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Solvable base change
By Laurent Clozel at Orsay and Conjeeveram S. Rajan at Bombay

Abstract. We determine the image and the fibers for solvable base change.

1. Introduction

The reciprocity conjectures formulated by Langlands give a parametrization of cusp
forms associated to GL.n/ over a global field K by n-dimensional complex representations
of the Langlands group attached to K. The Langlands group, whose existence is yet to be
shown, is a vast generalization of the absolute Galois group or the Weil group of K, and can
be considered in analogy with these latter groups. In this analogy, the theory of base change
amounts to restriction of parameters on the Galois theoretic side.

For cyclic extensions of number fields of prime degree, the existence and the characteri-
zation of the image and fibers of base change for GL.2/ was done by Langlands [9] following
earlier work of Saito and Shintani. This was used by Langlands to establish Artin’s conjec-
ture for a class of octahedral two-dimensional representations of the absolute Galois group of
a number field. The work of Saito, Shintani and Langlands was generalized by Arthur and
Clozel to GL.n/, for all n. In [1], they proved the existence and characterized the image of
the base change transfer for cyclic extensions of number fields of prime degree. However, the
proof in the general, cyclic case contained a mistake.

The theorem of Langlands, Arthur and Clozel, gives inductively the existence of the base
change transfer corresponding to a solvable extension of number fields for GL.n/. The problem
of characterizing the image and fibers of base change for cyclic extensions of non-prime degree
was considered by Lapid and Rogawski in [12]. This led them to conjecture the non-existence
of certain types of cusp forms on GL.n/, and they proved this conjecture when n D 2. It was
shown in [15] that the conjecture of Lapid and Rogawski allows a characterization of the image
and fibers of the base change map for solvable extensions of number fields. In this article, our
main aim is to prove the conjecture of Lapid and Rogawski for all n.
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In order to make this paper more self- contained, we have included here complete proofs,
more detailed that in the originals, of the theorem of Lapid and Rogawski characterizing cusp
forms on GL.n/ whose Galois conjugate by a generator of a cyclic Galois group differs from
the original form by an Abelian twist (Theorem 2), which was in their paper conditional on
Theorem 1; and of the theorem of one of us (Rajan) characterizing the image and fiber of base
change in a solvable extension (Theorem 3).

1.1. Main theorem. For a number field F , let AF denote the adele ring of F and CF
the group of idele classes of F . Given a representation � of GL.n;AF / and � an automorphism
of F , define �� (or �.�// to be the representation g 7! �.��1.g// for g 2 GL.n;AF /. Given
an extension E=F of number fields, if ! is an idele class character of E, denote by !F its
restriction to the idele class group CF of F . If ! is a character of CF , define !E D ! ıNE=F ,
where NE=F W CE ! CF is the norm map on the idele classes of E.

Let E=F be a cyclic extension of number fields of degree d and � denote a generator
for Gal.E=F /. By "E=F , we mean an idele class character of CF corresponding to the exten-
sion E=F , i.e., a character of CF of order d , vanishing on the subgroup of norms NE=F .CE /
coming from E.

The primary aim of this paper is to establish the following conjecture of Lapid and Ro-
gawski [12] for GL.n/ for all n, proved by them for GL.2/:

Theorem 1 ([12, Statement A, p. 178]). Let E=F be a cyclic extension of number fields
of degree d > 1 and � denote a generator for Gal.E=F /. Let ! be an idele class character
of E such that its restriction to CF � CE is "E=F . Then there does not exist any cuspidal
automorphic representation … of GL.n;AE / such that

(1.1) �… ' …˝ !:

We note that the theorem is obvious if d does not divide n, as one sees by considering
the restriction to CF of the central character of ….

1.2. Galois conjugate cusp forms up to twisting by a character. From Theorem 1,
Lapid and Rogawski derive a structure theorem for cusp forms � on GL.n;AE /, whose Galois
conjugate �� differs from � up to twisting by a character !.

