Estimates near the boundary for critical SQG

Peter Constantin and Mihaela Ignatova

ABSTRACT. We obtain estimates near the boundary for the critical dissipative SQG equation in bounded do-
mains, with the square root of the Dirichlet Laplacian dissipation. We prove that global regularity up to the
boundary holds if and only if a certain quantitative vanishing of the scalar at the boundary is maintained.

1. Introduction

The Surface Quasigeostrophic equation (SQG) of geophysical origin ([16]) was proposed as a two di-
mensional model for the study of inviscid incompressible formation of singularities ([3], [7]). The equation
has been studied extensively. Blow up from smooth initial data is still an open problem, although the orig-
inal blow-up scenario of [7] has been ruled out analytically ([13]) and numerically ([6]). The addition of
fractional dissipation produces globally regular solutions if the power of the Laplacian is larger or equal than
one half. When the linear dissipative operator is precisely the square root of the Laplacian, the equation is
commonly referred to as the “critical dissipative SQG”, or “critical SQG”. The global regularity of solutions
for critical SQG in the whole space or on the torus was obtained independently in [1] and [18] by very
different methods. Several subsequent proofs were obtained (see [11] and references therein).

The critical SQG equation in bounded domains is given by

00 +u-VO0+Apd =0 €))

with
u= VAL, )
Here 2 C R? is a bounded open set with smooth boundary, Ap is the square root of the Laplacian with

vanishing Dirichlet boundary conditions, and V+ = JV with J an invertible antisymmetric matrix. The
local existence and uniqueness of solutions of (1) given in [5] is

PROPOSITION 1. Letd = 2, and let 0y € H (Q) N H?(Q) = D(A%). There exists T > 0 and a unique
solution of (1) with initial datum 0y satisfying

0 € L>°(0,T; Hy () N H*(Q)) N L* (0, T;D (AD)) . 3)

Local existence of solutions of the same type holds also for supercritical SQG in bounded domains ([9]).
Weak solutions exist globally ([4]), even without dissipation ([8]), but are not known to be unique. How-
ever, if the initial data are interior Lipschitz continuous, then weak solutions are globally interior Lipschitz
continuous. A priori bounds for smooth solutions were given in [5] and a construction was given in [17].
Let

d(z) = dist(x,00Q) “)
denote the distance from z to the boundary of (2.
The main result of [17] is

THEOREM 1. Let 0y € HE(Q) N W1H°(Q) and let 0 < T < oo. There exists 0(x,t), a solution of (1)
on the time interval [0, T'), with initial data 6(x,0) = 0y(x) and a constant T'y depending only on §2 such
that

10(-, )| Lo () < 100l Lo () ©)
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and

sup sup d(2)|Vab(w, )] < Ty |supd(@)|Vabo(z)| + (1 + |60l () | = M (6)
0<t<T z€ e

hold.

This result holds in any dimension d. Interior Lipschitz regularity is obtained using nonlinear lower
bounds for the square root of the Dirichlet Laplacian ([5]) and commutator estimates. The main obstacle to
obtain regularity up to the boundary is the absence of translation invariance, which is most sharply felt near
the boundary. The nonlinear lower bounds for the square root of the Dirichlet Laplacian ([4], [S]) are similar
to those available in the whole space ([10]), but have a cut-off due to the boundary. The lack of translation
invariance is manifested in the commutator estimates, where the commutator between the square root of the
Laplacian and differentiation is of the order d(z)~? pointwise.

In this paper we investigate the behavior of solutions near the boundary. The local solutions obtained in
Proposition 1 belong to C*(£2) up to the boundary, for any 0 < « < 1, but this fact follows from embedding
of H2(Q) € C*(2) in d = 2 and the control of the H2(2) norm is only for short time. An interesting
recent work [19] in the spirit of [1] shows that a solution-dependent C'“(£2) regularity holds as long as the
solution is sufficiently smooth. Unfortunately, as we mentioned earlier, smooth solutions can be guaranteed
to exist only for a short time.

The currently available quantitative global in time information for solutions with smooth initial data is
comprised of following three components:

1
I) Energy bounds, which imply that 6 € L°°(0, 7 L*(Q2)) N L*(0,T; D(A2)),
II) A maximum principle, which implies § € L*°(0,T’; L>°(£2)), and,
III) For solutions constructed by a judicious method mentioned above, the interior Lipschitz bound (6).

No uniqueness is guaranteed. The velocity is given by rotated Riesz transforms. It is known ([2]) that if
¢ vanishes at the boundary and belongs to C' then its Dirichlet Riesz transforms are in C*(2). If 6 belongs
to C“ and vanishes at the boundary, then the stream function ¢ = ABIH belongs to C'* and vanishes at
the boundary, and therefore so do its tangential derivatives. Thus, the normal component of the velocity
vanishes at the boundary, but no rate is available if 6 belongs to C¢.

In this work we show that the problem of controlling the Holder continuity of the solution up to the
boundary depends solely on quantitative bounds on the the vanishing of # at the boundary. We prove two
results detailing this fact. We consider
O(x,t)
wy ()
where w; is the normalized positive first eigenfunction of the Dirichlet Laplacian, which is known to be
smooth and to vanish as d(z) at the boundary. In Theorem 3 we show that for solutions constructed from
smooth initial data obeying the a priori information detailed above (I, 11, III), and for any p > d, there exists
a time Ty and a constant B, depending only on ||0g|| s, M (of 6) and the initial norm ||b1(0)
that

bi(w,t) = (N

’ LP(Q)> such

sup [|b1(?)[|r(@) < B ®)
0<t<Tp
holds. This is a local existence theorem, local because the control of [|b1(t)|z»(q) is maintained for finite
time, although the interior Lipschitz bound and the L*° bound are global.

Our second main result, Theorem 4, shows that if the bound (8) holds for some interval of time, then
the solutions constructed in ([17]) are in C'*(£2) on that interval of time. The Holder exponent « is explicit,
itis givenby o < 1 — % where p is the exponent in (8). Thus, the condition (8), which can be maintained
for short time, is sufficient for global Holder regularity up to the boundary. This condition also implies a
quantitative vanishing of the normal component of velocity at the boundary, u - N = O(d(x)®) with rate
depending on M and B.
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The boundedness of ||by][zr(q) is a weaker condition than 6 € Wol’pl(Q), p1 > p > d. Thus our

condition is necessary for regularity. Local well-posedness in Wol P1(Q)) is not known. The previously
known local existence theory was established in the domain of the Laplacian, which is a strictly smaller
space. If the solution is in WO1 P(Q), p > d, then by embedding results, it is in C* up to the boundary for
any0<a<1-— ;Tl-

In order to prove our results, we obtain key quantitative bounds using B. We show first that if B is
finite, then the velocity is bounded (Proposition 6). By contrast, if only the available a priori information (I,
IL, IIT) is used, then the velocity logarithmically diverges with the distance to the boundary (Proposition 5).

