey < O At ]| oy < HIOVATD 4101575 = Hy(4,), (339)
and similarly,
IVeill o) < Hi(Ap) (IVél La) + llcill o) (340)
and
1A% | oy < Ha(Ap) (I8¢l +1) (341)
with H; and H> explicit functions of A,,. Therefore, from (336) we obtain
sup |[¢illwz.a(q) < H3(Ap, By, [[uollwiaq)) (342)
0<t<Ty

where H3 is an explicit positive continuous function, nondecreasing in each of its arguments, and depending
also on the parameters z;, v, € but not on the iteration step.

We construct thus by induction a sequence of solutions of linear equations (282), (283), (284) which
obey uniform bounds (302) on a common interval of time [0, 7], determined by the condition (305) with
(306) and (307). We have also the bounds for higher derivatives (334), (327), (342). Passing to the limit in
the sequence is straightforward and yields a short time solution with the stated bounds.

The case of selective boundary conditions is entirely similar and we omit further details.
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