Given a cyclic extension E=F of number fields and an automorphic representation �
of GL.n;AF /, denote by BCEF .�/ the base change lift of � to an automorphic representation
of GL.n;AE /. For a cuspidal automorphic representation � on GL.n;AE /, let AIFE .�/ denote
the automorphic representation of GL.nd;AF /, where d D deg.E=F /, the existence of which
was proved for nd D 2 in [8], and for general n; d in [1]. For a field F let GF denote the
absolute Galois group Gal. NF=F / where NF denotes an algebraic closure of F . At the level
of Galois representations, base change corresponds to the restriction of representations from
GF to GE , and automorphic induction corresponds to the induction of representations of GE
to GF .

Theorem 2 ([12, Statement B, p. 179]). Let E be a number field and � an automor-
phism of E of order d . Let F be the field left fixed by the subgroup of automorphisms of E
generated by � . Let ! be an idele class character of E and let � be a cuspidal representa-
tion of GL.n;AE / such that �.�/ ' � ˝ !. Let K=F be the extension corresponding to the
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character !F of CF , and let L D KE. Then:

(1) K \E D F and ŒK W F � divides n. Let r D n=ŒK W F � and let � be the unique extension
of � to L trivial on K.

(2) There exists a cuspidal representation �0 of GL.r;AK/ such that

� D AIEL .BCLK.�0/˝  /;

where  is a Hecke character of L such that �. / �1 D !L.

(3) Conversely, given �0 and  as in (2), the representation

� D AIEL .BCLK.�0/˝  /

satisfies �.�/ ' � ˝ !. However, � need not be cuspidal.

1.3. Solvable base change. The following theorem characterizing the image and fibers
of the base change transfer for solvable extensions of number fields was established in [15]:

Theorem 3. Let E=F be a solvable extension of number fields, and let … be a unitary,
cuspidal automorphic representation of GLn.AE /.

(1) Suppose … is Gal.E=F /-invariant. Then there exist a Gal.E=F /-invariant Hecke char-
acter  of E and a cuspidal automorphic representation � of GLn.AE / such that

BCEF .�/ ' …˝  :

Further,  is unique up to base change to E of a Hecke character of F .

(2) Suppose there exist cuspidal automorphic representations �; � 0 of GLn.AF / such that

BCEF .�/ D BCEF .�
0/ D …:

Then there exists a character � of CF corresponding via class field theory to a character
of Gal.E=F / such that

� 0 ' � ˝ �:

Moreover, if � is non-trivial, the representations � and � ˝ � are distinct.

Theorem 3 follows by an inductive argument from Theorem 2.

Remark. Suppose E=F is a solvable extension with the property that invariant idele
class characters of E descend to F . Then any invariant, unitary, cuspidal automorphic rep-
resentation of GLn.AE / lies in the image of the base change map BCE=F . In particular, we
recover the classical formulation that invariant, unitary, cuspidal automorphic representations
descend if E=F is cyclic.

Remark. The motivation for this theorem stems from the following analogous Galois
theoretic situation: let E=F be a Galois extension of number fields, and � W GE ! GLn.C/
an irreducible representation of GE . Suppose that � is invariant under the action of GF on the
collection of representations of GE . By an application of Schur’s lemma, it can be seen that
� extends as a projective representation, say Q� to GF . By a theorem of Tate on the vanishing
of H 2.GF ;C�/ ([16]), this representation can be lifted to a linear representation � of GF .
This implies that �˝ � descends to a representation of GF for some character � of GE .
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Acknowledgement. We would like to thank J.-L. Waldspurger for useful correspon-
dence, and Christian Kaiser for a correction. Our work relies crucially on the stabilization of
the twisted trace formula [14], due to Moeglin and Waldspurger. We note that one prerequisite
for this proof is the so-called “weighted twisted fundamental lemma”, which at this point is
still unproven.

2. Proof of Theorem 2

In this section, assuming the validity of Theorem 1, we give a proof of Theorem 2 modi-
fying the arguments given in [12].

