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Abstract

We discuss the Lagrangian-Eulerian framework for hydrodynamic models and provide a proof of
Lipschitz dependence of solutions on initial data in path space. The paper presents a corrected version
of the result in [1].
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1 Introduction

Many hydrodynamical systems consist of evolution equations for fluid velocities forced by external
stresses, coupled to evolution equations for the external stresses. In the simplest cases, the Eulerian
velocity u can be recovered from the stresses o via a linear operator

u=U(o) (1)
and the stress matrix o obeys a transport and stretching equation of the form
0o +u-Vo =F(Vu,o),

where F' is a nonlinear coupling depending on the model. The Eulerian velocity gradient is obtained
in terms of the operator
V.u = G(o), (2)

and, in many cases, G is bounded in Holder spaces of low regularity. Then, passing to Lagrangian
variables,
T=00X

where X is the particle path transformation X(-,¢) : R? — R%, a volume preserving diffeomorphism,
the system becomes

WX =UX,T),
{ ot =T(X,71). 3)

with
UX,7T)=TU(ro X HoX, 2
T(X,7)=F(G(ro X Yo X, 7). (

In particular, 7 solves an ODE

d
%T:F(gﬂ-) (5)

where ¢ = V,u o X is of the same order of magnitude as 7 in appropriate spaces, and so the size
of 7 is readily estimated from the information provided by the ODE model, analysis of G and of the
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operation of composition with X. The main additional observation that leads to Lipschitz dependence
in path space is that derivatives with respect to parameters of expressions of the type encountered in
the Lagrangian evolution (4),

UroX NoX, G(roX 1)oX,

introduce commutators, and these are well behaved in spaces of relatively low regularity. The Lagrangian-
Eulerian method of [2] formalized these considerations leading to uniqueness and Lipschitz dependence
on initial data in path space, with application to several examples including incompressible 2D and
3D Euler equations, the surface quasi-geostrophic equation (SQG), the incompressible porous medium
equation, the incompressible Boussinesq system, and the Oldroyd-B system coupled with the steady
Stokes system. In all these examples the operators U and G are time-independent.

The paper [1] considered time-dependent cases. When the operators U and G are time-dependent,
in contrast to the time-independent cases studied in [2], G is not necessarily bounded in L>°(0,T; C?).
This was addressed in [1] by using a Holder continuity o € C#(0,7;C®). While this treated the
Eulerian issue, it was tacitly used but never explicitly stated in [1] that this kind of Hélder continuity
is transferred to o from 7 by composition with a smooth time-depending diffeomorphism close to the
identity. This is false. In fact, we can easily give examples of C* functions 7 which are time-independent
(hence analytic in time with values in C*) and diffeomorphisms X (¢)(a) = a+ vt with constant v, such
that 0 = 7 0 X! is not continuous in C® as a function of time. In this paper we present a correct
version of the results in [1]. Instead of relying on the time regularity of 7 alone, we also use the fact
that G is composed from a time-independent bounded operator and an operator whose kernel is smooth
and rapidly decaying in space. Then the time singularity is resolved by using the Lipschitz dependence
in L' of Schwartz functions composed with smoothly varying diffeomorphisms near the identity.

A typical example of the systems we can treat is the Oldroyd-B system coupled with Navier-Stokes
equations:

Ou —vAu =H(div (6 —u®u)),
V.-u=0,
oo +u-Vo = (Vu)o + o(Vu)' — 2ko + 2pK ((Vu) + (Vu)?),
u(z,0) = up(x), o(x,0) = og(x).

(6)

Here (z,t) € R? x [0,7). The Leray-Hodge projector H = I+ R ® R is given in terms of the Riesz
transforms R = (Ry, ..., Rgq), and v, pK, k are fixed positive constants. This system is viscoelastic, and
the behavior of the solution depends on the history of its deformation.

The non-resistive MHD system

Ou —vAu =H(div (b®b—u®u)),
V.-u=0,
V-b=0, (7)
Ob 4+ u - Vb= (Vu)b,
u(z,0) = up(x),b(x,0) = by(x).

can also be treated by this method. The systems (6) and (7) have been studied extensively, and a
review of the literature is beyond the scope of this paper.
2 The Lagrangian-Eulerian formulation

We show calculations for (6) in order to be explicit, and because the calculations for (7) are entirely
similar. The solution map for u(z,t) of (6) is

u(z,t) = Ly (uo)(z,t) + / Gu(t—s) * (H(div (0 —u®@u))) (x, s)ds. (8)
0
where ) ,
L, (ug)(z,t) = gyt * up(x) = /Rd me* = uo(y)dy. (9)



Thoroughout the paper we use

1 _lsl?
v e 4vt
gur(@) = (47rut)%
The velocity gradient satisfies
t
(Vu)(x,t) =L, (Vug)(z,t) + / (9o (t—s) * (HVdiv (6 — u ® u))) (z, s)ds. (10)
0

We denote the Eulerian velocity and gradient operators

U t) = [ (e * Hliy £, )i,
0 (11)
G(w.0) = [ ey » BV f)(o5)ds.

Note that for a second order tensor f, G(f) = V,U(f) = R® R(U(V,f)). Let X be the Lagrangian
path diffeomorphism, v the Lagrangian velocity, and 7 the Lagrangian added stress,

= — = X
YT T (12)

T=00X.

