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Abstract—This paper introduces quantum computing as a nec-
essary and viable tool in addressing the needs of a modernized
power grid. The application of quantum computing in enhancing
physical security of the grid – an increasingly difficult problem to
solve– is investigated. A comparative study based on mathemati-
cally proven computing performance measures shows the merits of
the proposed method and further unveils the potential benefits of
quantum computing in improving grid performance.
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I. INTRODUCTION

E
LECTRIC utilities have been largely successful in providing
reliable and affordable power through the traditional structure

of the power grid. This structure, however, is changing due to the
emergence of new customer-deployed technologies, the shift to-
wards more renewable and carbon-free generation, and the increas-
ing intensity and frequency of natural disasters as a result of climate
change. As the grid is being modernized, i.e., more distributed,
digitalized, and decarbonized, the role of data is becoming more
important in grid observability and controllability [1]. More data
is accordingly equivalent to an increased need for data analytics
to extract information. What is being largely ignored is that current
computational technology may not be adequate to address the needs
of a modernized grid. An example is the grid security analysis that
is limited by the capabilities of current computational technologies.
This paper contributes to this emerging field of research by investi-
gating the importance of adopting quantum computing in ensuring a
secure, resilient, and reliable grid. A gate-based quantum algorithm
is proposed to solve the grid security problem; an important problem
that needs to be consistently addressed by system operators.

II. QUANTUM COMPUTING

Classical computers work by converting information to a series
of binary digits, or bits, and operating on these bits using integrated
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Fig. 1. Bloch sphere represents the set of all possible states for a single qubit.

circuits (ICs) containing billions of transistors. There are only two
feasible values for each bit, 0 or 1. Computers process the data by
manipulating these bits. A quantum computer also reflects data as a
series of bits, called qubits. Like a normal bit, a qubit could be either
0 or 1, but unlike a regular bit, a qubit may also be simultaneously
in both states. This ability to simultaneously occupy all possible
binary states results in a potentially exponential scaling advantage
in the number of qubits in a system [2], [3].

An imaginary sphere can be thought of as a qubit, as shown in
Fig. 1. The north and the south poles correspond to the states |0〉 and
|1〉, respectively. A classical bit can be a qubit at either of the two
poles of the sphere. The qubit state, however, can be mapped onto
any point on the surface of this unit sphere. The state of a single
qubit can be represented by:

|ψ〉 = k0|0〉+ k1|1〉 (1)

where

|0〉 =
(

1

0

)

and |1〉 =
(

0

1

)

(2)

Values of k0 and k1 are restricted by the condition below,

|k0|2 + |k1|2 = 1 (3)

Qubits behave on the principles of quantum physics and en-
compass two characteristics of superposition and entanglement.
Superposition is the ability of a quantum system to be in multiple
states at the same time. Entanglement is the correlation that exists
between quantum particles. Relying on these two characteristics,
a quantum computer can process a significantly large number of
calculations simultaneously, using quantum interference to measure
outcomes of interest.

III. QUANTUM COMPUTING IN POWER GRIDS

Based on the characteristics of a qubit, as discussed, with N
qubits a total of 2N numbers can be operated simultaneously. This
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property (called superposition) is similar to the concept of parallel
computing in classical computers. This implies that a computer
that uses this property can process data much faster while using
less energy than a classical computer.

There are many power system problems that require significant
processing capabilities to address size and scalability issues. Some
of these issues are addressed by reformulation, approximations, or
parallel processing. However, the growing size and needs require
a solution from the exact system (without any approximations)
in a timely manner. Many examples of this can be found, such
as AC optimal power flow, security-constrained unit commitment,
contingency analysis, and transient stability, to name a few.

A. Grid Security Applications

The power system security represents the system ability to suc-
cessfully handle unexpected events (such as the effects of com-
ponent failures). Security is commonly evaluated by considering
probable component failures and calculating resultant overloads
on other parts of the grid. Security considerations enable grid
operators to better prepare for and react to outages through carefully
planned preventive and corrective actions [4]. Security analysis may
require solving potentially thousands of power flow scenarios, each
considering a different contingency, and accordingly assessing the
state of the system.