Secondly, we obtain bounds for the finite difference quotients of velocity which diverge at the boundary

with a sublinear power of the distance, d(a:)_g, (Proposition 8), as opposed to d(z)~! in the case of the a
priori global information, as was shown in [5]. A quantitative rate of vanishing of the normal component of
velocity is proved in Proposition 9.

Thirdly, we obtain bounds for the commutator between finite differences and Ap which diverge sub-

quadratically near the boundary, d(a:)flfg, (Proposition 10) as opposed to quadratically d(x)~2, which is
the case in which only the global a priori information (I, II, III) is used.

These three elements, together with the strong boundary repulsive damping effect of the square root of
the Laplacian, form the basis of the proof of persistence of C'* regularity, with o < 1 — % .

In the whole space, any C*, o > 0 regularity can be upgraded to Lipschitz regularity (and further to
C®° ([12])). In bounded domains, while any interior C“ regularity can be upgraded to interior Lipschitz reg-
ularity ([5]), in general, the problem of global Lipschitz regularity up to the boundary is open. The passage
to Lipschitz bounds up to the boundary is not achievable with our tools, even conditioned on knowledge of
linear vanishing of # (i.e. even assuming a time-independent bound for b; in L°). This is due to the fact
that the commutator between derivatives and A p still costs d(x) ! near the boundary.

The paper is organized as follows. After recalling basic facts in Section 2 we prove in Section 3 a re-
markable generalization of the Cérdoba-Cérdoba inequality ([14]) which was obtained in bounded domains
in [4]. This new pointwise inequality involves weights w,

' (b)Ap(wb) — Ap(w®(b)) > (Ap(w)) (b®'(b) — D(b)) 9)

(see (32, 33)) and is valid for any convex function ® of one variable which satisfies ®(0) = 0, any smooth
function b and any smooth positive function w which vanishes at 0€2. The inequality implies a comparison
principle for solutions of drift diffusion equations with Dirichlet square root Laplacian and may have inde-
pendent interest. We use it with b = wil and prove that B of (8) persists to be finite if the drift is the sum of
a regular function in L whose normal component vanishes at the boundary and a small L*° function. In
Section 4 we derive bounds for the Dirichlet Riesz transforms and in Section 5 we obtain bounds for finite
differences of the Dirichlet Riesz transforms. Section 6 is devoted to the improved bounds on the commu-
tator between local finite differences and A p, and Section 7 contains the bound for the Holder seminorms
near the boundary.

2. Preliminaries

We consider 2 C R? a bounded open set with smooth boundary. The L?(2) - normalized eigenfunctions
of —A are denoted w;, and its eigenvalues counted with their multiplicities are denoted ;:

— ij = )\jwj. (10)

It is well known that 0 < A\; < ... < A\; — oo and that —A is a positive selfadjoint operator in L?(Q) with
domain D (—A) = H%(Q) N H}(£2). The ground state w is positive and

cod(x) < wi(z) < Cod(x) an
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holds for all z € (2, where cg, Cj are positive constants depending on 2. Functional calculus can be defined
using the eigenfunction expansion. In particular

(=07 F =N fju; (12)

Jj=1

fi = /Q fW)w;(y)dy

for f € D ((—A)ﬁ) = {f1 (Vf)) € L2(N)}. We denote by

with

h=(-4)%, (13)
the fractional powers of the Dirichlet Laplacian, with 0 < s < 2 and with || f||s p the norm in D (A7)):

1120 =D Nf7. (14)
j=1

It is well-known that
D (Ap) = H)(Q).
Note that in view of the identity
S o0 S
A2 = cs/ (1 —e Mt 1724t (15)
0
with
o0 S
1= cs/ (1—e )7 '"2dr,
0
valid for 0 < s < 2, we have the representation

(Ap)* ) (2) = s /O T () — A f ()] ¢ R 16)

for f € D((—Ap)®). We use precise upper and lower bounds for the kernel Hp (¢, x, y) of the heat operator,

(2 f)(x / Hp(t,z,y)f(y)dy. (17)

These are as follows ([15],[20],[21]). There exists a time 1" > 0 depending on the domain €2 and constants
¢, C, k, K, depending on 7" and €2 such that

cmin (wl(w) 1) min (w1(y) 1) t_%e_%

|x—y|’ \:v—y|’ - . |z_y‘2 (18)
Hp(t,z,y) < C'min (‘x (y)‘, 1) min (Til_(?ﬁ, 1) t72e Kt
holds for all 0 < t < T. Moreover
VeHp(tay)l _ [ @ if V2 da), 19
Hp(t,x,y) — \/E<1—|—|x y'),lf\f<d(

holds for all 0 < ¢t < T'. Note that

[e.9]

p(t,z,y) Ze ij w;(y), (20)
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and therefore long time ¢ > T' estimates are rather straightforward. The gradient bounds (19) result by
symmetry in

VyHpt eyl _ .| @ it Vi > d(y), o
Hpltay) — | & (1+54), it vi<d).
We use as well the bounds ([5])
|z—y|?
V.V.Hp(z,y,t) < Ct "% R (22)
valid for t < cd(x)? and 0 < t < T, and
lz—y?
VoVaHp(z,y,t) < Cd(z) 2t e Rt (23)
fort > cd(x)Z, which follow from the upper bounds (18), (19). Important additional bounds we use are
d(z)?
/ (Ve +Vy)Hp(z,y,t)|dy < Ct™2e” i, (24)
Q

with pointwise version
dt1 _ d@)?

’(Vl“ + Vy)HD(l’,y,t)| S ct e Kt ’ (25)

and
d(z)?

/ Va(Va + V) Hp(a,y, )] dy < Ct~'e 5, 26)
Q

with pointwise version

_df2 _d@)?

V(Y + V) Hp(z,y,t)| <Ct™ 2 e Kt . (27)
valid for t < cd(z)? and 0 < t < T. These bounds reflect the fact that translation invariance is remembered
in the solution of the heat equation with Dirichlet boundary data for short time, away from the boundary.
They were proved in [5], [8].