We also set

g(a,t) = (Vu)(X(a,t),t) =L, (Vug) o X(a,t)

13
+G (to X ") o X(a,t) — U (Vs (v®v)o X)) 0 X(a,t). (13)
In Lagrangian variables the system is
X(a,t) —a+/ V(X, 7, a,s)ds,
14
7(a,t) = oo(a /TXTas (14)
v(a, V(X,T,t)

where the Lagrangian nonlinearities )V, T are

V(X,7,a,s) =L, (up) o X(a,s)+ (U ((T —vQ®wv)o Xﬁl)) o X(a,s), (15)
T(X,7,0,8) = (g7 + 719" = 2kT +2pK (g + ¢")) (a, 5),

and g is defined above in (13). The main result of the paper is

Theorem 1. Let 0 < o < 1 and 1 < p < oo, be given. Let also v1(0) = u1(0) € C*TP and
v2(0) = ua(0) € CYF*P be given divergence-free initial velocities, and 1(0),02(0) € CP be given
initial stresses. Then there exists Ty > 0 and C > 0 depending on the norms of the initial data
such that (X1,71,v1), (X2, T2,v2), with initial data (Id,o1(0),u1(0)), (Id, 02(0),u2(0)), are bounded in
Id + Lip(0, Ty; C1ToP) x Lip(0, Ty; C*P) x L>=(0, Ty; C*+*P) and solve the Lagrangian form (14) of
(6). Moreover,

[ X2 — Xl”Lip(O,TO;ClJr"“’P) + 2 — Tl||Lz'p(o,T0;c<r=p) + [Jv2 — Ul”LOQ(O,To,CHavP)

(16)
< C([luz(0) = ur(0)ll1 445 + [172(0) = 71(0)|, )

Remark 1. The solutions’ Lagrangian stresses T are Lipschitz in time with values in C*. Their
Lagrangian counterparts ¢ = 7o X1 are bounded in time with values in C* and space-time Hélder
continuous with exponent «. The Eulerian version of the equations (6) is satisfied in the sense of
distributions, and solutions are unique in this class.



The spaces C*P are defined in the next section. The proof of the theorem occupies the rest of
the paper. We start by considering variations of Lagrangian variables. We take a family (X, 7.) of
flow maps depending smoothly on a parameter e € [1,2], with initial data u.o and o.. Note that

ve = 0; X.. We use the following notations

d
Ue = 675X€ OXe_lvgé = digev
€

X! = ixe, ne=X!oX1,

de
vl = iv
€ de ©
O¢ = Te Oxgla
d
T = &Tﬂée =710 X1
and J J
W= Tue(0),0l0 = Lo.(0)

We represent

2
Xg(a,t) —Xl(a,t) :/ Xéde,
1

2
Mm%ﬂ@ﬂ:/m%
1

2 d
va(a,t) —vi(a,t) = /1 ivede,
where

X! /thds /thds—i— !
- ——Veds, Te = - Je O¢.0s
€ 0 d€ 0 d€ 0

Ve = V(XeaTe)7 72 = T(X€7T€)'

We have the following commutator expressions arising by differentiating in e ([1], [2])):

(c?e (U(Te °© Xgl) © X€)> OXZl = [775 : Vm,U](UE) + U(56)7
where
[776 . VxﬂU](06> =N Ve (U(Ue)) -U (775 . vx06>
and p
(d[U(v6 ®v.o X ) o X6> oX !
€

= [776 : an[U](ue ®ue) +U((’Ué Q Ve + Ve @ Ué) © Xgl)

We note, by the chain rule,
V.V =(V.X)g.

Consequently, differentiating V., g. and the relation (24) we have
d -1 !
&VE o X =1ne- (Lu(vxue,O)) + H—W(Ue,o)
+[775 : vm,U](Ue — Ue ®Us) +U(5e - (U; & Ve + Ve ®'U;) © X;I)a
ge = L(Vyuep) 0o Xe + G(oe) 0 Xe — U(Vy(ue @ ue)) o X,
gco Xe_l =ne - L (Vi Vaueo) + LV(V$UIE,O) + e * Vi, Gl(0e) + G(0e)
—[ne - Vo, U] (Vo (ue ® ue)) = U (Ve (v @ v +ve @0)) 0 X)),

d
%(vave) = (VaXé)ge + (VaXe)g;
= et gt 47T ()T — 2k + 20K (g + (g1)T).

de

(17)



3 Functions, operators, commutators

We consider function spaces
C*P = C*(RY) N LP(RY) (26)

with norm

1fllap = I1fllco@ay + [1f | Le ey (27)
for a € (0,1),p € (1,00), C**(R?) with norm

1fllcr+a®ay = 1l Lo @ay + IV fll o (gay - (28)
and
citer = ot RY) n Wwhp(RY) (29)
with norm
17 vy = Il or ey + 1 F e - (30)