The existing security analysis methods merely focus on the
outage of a limited number of grid components, typically one (the
common N − 1 reliability criterion). Ongoing research focuses on
developing new uncertainty-based and statistical methods to pro-
vide probabilistic solutions accounting for uncertainty. One major
reason to look into probabilistic methods is the lack of adequate
computational capabilities to perform higher order deterministic
studies, i.e., N −m. This need is heightened due to the growing
number of natural disasters that result in simultaneous outage of
several grid components and thus call for much more complex
studies.

Equations (4)-(5) present power flow problem formulation,
where m is an index for buses, mn is used as an index for lines,
and s is an index for scenarios. These two equations represent real
and reactive nodal load balances, where p and q are net real and
reactive nodal injections, respectively. V is voltage magnitude and
θ is voltage angle. G and B reprsent grid characteristics and are
obtained from admittance matrix.

psm=
∑

n

V s
mV s

n (Gmn cos θsmn+ Bmn sin θsmn) ∀m, ∀s (4)

qsm=
∑

n

V s
mV s

n (Gmn sin θsmn− Bmn cos θsmn) ∀m, ∀s (5)

In contingency analysis the state of the system in response to
any potential contingency, i.e., the outage of units and/or lines,
is evaluated. The index of interest in this formulation is s, rep-
resenting contingency scenarios. All equations should be solved
for all contingency scenarios. For N − 1 studies, the number of
scenarios would beN and s ∈ {1, , N}, forN − 2 studies we would
have s ∈ {1, , N(N − 1)/2} scenarios which shows a considerable
increase in the problem size.

To solve the power flow problem a linear system of equations
should be solved. In a DC power flow, this linear system of equations
should be solved only once as the problem is already linear. In an AC
power flow, however, equations are linearized around the operating
point in each iteration, and accordingly a linear system of equations
is solved. Therefore, independent of the power flow method used for
contingency analysis, i.e., AC or DC, a linear system of equations
has to be solved.

Fig. 2. Quantum algorithm for solving the security analysis problem.

IV. SOLUTION ALGORITHM

Assume that each power flow scenario has M equations and M
unknowns, and can be shown as a linear system of equations, Cy =
h. In the power flow problem, y is the vector of unknowns, C is
the matrix of coefficients (obtained from physics of the system as
well as contingency scenarios), and h is the vector of solutions
(obtained from system parameters). The solution can be achieved
as y = C−1h, assuming that C is an invertible matrix.

Matrix C should be Hermitian (i.e., a matrix that its complex
matrix is equal to its own conjugate transpose) to apply the quantum
algorithm that is proposed next. This is the case for a DC power flow,
but not for an AC power flow. To resolve this issue we reformulate
the problem as follows and solve for the new vectors.

(

0 C

C† 0

)(

0

y

)

=

(

h

0

)

(6)

The coefficient matrix in this case is Hermitian so the proposed
quantum algorithm can be applied. We rename the new matrices to
reach the form of Ax = b and solve for this problem. By rescaling
the x and b vectors to ||x|| = ||b|| = 1, these vectors can be repre-
sented as quantum states |x〉 and |b〉. The solution is therefore to
find state |x〉 such that

|x〉 = αA−1|b〉 (7)

where

α−1 = ||A−1|b〉|| (8)

For the coefficient matrix A, consider the eigenbasis {|uj〉} and
rescaled eigenvalues {λj}, i.e., A =

∑

j λj |uj〉〈uj |. The state |b〉
can be expanded in the eigenbasis as

|b〉 =
∑

j

βj |uj〉 (9)

and accordingly |x〉 can be calculated as

|x〉 =
∑

j

βj
1

λj

|uj〉 (10)

This equation can be solved using the HHL algorithm proposed
in [5]. This algorithm proceeds in four steps: phase estimation,
controlled rotation, uncomputation, and measurement, as discussed
in the following and shown in Fig. 2.

Three inputs are considered in this quantum algorithm, including
a single ancilla qubit initialized in |0〉, a register of n qubits of
working memory initialized in |0〉⊗n, and an input state initialized
in |b〉 as defined in (9). The ancilla qubit is defined to enable a
reverse computing task (required in quantum computing). Ancilla
qubits are not usually uncomputed and their values are known a
priori.
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Phase estimation: Phase estimation finds the eigenvalues (or
phases) of an eigenvector of a unitary operator, i.e., a controlled
unitary with a change of basis that maps the eigenvalues onto the
working memory [6]. Phase estimation employs a Hadamard gate
(H), followed by a unitary operator (U) and an inverse quantum
Fourier transform (FT) to determine {λj} the eigenvalues of A.
The Hadamard gate creates superposition by mapping the basis

state |0〉 to (|0〉+ |1〉)/
√
2 and ensures that the measurements will

have equal probabilities to become 0 or 1. The unitary operator is
defined asU = exp(2πi2n−1A), where n depends on the number of
eigenvalues, or in other words, on what binary digit of the eigenvalue
needs to be read out. The quantum Fourier transform estimates
the eigenvalues of the resultant qubits. Using phase estimation,
the following transformation is achieved where |λj〉 represents the
binary representation of λj .