The following elementary lemma is used in several instances:

LEMMA 1. Let p > 0, p > 0. Then

/OO i-1-% <p>je_f<2tdt < Crmip™™ (28)
0 ﬁ =~ UK om,jP
ifm>0,7>20 m+j5 >0, and
p? 2 oo
/ tle Kidt = / ) e ®dx (29)
0 K2

ifm = 0and j = 0, with constants Ck p, j independent of p and p. Note that when m + j > 0, p = oo is
allowed. Note also that the right-hand side of (29) is exponentially small if p < ep.

We recall from [4] that the Cérdoba-Cérdoba inequality ([14]) holds in bounded domains. In fact, more
is true: there is a lower bound that provides a strong boundary repulsive term:

PROPOSITION 2. Let ) be a bounded domain with smooth boundary. Let 0 < s < 2. There exists

a constant ¢ > 0 depending only on the domain 2 and on s, such that, for any ®, a C? convex function
satisfying ®(0) = 0, and any f € C§°(Q2), the inequality

(H)ADS — AD(®(f)) =

d(x)s

(fo'(f) — ®(f)) (30)

holds pointwise in ().
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We specialize from now on to s = 1. We use in particular the result above in the form ([4])
1 f*(x)
D = fApf—=A 2 >
(@) = (805 = 300 (7)) @ 2 G
with v, > 0 depending only on €.

D

3. Weighted estimates
Let w(x) be a function which is positive in €2 and belongs to D(Ap), for instance w(z) = wy(x).

LEMMA 2. Let ® be a convex function of one variable with ®(0) = 0. Let b be a continuous function
in the open set Q, with wb € D(Ap). Then

@' (b(x))Ap(wd)(x) — Ap(w®(b))(z) = (Apw)(z) (b(x)®'(b(x)) — @(b(z)) + Da(z)  (32)
with

)= [0 [ wl)Hp(a.0) [0(6(0) - B(0(a) — ¥ 0a)0)  bo)] dydt (33)
Proof. Let ¢(z) = ®(b(x)) and <Z>(a:) = ®'(b(x)). We have

(GAp(wb) = Ap(ws))(@) = ¢ [ 73 [d(w)w(@)b(e) — fo b@)wly) Hp(z, y, Hbly)dy| dt
—c Jy? ;% [w<x>¢> z fﬂ HD (2,9, )<z>< >dy] dt
= (b(z)g( o(x))e [0t 3 [ — Jow(y)Hp(z,y,t)dy| dt + D (x)
= (b(w)é(fc) ¢(z))Ap(w)(z )+ Dcp( )
REMARK 1. We note that Dg > 0 for convex functions ® because the integrand is nonnegative, in view

of Hp > 0. Convexity of ® is not needed for the statement of the lemma, but the lemma is used only when
Dg is nonnegative.

Let us consider now an evolution equation
0l +v-VO+Aph =0 34)

with v = v(x,t) a divergence-free vector field tangent to the boundary of 2. Let us consider a smooth
enough weight w(x,t) > 0 which vanishes at the boundary of 2 and compute the evolution of ®(b(z,t))
where @ is a nonnegative convex function of one variable, with ®(0) = 0, and where

0(x,t
b(x,t) = w((:p’, t))’ (35)
In view of (32), we obtain the remarkable equation
(O +v -V +Ap)(wd(b)) + (0 +v -V + Ap)w) (b®'(b) — ®(b)) + Dg = 0, (36)
where Dy is defined above in (33). Denoting
L,=0+v-V+Ap (37)
we have thus
Ly(w® (b)) + (Ly(w)) (b2 (b) — ®(b)) + Dg = 0 (38)

for w > 0 and ® convex with ®(0) = 0. There are several important consequences of this identity. In view
of the fact that

/ Ap(w®(b))dz = / w®(b)Ap(1)dez, (39)
Q Q
where Ap(1) is defined by duality and w®(b) € D(Ap), and the lower bound ([5])

AD(l)(SL') Z Co 5 (40)

wy(x)



we have that

/QAD(wcb(b))dx > cO/Q (“’(I) ) B(b(x))da. @1

wy ()
Therefore, from (38) we obtain
d
L wd(b)dz+co / ( w(z) ) @(b(x))dx—i—/ (Lo(w)) (b2 (b) —<I>(b))da:+/ Do(z,t)dz < 0. (42)
dt Jo o \wi(z) Q 0
Let us take now & to be (a smooth convex approximation of) the function

®p(b) = (b—B)+ (43)

where B is a large fixed number. Notice that in this case
b®'5(b) — ®p(b) = BH(b— B), (44)

where H (x) is the Heaviside function. Because b®’;(b) — ®5(b) > 0, if L,(w) > 0, then

d
4 / w(z, )8y (b(x, 1))dz < 0. 5)
dt Jo
It follows that, If ® 5(b(x,0)) = 0, then ®5(b(z,t)) = 0 for ¢t > 0. Applying this reasoning to the functions
b defined above in (35) as well asto b_ = ;—f, we obtain
10(z,t)| < Bw(z,t). (46)

REMARK 2. This shows that if L,(w) > 0 and |0y(z)| < Bw(z,0), then (46) holds.

THEOREM 2. Let 0 solve (34) where v is a continuous, divergence-free field, tangent to the boundary.
Assume that there exists a constant ~y(t) such that

v-Vwy +y(t)wy >0 47)
holds for x € Q and t > 0. Assume that the initial data 0 obeys
|00()| < Bw:(x) (48)
forall x € Q). Then
10(2,t)| < Buwy(z)e YA+ v()ds (49)
holds for all x € QY and all t > 0.
Proof. Consider
w(z,t) = e~ VAl v(8)ds . (50)

Note that the assumption (47) implies that
Ly(w(z,t)) >0 51

Then we use (46) and conclude the proof.
If v is bounded and if its normal component vanishes of first order at the boundary then the condition
(47) is satisfied.

PROPOSITION 3. Condition (47) is satisfied if v is bounded,
[o(®)]|L= < V (1), (52)
and has a normal component which vanishes to first order near the boundary of €},
vz, t) - N(z)| < V(t)d(x), (53)

where N (x) is a continuous unit vector defined near the boundary OS2 and extending the normal at O).
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Indeed, for any smooth vector field 7'(x) defined near the boundary and tangent to the boundary, we
have by the smoothness of w; and its equivalence to the distance to the boundary,

T(x) - Vwi(z) < Cwi(z) (54)

near the boundary €). This inequality is true because 1" - Vw is continuously differentiable with bounded
derivatives in € (hence Lipschitz continuous) and vanishes at the boundary, so it is bounded by a multiple
of d(x), and hence by a multiple of w; (x). Then we decompose v = (v - T)T + (v- N)N = vp + vy with
T smooth near the boundary and tangent to the boundary, and use the fact that

lon (z)] < Cwr(z), (55)

near the boundary, which follows by the assumption (53). The fact that |v - Vw;| < Cw; away from the
boundary follows from the boundedness of v. This concludes the proof of Proposition 3.