We also use spaces of paths, L>°(0,T;Y) with the usual norm,

1fll L0757y = sup_ [F @)y, (31)
te(0,T)
spaces Lip(0,T;Y) with norm
If() = f(s)lly
[l piporyy = sup + 1 £l 0.7, 32)
| |Lp(O,T,Y) tots t5€[0,T] |t—s| H L*>(0,T;Y) (

where Y is C%P or C1*t%P in the following. We use the following lemmas.
Lemma 1 ([2]). Let 0<a<1,1<p<oco. Let n € C*T*(RY) and let
(Ko)(z) = P.V. y k(z —y)o(y)dy (33)

be a classical Calderon-Zygmund operator with kernel k which is smooth away from the origin, homo-
geneous of degree —d and with mean zero on spheres about the origin. Then the commutator [n -V, K]
can be defined as a bounded linear operator in C*P and

-V, Kol gaw < Cllnllgrsagay llollgan - (34)

Lemma 2 (Generalized Young’s inequality). Let 1 < ¢ < oo and C > 0. Suppose K is a measurable
function on R* x R?® such that

sup [ |K(z,y)|ldy < C, sup [ |K(z,y)|de < C. (35)
zERE JRE yeR JR4

If f € LY(RY), the function Tf defined by
Ti@)= [ K(zy)f(y)dy (36)
R
is well defined almost everywhere and is in LY, and [|[Tf| . < C||fllq-

The proof of this lemma for 1 < ¢ < oo is done using duality, a straightforward application of
Young’s inequality and changing order of integration. The extreme cases ¢ = 1 and ¢ = oo are proved
directly by inspection.

For simplicity of notation, let us denote

Mx =1+ || X = Id|| o (g, ;c140) - (37)



Theorem 2. Let 0 < a < 1,1 <p<oo andlet T > 0. Also let X be a volume preserving diffeomor-
phism such that X —Id € Lip(0,T; C**%). Then

HT °© X_IHLOC(O,T;C’Q’P) = HT||L°°(0>T;C“=P) M. (38)
If X' € Lip(0,T; C1T%), then

— 142
1X" 0 X7 | o o iy S X 0,70y M (39)

If v € Lip(0, T; W1P), then
Hv o X! HL°°(07T;W1’F) < ||v||Loo(0,T;W1,p) Mx. (40)
If in addition 8; X', 0, X exist in L>(0,T;CT®), then

—1 1+3a
HX/ o X HLz‘p(O,T;C&) < ”X/”Lip(&T;Cl*a) [ IdHLip(&T:C”“) My (41)

Proof.
||TOX?1HLIJQLOO = ||THLZ’|"1L0° Y (42)

and, denoting the seminorm
[7’] = Sup M
C atbaper?  |a—b]*

we have

[roX70)], < [F0]a [ToX T Ol 5w < PO, (041X ~ Wl pworora)™  (43)

[e3

Note that this shows that the same bound holds when we replace X ! by X. For the second and third
part, it suffices to remark that

Ve(X o X1 = (VaX) o X 1) ((VaX') o X1 (44)

and the previous part gives the bound in terms of Lagrangian variables. For the last part, we note that

S (X (X (@0, - X (X (2,9),9))
1 (45)
= / ((8tXl) (X_l(l‘,ﬁq—),ﬁ-,—) + (a‘.X_l) (xvﬁT)(VaX/) (X_l(l‘,ﬁT),BT)) dr,
0
where
Br=71t+ (1 —7)s. (46)
Now noting that
KX == ((0:X) o X)) ((VaX) o X1 (47)
we have
- i - [X o X7M(t) = X 0o X(5)|| ca
, , 14+3a (48)
< (||3tX [ 2o 0,700y + 10:X || oo (0,700 1 X HLoo(o,T;cHa)) (1 +1X - Id||Loo(o,T;cl+a))
so that
, -1 , 143«
HX oX HLip(o,T;Ca) <X HLz‘p(O,T;C”“) X — Id”Lip(O,T;Cl‘*'“) (1 +[1X - Id”Loo(O,T;CHa))
(49)
O]



Theorem 3. Let 0 < a < 1,1 < p < oo and let T > 0. There exists a constant C independent of T
and v such that for any 0 <t < T,

I (wo)ll oo 0, 75000) < C lluollgp »

[ (o)l oo (0, 7:01 00y < C [0l 140

C (50)
L, (Vug)(t < — ,
L (Vo) () |4 pp < o)} lluoll
”Lu(VUO)HLoo(o,T;ca,p) <C ||u0||1+(17p
hold.
Proof.
1L (u0) () llop < Ngwellpr luolla,, = lluolly
I, (o) (W) l1 4 < Ngwtll o 10l 40 = l1t0ll1 4o p
C (51)
1Ly (Vuo) )l 0p < IVGutll o1 [[uolly 1 = ot [wola,p s
1Ly (Vuo)()lop < Ngutllpr Vuolly p, < lluollifay -
O
Theorem 4. Let 0 < a < 1,1 <p < oo and let T > 0. There exists a constant C such that
4
1U(0)l o< (0,7;000) < C > oWl Loo 0,750 - (52)
Proof.
t
0Ol < C [ [V 1) s
0
c o1 C (53)
< - —ds HUHLoo(o,T;ca,p) < T\/T ”GHLw(o,T;ca,p) .
vz Jo (t—s)2 vz
O

Theorem 5. Let 0 < a < 1,1 < p < oo and let T > 0. There exist constants Cy,Cy depending only
on a and v, and C5(T,X),Cy(T, X) such that