Let E=F be a cyclic extension of degree d , and let � denote a generator for Gal.E=F /.
We want to classify the idele class characters! ofE and cusp forms � on GL.n;AE / satisfying
the condition �.�/ ' � ˝ !. At the level of central characters, this implies �.��/ D ��!n,
where �� denotes the central character of � . In particular, this implies that the restriction !F ,
of ! to CF , has finite order dividing n. Let K=F be the cyclic extension of F corresponding
to !F .

We first show that K \E D F . We prove this by induction on the pair .d; n/, assuming
the validity of the claim for all extensionsE=F of degree less than d , or for cusp forms on GLm
form < n. When n D 1, the assertion is clearly true. So, we now assume that d > 1 and n > 1.

We initially rule out the following case:K � E andK is not equal to F . The caseE D K
is ruled out by Theorem 1. Let F � K � E 0 � E be an extension of fields such that the degree
ofE=E 0 is p, for some rational prime p. Letm D ŒE 0 W F �. The group Gal.E=E 0/ is generated
by �m. We observe

�m.�/ ' �m�1.� ˝ !/ ' � � � ' � ˝  ;

where  D !�.!/ � � � �m�1.!/. The restriction  E 0 of  to E 0 satisfies

 E 0 D !F ıNE 0=F :

Since K � E 0,  E 0 is trivial. Consequently, there exists an idele class character � of CE such
that �

�m.�/
D  . Hence,

�m.� ˝ �/ ' �m.�/˝ �m.�/ ' � ˝  ˝ �m.�/ ' � ˝ �:

By the descent theorem for cusp forms invariant with respect to a cyclic extension of prime
degree [1], there exists a cuspidal automorphic representation �0 of GLn.AE 0/ such that

BCEE 0.�
0/ D � ˝ �:

Let � 0 denote the restriction of � to E 0. Then

BCEE 0.�
0.�0// ' �.� ˝ �/ ' � ˝ ! ˝ �.�/ ' BCEE 0.�

0/˝ �.�/��1!:

We observe now that �.�/��1! is invariant under Gal.E=E 0/ D h�mi. From the definition
of  , it follows that �. / �1 D �m.!/!�1. Hence,

�m.�.�/��1!/ D �.�m�/�m.�/�1�m.!/

D �.�/�. /�1 ��1�. / �1!

D �.�/��1!:
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Hence there exists an idele class character � of E 0 such that � ıNE=E 0 D �.�/��1!. We have

BCEE 0.�
0.�0// ' BCEE 0.�

0
˝ �/:

From the characterization of the fibers of base change for cyclic extensions of prime degree

� 0.�0/ ' �0 ˝ � ˝ "iE=E 0

for some integer i . Let � D � ˝ "i
E=E 0

. Thus there exists an idele class character � of E 0 such
that

� 0.�0/ ' �0 ˝ �

such that the base change of the character � to E is �.�/��1!. Hence �pF D !F , and �F
defines an extension K 0 of F containing K. Since the degree ŒE 0 W F � is less than that of
ŒE W F �, by the inductive hypothesis K 0 \E 0 D F . Since K � E 0, we have

K D K \E 0 � K 0 \E 0 D F :

Hence we have ruled out the case that K � E and K ¤ F .
LetN D K \E. We want to showN D F . Assume now that !F is not trivial. The field

K associated to !F is a non-trivial cyclic extension of F . By what we have shown above,
K \E is a proper subfield of K. Let K 0 � K be a subfield of K containing N such that its
degree over N is a rational prime p. We have

� ' �d .�/ ' � ˝ !�.!/ � � � �d�1.!/ ' � ˝ !F ıNE=F :