REMARK 3. Theorem 2 can be proved also using

d(b) = b*™. (56)
We note that in this case
b’ (b) — ®(b) = (2m — 1)®(b). 57
We take w = wy and use the fact that
Ly(wl) =" le + 4/ /\1101, (58)
and returning to (42) we obtain
d
p wy (2)P(b(z,t))dr < (2m — 1)(y(t) — \/)\1)/ wy (z)P(b(z,t))dx (59)
Q Q
where
t) -
7@%:%p<—m%) Vwﬂ@) (60)
e w1 (l‘)
Integrating in time, taking 2m roots and then the limit m — oo, we arrive at
1@z < [ollpme A0, (61)

Note that if (47) holds then (61) is precisely (49).
We consider now the case of fixed m.

PROPOSITION 4. Let m > 1 be an integer, let v be a bounded divergence-free function which can be
decomposed
V=V + Vs (62)
with v, (z,t) obeying . € L*[0, T), where ~,.(t) is defined as in (60) by

r 7t -V
sup (_v (x Uzl(x)wl(w)> o (8) (63)
and with .
[vs(t) || L < 0 (64)

(2m — 1)[[Vwy || Lo
where cq is the constant from (42). Then

2m 2m
/ w (.’E) <0(1’, t)) dr < e(?m—l)(—t\/x-l—fot 'yr(s)ds) / wy (I‘) ( 90(1') > dr (65)
Q Q

w1 (x) w1 ()

holds for t € [0, T).
REMARK 4. Note that the right hand side of (64) depends only on Q) and m.
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Proof. The proof follows along the same lines as above. We take ® as in (56), w = w1, and using the
decomposition we have that

Lo(wr) = v, - Vg + <\/E+ (”le)) . (66)

w1
Consequently, from (63) and (64) we have
(2m — 1) Ly(w1) > —co + (2m — 1) (/A1 — 7(t))wi (2). (67)

We use this inequality and (57) in (38), integrate in time, and deduce (65).
We record here a lemma relating weighted and unweighted norms of b:

LEMMA 3. Let m > p > 1. Then, there exists a constant Cy, ;, depending only on §), m and p such that

1
am
o) < Cony ([ 12" 0o )
Q
holds for any b. Conversely, letp > 2m — 1 > 1 and let by = w%. Then
o ﬁ % 2m—1 p+1—2m
[ or@mm@ydn) ™ < 1017 g o155 01" (69)

p

Proof. The first inequality uses just the Holder inequality for the functions wy () 2 |b(x)|P and wy ()2,

with exponents 277”, Qi’fp, and
App= / w1 (1:)_2mp—1> dr < 0o (70)
Q
2m—p
which holds because 5 Wf’fp < 1. Then Cy, , = Ay’ . The second inequality is straighforward.

4. Bounds for Riesz transforms
We consider u given in (2),
u=V+Ap'e.

where we recall that V- = JV with J an invertible antisymmetric matrix. We are interested in estimates
of u in terms of 0.

PROPOSITION 5. Let u be given by (2) and let 0 be bounded and interior Lipschitz, i.e., obeying

d(y)[VO(y)| < M. (71
Then, there exist constants C' depending only on the domain () such that
C

<CM o [ 1+1 — . 2

) < O3+l (14108 (505 )) 72)

As a consequence, there exist constants vy > 0 and C, depending only on the domain ), M and ||0|| o such
that

/ @ g < O, 73)
(9]

REMARK 5. The bound (72) does not use any information about vanishing of 0 at the boundary, but it
uses (71) which follows in our case from a priori bounds (6). The bound is in particular true for = 1,
where we know that the Riesz transform is in general only BMO and is not bounded all the way to the
boundary.
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Proof. In view of the representation

S=c / t2etdt (74)
0
we have that -
u(w)=c [kt [ VEHD(p. 08y (75)
0 Q
We split .
uw=u" +u (76)
with
. P
u(z) = c/ t_2dt/ ViHp(z,y,t)0(y)dy (77)
0 Q
with p = p(z) a length scale smaller than the distance from z to the boundary of :
p < ed(x). (78)
We split further
. 2 1
uzn({p) — fOP t2 fQ(Vi + V;‘)HD(:B, y, 1)0(y)dydt + v(x) (79)
= ui"(z) + v(z)
and then .
u™z) = [ 77 [o(Va + Vi) Hp(z,y,1)(6(y) + (1 — ¢(y)))0(y)dydt (80)

=v1 + Vg

where ¢ is a standard cutoff compactly supported in a ball of radius ¢ = %(x) around x and identically one

in the ball of radius ﬁ. Above € > 0 and 1 > 0 are small numbers at our disposal.
We use (25) to bound

1
t 2

(Vi + Vi) Hp(z,y,t)| < Cd(z)) 4+

and thus )
P
/0 t—édt/g(vgf+vj)HD(m,y,t)¢(y)9(y)dy

lvi(z)| = < Cén?)|0)| oo (81)

Here we estimate the volume of the support of ¢ by Cn?d(z)?. For v, we use the bounds (19) and (21) and
the fact that |z — y| > nd(x)/8 on the support of 1 — ¢ to obtain

2
€
|va ()| SC?HHIIL«» (82)

d+2 |z—y|?
Here we used the fact that t =5 e~ & < Clx — y|_(d+2), and

2
_ €

3 v — @ ay < 0.
|z—y|>nd(x)/8 n

Now we write
2

o
o) = —c [ hdt | Vi Ho(ep)(60) + 1 o))y = va + v (83
0
We observe that v, is estimated exactly like va,
2
€
va()| < C?H@HL% (84)

In v3 we integrate by parts
2

v3(x) = C/Op t_édt/ﬂHD(x,y,t)VL(é(y)H(y))dy (85)
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We use here |V¢| < C(nd(x))~, and (71). Because on the support of ¢ we have d(z) < 2d(y), we deduce
that

M40 Y0l e @ B
lvg(z)| < C Z(J e / t72dt < Ce(M + 00| 1), (86)
0
and consequently, from (81), (82), (84) and (86) that
, 2
(@] < (e + (5 + e+ Syl )
We write u°“ as
() = up(x) + u’ (z) (88)
where
o0 1
ur(e) = 0% [ VD@ p000)dy (39)
T Q
and
T T 1
@)= [ h [ ViHD(wp080)d. 90)
p?(x) Q
Because (20) ur is smooth, and in particular
lur|Loe < C|0] Lo o1
We take ¢ = n = 1. From (87) and (91) we have
™ ()| + |ur(z)] < C([|6]lL + M). (92)

On the other hand, from (11) and (18) we bound

L by t) < O— g 93)
D\L, Y, > €
d(x) |z —yl
and using (19) we obtain
_1 _d _lz—yl®
[ (2)] < e [t 2dt [ot~2e R Lo (0(y)|dy
< ol (fuo byl te P dy) e at (94)

= Clog (75 16111~

For this result we used e = 1 = 1, but e may be used to show that the dependence on M is logarithmic
for large M. This concludes the proof of Proposition 5.