HG(T o X_l)HLoo(o,T;ca,p) <G| X - Id”%ip(O,T;CPra) ||T(0)Ha,p (1+C5(T, X)) (54)
+C ||T||Lip(07T;CC‘sP) Ca(T, X)
where C3(T, X) and C4(T, X) are of the form CT2 (HX =1dZip0. 1010y T 11X = Id||iip(0’T;C1+a)).
Proof. Since G = (R ® R)HI" where
t
DX ™) = [ Agyey +(ro X1 (s))ds, (55)
0

we can replace G by I'. Then I'(7 o X 1) can be written as

D(roX™H)(t) = /0 Agya—s * (o X71) (s) = (0 X77) (1)) ds
(56)

t
+/ Agy(i—s) * (To X_l) (t)ds.
0

But
/0 Agyi—s) * (To X ) ()ds =70 X7Ht) — gue x (To X 1)(2) (57)

7



so the second term is bounded by 2||7{| .« (o 7,ca.r) M§ by Theorem 2. Now we let
7o X Nx,s) — 7o X Nx,t) = Ay7(x, 8, 1) + Ap7(2, 5, 1),

where

Arr(z,s,t) = 7(X Y, 8),8) — 7(X Yz, 5),1),
Aor(z,5,t) = 7(X Yz, 5),t) — 7(X 1 (z,1),1).

But since
[A17(s, )| o < [t = SIMX Tl Lipgo,:c00) »

by the proof of Theorem 2 we get

t t
/ Agy(1—s) * DoT(s,t)ds = / K(x,z,t,8)7(z,t)dzds,
0 0o JR4

t
<&
a,p v

t
/0 Mgyt * Arr(s, )ds 11 iy o sy M

On the other hand,

where
K(Z‘, z,t, S) = Agl/(tfs) (J} - X(Z? S)) - Agu(tfs)(x - X(th))

We use the following lemma.
Lemma 3. K(z,z,t,5) is L' in both the x variable and the z variable, and
C ”X - Id”Lip(O,T;LOO)

It — 5|22

sup HK(v z,t, S)”Ll , Sup ||K(£C, 5t S)HLI <
z xT

Proof. We define
S(x) = e~ l=l® (|:1c|2 - Z)

so that
= (dmv(t — s))~ (5D — .
(o) = Urote = )" 05 ()
Then
oot ) ds — ot — o)) (4+1) r—X(z8), o r—X(z1)
J 1Kzt s = feamoe— )= TR (T
— [ vt —s)~(3+) |[g(—2 Y __ 5 _S—x—X(y,t—ls) d
/( t=2)) = *Can—- )’ Y

= (vt —s)) " o (5+1) /

S(u) — 8 (u — (X —Id) (2 — (4(t - S))%u,t — s))
(dv(t — s))%

However, for each u

)| dz

(X —Id)(z — (4v(t — s))2u,t — s)

Su) - <u_ (X ~ 1) - <4u<t—s>>%u,t—s>>| _

(v(t - 9)}

(vt —s))7

}

|t — sl 1
<X = 1) iy rmy - < CT

xsup{|VS(u_Z) 2| < ‘(X —Id)(z — (4v(t — 8))%u,t— 5)

(v(t - 9)}

and we have

| (X —1d)(z — (v(t — 8))3u,t — s)
(4v(t —5))?

(62)

(63)

(67)



and obviously
Sy = swp [(VS)(u—2)| (70)

1
z<CT?2

is integrable in R?; because VS is Schwartz,

Cq
<
(V)@ < 5 g ()
for some constant Cy, but if |z < CT'2, then |u — z|? > |u|> — C2T and
(V8)(u—2) < (72)

(1+C°T + [u?)d

and the right side of above is clearly integrable with bound depending only on d and T'. Therefore, we
have

/\K(:c,z,t,s)ldz <[t =720 (X = 1)| iy 0.7y C (s T). (73)
Similarly,
- X - X
[ 1Kz toldr = [0 s EES) g L= XED g,
(v(t—s))3 (4v(t—s))3
-1 _(i+1) X(Z,S) 7X(th) (74)
= [ tamote— o) () [s0) - sty + =) a
(dv(t —s))z
and again we have
X(z,8) — X(z,t 11 1
iyt 1 Wl e~ sthvd <OT (7
Therefore, we have the bound
K (2, 2)|dz < [t — s| 72072 (X = 1d)|| 1071 C(d, T). (76)
( )
O

From Lemma 3 and generalized Young’s inequality, we have

t
H/ Agl/(t—s) * AQT(S,t)dS
0

1
C t\?2
<¢ (() ||X1d||up<o,T;cua>) P

LpALo® v

For the Holder seminorm, we measure the finite difference. Let us denote 0y, f(z,t) = f(z+h,t)— f(z,1).
If |h| < ¢, then

6 ( / Agui—s) * Dor(s,)d ) / (A1) * Dar(s, 1)ds. (78)
If 0 < t— s < |h|, then H(ShAgl,(t S)HLI <2 HAgV t—s) HLl < ﬁ and since
[A27 (s, )|l oo < [t = 8| [ X = 1d7500,70040) 171 oe 0,730000) (79)
we have
t O N o
" On(Agy(t—s)) * DaT(s,t)ds < EW 1X = 1d||p00,7501+0) 1T poe 0,750000) - (80)
t oo

If || <t — s < t, then following lines of Lemma 3 0,(Ag,t—s)) is a L' function with