By class field theory, the character !F ıNE=F corresponds to the cyclic extension L D KE
over E. The field E 0 WD EK 0 is an extension of E of degree p contained inside L. The iso-
morphism � ' � ˝ !F ıNE=F implies an isomorphism � ' � ˝ .!F ıNE=F /

k for any
natural number k. Taking k D ŒL W E 0�, we have � ' � ˝ "E 0=E , where "E 0=E is an idele
class character of E corresponding via class field theory to the extension E 0=E. By the char-
acterization of automorphic induction [1], there exists a cusp form � 0 on GL.n=p;AE 0/ such
that

� ' AIEE 0.�
0/:

Let � 0 2 Gal.E 0=F / be an extension of � to E 0. Then

AIEE 0.�
0.� 0// ' �.�/ ' � ˝ ! ' AIEE 0.�

0
˝ !0/;

where !0 D ! ıNE 0=E is the base change of ! toE 0. From the characterization of the fibers of
automorphic induction with respect to a cyclic extension of prime degree, it follows that there
exists an automorphism � 2 Gal.E 0=E/ such that �� 0.� 0/ ' � 0 ˝ !0. The automorphism �� 0

of E 0 extends � . Renaming �� 0 as � 0, we see that there exists an automorphism � 0 of E 0

extending � such that
� 0.� 0/ ' � 0 ˝ !0:

Let F 0 be the fixed field of � 0. Since the fixed field of � is F , E \ F 0 D F . Further, d divides
the degree of E 0 over F 0 as � 0jE D � , and ŒE 0 W F � D dp. There are two cases: either F 0 D F
or F 0 ¤ F .

Suppose F 0 D F . Then E 0 is a cyclic extension of F of degree dp, and !0F D !
p
F .

Let K 00 be the cyclic extension of F cut out by !pF . By induction, applied to .� 0; � 0; !0/,
K 00 \E 0 D F . Since p divides ŒK W N� and K 00 is the unique subfield of index p in K � F ,
it follows that N � K 00. Hence N D K \E D K 00 \E 0 D F .
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Before taking up the case F 0 ¤ F , we now rule out the case F 0 D F by showing that
� is not cuspidal in this case. By construction, K 0 � K and E 0 D EK 0 is contained inside the
field L D KE. The field K 00 is contained inside K. Hence K 00E 0 � KE. Counting degrees

ŒK 00E 0 W E� D ŒK 00E 0 W E 0�ŒE 0 W E� D pŒK 00 W K 00 \E 0�

D pŒK 00 W F � D ŒK W F � D ŒKE W E�;

we get L D KE D K 00E 0. Since !F ıNE=F corresponds to the extension L ofE, the charac-
ter !0F ıNE 0=F D !

p
F ıNE 0=F corresponds to the extension L D KE D K 00E 0. The above

process can be continued, and the representation � 0 (and hence �) is automorphically induced
from a cuspidal representation �L of GL.n=pr;AL/, where r D ŒL W E 0�. The equation

� 0.� 0/ ' � 0 ˝ !0

implies that �L satisfies the condition

� 00.�L/ ' �L ˝ !
L

for some automorphism � 00 of L extending � 0 on E 0, and of order strictly greater than d , the
order of � . Now !LK is the trivial character. The automorphism � 00

d is a non-trivial automor-
phism of L trivial on E, as � 00 extends � on E. But

� 00
d
.�L/ ' �L ˝ !

L
ıNL=K ' �L:

This implies that � is not cuspidal, contrary to our hypothesis. Hence this rules out the case
that F 0 D F .

Hence we are in the situation that F 0 ¤ F . Since d divides ŒE 0 W F 0� and ŒE 0 W F � D dp,
ŒE 0 W F 0� D d , we see that ŒF 0 W F � D p ; moreover, we saw that F 0 \E D F . The extension
E 0 over F is a compositum of the linearly disjoint extensions E and F 0 over F . The char-
acter !0F 0 D !F ıNF 0=F , corresponds to the extension KF 0 which contains the compositum
NF 0 � E 0. By the induction hypothesis, KF 0 \E 0 D F 0. Hence NF 0 D F 0, and this implies
that N D K \E D F .

