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Solvable base change

By Laurent Clozel at Orsay and Conjeeveram S. Rajan at Bombay

Abstract. We determine the image and the fibers for solvable base change.

1. Introduction

The reciprocity conjectures formulated by Langlands give a parametrization of cusp
forms associated to GL(n) over a global field K by n-dimensional complex representations
of the Langlands group attached to K. The Langlands group, whose existence is yet to be
shown, is a vast generalization of the absolute Galois group or the Weil group of K, and can
be considered in analogy with these latter groups. In this analogy, the theory of base change
amounts to restriction of parameters on the Galois theoretic side.

For cyclic extensions of number fields of prime degree, the existence and the characteri-
zation of the image and fibers of base change for GL(2) was done by Langlands [9] following
earlier work of Saito and Shintani. This was used by Langlands to establish Artin’s conjec-
ture for a class of octahedral two-dimensional representations of the absolute Galois group of
a number field. The work of Saito, Shintani and Langlands was generalized by Arthur and
Clozel to GL(n), for all n. In [1], they proved the existence and characterized the image of
the base change transfer for cyclic extensions of number fields of prime degree. However, the
proof in the general, cyclic case contained a mistake.

The theorem of Langlands, Arthur and Clozel, gives inductively the existence of the base
change transfer corresponding to a solvable extension of number fields for GL(#). The problem
of characterizing the image and fibers of base change for cyclic extensions of non-prime degree
was considered by Lapid and Rogawski in [12]. This led them to conjecture the non-existence
of certain types of cusp forms on GL(n), and they proved this conjecture when n = 2. It was
shown in [15] that the conjecture of Lapid and Rogawski allows a characterization of the image
and fibers of the base change map for solvable extensions of number fields. In this article, our
main aim is to prove the conjecture of Lapid and Rogawski for all 7.
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In order to make this paper more self- contained, we have included here complete proofs,
more detailed that in the originals, of the theorem of Lapid and Rogawski characterizing cusp
forms on GL(n) whose Galois conjugate by a generator of a cyclic Galois group differs from
the original form by an Abelian twist (Theorem 2), which was in their paper conditional on
Theorem 1; and of the theorem of one of us (Rajan) characterizing the image and fiber of base
change in a solvable extension (Theorem 3).

1.1. Main theorem. For a number field F', let A denote the adele ring of F' and Cg
the group of idele classes of F'. Given a representation 7 of GL(n, Ar) and o an automorphism
of F, define “m (or o (1)) to be the representation g — (0~ !(g)) for g € GL(n, AFr). Given
an extension E/F of number fields, if @ is an idele class character of E, denote by wpr its
restriction to the idele class group Cr of F.If w is a character of Cr, define ®
where Ng/p : CE — C is the norm map on the idele classes of E.

Let E/F be a cyclic extension of number fields of degree d and o denote a generator
for Gal(E/F). By eg/F, we mean an idele class character of Cr corresponding to the exten-
sion E/F,i.e., a character of Cp of order d, vanishing on the subgroup of norms Ng,r (CEg)
coming from E.

The primary aim of this paper is to establish the following conjecture of Lapid and Ro-
gawski [12] for GL(n) for all n, proved by them for GL(2):

=woNg/F,

Theorem 1 ([12, Statement A, p. 178]). Let E/F be a cyclic extension of number fields
of degree d > 1 and o denote a generator for Gal(E/ F). Let @ be an idele class character
of E such that its restriction to Cp C Cg is eg /. Then there does not exist any cuspidal
automorphic representation Il of GL(n, Ag) such that

(1.1 MR w.

We note that the theorem is obvious if d does not divide n, as one sees by considering
the restriction to Cg of the central character of IT.

1.2. Galois conjugate cusp forms up to twisting by a character. From Theorem 1,
Lapid and Rogawski derive a structure theorem for cusp forms 7 on GL(n, Ag ), whose Galois
conjugate % differs from 7 up to twisting by a character .

Given a cyclic extension E/F of number fields and an automorphic representation
of GL(n, AF), denote by BC‘; () the base change lift of 7 to an automorphic representation
of GL(n, Ag). For a cuspidal automorphic representation n on GL(n, Ag), let Alg (n) denote
the automorphic representation of GL(nd, A ), where d = deg(E/ F), the existence of which
was proved for nd = 2 in [8], and for general n,d in [1]. For a field F let G denote the
absolute Galois group Gal(F/F) where F denotes an algebraic closure of F. At the level
of Galois representations, base change corresponds to the restriction of representations from
GF to Gg, and automorphic induction corresponds to the induction of representations of G g
toGF.

Theorem 2 ([12, Statement B, p. 179]). Let E be a number field and o an automor-
phism of E of order d. Let F be the field left fixed by the subgroup of automorphisms of E
generated by 0. Let @ be an idele class character of E and let w be a cuspidal representa-
tion of GL(n, AEg) such that o () ~ 7w @ w. Let K/ F be the extension corresponding to the
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character o of Cr, and let L = KE. Then:

(1) KNE = Fand[K : Fldividesn. Let r = n/[K : F] and let T be the unique extension
of o to L trivial on K.

(2) There exists a cuspidal representation o of GL(r, Ag) such that
7 = AIZ (BCE (m9) ® ),
where yr is a Hecke character of L such that t(y)y~! = .

(3) Conversely, given mg and  as in (2), the representation
7w = Alf (BCE (7o) ® V)

satisfies o () >~ m @ w. However, w need not be cuspidal.

1.3. Solvable base change. The following theorem characterizing the image and fibers
of the base change transfer for solvable extensions of number fields was established in [15]:

Theorem 3. Let E/F be a solvable extension of number fields, and let T1 be a unitary,
cuspidal automorphic representation of GLy, (AE).

(1) Suppose Il is Gal(E/ F)-invariant. Then there exist a Gal(E/ F)-invariant Hecke char-
acter Y of E and a cuspidal automorphic representation w of GL, (AEg) such that

BCE(m) ~ T @ y.
Further, W is unique up to base change to E of a Hecke character of F.

(2) Suppose there exist cuspidal automorphic representations w, 7w’ of GL, (A F) such that
BCE (n) = BCE(n') = TI.

Then there exists a character x of Cr corresponding via class field theory to a character
of Gal(E/ F) such that
7~ ® y.

Moreover; if x is non-trivial, the representations w and w @ y are distinct.
Theorem 3 follows by an inductive argument from Theorem 2.

Remark. Suppose E/F is a solvable extension with the property that invariant idele
class characters of E descend to F. Then any invariant, unitary, cuspidal automorphic rep-
resentation of GL,, (Ag) lies in the image of the base change map BCg/, . In particular, we
recover the classical formulation that invariant, unitary, cuspidal automorphic representations
descend if E/ F is cyclic.

Remark. The motivation for this theorem stems from the following analogous Galois
theoretic situation: let £/F be a Galois extension of number fields, and p : Gg — GL,(C)
an irreducible representation of G g. Suppose that p is invariant under the action of G on the
collection of representations of Gg. By an application of Schur’s lemma, it can be seen that
p extends as a projective representation, say 7 to G . By a theorem of Tate on the vanishing
of H>(Gp,C>) ([16]), this representation can be lifted to a linear representation 7 of G .
This implies that p ® y descends to a representation of G for some character y of Gg.
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Acknowledgement. We would like to thank J.-L.. Waldspurger for useful correspon-
dence, and Christian Kaiser for a correction. Our work relies crucially on the stabilization of
the twisted trace formula [14], due to Moeglin and Waldspurger. We note that one prerequisite
for this proof is the so-called “weighted twisted fundamental lemma”, which at this point is
still unproven.

2. Proof of Theorem 2

In this section, assuming the validity of Theorem 1, we give a proof of Theorem 2 modi-
fying the arguments given in [12].

Let £/ F be a cyclic extension of degree d, and let o denote a generator for Gal(E/ F).
We want to classify the idele class characters w of E and cusp forms & on GL(n, A g) satisfying
the condition 0 (77) >~ m ® w. At the level of central characters, this implies o () = yro",
where y, denotes the central character of 7. In particular, this implies that the restriction wr,
of w to Cr, has finite order dividing n. Let K/ F be the cyclic extension of F corresponding
towr.

We first show that K N E = F. We prove this by induction on the pair (d, n), assuming
the validity of the claim for all extensions £/ F of degree less than d, or for cusp forms on GL,,
form < n. Whenn = 1, the assertion is clearly true. So, we now assume thatd > 1 andn > 1.