Clh|

on(A v(t—s 1=, 7 13
H h( g( ))HL < (V(t—S))§



and we have

t—Ihl
H/ On(Agy(t—s)) * AaT(s,t)ds
0

s

. L e (82)
< ) X — Id||%ip(O,T;Cl+a) HT”Loo(O,T;ca,p) |h|2 tEl a < %7
GIX = 1dIZ 0 v 7l e o PSS 0> 3
If |h| > t, then we only have the first term. Therefore, we have
1 t C(a) o
W On ( . Agy(i—s) * AZT(Svt)de) < I X — Id||Lip(o7T;cl+a) ”THLoo(o,T;ca,p) . (83)
LOO
We note that
17O llap < NTOap + 171 Lipo, 75000 - (84)
To summarize, we have
-1
[P(roX )HLOO(O,T;CW)

1 o 1 o
< 0() (143 ) 1X =15 0mceey [Tl + €@ (143 ) IX = Wl ooy T o i

1
C(O{) T\? a 4
‘*‘71/ (1/) max{||X — Id||Lip(O,T;Cl+a) X = Id||Lip(0,T;C1+a)}(HT<O)||a,p +T ||T||Lip(O,T;CO<~P))’
(85)
and this completes the proof. O

Theorem 6. Let 0 < a < 1,1 < p < co and let T > 0. Let X' € Lip(0,T;C**T%) with 0; X’ €
L>(0,T;CY*%). There exists a constant C' such that

I[X" e X1V, U] (0)]| poe 0.5y

T % T 143 / (86)
<C )t X = 1d|| pipo, 70140y | Mx ™ 1 XN Lipgo,micrvey 101 oo (0,700
Proof. First, we denote
n=XoX% (87)
Then we have
[n-V, U] (0)(t)
t t
= n(t) ~V/ Gu(t—s) * Hdiv o(s)ds — / Gu(t—s) * Hdiv (n(s) - Vo(s))ds
0 0
t t
= [n(t) - V,H] / Gu(t—s) * divo(s)ds + H/ (Vgu(t—s)) * (V -n(s)o(s)) ds (88)
0 0

H / (V¥ 0(e—s)) * (0(5) — (1)) o(s)ds
0
+H / (1(t) - (VVGu0-0)) * 0(3) — (VVau(e—)) * (n(t)o(s)) ds,
where (vv.gu(tfs)) * (77(5) - U(t))U(S)a 77(75) : (Vv.gu(tfs)) * U(S)’ and (Vv.gu(tfs)) * (77(8)0(8)) represent
S (0019010 %) (1:(5) — ()7 51(5),

4,9

> i) (9:0;9u(t-s)) * oji(s), and respectively > (0 gu(—s)) * (1i(5)0jx())-
,J

4,9

(89)

10



The first term is bounded by Lemma 1 and the second term is estimated directly

1
t\?2
<Cllonse (1) Tolimarcon:
a,p . (90)

t 2
<C (y) 171l Loc (0,7301+0y 1]l oo (0, 75000 -
«@,p

H[n(t) -V, H] /Ot Gut—s) * divo(s)ds

[t [ Faa) = (7 ntshotos

The third term is bounded by
Ct
W Hn||Lip(07T;CO‘) ||U||Loo(o,T;ca,p) (91)
by the virtue of Theorem 2. For the last term, note that

((t) - (VVgu(t—-s)) % 0(5) = (VVgu(i—s)) * (n(t)o(s))) (x)

1 92
= VVu(—s(2)z - (/ Vn(z — (1 - A)z,t)dA) o(x —z,s)dz %2)
R4 0
and note that VVg,;—s(2)z is a L' function with
C
[V Vg5 (2)2]| 1 < T (93)
(v(t—s))”
Therefore,
[(n(t) - (VVgu(-)) ¥ 0(5) = (VVGu(—s)) * (1) (s) ..,
C (94)
< —— InWllcrra llo(s)lla
(v(t—s))?
so that the last term is bounded by
£\ 2
C > (8] c1+a ”UHLOO(O,T;COHP)- (95)
We finish the proof by replacing n by X’ using Theorem 2. O

Theorem 7. Let 0 < a < 1,1 < p < o0 and let T > 0. Let X' € Lip(0,T;C**®) with 0; X’ €
L>(0,T; C1*%). There exists a constant C(«) depending only on « such that

X0 X 9,6] (ro XDy giron,

/ / i (96>
< (XM poe 0,701y F IX M ipo 10140y T2 )R

where R is a polynomial function on ||| ;.0 r.cor): |X —1dll 1,50 7,0140), whose coefficients depend
on a, v, and T, and in particular it grows polynomaally in T and bounded below.