We now show thatF 0 D K 0. IfK 0 ¤ F 0, the degree of the compositum ŒK 0F 0 W F � D p2.
Since KF 0 \E 0 D F 0, E 0 D EK 0 � E and K 0 � K,

K 0F 0 \E D F 0 \E D F:

Since K 0 and F 0 are both contained inside E 0 and ŒE W F � D d , this implies ŒE 0 W F � � dp2.
This contradicts the fact that the degree of E 0 over F is dp. Hence F 0 D K 0.

We also obtain that the representation � is automorphically induced from a cuspidal
representation � 0 of GL.n=p;AE 0/ satisfying

� 0.� 0/ ' � 0 ˝ !0:

The field E 0 is also the compositum of the fields E and K 0. The extension of E defined by the
character !0F 0 ıNE 0=F 0 is L. This can be continued, and we obtain a cuspidal representation
�L of GL.n=r;AL/ such that

� ' AIEL .�L/;

where r D ŒL W E�. The representation �L satisfies,

�.�L/ ' �L ˝ !
L;

where � is the unique automorphism of L extending � such that the fixed field of L by � is
equal to K.
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Since !LK is trivial, there exists a Hecke character  of L such that �. / �1 D !L.
Then

�.�L ˝  
�1/ ' �L ˝ !

L
˝ �. /�1 ' �L ˝  

�1:

Hence the cuspidal representation �L ˝  �1 is invariant with respect to the cyclic automor-
phism group Gal.L=K/ generated by � . To complete the proof of Theorem 2, we now have to
establish descent for cyclic extensions.

Let E=F be a cyclic extension of degree d and let � be a cuspidal representation of
GLn.AE / invariant under the action of Gal.E=F / D h�i. Choose an extension F � E 0 � E
such that ŒE W E 0� D p for some rational prime p. By the descent for cyclic extensions of
prime degree, there exists a cuspidal representation � 0 of GLn.AE 0/ which base changes to � .
We need to show that � 0 is left invariant by Gal.E 0=F /. Let � 0 denote the restriction of �
to E 0. Suppose � 0.� 0/ ' � 0 ˝ ", where " is an idele class character of E 0 which corresponds
to the extension E=E 0 via class field theory. Since E=F is cyclic, " D � ıNE 0=F for some
idele class character � of F defining the cyclic extension E=F by class field theory. If p is
prime to ŒE 0 W F �, � 0p.� 0/ ' � 0 ˝ "p ' � 0; but � 0p generates Gal.E 0=F /, so � 0 is invariant
by Gal.E 0=F /.

Assume p2 divides d . Since � is of order d , "F D �d=p defines a non-trivial cyclic
extension F 00 of degree p of F contained inside E. Then F 00 D E�

p

� E 0 D E�
d=p

, so
E 0 \ F 00 ¤ F . This contradicts the first part of Theorem 2 proved above.

Hence � 0 is left invariant by Gal.E 0=F /, and by induction can be descended to a cuspidal
representation of GLn.AF /.

Hence we obtain

� ' AIEL .BCLK.�0//;

where �0 is a cuspidal representation of GL.n=r;AK/ which is a descent of �L.
Conversely, it is easy to see from the functorial properties of base change and auto-

morphic induction that any automorphic representation as in part (3) of Theorem 2 satisfies
�.�/ ' � ˝ !.

3. Proof of Theorem 3

In this section, we deduce Theorem 3 from Theorem 2, following the arguments given
in [15].

Lemma 1. Let E=F be a solvable extension of number fields. Suppose � is a cuspidal
automorphic representation of GLn.AF / such that its base change to E remains cuspidal. Let
� be a non-trivial idele class character on F such that the composition � ıNE=F is trivial,
where NE=F W CE ! CF is the norm map on the idele classes. Then � and � ˝ � are not
isomorphic.