The next proposition uses information about vanishing of # at the boundary.

PROPOSITION 6. Let 6 be bounded and interior Lipschitz, i.e., obeying (71). Let
0(x)
wi(x)
Let u be given by (2). For any p > d, there exist constants C depending only on the domain §) and p such
that

bl(.%') =

95)

lullzee < CM + C|8]|ze (1 +log |b1]|Le(e)) - (96)

Proof. We proceed like in the proof of Proposition 5, and in particular we use the bound (92). We bound u”
differently. We take a small number ¢ and we split

ul = uy + us 97)

where

T
wi(z) = / 3 / VL Hp (e, y, 1)6(y)dy (98)
p QN |z—y|<o

2
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and
T 1
w()= [ 4] V£ Hp(a,y,1)0(y)dy 99)
p? QN |z—y|>d
For uy we have, using (19), the bound (93) and Lemma 1 with j = 0and m =d — 1,
—d 7|1—y\2 7& C
lua(x)| < C||0|| 100 |z —y| % 2kT dy < C||f||p~e 26T log | — | . (100)
N fe—y|>6 0
In order to estimate u; we write
0(y) = bi(y)wi(y) (101)
and use
wi(y) < Cd(y) < Cd(x) + |z —y) (102)
and (93) to estimate
T _1 d(x _d _le—y?
ui(z)] < Cfp2 t2 fﬂm lz—y|<6 101 (y)| (1 + |I(,2,|) tm2e” R dy

le—y[?

—(d— T,-d _ _
< C fon jayi<s 1@z =y~ Vdy + CL [Lt72e™ R dt for o5 1Y)z — y[ T dy
<O+ ) Jon omyizs 1 @)z — [~ Dy

(103)
where we used Lemma 1 with j = 0 and m = d — 1 in the first term of the second inequality and d(z) <
e '/t and Lemma 1 with j = 0 and m = d — 2 in the second term. If d = 2 we treat the second term of
the second inequality directly, ignoring the exponential and integrating

2

T
: 2
d(x)/ tadt < =
P €
From the bounds above we obtain

2 C 1
@) < Clolme g (§)re(141) [ e -y Van. o
QN |z—y|<s

€

We take now 7 = € = 1. Putting together the estimates (92) and (104) we obtain

C (d—
lu(z)] < C(M + [|0]| L) + C[|0]| > log { = | +C bry)llz =y~ Dy, (105)
d QN |z—y|<é

The estimate (96) follows by appropriately choosing § small enough. This ends the proof of Proposition 6.
Clearly, the condition b; € LP(Q2), p > d can be relaxed to

lim b1 ()|l — y| =Py = 0. (106)
020 Jon|z—y|<s

We show now a decomposition of the type (62).

PROPOSITION 7. Ifp > d and if by = wil € LP(Q) then, for any ¢, > 0, there exists T > 0 depending
only on €, the norm ||b1|| Lr(q), the constant M of (71) and on ||0|| L such that

ug(z) = /Tt_édt/ VEHp(z,y,t)0(y)dy (107)
0 Q

obeys
[us]| Lo < e (108)
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Proof. We note that

us(z) = u™(x) + u’ (z) (109)
where u' is defined in (77) and hence obeys (87) and where u” is u’ of (90) for T' = 7. We choose 1 > 0
of order one, then € to be small enough such that en ! also is small enough, so that from (87) we obtain

[u™ ()] < - (110)
With these choices of € and 1 we use the fact that
_d
Lo e = oy < g0 an
QNfz—y|<o

to choose d small enough so that

1 _ Cr
c<1+>/ lbi(y)||z — y| tdy < T (112)
€/ Jan jz—y|<s

Now, once these choices have been made , we choose 7 small enough so that
2 C
C||9||Looe_2(j’710g () < C—T. (113)
1) 2
The result then follows from the bounds (110), (112), (113) and (104). This concludes the proof of Propo-

sition 7.
We state now the result of local control of ||b1 || r.

THEOREM 3. Let 0y € HE(Q) N WL2(Q). Let m > d. There exists a time Ty depending only on
100 Lo, sup,eq d(x)|VOo(z)| and ||b1(0) || p2m (w, dx) and a solution 6(x,t) of (1) obeying (6) and

2m
IOy = [ wntommteomas) ™ < ¢ (114)
Q
fort <'Ty. Consequently, for d < p < m there exists By, such that
sup [|b1(t)[| ey < By (115)
<t<Tp
holds.
Proof. The Proposition 4 and Proposition 7 are used in conjunction with Theorem 1 and Lemma 3.
REMARK 6. We observe that if 0 vanishes at the boundary of the order d(x)? with > 1 — % then
by (0) € L2m(w1dac).
5. Bounds for finite differences of Riesz transforms

We consider now finite differences
Shuta) = [ Rt | VD@, p000)dy (116)
0 Q

with |h| < 42,

DEFINITION 1. Let us consider a small length £y, and take 0 < ¢ < {y. We consider a ball B centered
at a point xo with d(xo) > 2¢ and of radius (. We take a smooth nonnegative function ¢ = ¥ (%) with
U a smooth, nonincreasing function of z € Ry, ¥(z) = 1 for z < 1% and ¥(z) = 0 for z > %. We also

|z—x0|

take a function Y = VU ( 57 ), noting that 0 < ¢ < x < 1, x¢ = ¢ and that the support of 1 — x is

included in |x — xo| > %, and that of Vx in %Z < |z —mo| < %K, so they both are disjoint from the support
of ¢ which is included in |x — xo| < %' We refer to ¢ as a “standard cutoff with scale £” and center x,
and to x as its “companion”.
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PROPOSITION 8. Let ¢ be a standard cutoff with scale { and companion X, let p > d, and let u be given
by (2). Then for any € > 0, there exists §(e) with lim._,o 0(€) = 0, and a constant C. depending only on ,
€ and p such that