Proof. Again we denote n = X’ o X 1. Also it suffices to bound
-V, I (roX ") =n(t) VI (roX ) =T (n-V(roX)) (97)
where T is as defined in (55), since
n-V,G]=(RRH[n-V,Il+[nk) V,(Re RH|T (98)
and the second term is bounded by Lemma 1. For the first term, we have

[T]'V,F} (TOXil)(t):Il + I+ I3+ 1y + I5s + I, (99)
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where

L= /O 0(t) - (VAGy(e—s) * (10 XTHD)) = VAG sy * (n(t)7 0 X7H(1)) ds,
I = / n(t) - (VAGu—s % (70 X7 (s) =70 X7(1))
~VAGy(1—s) * (n(t) (To X7 (s) = 7o X7(t))) ds,

Iy=— /Ot VAG(—s) * ((n(s) = (1)) (10 X 7(s))) ds, (100)
B= [ B = (V1) ~n0) 7o X7 5) s,
Iy = /Ot Agui—s) * (V-n(t) (To X (s) — 10 X (t)) ds,
Is = f% (V-nt)ro XH(t) — guex (V-n(t)To X1(1))) .

First, I + Is can be bounded:

L+1= % (0(t) - V (gt * (T X7H(1))) = V (gue * (n(t)T 0 X7(1))))

) (101)
—;gl,t * (V -n(t) (T o Xﬁl(t)))
and the first term is treated in the same way as (92). Since the first term is
1 1
- (/Rd Vgur(y)y - / Vil — (1 =Ny, t)dx (to X71) (2 — y,t)dy) (102)
0
and
IVgue @)yl < C, (103)
the C*P-norm of the first term is bounded by
c .
< n@llosre 7o X )], (104)
The C*P-norm of the second term is also bounded by the same bound. Therefore,
L+1 < C e xv
111 + 6||L<>°(0,T;Ca-,p) =X [ HLOO(O,T;01+Q) HT”L‘X’(O,T;C“:P)' (105)
The term I3 is bounded due to Theorem 2. Since n € Lip(0,T; C*) we have
C(T\*
Bl ricnny < < (%) ME X =0 mcn0n 06)

X Lip(o,7:01+0) 1Tl oo (0, 7,000y -

The terms I, and I5 are treated in the spirit of Theorem 5. We treat LP N L° norm and Hdélder
seminorm separately. For the term I5, we have

I = / Ay * (V- 1(1) (Ar7(5,8) + Dor(s, 1)) ds (107)

where A7 and Ao are the same as (59). From the same arguments from the above,

”/Ot Agyi—s * (V- n(t)Ar7(s, 1)) ds

a,p (108)
Ct
s 91l oo 0, 7:01+0y 1T Lipgo,rs00ry M-
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On the other hand,

Agy(i—s) * (V- n(t)A27(s, 1)) (z) = /Rd(K(% 2 t,5) (V1) (X(z,1), 1)
—I—Agy(t,s)(l' - X(Z’t)) ((V ’ 77) (X(zv s)vt) - (V : 77) (X(z,t),t)))dz,

where K is as in (63). Then as in the proof of Lemma 3, by the generalized Young’s inequality we have

(109)

t
H/ Agv(tfs) * (v : n(t)A27'<37 t)) ds
0

< Ol oo 17llpoo 07014
P oo
LrnL (110)

e £\ 2 3
X — Id”Lip(O,T;CH'D‘) Ta tl5) T 3 X~ Id”Lip(O,T;CH&) ’

« v3

For the Holder seminorm, we repeat the same argument in the proof of Theorem 5, using the bound
(81). Then we obtain

1 t
T |19n (/ Agy(i—s) * AQT(S,t)dS)
|l 0 Lo
C(a) t\E )2 (1
« a
<& (1 “(5)+(9) ) IX = 141 0,150) 17l 0,150 Il o
Therefore,
C(a) £\’ 3 g2
oo camy I —— [ 141 - 1 X —1Id||,, Olta M4
5] Lo (0,750 0) » < +i+ (u) ( + |l I Lip(o, 7501+ )) X (112)
||X/||Loo(o,:r;cl+a) ||7'||Lip(0,T;Cmp) :
The term I4(t) is treated in the exactly same way, by noting that
V- (n(s) —n(t) = Vo X 7Hs) 1 (A1VX'(5,1)) + Ve X 71(s) 1 (A2V, X (5,1)) (13)
+ (Vo XHs) = Vo X7H1)) 1 (VX 0 X7Y) (1),
where as in (59)
AV X (3,5,t) = Vo X (X Nz, 5),8) — Vo X' (X (2, 5),1), (14)
AoV, X' (2,8,1) = Vo X' (X Mz, 5),t) — Vo X'(X (2, 1), 1),
and
Ve (X Hz,8) — X H(2,t) = (VX 0 X71) (2,8) (Vo (X —1d)) (X (z,t),t — 5) (115)
so that
[VaX 1 (s) = Vo X T (0| g < 1= |1 X = 1| ipio roorray MxT. (116)
Also note that
182V X' (8, 8)[[ e < [VaX (Ol X =170, 7510 [t — s (117)
so that .
‘ / Agyi—s) * (Vo X 7H(s) 1 (A2V X (s,t))70 X '(s)) ds
0 Cao,p
C(a) o (Y N o 118)
< — (1 +t" + <V> M2 || X — 1d[[7p007.014+0) (
HX/HLoo(o,T;CHa) HTHLOO(O,T;C"’P) :
The final result is
Cla £\?
a0l < S (14 (D)) 237 XN gy 7
v v (119)

t
_|_C';M)1(+3(X ||X/||Lip(07T;C1+f’) ||THL°°(O,T;C‘14’) .