Proof. Suppose � ˝ �. This implies � ' � ˝ �k for any natural number k. Hence we
can assume that � is of prime order. In this case, � cuts out a cyclic extension E 0 of prime
degree contained in F . By the characterization of automorphically induced representations [1],
it follows that the base change of � to E 0 is not cuspidal. This contradicts the assumption that
the base change of � to E is cuspidal.
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We first prove part (2) of Theorem 3, characterizing the fibers of the base change lift
for solvable extensions of number fields. Suppose … is a cuspidal automorphic representation
of GLn.AE /. Let � and � 0 be cuspidal automorphic representations of GLn.AF / which base
change to …. We need to show that � 0 ' � ˝ � for some Hecke character � on F such that
� ıNE=F D 1.

By the results of [1], the theorem is true for cyclic extensions of prime degree. Let
E � E1 � F be a tower of Galois extensions of F , where E1=F is of prime degree. Let
BCE1

F .�/ D �1 and BCE1

F .� 0/ D � 01. By induction, we assume that the theorem is true for
the extension E=E1. We have � 01 ' �1 ˝ �1 for some Hecke character �1 on E1 such that
�1 ıNE=E1

D 1. Let � be a generator of Gal.E1=F /. We have

�1 ˝ �1 ' �
0
1 '

�� 01 '
�� 01 ˝

��1 ' �1 ˝
��1:

Hence
�1 ' �1 ˝

1���1:

If �1 ¤ ��1, let f denote the order of 1���1, p a prime dividing f , and let

� D .1��/f=p�1:

Observe that � is a non-trivial character of Gal.E=E1/ of order p satisfying

�1 ' �1 ˝ �:

It follows from the characterization of automorphic induction that �1 is automorphically
induced from a cuspidal representation �� belonging to the class field E� defined by �. But
E� � E, and it follows that … is not cuspidal, contrary to our assumption on …. Hence we
have that �1 is invariant by Gal.E1=F / and descends to an idele class character �0 of CF such
that �1 D �0 ıNE1=F . Then

BCE1

F .� ˝ �0/ ' �1 ˝ �1 ' �
0
1 ' BCE1

F .� 0/:

Hence we have a Hecke character � corresponding to a character of Gal.E1=F / such that

� 0 ' � ˝ �0� D � ˝ �;

and � D �0� defines a character of Gal.E=F /. This proves part (2) of Theorem 3, as the dis-
tinction between � and � ˝ � follows from the properties of automorphic induction.

We now move on to proving part (1) of Theorem 3. We prove a preliminary lemma, which
also proves the uniqueness assertion about  in Theorem 3.

Lemma 2. Let E=F be a solvable extension, and let … be a cuspidal automorphic
representation of GLn.AF /. Suppose � is a Gal.E=F / invariant idele class character of E
such that both … and …˝ � are in the image of base change from F . Then � lies in the image
of base change.

Proof. The proof is by induction. The lemma is true for cyclic extensions of prime
degree, as any invariant character descends. Assume we have E � E1 � F , with E1=F cyclic
of prime degree p. By induction, � D �1 ıNE=E1

for some idele class character �1 of CE1
.
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Suppose �1 and � 01 are cuspidal automorphic representations of GLn.AE1
/ which base change

respectively to … and …˝ �. Since both � 01 and �1 ˝ �1 base change to …˝ �, by the
description of the fibers of base change proved above, we obtain

� 01 ' �1 ˝ �1�1

for some Hecke character �1 of CE1
vanishing on NE=E1

CE .
Assume further, as we may from the hypothesis, that both �1 and � 01 lie in the image of

base change from F to E1. For any � 2 Gal.E1=F /,

�1 ˝ �1�1 ' �
0
1 '

�� 01 ' �1 ˝
� .�1�1/:

Hence, �1 ' �1 ˝ �, where � D � .�1�1/.�1�1/
�1. Since � is Gal.E=F /-invariant, we have

��1 D �1"
i
1 and ��1 D "

j
1 for some integers i; j , where "1 is associated to a cyclic extension

ofE1 contained insideE. Hence � D "l1 for some integer l . Since… is cuspidal, the cuspidality
criterion for automorphic induction implies that � D 1. Hence we get that �1�1 is invariant
by Gal.E1=F /. By induction, �1�1 lies in the image of base change from F to E1, and it
follows that � also lies in the image of base change from F to E.