6(a)nu(z) .
< /ed(z)D(x318) + Celhld(x) "7 |[ba]| 1o(cy + 8(€)(x) 616(x)|
holds pointwise.
Above D(xdp0) is given in (31).
Proof. We start with bouunds for the gradient. We use the representation
Vu(z) = Vu'™(z) + Vu(x) (118)
where ,
, p
Vu'(z) = c/ t_édt/ VwViHD(x,y,t)H(y)dy (119)
0 Q
and p = p(z) < ed(x). For Vu®“ we split in three parts. The inner portion of the integral
ed(z)? )
[, k[ V.VEHpGw 08
p? |z—y|<d(z)
is bounded using (22) and ignoring the exponential, yielding
ed(x
ST A [ 1 @)|(d() + |z = y))dy o)
—4d (d(x d+1
<Cp- <d+l>d<x> S yi<atey 1 @)1y < ()™ (42) ™ o]l
We use |V, V. Hp(z,y,t)| < C’t_%d(ac)*2 for t > cd?(x) and |z — y| < d(z) to bound the integral
> d+1 _d
[ ea [ d@ b)) + e - sy < Cadw) Fnl. 21)
ed(z)? |z—y|<d(z)

-
From |V, V Hp(z,y,t)| < Cd(m)*zt_ge_l 7 for ¢ > Cd(z)?, |z — y| > d(z) and Lemma 1 with
m = d — 1 we obtain

d+1

_df1 _le—y?
f t f\xfygd(m) d(glc)z [b1(y)[(d(x) + |z —y|)e™ Ko~ dydt
< Cd(@) ™ [l ysam 1 @)z =y~ (1 + Bthay (122)
_d
< Cd(z) »|b1][Lr.

We used for the last integral d > 2. In the case d = 2 we take advantage of the fact that Hp is smooth for
large time to bound

cor d( - f\x e | )l (123)
_2
< Cd(x) 7 |[ba] v
We have thus .
_d d(z)\**
[V (2)] < Cud(e)”> (1 (1) ) o100 (124)
with C depending on p, € and €2 only.
We split '
Spu = Spu'™ + Spultt (125)
with

2

. P
Suta) = [ +7kat [ GEVEHD (@0 06()dy (126)
0 Q
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with p satisfying p < ed(x). From the bound (124) we have

_d d(z)\
|6pu (z)| < Celh|d(z) > (1 + <(p)> ) 161 e (02) (127)
with a constant depending only on (2, € and p. Note that if
p(x) = ed(x) (128)
then the estimate becomes .,
B ()] < Celhld() ™7 o ooy (129)

with a constant depending only on 2, € and p.
We take a standard cutoff ¢ with scale ¢ and its companion X and write

o (2)opu'™(z) = up(x) 4 vp(x) (130)
with )
14 1
we) =c [ ¢kt | VEH( 00 ()00) ~ x(2)0(a)dy (131)
0 0
and where
vp(z) = e1(x) + e2(x) + e3(x) + es(x) + Pp(x)op0(x)es(x) (132)
with
) =c [ bt [ VEHD( byt (e, )60~ X))y, (139
) =c [ ¢hat [ VEHD(+ hont) = Hplo.y — )o@y, (134
eata) = [ 47 bat [ D00+ )~ x@)o)Oy + By, (135)
0 0
and
es(x) = c/op t_édt/QViHD(:r,y,t)dy. (136)

We used here the facts that ¢ = x¢ and that (x0)(-) and (x0)(- + h) are compactly supported in 2 and
hence

/QViHD(w, y — h,t)o(x)x(y)0(y)dy = /QV_iHD(:E, y, t)o(x)x(y + h)0(y + h)dy.

From (22) we have
1
1
@) < CRAWIN [ [ i @) + e = ) ()l

where A = {y € Q| |zg —y| > %Z} is the support of 1 — x(y). Because x belongs to the support of ¢, it
follows that

_d
lex(@)] < Clhld(x) 7 [[br] e (- (137)
We bound e3 using |[Vy| < C¢~!, Lemma 1 with m = d in conjunction with (19):
es(x §Ch/ Vx(y)|———b1(y)|dy,
lea@)] < Clhl | | ()‘|x_y|d’ (¥)]
and consequently, because = belongs to the support of ¢,
_d
lea(x)] < Clhld(z) # [[br| Lo () (138)

Regarding ey, in view of
/ijHD(:c,y,t)dy =0 (139)
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we have

2
= c/ t_é/ (Vj +Vj> Hp(z,y,t)dy.
0 Q
From (24) and Lemma 1 with m = j = 0, choosing € = ¢(J) small enough in p = ed(x), we obtain
lea(z)| < 0. (140)

In order to estimate e; we write
1
Hp(x+ h,y,t) — Hp(z,y — h,t) = h- / (Vo +Vy)Hp(xz + Ah,y + (A — 1)h, t)dA (141)
0

and use (27) to obtain

|e2(2)]
< |h| fy d J{" 173 dt [ |VE(Va + Vi) Hp(x + Ay + (A = D)X @)|(d(z) + [z — y])[by (y)|dy
d+3 d(z)

< Olhl[byllrd(a) 00 77 445 e SR dt,

and therefore

_d
lea(z)| < Clhld(z) »[|b1]|Lr(q)- (142)

lun ()] < O/ pD(x0n0). (143)

This concludes the proof of the proposition.
We give also a bound for the normal component of the velocity at the boundary.

Finally, by a Schwartz inequality,

PROPOSITION 9. Let T be a C' divergence-free vector field tangent to the boundary of Q. Let N =
—T+. Let 0 < o < 1 and p > d. There exist constants ly > 0 and C depending on the domain §), onp > d
and on o such that

_d _d
u(e) - N@)| < € (@) 5 aloo +d@) [0l o) [Tl + Cdla ™ b1V T e (144)
holds for d(x) < {.