13



Finally, I can be bounded using the combination of the technique in Theorem 5 and Theorem 6. First,
we have

12(.13, t) =

t 1
[ [ v 80 v ([ Fate = 0= N 00 Barta = st ) duds (120)

+/0t /Rd VAg,t—s)(x —2) (x—2)- (/01 Vn(Az + (1 — Nz, t)dA (Aa7(z, s,t))) dzds.

Then applying the argument of the proof of Theorem 6, the first term is bounded by

;thé HnHLOO(O,T;Cl+Q) HT”Lip(O,T;CO‘«P) . (121)

The second term is treated using the method used in Theorem 5. By changing variables to form a
kernel similar to (63), and applying generalized Young’s inequality, the L? N L norm of the second
term is bounded by

1 2
Cla) (. (t\* [t !
V(t (4 + (%) )(1+||X—Id||Lip(0,T;CHQ)) I o501+ e 0y -

(122)
Finally, the Holder seminorm of the second term is bounded by the same method as Theorem 5. The
only additional point is the finite difference of V7 term, but this term is bounded by a straightforward
estimate. The bound for the Hélder seminorm of the second term is

Cla) L[\ (1) N
- I+t%+ > + > X — Id”Lip(O,T;Cl+a) HnHLOC(O,T;CHa) HTHLoo(o,T;CW) - (123)

To sum up, we have

10, < < (1 i (t>> (141X 1l rcney ) M5
’ v v 0 (124)
||X/||L°°(O,T;Cl+a) ||T||Lip(0,T;CO‘4’) :
If we put this together,
H (X 0X™1-V,G] (o X_l)HLoo(o,T;cw)
< ClIX M oo 0,7501+0) M || (r o X_l)HLm(O,T;CO‘vP) (125)

1
+<||X/||L°°(O,T;Cl+a) + ||X/||Lip((],T;Cl+a) T2)F(v,a, X, HTHLip(O,T;CO‘vP) ,T)

where F depends on the written variables and grows like polynomial in T (7|, 7.cer), and
X —1d|[1,;(0,7,c1+e)- The bound on I'(7 o X~1) is given by Theorem 5. O

4 Bounds on variations and variables

Using the results from the previous section we find bounds for variations and variables. For simplicity,
we adopt the notation
Me=1+|Xc - IdHL@O(oA,T;CHa) : (126)

First, we bound £V.. Note that X.(0) = Id, so X/(0) = 0 and by Theorem 2 and since X/ €
Lip(0,T; C1+P) we have

HXéHLOO(O,T;CHa) <T ||Xé||Lip(0,T;C1+“=P) J

N (127)
[ne®llca <t HXIHLip(O7T;Cl+0‘;P) M¢.
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Then by the Theorem 3, we have

1
T\2
”776 'Lv(vxus,O)HLw(o,T;oa,p) <C <V> M HXéHLip(O7T;Cl+mP) ||Ue,0||1+a7p’ (128)
L (weo) | o 0,700y < C ol -
By Theorem 6, we have
T\: (T
e'vanU Oe_ue®ue oo O, gc () + () M€2+4a
l[[m I( )z (0,T;C:P) ( L L (129)
HXéHLip(o,T;CHa) [7e —ve ® Ue”Loo(o,T;ca,p) )
and by Theorem 4, we have
T\ 2
— (v! Nox ! <c(=) M~
U (6 = (v ® ve +ve @ VL) 0 X, )HLOO(O,T;CO‘»P) <C (y) ‘ (130)
HTE/ - (Ué @ Ve + Ve @ v2)||Loo(o7T;ca,p) .
Therefore,
d
P2 <C o,
de |l L 0.1000) v (131)

+Sl(T)(”Xé||Lip(O,T;Cl+axP) + ||vé||L°°(07T;CQ=P) + ||02,0||a,p + HTGI”Lip(O,T;CO"P))Ql

where ) (T') vanishes as Tz as T — 0 and Q) is a polynomial in lueollyape 1 Xe =1d] 10 7.01+00)
||TE||LOO(0 T.cory, and HvEHLm(O T.capy, Whose coefficients depend on v. Similarly,

||9€||Loo(o,T;Cmp) < My ||u0||1+o¢7p + O [|X = Ideip(O7T;Cl+o‘) ||Ue,0||a7p +52(T)Q2, (132)

where S5(T') vanishes as T2 as T — 0 and Qs is polynomial in 71l Lipo,rscemy and | X = 1d]| 10 701409
whose coefficients depend on « and v. Also

lgell o< (0,7 mmy < C(Hué’oHlJra,;D + X = Td[ L0, mi014a) ’|TE/70Ha,p) (133)
+S3(T)(||Xé||Lip(0,T;C1+°‘:P) + HUQ,OHQ,,; + ||Te/||Lip(0,T;C<"«P) + ||U2||L°°(0,T;Cl+axp)>Q37

where S3(T") vanishes as T: as T — 0 and Q3 is polynomial in Hu6,0||1+a,pv (IX — IdHLip(O,T;ClJr“vP’
||T||Lip(O,T;C'avp)7 and ||11€||LQO(O’T;CH@,I,), whose coefficients depend on v and «. Then we have

d
Hvave

de <T ”Xé”Lz'p(o,T;cHa) ||9€||Loo(o,T;ca,p) + M. ”géHLoc(o,T;ca,p) (134)