We initially rule out the following case: K C E and K isnotequal to F. Thecase £ = K
is ruled out by Theorem 1. Let F C K C E’ C E be an extension of fields such that the degree
of E/E’is p, for some rational prime p.Letm = [E’ : F]. The group Gal(E/E’) is generated
by 0. We observe

o)~ 0" Qw)~ -~ R,
where ¥ = wo(w)---0™ ! (w). The restriction Y g+ of ¥ to E’ satisfies
VE =wF o NEg/F.
Since K C E’, Y- is trivial. Consequently, there exists an idele class character n of Cg such
that amnw = . Hence,

o"(r@n xo"(m@c" (N 2T @Y Q0" (n) =T @7

By the descent theorem for cusp forms invariant with respect to a cyclic extension of prime
degree [1], there exists a cuspidal automorphic representation p’ of GL, (Ag/) such that

BCL () =7 ®7.
Let o/ denote the restriction of o to E’. Then
BCE (0'(p) ~o(x®@n) ~7®w®ac(n) ~BCE () ®@c(n ' w.

We observe now that o(7)n~'w is invariant under Gal(E/E’) = (¢™). From the definition
of 1, it follows that o () ~! = 0™ (w)w~'. Hence,

o™ (e (mn o) = (™™ () o™ ()
=o(mo@W) 'Yn o)y

=o(nn .
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Hence there exists an idele class character 6 of E" such that 6 o Ng, g = o(n)n~ ' w. We have

BCE, (o' (p))) ~ BCE, (o' ® 6).
From the characterization of the fibers of base change for cyclic extensions of prime degree
o'(p)~p' ®0Q ey g
for some integer i. Let y = 0 ® e’é JE" Thus there exists an idele class character y of E” such
that
o'(p) ~p' ® x
such that the base change of the character y to E is o(n)n~ " w. Hence )(f, = wF, and yfF
defines an extension K’ of F containing K. Since the degree [E’ : F] is less than that of
[E : F], by the inductive hypothesis K’ N E’ = F. Since K C E’, we have

1

K=KNE CK'NE =F.

Hence we have ruled out the case that K C E and K # F.

Let N = K N E. We want to show N = F. Assume now that wg is not trivial. The field
K associated to wg is a non-trivial cyclic extension of F. By what we have shown above,
K N E is a proper subfield of K. Let K’ C K be a subfield of K containing N such that its
degree over N is a rational prime p. We have

T zod(n) ~ ®a)0(a))~--0d_l(a)) ~ 7 ®wFoNEg/F.

By class field theory, the character wp o Ng,f corresponds to the cyclic extension L = KE
over E. The field E’ := EK' is an extension of E of degree p contained inside L. The iso-
morphism 7 >~ 7 ® wp o Ng,p implies an isomorphism 7 >~ 7 ® (wF o NE/F)k for any
natural number k. Taking k = [L : E'], we have 7 >~ 7 ® eg//g, where eg//g is an idele
class character of E corresponding via class field theory to the extension E’/E. By the char-
acterization of automorphic induction [1], there exists a cusp form 7’ on GL(n/p, Ag’) such
that
w ~ ALL, ().

Let o’ € Gal(E’/F) be an extension of o to E’. Then
AL (o' (') ~o(n) ~ 7 @ w ~ ALE, (7' ® o),

where 0’ = w o Ng/ g is the base change of w to E’. From the characterization of the fibers of
automorphic induction with respect to a cyclic extension of prime degree, it follows that there
exists an automorphism 7 € Gal(E’/E) such that to’ (') >~ 7’ ® @’. The automorphism to’
of E’ extends o. Renaming to’ as o/, we see that there exists an automorphism o’ of E’
extending o such that
o)~ ®w.

Let F' be the fixed field of o’. Since the fixed field of o is F, E N F’ = F. Further, d divides
the degree of E’ over F' aso’|E = o, and [E’ : F] = dp. There are two cases: either F’ = F
or F' # F.

Suppose F’ = F. Then E' is a cyclic extension of F of degree dp, and 0}, = o}
Let K" be the cyclic extension of F cut out by w%. By induction, applied to (', 0", '),
K”" N E’ = F. Since p divides [K : N] and K" is the unique subfield of index p in K D F,
it follows that N C K”.Hence N = KNE =K"NE =F.
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Before taking up the case F’ # F, we now rule out the case F’ = F by showing that
7 is not cuspidal in this case. By construction, K’ C K and E’ = EK’ is contained inside the
field L = KE. The field K" is contained inside K. Hence K”E’ C KE. Counting degrees

[K"E': E] = [K'E': E'||[E': E] = p[K" : K" N E']
=p[K": F]=[K: F]=[KE : E],
we get L = KE = K"E'. Since wr o N corresponds to the extension L of E, the charac-
ter wf o Ng//p = wh o Ng/jp corresponds to the extension L = KE = K”E'. The above

process can be continued, and the representation 77’ (and hence 1) is automorphically induced
from a cuspidal representation 77, of GL(n/pr,Ar), where r = [L : E’]. The equation

o)y ~n"®w
implies that mry, satisfies the condition
o’ (L) ~ 1L ®

for some automorphism ¢’ of L extending ¢’ on E’, and of order strictly greater than d, the
order of 0. Now a)I% is the trivial character. The automorphism o 4 is a non-trivial automor-
phism of L trivial on E, as 0" extends o on E. But

d
0" () ~ 7L, ® ok oNp/k >~ 7L.

This implies that & is not cuspidal, contrary to our hypothesis. Hence this rules out the case
that F/ = F.

Hence we are in the situation that F/ # F. Since d divides [E’ : F'] and [E’ : F] = dp,
[E': F'] =d, weseethat [F': F] = p ; moreover, we saw that F' N E = F. The extension
E’ over F is a compositum of the linearly disjoint extensions £ and F’ over F. The char-
acter a)},, = wr o Np//F, corresponds to the extension K F’ which contains the compositum
NF' C E’. By the induction hypothesis, KF' N E’ = F’. Hence NF' = F’, and this implies
that N =KNE =F.

We now show that F’ = K’.If K’ # F’, the degree of the compositum [K'F’ : F] = p?.
Since KFFNE'=F,E'=EK'DEand K' C K,

K'FFNE=F NE=F.

Since K’ and F’ are both contained inside E’ and [E : F] = d, this implies [E’ : F]| > dp?.
This contradicts the fact that the degree of E’ over F is dp. Hence F' = K.

We also obtain that the representation 7 is automorphically induced from a cuspidal
representation 7’ of GL(n/ p, Ag-) satisfying

oy~ ®@w.

The field E’ is also the compositum of the fields E and K’. The extension of E defined by the
character w},/ o Ng//Fs is L. This can be continued, and we obtain a cuspidal representation

nr, of GL(n/r, Ar) such that
T~ Alf (L),

where r = [L : E]. The representation 77, satisfies,
() ~ 1 ® ok,

where t is the unique automorphism of L extending o such that the fixed field of L by 7 is
equal to K.
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Since a)II; is trivial, there exists a Hecke character ¥ of L such that t(y)y ! = L.
Then
(L @Y ) ~ 1 @t @ W) >~ @yl

Hence the cuspidal representation 77 ® ¥ ! is invariant with respect to the cyclic automor-
phism group Gal(L/K) generated by t. To complete the proof of Theorem 2, we now have to
establish descent for cyclic extensions.

Let E/F be a cyclic extension of degree d and let 7 be a cuspidal representation of
GL, (A g) invariant under the action of Gal(E/F) = (o). Choose an extension F C E' C E
such that [E : E'] = p for some rational prime p. By the descent for cyclic extensions of
prime degree, there exists a cuspidal representation " of GL, (A /) which base changes to 7.
We need to show that 7’ is left invariant by Gal(E’/F). Let o’ denote the restriction of o
to E’. Suppose o/(n’) >~ i’ ® ¢, where ¢ is an idele class character of E’ which corresponds
to the extension E/E’ via class field theory. Since E/F is cyclic, ¢ = no Ng//p for some
idele class character n of F defining the cyclic extension E/F by class field theory. If p is
prime to [E’ : F], 0'? (') ~ n’ ® ¢P >~ 7/, but ¢'P generates Gal(E'/F), so n’ is invariant
by Gal(E'/F).