|0〉⊗n|b〉 ⇒
∑

j

βj |uj〉|λj〉 (11)

Controlled rotation: The ancilla qubit is initialized in state |0〉
and further used to extract the eigenvalues of A−1 from |λj〉. A

controlled rotation R(λ−1
j ) is applied to this qubit to transform the

system to

∑

j

βj |uj〉|λj〉
(√

1− γ2/λ2

j |0〉+ γ/λj |1〉
)

(12)

Uncomputation: A reverse phase estimation is applied to un-
compute the results of the previous step. The memory register is
accordingly disentangled and reset to |0〉⊗n which will further result
in

∑

j

βj |uj〉
(√

1− γ2/λ2

j |0〉+ γ/λj |1〉
)

(13)

Measurement: The ancilla qubit will be measured. Conditioned
on seeing |1〉, the output state will be

∑

j βjγ/λj |uj〉, which corre-

sponds to our expected result state |x〉.
The HHL algorithm creates the |x〉 solution state that we desire.

However, when |x〉 is measured, we don’t learn each coefficient
in the solution state and instead, the |x〉 state vector collapses to
one bit string, with a probability based on the amplitudes. In this
case, we are able to measure scalar-output functions of the |x〉 state
vector. In other words, instead of looking for the solution |x〉, we
look for the expectation value of some operator associated with
|x〉, e.g., 〈x|M |x〉 for a matrix M . Fortunately this is the case in
the contingency analysis problem, in which we are looking for line
overloads or voltage violations and can find those as a function of
calculated variables.

V. COMPARATIVE ANALYSIS

Consider the standard IEEE 300-bus test system [7]. This system
has 300 buses, 69 generators, 304 transmission lines and 195 loads.
For anN − 1 study, the set of power flow equations should be solved
373 times (i.e., 69+304). For an N -2 study, this number goes up to
69,000, and for N -3 it will be close to 8.5 million. If we assume
each run takes an average of 100 ms, it would take close to 10
days to run simulations for all contingency cases under a N − 3
scenario. For higher contingency scenarios or larger systems, even
the strongest classical computers may fail to perform this simulation
in a timely manner. Considering Λ as the number of unknowns,
classical computers solve linear system of equations in a timescale

TABLE I
COMPUTATION TIME

of order Λ while the proposed quantum computing algorithm is
proved to find the solution in a timescale of order log(Λ). Based on
this speed up, theN -3 study can be performed in around 0.7 s instead
of 10 days as in a classical computer. Therefore, employing the HHL
algorithm in a quantum computer can confer an exponential speedup
over the best classical algorithm. It is worth noting that the line
outage distribution factor (LODF) method can also be used instead
of solving power flow equations. This method, although faster
than solving a linear system of equations in a classical computer,
will still show scalability issues, i.e., an exponential computation
time increase, when used for larger systems and higher number of
contingency scenarios.

VI. DISCUSSIONS AND CONCLUSION

As stakeholders seek to integrate additional advanced technolo-
gies to support efforts to provide higher levels of sustainability
and resilience, there is a need to develop the enabling capabilities
to meet those goals. Quantum computing, as discussed in this
paper, represents an enabling technology that can help make power
systems more reliable, resilient and sustainable. In this paper, math-
ematically proven computing performance measures were used to
show the speed up over classical computers. There still doesn’t exist
a quantum computer with a large number of qubits that can solve the
discussed security problem. This problem will be resolved in near
future as the quantum computing technology progresses. Moreover,
the originally-envisioned HHL algorithm is also best suited to
fault-tolerant quantum hardware with millions of qubits. However,
recent proposals [8], [9] have adapted HHL for near-term quantum
computers, which have dozens of noisy qubits. These proposals
feature a hybrid scheme that leverages the separate strengths of
quantum and classical computation; an appealing technique for
near-term application.
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