L>(0,T;C>:P)

and

Te

< 2|gell oo (0,70 <||TE||L°°(O,T;COL1P) + QPK)
L0 (0,150 ) (135)

17 e o 100y (19l Loe 0,00 + 2K)

4
de

5 Local existence
We define the function space P; and the set Z,

Py = Lip(0,T; Cl—O—a»p) x Lip(0,T;C*?) x L®(0,T; C«l+a,p)
136
T={(X,7,v): (X —1d,7,0)|p, gr,v:%}, (136)
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where I' > 0 and T > 0 are to be determined. Now, for given ug € C1T*P divergence free and oy € C*P
we define the map
(X,7,v) = S(X,1,0) = (X", 7% ) (137)

where
X (t) —Id+/ V(X (s),7(s),v(s))ds,

Frew( _00+/ T(X o(s))ds, (138)

=V(X,T,v).

If (X —1d,7,v) € Py, then (X" — Id,T"ew,U”ew) € P; for any choice of T' > 0. Moreover, we have
the following:

Theorem 8. For given ug € C1T%P divergence free and o9 € C*P, there is a I > 0 and T > 0 such
that the map S of (138) maps T to itself.

Proof. 1t is obvious that %X"ew = "%, For the size of S(X, 7, v), first note that if (X —1Id, 7,v)p, <T
then

)

Mx =1+|X - Id”Loo(o,T;cHa) <1+4+17TT. (139)
Applying Theorem 3 and Theorem 4, we know that

VIl oo 0,700y < Nlwollgp, + A1 (T)Bi(T, uolly 5 loolly ) (140)

where A;(T) vanishes like Tz for small T > 0 and B is a polynomial in its arguments, and some
coeflicients depend on v. We estimate

191 o< (0. 700ry < [0l 1 g0 + C1T llo0lla,, + A2(T) Ba(T [[uolly 4o 5 lo0lla,p)s (141)

where C is as in Theorem 5, depending only on « and v, A3(T') vanishes in the same order as A;(T)
as T — 0, and By is a polynomial in its arguments, and some coefficients depend on v and «. From
(24) we conclude

VIl e 0.1501 40wy < Eilluolly o, + T ool ;) + As(T) B3 (T, uolly1q.p » 190l 4 ) (142)

where K is a constant depending only on v and «, and A3 and Bs have the same properties as previous
A;s and B;s. Now we measure 7. From (84) and the previous estimate on g we have

1T o 0,:c0ry < Ba(lluolly o (0K + lloolly ) + loolla, (T looll,,, + PET + k)

(143)
+A4By,

where K5 is a constant depending on v and «, and A4 and B, are as before. Since o < 1, we can
appropriately choose large I' > [|oo],, , + [[uoll; 1, , and correspondingly small &> T > 0 so that the

right side of (142) and (143) are bounded by §. Then [ (X" — Id, rrew, vmev) |, < T O
We show now that S is a contraction mapping on Z for a short time.

Theorem 9. For given ug € C1T%P divergence free and oo € C*P, there is a T' and T > 0, depending

only on |luolly 4, and ||ooll,, . such that the map S is a contraction mapping on I = Z(I',T'), that is

1
|S(X2, T2, v2) = S(X1,71,01)[p, < 3 (X2 = X1,72 — 71,02 —v1)lp, - (144)

Proof. First from Theorem 8 we can find a I' and Ty > 0, depending only on the size of initial data,
say
N = maX{HUOHI—O—a,p? Ho—olla,p}7 (145)
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which guarantees that & maps Z to itself. This property still holds if we replace Ty by any smaller
T > 0. In view of the fact that Z is convex, we put

Xe = (2 - G)Xl + (6 - 1)X2,

Te=0Q2—-en+(e—1)m,1 <e<2. (146)
Then (X, 7e,ve) € Z, ve = (2 — €)v1 + (€ — 1)va, Ue,0 = up, and o g = 0. This means that
X! =Xy - X1,v, =va —v1,u g =0,0, 5, =0. (147)
Then from the results of Section 4, we see that
d
ac Lot (1X2 = Xillpipgo,rscrvamy + 102 = V1ll L 0,7 000)
s = il o7 )SLTI @S (D),
1N Lipgo.rsc1+eny < (1X2 = Xill Lipo 0140wy T 102 = Vill oo 0,100 (148)

+ 72 = 71l Lipo, 10000 S2(T) @2 (1),

||7Te||L,‘p(o,T;cam) < ([[X2— X1||Lip(O7T;Cl+rx,P) + [lv2 — UlHLoo(o,T;ca,p)
1172 = 71l g0y} SHTIQS (D),

where X’ and 7, are defined in (20), S} (T), S5(T), S4(T) vanish at the rate of Tz as T — 0, and
Q1 (), Q5(T), Q5(T") are polynomials in I', whose coefficients depend only on v and a. By choosing
0 < T < Tp small enough, depending on the size of Q}(T')s, we conclude the proof. O

We have obtained a solution to the system (6) in the path space P; for a short time, that is, we
have (X, 7,v) satisfying v = % and satisfying (14). We also have Lipschitz dependence on initial data,
Theorem 1.

Proof. We repeat the calculation of the Theorem 9, but this time u,, = u1(0) — u2(0) and o[

01(0) — 02(0). Then we choose Ty small enough that S}(T,)Q;(T) < 1. O
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