Assume p? divides d. Since 7 is of order d, e = n%/P defines a non-trivial cyclic
extension F” of degree p of F contained inside E. Then F” = E°” ¢ E' = E°”” so
E’' N F” # F. This contradicts the first part of Theorem 2 proved above.

Hence 7’ is left invariant by Gal(E’/ F'), and by induction can be descended to a cuspidal
representation of GL,, (A r).

Hence we obtain

7 ~ AIE (BCE (np)),

where 1 is a cuspidal representation of GL(n/r, Ax) which is a descent of 7y .

Conversely, it is easy to see from the functorial properties of base change and auto-
morphic induction that any automorphic representation as in part (3) of Theorem 2 satisfies
o) > QR w.

3. Proof of Theorem 3

In this section, we deduce Theorem 3 from Theorem 2, following the arguments given
in [15].

Lemma 1. Let E/F be a solvable extension of number fields. Suppose 7 is a cuspidal
automorphic representation of GL,, (A ) such that its base change to E remains cuspidal. Let
X be a non-trivial idele class character on F such that the composition y o Ng,f is trivial,
where Ng ;g : Cg — CF is the norm map on the idele classes. Then w and m ® x are not
isomorphic.

Proof.  Suppose m ® y. This implies 7 >~ 7 ® )(k for any natural number k. Hence we
can assume that y is of prime order. In this case, y cuts out a cyclic extension E’ of prime
degree contained in F'. By the characterization of automorphically induced representations [1],
it follows that the base change of 7 to E’ is not cuspidal. This contradicts the assumption that
the base change of 7 to E is cuspidal. |
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We first prove part (2) of Theorem 3, characterizing the fibers of the base change lift
for solvable extensions of number fields. Suppose I1 is a cuspidal automorphic representation
of GL,(AEg). Let & and 7’ be cuspidal automorphic representations of GL, (A ) which base
change to IT. We need to show that 7’ ~ 7 ® y for some Hecke character y on F such that
X0 NE/F = 1.

By the results of [1], the theorem is true for cyclic extensions of prime degree. Let
E D E; D F be a tower of Galois extensions of F, where Eq/F is of prime degree. Let
BC}?,1 (m) = my and BC?1 (7") = 7{. By induction, we assume that the theorem is true for
the extension E/FE1. We have n{ ~ w1 ® x1 for some Hecke character y; on Ep such that
x1°Ng;g, = 1. Let o be a generator of Gal(E1/F). We have

~ PN s e N ) < ~ o
 SECdy S Ialy slaing S e STy STy S R0 Ry S B
Hence
~ 1—o
T =T ® X1-

If y1 # %x1,let f denote the order of 1= y, p a prime dividing £, and let
p=0-01py

Observe that v is a non-trivial character of Gal(E/E1) of order p satisfying
T =T @ V.

It follows from the characterization of automorphic induction that m; is automorphically
induced from a cuspidal representation m,, belonging to the class field E, defined by v. But
E, C E, and it follows that IT is not cuspidal, contrary to our assumption on IT. Hence we
have that y is invariant by Gal(E,/F) and descends to an idele class character y’ of Cg such
that 1 = x' o Ng,/F. Then

BCE (7 ® y) ~ m1 ® 1 =~ 7} ~ BCE' ().
Hence we have a Hecke character 6 corresponding to a character of Gal(E1/F) such that
@ )yY0=n®1y,

and y = y’6 defines a character of Gal(E/F). This proves part (2) of Theorem 3, as the dis-
tinction between 7 and w ® y follows from the properties of automorphic induction.

We now move on to proving part (1) of Theorem 3. We prove a preliminary lemma, which
also proves the uniqueness assertion about v in Theorem 3.

Lemma 2. Let E/F be a solvable extension, and let I1 be a cuspidal automorphic
representation of GL,(AF). Suppose x is a Gal(E/F) invariant idele class character of E
such that both I1 and I1 ® x are in the image of base change from F. Then y lies in the image
of base change.

Proof. The proof is by induction. The lemma is true for cyclic extensions of prime
degree, as any invariant character descends. Assume we have £ D E; D F, with E1/ F cyclic
of prime degree p. By induction, y = y1 o Ng,g, for some idele class character y; of Cg,.
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Suppose 1 and 77} are cuspidal automorphic representations of GL, (A g, ) which base change
respectively to IT and IT ® x. Since both 7] and 71 ® 1 base change to IT ® y, by the
description of the fibers of base change proved above, we obtain

T~ ® m

for some Hecke character 7y of Cg, vanishing on Ng,g, Cg.
Assume further, as we may from the hypothesis, that both 1 and ] lie in the image of
base change from F to E. For any o € Gal(E;/F),

T ®yim = m; =% =71 @ %(yim)-

Hence, 71 ~ 71 ® v, where v = 9(x1n1)(x1n1) L. Since y is Gal(E/ F)-invariant, we have
Ty, = X18i1 and °ny = 8{ for some integers i, j, where &7 is associated to a cyclic extension
of E; contained inside £. Hence v = sll for some integer /. Since I1 is cuspidal, the cuspidality
criterion for automorphic induction implies that v = 1. Hence we get that y;n; is invariant
by Gal(E/F). By induction, yin; lies in the image of base change from F to Ej, and it
follows that y also lies in the image of base change from F to E. ]

With this lemma, we now proceed to the proof of part (1) of Theorem 3. The proof is by
induction on the degree of the extension E over F. By the results of [1], it is true for extensions
of prime degree. We now assume there is a sequence of fields

EDE DF,

where E’/F is a cyclic extension of prime degree p. By the inductive hypothesis, there exists
a Gal(E/ E’)-invariant idele class character ¥ of E, and a cuspidal automorphic representa-
tion 7’ of GL(n, Ag/) such that

1 ® Yo = BCE, ().
Let ¢’ be a generator of Gal(E’/F), and let T be an element of Gal(E/ F) lifting t’. Then
BCE,(*n') = T @ o ~ 1 ® "o = (I1 ® Yo) ® Yoy .
Since Gal(E/E’) is a normal subgroup of Gal(E/ F), for any o € Gal(E/E’),
UtwO — ‘c(r_lor)wo — TwO-

Hence Yoy, ! is Gal(E/E’)-invariant. Since both IT ® ¥ and (IT ® ¥o) ® Yoy ' lie in
the image of base change from E’ to E, by Lemma 2 there exists an idele class character y’
of E’ such that "Yoyy ! = x’ o Ng,g/. Hence,

BCE,(*n' @ ¥ 1) ~ 1 @ vo.

By part (2) of Theorem 3, characterizing the fibers of the base change lift, we conclude that
there is an idele class character y” corresponding via class field theory to a character of
Gal(E/E’) such that

(3.1) r’n,/ ~ Jt, ® X/X// — 7_[/ ® 77/’
where ' = y'x”. Further,

(3.2) noNg/g=x oNg/g = Yovp .
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Werite the elements of
Gal(E/F) ={t"'0 |0<i < p, 0 € Gal(E/E"))}.

We have for x € Cg,

p—1 p—1
Np o Ngsp(x) = 77/( [T 11 r—’o(x)) =[] 77 WNe/ex)
i=0 ge€Gal(E/E") i=0
p—1

= [[ 7 c@ovsH )
i=0

=" (Yo)yg " (x).
Since Yo is Gal(E/E’)-invariant and t” € Gal(E/E’), it follows that 1’y o Ng/F is trivial.
Hence by part (1) of Theorem 2, and equation (3.1), /g, is trivial.
Let o be an idele class character of E’, satisfying at’(a) ™! = . By equation (3.1),

1

A’ @a)=7#@)Qan " =7 ®a.

Hence 7’ ® a is Gal(E’/F)-invariant, and descends to F. Thus, IT ® ¥ ® (¢ o Ng/E-)
descends.
To finish the proof, we have to check that Yo ® (a o Ng,g/) is Gal(E/ F)-invariant. For
this it is enough to check that Yo ® (@ o Ng /) is t-invariant:
(Yo ® (@ o Ngjgr)) = t(Yo) ® T(a) o Ng g/
=t(Y0) ® (@o Ng/p)( o Ng/p)™'
= VYo ® (¢ o Ng/g),

where the last equality follows from equation (3.2).

4. Trace formula

We want to prove Theorem 1 ruling out the existence of a cuspidal representation IT
of GL(n, A ) satisfying equation (1.1),

‘M~ Qw,
where o is an idele class character of E such that its restriction to Cg corresponds by Artin
reciprocity to a primitive character of the cyclic group Gal(E/ F).