Proof. In view of (124), the fact that T = N-=* is tangent to the boundary, and 7' - V,Hp(z,y,t) = 0 for
z € 0f), we have

[u?(x) - N(2)] < Cd(x)' ™7 |ba]| o (145)
where -
wi@)= [ b [ VEHp o000y, (146)
cd?(z) Q

We consider now u'™ and we write
“m<fd)z('$v(f”2:‘ 3 T4 Rdt [, T(@) - VaHp(w,y,)0(y)dy
=Jo. 2dt [o(T ( ) - VzHD(x,y, £)0(y)dy
) t"dtfx sizede) TW) - (Vo + Vo) Hp(,y,£)0(y)dy
— fy W s M T(y) - (Va + Vy) Hp(z,y,1)0(y)dy
o(

x)
2
+ [ED st [ T(y) - VyHp(x,y,1)(0(y) — 0(x))dy
:U1+U2+U3+U4

Because |T'(z) — T'(y)| < C|z — y| we have that

(147)

cd?(z) 1 _7|J} ‘ . y‘
[Ur| < [[VT [ oo ; t2dt Qt " (d(z) + [z — y[)|b1(y)|dy

and therefore
U] < Cd(@)* ™7 |lba | IV Tl (148)
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holds. For Us we use the bounds (19), (21), 8 = w1b (102) and Lemma 1 to obtain

_d
Uz <C ) @ =y~ (d(x) + & — y|) [b1 (y)|dy < Cd(x)" "7 |[ba]| o (149)
z—y|>d(x

with the understanding that if p = oo then d(x)l_% is replaced by d(z) log (d‘a(m)Q> For U3 we use the
bound (25) and Lemma 1 to write

cd?(x) _d
d(:c)/ t%/ (Vo + V) Hp (@, 5, 8)| b1 () dy < Cd(@)" 5 [billo. (150)
0 lz—y|<d(z)
Finally, for U4 we use (21) and the fact that
cd2(x)
[t [ e—ure Sy < ciy (151)
to obtain

[Us| < Cd(z)*|0]|ce- (152)

This concludes the proof of the lemma.

6. Commutators
We consider the finite difference
(0rApb)(x) = (Apb)(x + h) — (Apb)(z) (153)
with |h| <4 ) . We use a standard cutoff with scale ¢, ¢ and its companion .

PROPOSITION 10. We consider the commutator
Cn(0) = ¢(z)(6pAp0)(x) — ¢(x)Ap(xInb) (). (154)

There exists a constant I'y such that the commutator C,(0) obeys

h _d
1Ch(0) ()] < rod‘(x')\|bnm<md<x> : (155)

for |h] < 16, 0 € H} () N L®(Q) and by = wil € LP(Q) with p > d. The constant is bounded as p — o0
and if p = oo the estimate is

h|

Cu(6) ()] < rod'(x)||b1||mm. (156)

Proof. We compute the commutator as follows

(¢5hAD9)( ) — &(Apxdnb)(x)

= c [t 3dt [o(Hp(z,y,t) — Hp(x + h,y,1))é(x)(1 — x(1))0(y)dy

—e [2tT3dt [o(Hp(a + hyy,t) — Hp(e,y — hyt))(2)x(y)8(y)dy (157)
—c [tz dt [, Hp(x,y,6)6(2)(3hX) ()8(y + h)dy

= E1(z) + B (z) + E3(x).

We use (157). We observe by triangle inequlaity d(y) < d(z) + |x — y| and thus

10(y)| < Clbr(y)|(d(z) + & — yl) (158)
holds for any z,y € Q. For Fj(x) we use the inequalities (18), (19), and Lemma 1 with m = d + 2
d |z —y|?

when t < d(z)?, and m = d + 1 when t > d(x)?, together with d(x)"'Hp < Clz — y|~ 1t 2e” &t .
Substituting (158) for 6, we deduce

[Ex(z)] < Clh| /Q o = y|” 2 (d(x) + 2 = yl)[ba(y) o (@)1 = x(y)|dy
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and then, using a Holder inequality we obtain

Al
E1 (a;) S
d(x)
For F; we use (141) like in the proof of the estimate (142) and (25), together with Lemma 1 with m = d+2,
7 = 0, and bounds

bl () 7 (159)

0o ,_3,_d+1 (1)
St B e w [, g 1) I(A(2) + |2 — yl)dy
SC(d(az))*?;dd( ) Sia—yi<de) 1)l dy (160)
< Cd(x) " e by o
and , )
Joo R a2 ﬁ + @ ))HD(a: y, t)|b1(y)|(d(z) + |z — y|)dydt
oo ,_3 _1 _d _|= 12
SO famgppa = + gt e R )| dw) + o = ydy (161)
< C fuysate) pore 1 @) (d(@) + 2 — y)dy < Cd(z) ™7 |1ba]| s
to obtain
h _d
By(a)] < cd'(x’)\bmdm : (162)

For E'5 we have

|E3(2)| < \h\/ooo tgdt/ﬂHp(w,y,t)¢(x)\Vx(y)\(d(fc) + |z — y[)b1(y)dy

and from Lemma 1 with m = d,d + 1, j = 0 we obtain
Ih!

[b1llzod(z) 7

This concludes the proof.

7. SQG: Holder bounds

We consider the equation (1) with u given by (2) and with initial data 6y € H& () N L>(£2). We note
we have

10)][Los < [6o]l Lo~ (163)

We prove the following result.

THEOREM 4. Let 0(x,t) be a solution of (1) in the bounded domain with smooth boundary S, obeying
(6) on a time interval [0, T). Assume that

sup |[|b1(t)[|Lr(o) < B (164)
0<t<T

holds with p > d. Then for0 < a < 1 — g there exists a constant K, depending only on the domain ) and
p, such that

sup sup sup < 2[|0o||ce + KB(M + 1) (165)

0SI=T 260 < ds) |h|°‘
holds, where M is the a priori bound in (1). Moreover, the velocity u is bounded u € L*°(0,T; L>(£2)),

obeying (96) and the normal component of the velocity vanishes near the boundary of order d(x)®, obeying
(144).