If TT satisfies (1.1), it will, for a suitable choice of a function ¢ € C°(GL(n,AE)),
contribute a non-zero term to the trace

(4.1) Trace(Ig(Raise ® @~ 1) ().

This follows from strong multiplicity one for cuspidal representations. Here Rgjg. is the discrete
part of the representation of GL(n, Ag) on

A» := L*(GL(n, E)Ag\ GL(n,AF)).

Here Ag is R} embedded diagonally into GL(n, Ey) at all Archimedean places w of E. The
operator Ig is given by f(g) — f(07(g)), where f € A, and o is our chosen generator
of ¥ = Gal(E/F).
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There is a general formula for the trace in equation (4.1) due to Kottwitz—Shelstad [7]

and Moeglin—Waldspurger [14]. (In fact, this trace must be completed by Arthur’s “discrete
terms”, which we will describe presently in our case.) The formula is

(4.2) Tiise(@ x 0:07") = Y 1(G)STF (67
G'Cé

Here G’ runs over the elliptic endoscopic data consisting of triples of the form (G’,§’,3):
these will be reviewed in the next paragraph; G’ is a reductive F-group and ¢G/ is a function
on G'(A ) associated to ¢.

The so-called “stable discrete trace formula” S TdGis/c will be very simple in our case, as G’

will be a group GL(m): see Section 7. The terms in Tyis.(¢p x 0; w™!) are as follows:

)

2)

3)

“4)

The traces Trace(/g(IT ® w~1)(¢)) for a cuspidal representation IT of GL(n, Ag) such
that °TT ~ I1 ® w. The operator Iy sends an automorphic form f(g) — f(o~1(g)),
g € GL(n,AEg). The cusp forms occur with multiplicity one and /g is an intertwining
operator sending IT to °I1.

Similar traces where IT belongs to the discrete spectrum (and is not cuspidal) (see [13]).
This means that n = ab, and that there exists 77, a cuspidal representation of GL(a, Ag),
such that IT is a quotient of the representation
b=1 b=3 1=b
P:ﬂa|‘| 2 EE]-[a|.| 2 EE|...EE|7-(Q|.| 2,

where | - | denotes the idele norm, seen as a character of GL(a, Ag) via the determinant;
and the notation H denotes, as usual, parabolic induction, here from the parabolic sub-
group of GL(n) of type (a,...,a). Now if °Tl ~ Il ® w, the same is true of p. Since
the representation 7, is almost tempered, this implies that °r, ~ 7; ® w. By induction
(since a < n), this is impossible.

There are now the discrete terms defined by Arthur, which do not come from the dis-
crete spectrum. We first consider the simplest case. Here IT = 7y B --- H 7y, where
m; is a cuspidal representation of GL(n;,Ag), and Zf=1 n; = n. We assume then
°TI ~ 1 ® w; of course

‘M= 8- -8By,

and this equivalence implies that there is an element s € Wy, the Weyl group corre-
sponding to the Levi component GL(n1) X --- GL(n;) such that

o
T = TTg()W.

We must further assume that s is “regular”, i.e., aj"u = ag, where aps (resp. ag) denote
the Lie algebra of the split component of the center of M and G respectively. This implies
that M is homogeneous (n = ab) and that “m; >~ 4w, where s is a cyclic permutation
of order b. The corresponding term is the trace of the product of ITw~!(¢), and of an
intertwining operator associated to s x o, defined by Arthur, acting on the space of IT.
Its precise form will be irrelevant.

Finally, we can build similar terms with II; cuspidal replaced by a residual, discrete
spectrum representations as in (2) above.

We note that all the representations of type (1, 2) occur with multiplicity 1. Furthermore,

their Hecke eigenvalues are independent from those of the representations of type (3, 4): fix
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a finite set of primes S, containing the Archimedean primes, and consider a finite set of such
representations, unramified outside S. Let 7" be a sufficiently large set of (finite) primes disjoint
from S. Our representations, via their Hecke matrices, define characters of the tensor product,
over the primes in 7', of the local, unramified Hecke algebras. Then these characters, indeed
for representations of different types (1,2, 3, 4), are all distinct.

In the next paragraph, we compute the right-hand side, i.e., the endoscopic terms.

For more information on the endoscopic stabilization of the trace formula, and in particu-
lar the use of formula (4.2), we refer to [14]; in particular Sections 1.6.4 and X.5.9. Suffice it to
say here that if IT is a representation of GL(72, A g) occurring in the left-hand side of (4.2), i.e.,
in the discrete part of Arthur’s trace formula as reviewed above, there will be an endoscopic
group G’, and a representation 7’ of G'(A r) such that 7 and IT are associated, i.e., the Hecke
matrices of IT are deduced at almost all primes from those of 7’ in a prescribed manner, deter-
mined by the endoscopic datum, given in [13, Section 6.4]. In our case, there will be a unique
datum G’ (or none at all) and the relation between 7’ and IT will be quite explicit.

5. Endoscopic data

We now consider the right-hand side of equation (4.2). We must first describe the endo-
scopic data. We use Waldspurger’s formalism for base change [2, 18].

We consider GL(n)/E as an F-group by restriction of scalars and denote it by G. We
will sometimes denote by Gg the group GL(n) over E. The generator o of ¥ = Gal(E/F)
acts on G by F-automorphisms; as such we denote it by 6. We fix an isomorphism ¢ +> ¢(0)
between X and Z/d 7. For w € W, t(w) is then defined by composition.

The connected component of identity of the dual group of G is

G =GLn.C) = [] GLx.C):
i€Z/dZ

the F-structure on G gives an action of Gal(F /F) on G quotienting through X:

(5.1 0(g1,---,8d) = (8141(0)s - - -+ &d+1(0))-
Then LG = G x WF, the action of Wg being so obtained. On the other hand, 6 defines an
automorphism 6 of G, A
0(g1,...,8a) = (g2:---,8a-81)-

Suppose we are given a character @ of A%, which defines via the determinant an abelian char-
acter of G(Ar) = GL(n,AEg). By a result of Langlands [11] we can see @ as an element
ac H'(Wp, Z(G)). Note that Z(G) = (C*)4, the action of W being given by equation (5.1).
In general, the element a is only defined modulo the group

ker!(F, Z(G)) = ker(Hl(WF, z(G)) — P H' (W, Z(é))),

where v ranges over the places of F (see [7, 18]).
In our case, however, Shapiro’s lemma implies that

H'(Wp, Z(G)) = H (Wg,C>),



Clozel and Rajan, Solvable base change 13

with trivial action of Wg . Hence,
H'(Wp. Z(G)) = Hom¢,(Wg,C*) = Hom¢,(Cg., C*),
where Cg is the group of idele classes. Similarly, for a place v of F,

H'(Wr,. 2(6)) = D H' Wg, . C).

wlv

Thus, ker' (F, Z(G)) is the group of idele class characters that are locally trivial, so

ker' (F, Z(G)) = {1}.
Now an endoscopic datum for (G, 0, a) is a triple, G’ = (G', §',§ = sé) subject to the follow-
ing conditions:
(E1) G’ is a quasisplit connected reductive group over F.
(E2) § =sfisa semisimple element in G % ©, where © = (é) ~7/dZ.
(E3) ¥’ C LG is a closed subgroup.

(E4) There exists a split exact sequence
1> G; > 8 > Wp > 1,

where G is the neutral connected component of the centralizer of § and §' — Wp is
induced by the map G — Wp. In particular, ' N G = G For this action of Wg, G
is a dual group of G'.

(E5) For (g, w) € ¢’, R
s6(w(s)™! = a(w)g,

where a(w) is a 1-cocycle of Wr with values in Z(G) and defining a.

We will denote by H the group G’. We note that any semlslmple §=s0is conjugate to an
element § such that s = (sg, 1,..., 1). In this case, H = G~ =Gy .50 1s diagonally embedded
in G. Here G4, is the centralizer of ¢ in GO, which is connected. Thus,

Gs ={(h.....h) | h € Hy = {diag(h) | h € H},
where diag : GL(n, C) — GL(n, C)? is the diagonal map. We look for
£:8 > Lg,
where ¢’ admits an exact sequence (E4). Thus for & € H,
€ :(h,1) — (diag(h), 1),

while for w € Wg,
£ (Lw) = (n(w), w) = (n(w), H(1,w).

Here we have chosen a splitting n : Wg — §’ for §'. Let us denote by & — Yh the action
of Wg on H coming from (E4). Then

(Yh1) = (n,w)(h, 1) (n,w) ™,
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where we are writing for short n = n(w) and (k, 1) = (diag(h), 1). Hence
("h.1) = (. D@ w) b DA w) @ DT = (DD DT
since h, being diagonal in G, is invariant by the action (5.1) of WF. Write
n=n(w)={ny...,ng),
o)
(5.2) ndiag(h)n~" = (nihn{', ... ,nghn;") = diag(h)

for some h’ € H.
We now assume that so = (s1, ..., Sq) is given by diagonal scalar matrices s; of degree b;
with distinct eigenvalues ;. Then

A = [[ GL(®:) c GL().
i=1

Writea = ay + --- + ar (ar > 1) with
by =by=---= b(ll < ba1+1 = ... = ba1+a2 < ...
Since n; normalizes Vi ,
,
ni € [ GL(bK)™ % &g,
k=1
with obvious notation. We choose explicitly as representatives of the Weyl group &, the

obvious block matrices with blocks of size by equal to either O or 1.
Write W = [];=; ©a,. so that the normalizer of H is HW. By equation (5.2),

Ad(n;)h = Ad(n;)h foralli, j andallh € H.
Hence n; = h;t, where T € W is independent of i and h; € Vi ; moreover,
Ad(h;)h = Ad(h;)h foralli, j andallh € H.
Thus h; = (z;;)h with (z;;) € Z(I:I) = (C*)%. Hence we can write
n(w) = (zi(w)h(w)t(w));, where z;(w) = (zi1(w), ..., zia(w)) € (C)*.

In the stabilization of the trace formula, we are only interested in the elliptic endoscopic data,
i.e., those such that the neutral component of Z (ﬁ YWF and of Z (G)WF % coincide. The second
group is equal to C* embedded diagonally in GL(n, C)?. We have Z(H) = [Ti=1(C*)% and
n(w) acts by t(w) € [[x Sq, . Thus Z(I:I)WF is the set of fixed points of the T (w), w € WF.
In particular, it contains the product [ [, C*, embedded diagonally in [ [, GL(bg).

If H is elliptic, we see that r = 1, so H = GL(b)? is homogeneous. Furthermore, Wg
acts on (C*)? via t(w) € ©,. The image of Wg by w + t(w) must therefore be a transitive
subgroup of &,.

So far we have shown that H = GL(b)¥, and

n(w) = (n;(w)), where n;(w) = z; (w)h(w)z(w),
with z; (w) € Z(H) ~ (C¥)4,
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The group §' = H x Wy is defined as a semi-direct product, by the conjugation action
of n(w) on H. Dually, H xg F ~ GL(b)%/F, where the rational structure will be described
presently. In particular, the derived subgroup of H is simply connected. This implies (see
[7, Section 2.2]), that & is an L-group, i.e., that for a suitable choice of section the action
of Wg on H preserves a Borel subgroup and a splitting.

We have seen that n(w) = (z; (w)h(w)t(w)); acts by conjugation on H.If h(w) =1,
this is easily seen to preserve a splitting. Conversely, if 7n(w) preserves a splitting, it can be con-
jugated within H to asection preserving the trivial splitting: one then checks that the 2 (w) € H
must act trivially by conjugation, so we may assume s (w) = 1. With this section (if it is one),
€’ =~ LH is naturally embedded in G, whence a homomorphism of L-groups

£:'H > 1G.

The contribution of this endoscopic datum will be deduced from £.
Since now n(w) = (z;(w)t(w));, we must still check the cocycle relation

n(ww’) = n(w).wn(w’),

where the action of w is given by the structure of LG. If w € W is sent to 0¥ € X, with
k = t(w), this says that
ni(ww') = ni (W)n; i (W").
Write z; (w) = (z;,¢(w)) according to the decomposition Z(ﬁ) =(C% fora=1,...,a.
Thus
zi(ww')t(ww’) = z; (W)t (W)z; 41 (W) T (W),

1.e.,
zi(ww') = z; (w).vzi e (W)

with 1 = t(w) € &,4. Now 1((z4)) = z,-14, S0 the cocycle relation reads
(5.3) Zig(WWw') = zi o (W)z; 1 g —14(WW),

where k = t(w).

6. Endoscopy, with character

We now have to introduce the character @ in the endoscopic computations. This inter-
venes through formula (E5) in the definition of endoscopic datum. We want to make the
elementa ¢ H'(Wg,Z (G)), or rather a representativea € Z'(Wr, Z (G)), explicit. We write
forw € W,

a(w) = (aj(w)). ai(w) e C™.

Since  is a character of Cg, it can be identified with an element of H!(Wg,C>). We
now need Shapiro’s lemma. For its explicit description, we follow Langlands [10] (see also
Serre [17]). Recall that

Wg\Wr ~ Gal(E/F) ~Z/dZ,

the isomorphism sending the generator o of X to 1. We choose a representative ¢ € W of this
generator, which we also denote by 0. Now {0,02,...,0%} are representatives of Wg\Wp.
Note that o9 # 1 as follows from class field theory, cf. (7.4), (7.5) below.
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For any w € Wp, ' _
o'w =6 (w)o’,
where j =i + k (modd) if k = ((w) (see equation (5.1)) and 6; (w) € WEg. We set
ai(w) = w(8; (w)).
Forw € Wg, olw = §;(w)o’, so
(6.1) ai(w) = (w(o'wo™)) = a)("iw) =woo (w),

since the lifting o acts by conjugation, on the abelianized Weil group Cg of E, through its
image in Gal(E/ F).
Consider our chosen lift 0 € Wg. Then

GiO’ — O_i—i—l — Si(O')O’[H_l],

where [i 4 1] is the representative of i + 1in {1, ..., d}. The foregoing equation implies

(6.2) §i(o)=1 fori=1,....d -1, 84(0)=0%¢c Wg.
This defines completely a(w). Now,

¢:Wrp — Z(é) XWr, w (ag;(w),w),

defines an L-parameter for the L-group of Resg,r GL(1), corresponding to the character w.

We now have to introduce the condition

wlax = €Eg/F-
In cohomological terms, this is given by the corestriction
Cor: H'(Wg,C*) - H (Wg,C>)

dual to the transfer map Wr/ W;}er — Wg/ Wger. Explicitly, the transfer is given as follows
([17, Chapter VII, Section 8]): it associates to w € W the image in Wg / Wger of [; & (w).
Our condition is therefore, for w € Wg,

6.3) [Jaiw) = [JoGi@) =eg/rw),

where both sides are seen as characters of the Weil groups (recall that e, is here seen as
a character of the Galois group). For w € Wg, eg;r(w) = 1 and the left-hand side is

Halw(w) = w(Ng/Fz),
i
where z € Cg is the image of w. Since w restricts trivially to Ng,r(Cg) C CF, relation (6.3)

is satisfied.
On the other hand, (8; (0)) = (1,...,1,0%), thus equation (6.3) is equivalent to

a(c)=(1,...,0),

where { = ¢g, (o) is a primitive root of unity of order d. (In particular, w(0?) = ¢ when o
is seen as an element of Wg g, hence of Cg, etc.)

d
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Now consider condition (E5) on the endoscopic group
(6:4) 0w ™" =a(w)g, (g.w) €,

For w = 1, this is the condition defining H = G’. Consider the image (n(w), w) of the sec-
tion n for w € Wg. We have

n(w) = (zi(w)t(w));.
Write for simplicity t, z;, a; for t(w), z; (w), a; (w), respectively. If k = ¢(w), then

w(s) = w(se, 1,.... 1) =(,...,50,...,1),

where s occurs at the place [ = d + 1 — k with the convention that [ = 1 if k = 0. Equa-
tion (6.4) reads

(6.5) (so, 1,....D(z27,...,2170)(1, ..., l,sal, o) =((aizin))i.
Thus,

(6.6) S0Z2T = A1217,

Z3T = d2Z77,
-1 _
Z]41TSg = 4ajZjvT,

Z1T = dgzgT.
(Ifk =0, sozzrs(jl =ajzit,etc.;ifk = 1,1 = d and the last equation is zlrs(jl

Write *s, = TSy 1771, Then equation (6.6) is equivalent to

= adzdr.)