REMARK 7. In view of Theorem 3 there exists Ty > 0 such that condition (164) is satisfied on [0, Tp).
We recall that (6) holds unconditionally, in view of Theorem 1.
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Proof. We take

¢
< —
Pl < 15 (166)

We take = with d(x) < 2{y. From the SQG equation we obtain the equation
1
5@t u-V) 1610]% + (010)0r,ApO = —(040)0pu - VO(z + h). (167)

We use a standard cutoff ¢ with scale ¢, and companion y. We multiply by ¢? and obtain

2
@0 V)(50) + 20D (x518) = —(630)C(6) — (95:0)0biu - VO(x + ) (I68)

where Ch(H) is the commutator given above in (154).
Multiplying by |h|~2* where a > 0 is smaller than 1 — g, we obtain
2
P04 u- V) () + 6 FAp(S) = W 00FCu(0) — I ofodu - V(e + k) (169)
where
fz,t:h) = f = [h]7°8,0(x,1). (170)
The first term in the right hand side of (169) is bounded using the commutator estimate (155).
91111 =Ch(O)] < O]k =T ok Bd(a) >
(CroBlh! ) elf (171)
< ity |[CToBE “"] o111
In view of (6) we have that

|VO(z + h)| SMd(lar)' (172)

The second term in the right hand side of (169) is estimated using (117) with § = d(e) < ;—J\l/[ with €
sufficiently small (depending on +; and M but not on B). We obtain

OB |66l V0 + )
< Md(x) |||l [/ed(z)D(xon8) + Celhld(z) > B + Frl66(x) | (173)
< 3D(f) + gt @\ + CBMIh|'d(z)” 1“¢\f\

where D(g) is given in (31) and where we also used M 2e < %1. Therefore, if we have

d
0<a<1—5 (174)

we obtain from (169), (171), (173) that
2

C 0+ u- V) () + P FAn() < 5D +

1+ g [F1BOL+ 16 ol

( )

(175)
holds for |h| < 1. Note that Ky does not depend on £ nor on h and that, in view of (174) we may take |h|
and £ > 0 as srnall as we wish.

The rest of the argument is by contradiction. We fix 7' > 0 and take 0 < ¢ < ¢y3. We consider the
compact region
={z e Q] ¢ <d(x) <2t} (176)

d(“) such that

We assume by contradiction that there exists x1 € Ay, to € [0,7) and hg with |hg| <

l—a_d

‘h0|_a|5h09(l‘1,t0)| > 2”90”00‘ + KB(M + l)fo P, (177)
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with K = 57% where K appears in (175). We may assume without loss of generality that ¢y is the

infimum of such ¢ that (177) holds for some =1 € Ay. The prefactor 2 in front of ||6y||c~ was put there for
convenience, in order to make sure that ¢g > 0 (it could have been any number larger than one). We fix hg
and tg and take ¢y € Ay to be a point where the maximum of the function f 2 (z,to; ho) is achieved in the
region A,. We know that 6 is interior Lipschitz, so |hg| > 0 and f? is Lipschitz continuous there. Therefore
(177) holds with x( replacing x;. We take a standard cutoff with scale ¢, center x( and companion . We
use the inequality (30):

XIADO) — 5AD0RS) = DOcT) 2 m(dw) P, (78)

valid pointwise. We also use the fact that Ap(x2f?)(zg) > 0 because x2f? is maximized at xo. In fact,
more is true,

Ap(x*f?)(x0) = X*(w0) f*(20)Ap1.
Indeed, for any function ¢ in the domain of Ap which achieves its maximum at xg € {2 we have

(pg)eo) = [ s (g@co) - QHD@,y,t)g(y)dy) > glap)Apl.

Using ¢(x) = x(z0) = 1 we have from (175), (177) and (178) and the fact that u - V f? = 0 at an interior
local maximum,

L0> < —XFADXS + SD(X) + gty A + g K B(M +1 )1_"_é¢|f|
< —3Ap(*f?) - 1D(xf)+4d(x0 ¢2f2+d( )KlB<M+1>1 gl f]

< b+ @ )KlB(M+ 1) gl f| (179)
< s BOM 4 1) _”qﬁ\f\( -4
< e BOM + 1) YKy <0,

which is a contradiction. Thus (165) holds, and the proof of the uniform bound on the Holder norm is
concluded. The fact that u obeys (96) follows from Lemma 6 and the vansihing of the normal component of
velocity follows from Proposition 9, in view of the bound (165).

Acknowledgment. The work of PC was partially supported by NSF grant DMS-1209394

References

[1] L.A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of
Math., 171(3) (2010), 1903-1930.

[2] X. Cabre, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010),
no. 5, 2052-2093.

[3] P. Constantin, Geometric statistics in turbulence, SIAM Review 36, (1) (1994). 73-98.

[4] P. Constantin, M. Ignatova, Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications, IMRN,
2017, Issue 6, (2017), 1653-1673.

[5] P. Constantin, M. Ignatova, Critical SQG in bounded domains, M. Ann. PDE, 2 (2016), no 8.

[6] P. Constantin, M.-C. Lai, R. Sharma, Y.-H. Tseng, and J. Wu, New numerical results for the surface quasi-geostrophic equa-
tion, J. Sci. Comput., 50(1) (2012), 1-28.

[7] P. Constantin, A.J. Majda, and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Non-
linearity, 7(6) (1994), 1495-1533.

[8] P. Constantin, H. Q. Nguyen, Global weak solutions for SQG in bounded domains, Communication on Pure and Applied
Mathematics, 71 11, (2018), 2323-2333.

[9] P. Constantin, H. Q. Nguyen, Local and global strong solutions for SQG in bounded domains. Physica D, 376-378 (2018),
195-203.

[10] P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, GAFA 22
(2012) 1289-1321.
[11] P. Constantin, A. Tarfulea, V. Vicol, Long time dynamics of forced critical SQG, Communications in Mathematical Physics

335 (2015), no. 1, 93-141.



21

[12] P. Constantin and J. Wu, Regularity of Holder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst.
H. Poincaré Anal. Non Linéaire, 25(6) (2008) 1103-1110.

[13] D. Cérdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math. (2), 148(3) (1998)
1135-1152.

[14] A. Cérdoba, D. Cérdoba, A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249 (2004),
511-528.

[15] E.B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Am. J. Math 109 (1987) 319-333.

[16] ILM. Held, R.T. Pierrehumbert, S.T. Garner, and K.L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech., 282
(1995),1-20.

[17] M. Ignatova, Construction of solutions of the critical SQG equation in bounded domains, Advances in Mathematics, 351
(2019), 1000-1023.

[18] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,
Invent. Math., 167(3) (2007), 445-453.

[19] L. F. Stokols, A. F. Vasseur, Holder regularity up to the boundary for critical SQG on bounded domains, arXiv:1906.00251v1
[math.AP], 1 Jun (2019).

[20] Q. S. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians, J. Diff. Eqn 182 (2002), 416-430.

[21] Q.S.Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, IMRN (2006), article
1D92314, 1-39.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544
E-mail address: const@math.princeton.edu

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122
E-mail address: ignatova@temple.edu



	1. Introduction
	2. Preliminaries
	3. Weighted estimates
	4. Bounds for Riesz transforms
	5. Bounds for finite differences of Riesz transforms
	6. Commutators
	7. SQG: Hölder bounds
	References