(6.7) S0zZ2 = d121,

Z3 = dzZp,
T.—1 _
Zl+1 So = aizy,

Z1 =dagzq.
Note that all these elements are contained in Z (I:I ), hence commute. (For k = 0, the first line
is sozorso_1 = ayz1; for k = 1, the last line is thsal = agz4.) Taking the product, we see
that
so"so" =] [ai =ep/r(w),

by equation (6.3), so 5o = eg/F (w)"so.

Now sg € Z(H) = (C*)%, and 1 € G,. Write s = (S0,«), @ = 1,...,a. Thus we have
so = (59,;—14), Whence

(6.8) S0,ta = €E/F (w)SO,a-

Assume that w € Wp is sent to the chosen generator o € ¥, so eg,r(w) = ¢. Recall that
so € Z(H) is given by block-diagonal matrices sg of the size b with distinct eigenvalues.
Equation (6.8) now implies that the 5o o can be partitioned into a’ = % subsets of the form

(6.9) (Sl, {Sl, ey é'd_lsl;S2, é'Sz, ey {'d_ISz; . );
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the entries being block-diagonal, we assimilate them to scalars. In particular, d | a,so d | n. The
scalars s; (j = 1,...,a’) verify s; # ps;js for any u € ug(C). Equation (6.8) now uniquely
determines 71 = 7(0): it is a product of a’ d-cycles.

Consider now an arbitrary element w € Wg. If w € Wg, eg;r(w) = 1 and equation
(6.8) implies that T = 1, the eigenvalues being distinct. Thus Wg acts via ¥ = Wgr/WEg and
T(w) = ri(w). The image of WF is therefore a cyclic subgroup of &,, of order d, preserving
the strings of length d in equation (6.9). The ellipticity of H now implies that this action is
transitive, soa = d.

Since we have determined n(w) up to central elements in H, we have now computed
the F-group H . Indeed, H = GL(b) x --- x GL(b) (a = d factors) and WF acts via X, cycli-
cally permuting the factors. This 1mplles that H is isomorphic to Resg,r(GL(b)/E). This
embedding into G is given on H by

(h1.... hq) > diag(hy @ --- @ hg) € GL(n, C)?.

We can now summarize the main result of this section:

Proposition 4. The following statements hold:
(1) Ifd ¥ n, there exists no elliptic endoscopic group for (6, w).

(2) If n = db, there exists (at least) one endoscopic datum for (6, w) given by the foregoing
construction.

To complete the proof of the proposition, we still have to show that we can choose the
z; (w) so as to satisfy equations (ES) and (6.5). We will obtain in fact a more precise result.

The permutation t associated to w € Wp is a cyclic permutation on the indices «. We
have 7(z4)t~! = (z,-1,). We now assume that for t(w) = k, 7! () = a — k. Relation (5.3)
now reads

(6.10) Zi,a(WW') = zi o (W)Zj 4k gk (W).

We consider all indices as elements of Z/d 7. Now fix B (mod d). Now equation (6.10) yields
fori +a =B,

zi p—i(ww') = z; g (W)zj 4k g—i—k (W).
Set Z,ﬂ (w) = z; g—; (w): we now have

¢f (ww') = & w)ef,, w).

This can be understood as follows. Let Hy = GL(b)? be the “absolute” dual group of H. We
have H 4 = G = GL(n)?. The elements z(w) = (z;j ¢ (w)) belong to the center U = [l
of (Ho)d The datum (now fixed) t determines an action of Wx on U, by (zi,e) = (Zitk,a— k)
By (6.13), z; o is a 1-cocycle of W, with values in U, for this action.

For f fixed, the factor of U given by i + « = f, isomorphic to (C*)?, is preserved by
this action, and the resulting action of Wr on (C*)4 is the action defined by seeing (C*)4
as the dual group of Resg/r (GL(1)). However, H L(Wr, (C*)?), for Wr acting by its action
on the dual group of Resg/p (GL(1)) is equal to H!(Wg, C*) = Hom(Cg, C*) by Shapiro’s
lemma. Thus each character ng of Cg defines such a cocycle, by ¢ 1’3 (w) = ng (i (w)). We can
then set

(6.11) Zia(W) = Nj+a(8; (w)),
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and we see that a section (and therefore a subgroup) is defined by the choice of the charac-
ters ng. Call
El . LH —> LG

the corresponding morphism.
For further reference, we note that U C G is the centralizer, in G, of H (for its diagonal
embedding.)
We still have to fulfill the condition given by equation (6.7). Assume first that w € Wg.
Then T = 1, and the condition is simply
zi+1(w) = aj(w)z; (w).

Now z; = (2i,¢) With zi ¢ = Ni+6(8i (W)) = N+ © 0" (w) by equation (6.11) and the descrip-
tion, before (6.1), of the cocycle associated to a character. Applying the same to @ and a(w)
(w € Wg), we see that the condition is

Ni+14a 00 THw) = w 0 o' (W)Ni4a 0 0" (W)

(w being seen as an element of Cg -- ), i.e.,

ng+100 =wng, PB=1,....d.

We can now write the condition of equation (6.7) for w = 0. Recall from equation (6.2) that
i () =(1,...,1,0%) with 6% € Wg. We still have Zi,a(W) = Ni4+a(8; (w)), whence

Zi,a(a)zl, lflfd_19
Z24.0(0) = na(d?).

Moreover, as before,
Nat100(0%) = 00 )ne(c?),

1= 64 w(o?) = ¢, whence

(Zaw(©@)a = (0. Cn, ..., 07 ),

and 0090~

where 7 = 11 (0%). Write z; = (zi,a) = (zi,a(0)). Then equation (6.7) for o reads

(6.12) S0z = 21,
Z3 = I3,
Zd = Zd—-1,
T,—1

5o 21 =Czq,
and is obviously not satisfied. Recall that for k = k(o) = 1 we have set
(tSO)a = So0,7—1la = S0,a0—1
and, cf. equation (6.8), So,za = S0,a+1 = {50,o- We can choose

so = (L,&,....047N.
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1

Substituting s “s, " = ¢ in equation (6.12), we get

(6.13) SozZ2 = 71,
Z3 = Z2,

Zd = Zd-1»
salzl =zq4.

Now we can replace the z; by cohomologous elements for the action of Wr on U described
above, and giving the cocycle relation (5.3), i.e.,
w(Zia) = Zi+ka—k-

A coboundary is given for w € Wg, k = 1(w), by

fia(w) = Uioevl'__:k,a_k-
In particular, for w = o,

ia(o) = viavi_.:l a—l'
FixB e Z/dZ. Proceedlng as we did for W, let us write u = Cig(o) with B =i + «. Thus

we have uﬂ =v; (Uz+1) 1 with vﬂ = v; g—i- The u; must then satisfy for each f the condi-
tion

(6.14) [T« =1.

Replacing the cocyle z; by the cohomologous cocycle z; ¢ (o) = (Ziauiﬂ‘)a, our equations
then become, witho = 1,...,d,

sOau%-i-a — ul-i—a
ug+a — u%—l—ot7
d—14a _ , d—2+a
Ugy T Ug—n
_ d—1+«
Zdallg =Ug_y
1+ __
SOaul — Zd’aud.

Write u = up = (u®). Then the d — 3 lines yield

wft=uf, i=2,...d-2,
SO
(6.15) u = w2 i =2....d—1.
Thus
SO,(xuz—Hx — ui+a,
zg auz — uoe+2’
sOa upt® = 24 UG

these equations are obviously compatible. We determine u; and u 4 by the first equations. Thus,

a _ a+1 a __ —1, a+2
ul — Soga_lu 5 Md — Zd’au .
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However, we must choose the u;B verifying, for each B, equation (6.14). (Note that we have

retained for the upper indices the notation ¢, naturally stemming from formulas (6.13). We
now use, more naturally, 8.) The product is then

d d—1
l_[ uf} = so,ﬂ_lz;’lﬂuﬂ“ ( l_[ uﬂ+2_’)u’3+2.

i=1 i=2
The range of upper indices affecting u is the translate by 8 of

{1,0,—1,-2...,3—-d, 2} ={1,2,....d} mod d.

The condition is therefore
d
i _ —1
1_[ U =24,85.,8-1°
i=1

which must be true for any 8. But
zapsopy =PI =g,

independently of §.

We can now define the new cocycle in Z1(Wp, U ) by multiplying the previous map by
the coboundary just obtained. It defines a new section s, which verifies the defining condi-
tion (6.7), obviously for w € Wg, for all powers of o, and therefore for w € Wg. This proves
the second part of Proposition 4, and moreover it exhibits an explicit section.

Recall that £; was defined by a cocycle z(w), which we now denote by z!(w):

(6.16) g1 h > diag(h) (he H),
w > (sp(w), w) = (zl(w)f, w) (weWw),

2

so (h, w) = (hz'(w)r, w). Similarly, we define &, , replacing z! by z2, where z? is our coho-

mologous cocycle
22w)i = (' )i (ror ).

We have moreover:"

Lemma 3. The new section s, is conjugate in G 1o the section s given by the z; 4.
In particular, &1 and &, define (up to conjugation by an element of G) the same embedding
Ly - Lg.

This is clear: if we define by s, the new section, so
si(w) =z w)r, s2(w) = 22 (w)r,
with T = t(w), and, with k = ((w),

22(w); = (2 (w)i)v; (rvr_l);:k,

D 'We could avoid this verification by using [3, Lemma 4.5]. It will be clearer explicitly to exhibit the
conjugation.
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withv = (v;) € U,z acting diagonally. Thus,

s2(w) = 2! (W)t (v 44) 7

SO
s2(w) = v(z' (w)Dw )™,

and (s2(w), w) is conjugate by G to (s1(w), w).

In particular, £ and &, send “Hecke matrices” (H -conjugacy classes in H) to the same
conjugacy classes in LG, so they yield the same endoscopic transfer from automorphic repre-
sentations of H(A ) to automorphic representations of G(AF).

Recall that two endoscopic data

1 =(G1,9],51) and G, = (G}, 9;,52)
are equivalent if there exists g € G such that
8918~ =9, g8igT =k

for an element x € Z(é). (Recall that 5; = (s, é) with §; € é.)

Proposition 5 (Waldspurger). Assume that d | n. Then there exists only one equivalence
class of elliptic endoscopic data for (G, 0, a).

Consider first the case of our particular cocycle a. It follows from our analysis that we
must take so = (1, ¢, ..., ¢%71) (in fact, block matrices of size b) up to a scalar. For two choices
we therefore have g§1g7! = x5,, x € Z (G‘) (take g € GL(n)? diagonal). We can therefore
assume that s is fixed. Then H C G is well defined.

If¢ C G x Wrisan endoscopic subgroup, its fiber §,, over w € Wr is equal to Gs sS(w)
for any section s. In particular, it is equal to H s(w) in our case, with of course HcG given
by the diagonal embedding.

Our previous analysis shows that a section s is of the form s(w) = z(w)t, Z(w) being
an element of Z1(Wp, U) If s, s’ are two sections, t = s(s’) ! is an element of Z (W, U)
Now s, s’ have to verify (ES) This implies thats@(t(w))s_1 = t(w),i.e., t(w) € H (diagonally
embedded.) Thus s(w) € Hs' (w)

However, the description of the endoscopic subgroups also depended on the choice of
a representative a of the cocycle a € Z!(Wp, Z(G). Assume then that § = {(s(w), w)} ver-
ifies (E5) for a cocycle b, and §' = {(s'(w), w)} for a cocycle a. Then a(w) = b(w)x/w(x)
for an element x € Z (G) We first note that the description of so and H was independent of
the explicit cocycle, cf. (6.7). Thus we may, as before, assume s¢ fixed. Conjugation by y € G
sends (g, w) € g to (ygw(y)~ !, w) € §’. Thus, assuming (ES),

(6.17) s0(Qw(s)™" = b(w)g,
we must deduce

s6(gyw() Hw(s)™" = b(w)(x/wx)(ygw() ™).

Assume y € Z (é). The last equation is easily seen, given (6.17), to be equivalent to

(6.18) O(y/wy) = (x/wx)(y/wy).
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Note that Wg now acts via X. It is easily seen that (6.18) is verified if it is verified for the
generator o. Now Q(y/cry)(cry/y) is of the form G(u)/u foru = y/oy; these elements u are
exactly the elements of Z (G) verifying [Ju; = 1. We have to solve (replacing u by u™1):

(6.19) 9(u)/u = 0ox/x.

Recall that 6 and o act by the same permutation (x1, x2,...,Xxg) — (X2,X3,...,X1)0on Z(é).
A solution is u = x, but x does not in general satisfy [[x; = 1. However, if we set u; = vx;
for v € C*, u now verifies (6.19) and is an adequate element if v [[xi=1.

We have shown that conjugation by some element y € Z (G) sends the fiber §,, to the
fiber §),. Since these fibers are principal homogeneous spaces under H, which commutes
with y, they are conjugate. Since ysy~! = yé (»)7!5, the second condition for equivalence
is also satisfied. This concludes the proof.

7. Proof of Theorem 1

7.1. 'We now have to understand the effect of our homomorphism &; of L-groups on the
data pertinent to the stabilization, i.e., on the data composed of Hecke matrices for almost all
primes. Note that

LH = GL(b,C)¢ x Wp
is not a direct product, so a “Hecke matrix” at a prime v is in fact a conjugacy class in
H x Frob, under the conjugation action of H.

For this we must first consider a simple case. Assume that @ = 1, so we are in the case
of non-twisted base change, i.e., characterizing the representations I1, of GL(n,AE) such
that °T1,, ~ I1,,.

Recall [1, 4] the two natural operations associated to (cyclic) base change. The first is
automorphic restriction, denoted earlier by BCE, sending representations of GL(n,AF) to
representations of GL(n, Ag). It is associated to the diagonal embedding LGy — LG, where
LGy is the L-group of GL(n)/ F, LG the L-group of Resg,r(GL(n)/ E), so G = GL(n, C)4:

(8. w) > (diag(g). w) (w € Wr).
Suppose n = db. The second operation is automorphic induction, denoted by Alg, sending
representations of GL(b, Ag) to those of GL(n, Ar). The associated embedding “H —L G,
is given by
(81:---.8a) > &1 ®---®ga (g €GL(,C))
and
(I w) = (z(w), w),

where 7(w) € &, (realized as before by block-scalar matrices in GL(#, C)), and

T(@g)T " = (gitk),
where k = i(w),sot Vi =i + k.
We simply write Res and Ind for these two operations, the fields being here F' and E.
This corresponds to our constructions in [1], taking @ = 1. The corresponding operations are
described in [1, Chapter 3], see also [4]. They are well-defined for representations that are
“induced from cuspidal” ([1, Sections 3.1, 3.6]), i.e., induced from unitary cuspidal represen-
tations.
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Composing these two operations, we get a homomorphism of L-groups

1 :GL(h)¢ x Wg — GL(n)? x Wr,

given by
(7.1) (81,--..8q) > diag(g1 & -~ & g4).
(1,w) — (diag t(w), w).
Recall also that for 7; (i = 1,...,r) representations of GL(n;, Ag), there is an associ-

ated representation Hr; of GL(n, Ag) obtained by parabolic induction (n = ) n;). We recall
the following well-known result:

Proposition 6. For wp, a representation of GL(b, Ag) induced from cuspidal,

Resolnd(mp) = mp Bomy, B --- H od_lzrb.

Consider finite primes w | v of E over F, where all data are unramified. If #,, is the
Hecke matrix of 7, at such a prime w’, the matrix Ty, of Ind(7p) at v is

=P ou) oo/,
w’ | v

where ¢ is a primitive root of unity of order f = [Ey, : Fy]. The Hecke matrix T3, of Res(7)
for a representation 7w of GL(n, Ar) is Ty . Thus the Hecke matrix of Resolnd(7rp) at a prime w
is D, | o (tw @ -+ @ ty), equal to @GeGal(E/F) tow, the Hecke matrix of the right-hand
side. Since the representations on the two sides of the equality are induced from cuspidal, they
are equal.

Now there exists an obvious homomorphism H —L G realizing the operation?

ananﬂonbEﬁ-nBEIUd_lnb =0nbEE---BHUd_1nbEEnb.

Let HY = ]_[z=1 H . First (mq,...,7mg) — 7 BBy is given by
(7.2) AY > G, (qki) (@gki),
k l

where k corresponds to the factor in H9 (or to ) and i is the index associated to restriction
of scalars in H = GL(b)4, G = GL(n)?. 1t is obviously Compatlble with the operation of the
Weil group. On the other hand 7 +—? 7 is given by the map Hw— H,

(&) = (gi+1)-
So the composite operation, 7 +— ox H--- H o lx B, is given by

GLb - Lo’ @)~ (D)
k 1

It is equivariant for the action of W acting (via the restriction of scalars) on both sides. Thus
we get

po s GL(BY % Wr — GL)? x Wr. (gi.w) — ((@g’*") ’w)'
k i

2 We have change the ordering to simplify the indexes in the following formulas.



Clozel and Rajan, Solvable base change 25

Since the two homomorphisms of L-groups wo and w; have the same effect on representa-
tions, they should be conjugate by an element in G = GL(n)d We proceed to exhibit this
conjugation. We first consider the connected dual groups. We seek P = (P;) € GL(n)? such
that

Puo(g)P™" = ni(g). g = (gi) € GL(b)“.

Pi(@gi—i-k)l)i_l =819 Dgy
k

for each i. If Q is (a block-scalar matrix) associated to a permutation t € &,

Q (@ gk) 07! = (811
k

Thus P; must be the permutation matrix associated to 7, where (k) =i + k.
To avoid confusion, we now replace our indices k by « (in conformity with the previous
section) and write k = ((w), w € Wg. The conjugation of the homomorphisms on Wg gives

Thus,

(P, )(1,w)(P, 1)~} = (diagt(w), w) (w e Wr),
SO
(7.3) PiP Y =t(w).

The left-hand side is associated to t(«) = o — k. Thus (with the previous choices) we must

take

T(w) = r{(w), 1) =a—1

(compare with the formula for 7 preceding (7.1)).

We have therefore proved:

Lemma 4. With the above notation,
PuoP~' = py,

where P = (P;) € GL(n, C)? and P; is the permutation matrix associated to o v+ i + a.

7.2. Now return to the homomorphism pg given in (7.1) realizing the operation

d
7+ H o%r
a=1

(7 being a representation of GL(d,AE)). Let n1,...,ng be characters of Cg, associated to
the parameters 74 (8; (w)) € (C*)? as discussed before equation (6.11). Now the homomor-
phisms (7.2) can be multiplied by the homomorphisms associated with the 54, so we see that

(8ai) — (GB Zaitla (8 (w))),

corresponds to () > By ® 1y. In particular, 7 +— Hyo%m ® 14, is then given by

£ : GL(D)? x Wr — GL(0)? x Wr, (i, w) = [(gati7a (i (w))i, w].
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Conjugating by P, we obtain a homomorphism £;. On GL(b)4, it coincides with 7. In order
to make it explicit, we must compute, for w € Wg,

r0| (Droen) |,

)
i

The i-th component is

Pi (@ Na (6 (w))) Py = Pi (@ N (8i (w))) Pt (w)

by (7.3). The conjugation by P; is the permutation o — i + «, so this is

(EB - (w))) ().

In conclusion:

Lemma 5. Themap nw +— Hyo%m & 1y is associated to the homomorphism of L-groups

g1 : GL(b)¢ x Wp — GL(n)¢ x Wp,
£1(81,...,8q) = diag(g1 ® --- ® ga),

1) = | (D natdin ) ew) ],

We note that this is the homomorphism &; obtained from endoscopy as in equations (6.16)
and (6.11).

7.3. We can now complete the proof of Theorem 1. Assume first d does not divide 7.
We then have
Taise (¢ X Q;w_l) =0.

The cuspidal representations occurring in the discrete trace have multiplicity one, and their
families of Hecke eigenvalues (away from a finite set S of primes) are linearly independent,
and independent from those of other representations. Of course only the cuspidal representa-
tions such that °TT ~ IT ® w contribute. We conclude that there are no such representations,
as was of course clear from the consideration of the central characters (see the remark after
Theorem 1).

Consider now the case when d divides n. There is only, up to equivalence, one endoscopic
datum, defining the endoscopic group H; if 7, is a cuspidal representation of H(AF), the
associated map on Hecke matrices sends (up to conjugation) t, (7p) to

ty(omp ® 1 Bo’m, @y B+ B, ®ny)

at primes where all data are unramified, as follows from the conjugation of &; and pg. This
then remains true if 7 is any automorphic representation of GL(b, Ag), in particular for those
appearing in the discrete trace formula for H. Indeed, let & be such a representation. Then 7
is a subquotient — in fact a quotient if 7 is one of the “discrete” representations of H(AF)
described, for G, in Section 4 — of a representation 7y H 7, H - - - H 7, induced from (non-
necessarily unitary) cuspidal representations of GL(bg,Ag), k = 1,2,...,r. If m, is unram-
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ified, the m; , are unramified and the Hecke matrix of 7, is the same as that of the induced
representation. Consider the Levi subgroup My = [];_; Resg /F GL(by) of H, and simi-
larly Mg = [1i—; Resg/r GL(ny), where ny = dby. From the formulas in Lemma 5, one
immediately deduces that £ “commutes with induction”: the homomorphism £; is defined, by
the same formulas, for Resg,r GL(by); call it § {‘ . Then induction from a parabolic subgroup
being given, both for G and H, by direct sums of Hecke matrices, the Hecke matrix of the
representation of G(A r) deduced from 7 is the sum of the Hecke matrices of the representa-
tions deduced, via & k_ from the 7y ; each of these is given by the previous formula. (Note that
Proposition 6 remains true as stated when 7 is not unitary.)
Now consider the identity given by the stable trace formula

(7.4) Taisc(9 X 0;07 1) = (G)STE (9.

By Proposition 5, there is only one datum, with G’ = H, on the right. Since G'(Ar) = H(AF)
is GL(b, AE), its trace formula is stable. Thus the right-hand side of (7.4) reads

(7.5) Taise (¢ x 0;07 ") = (G T (™).

Here ((G’) is a positive, non-zero rational number and ngc has been described in Section 4.

Formula (7.5) can be restricted to smaller spaces. Let Foo = ]_[v F,, where v runs over
the set Vo of Archimedean places of F, and let Zg be the center of the enveloping algebra
of G(Fx), and similarly Z . There is a natural map Zg — Zg ([14, pp. 442-443]) whence
amap v’ — v between infinitesimal characters for H and G. (This map depends on £ and w.)
Furthermore, as can be deduced from the description given in [14, p.442], Zy is, in our case,
finite over the image of Z; thus there are a finite number of infinitesimal characters v’ asso-
ciated to v.%

Fix v, and let V O V4 be a finite set of places of F. We assume all data, i.e., E/F, w, &
(and therefore G, H) unramified outside V. We consider a decomposed function ¢ = ) ¢y
on G(AF), with ¢, in the unramified Hecke algebra for v ¢ V', ¢, smooth compactly supported
if v € V, and Koo-finite if v € Vo, Koo being a maximal compact subgroup of G(F). The
datum of &; then determines a function ¢, with ¢1{1 unramified if v ¢ V. The left-hand side
of (7.6) is now, if we consider the representations of infinitesimal character v, a finite sum

(7.6) Taise(® x ;07" = Y a() trace(Ig(TMy ® =) (@v))en(9”),
I1

which we write more simply

(7.7) Tiise(@ x 0:07 1), =Y b(Men ("),
I1

Here the a(I1) are the constants affecting Arthur’s discrete terms; cyy is the character of v
(the unramified Hecke algebra outside V') determined by IT. Now Tgisc(¢p % 6; a)_l)v is the
product of ((G’) by the sum, over v/, of the Tyisc(¢F ), ([14, X.8.1]), and similarly,

(7.8) Tase(@™)v =Y bu(m)ca (™).

3 The datum of £ and w also determines, from the central character of Ag defining our space of automor-
phic forms on G(A ) (Section 4), a central character of Ag;. See [13, p.441]. We assume the central character for
G trivial, but this will not be the case for H in general. However the spaces of automorphic forms associated to two
characters of Apy are “essentially” isomorphic (twist by a character of the determinant.)
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Now assume that a character of #" occurs non-trivially in (7.7). It must be obtained by com-
position from a character of # }I/ occurring in (7.8). This implies that, at each prime outside V/,
IT, is the representation oy & 11,y H o%m, ® N2,v B ---H 7 ® ng,, or, possibly, its unique
unramified subquotient. This is true for all representations 7 in (7.8), by the previous remark.
By the fundamental results of Jacquet and Shalika [5, 6], IT cannot be cuspidal. However, if I1
is our putative cuspidal representation of G(Af) = GL(n,Ag) such that °Tl = [1 ® w, it is
easy, using strong multiplicity one, to find a function ¢y on G (Fy ) such that the corresponding
term in (7.6) does not vanish. This concludes the proof of Theorem 1.
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