With this lemma, we now proceed to the proof of part (1) of Theorem 3. The proof is by
induction on the degree of the extensionE over F . By the results of [1], it is true for extensions
of prime degree. We now assume there is a sequence of fields

E � E 0 � F;

where E 0=F is a cyclic extension of prime degree p. By the inductive hypothesis, there exists
a Gal.E=E 0/-invariant idele class character  0 of E, and a cuspidal automorphic representa-
tion � 0 of GL.n;AE 0/ such that

…˝  0 D BCEE 0.�
0/:

Let � 0 be a generator of Gal.E 0=F /, and let � be an element of Gal.E=F / lifting � 0. Then

BCEE 0.
� 0� 0/ ' �…˝ � 0 ' …˝

� 0 ' .…˝  0/˝
� 0 

�1
0 :

Since Gal.E=E 0/ is a normal subgroup of Gal.E=F /, for any � 2 Gal.E=E 0/,

�� 0 D
�.��1��/ 0 D

� 0:

Hence � 0 �10 is Gal.E=E 0/-invariant. Since both …˝  0 and .…˝  0/˝ � 0 
�1
0 lie in

the image of base change from E 0 to E, by Lemma 2 there exists an idele class character �0

of E 0 such that � 0 �10 D �
0 ıNE=E 0 . Hence,

BCEE 0.
� 0� 0 ˝ �0�1/ ' …˝  0:

By part (2) of Theorem 3, characterizing the fibers of the base change lift, we conclude that
there is an idele class character �00 corresponding via class field theory to a character of
Gal.E=E 0/ such that

(3.1) � 0� 0 ' � 0 ˝ �0�00 D � 0 ˝ �0;

where �0 D �0�00. Further,

(3.2) �0 ıNE=E 0 D �
0
ıNE=E 0 D

� 0 
�1
0 :
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Write the elements of

Gal.E=F / D ¹��i� j 0 � i < p; � 2 Gal.E=E 0/º:

We have for x 2 CE ,

�0F ıNE=F .x/ D �
0

 
p�1Y
iD0

Y
�2Gal.E=E 0/

��i�.x/

!
D

p�1Y
iD0

� i�0.NE=E 0.x//

D

p�1Y
iD0

� i .�. 0/ 
�1
0 /.x/

D �p. 0/ 
�1
0 .x/:

Since  0 is Gal.E=E 0/-invariant and �p 2 Gal.E=E 0/, it follows that �0F ıNE=F is trivial.
Hence by part (1) of Theorem 2, and equation (3.1), �0F is trivial.

Let ˛ be an idele class character of E 0, satisfying ˛� 0.˛/�1 D �0: By equation (3.1),

� 0.� 0 ˝ ˛/ D � 0.� 0/˝ ˛�0�1 D � 0 ˝ ˛:

Hence � 0 ˝ ˛ is Gal.E 0=F /-invariant, and descends to F . Thus, …˝  0 ˝ .˛ ıNE=E 0/
descends.

To finish the proof, we have to check that  0 ˝ .˛ ıNE=E 0/ is Gal.E=F /-invariant. For
this it is enough to check that  0 ˝ .˛ ıNE=E 0/ is � -invariant:

�. 0 ˝ .˛ ıNE=E 0// D �. 0/˝ �.˛/ ıNE=E 0

D �. 0/˝ .˛ ıNE=E 0/.�
0
ıNE=E 0/

�1

D  0 ˝ .˛ ıNE=E 0/;

where the last equality follows from equation (3.2).

4. Trace formula

We want to prove Theorem 1 ruling out the existence of a cuspidal representation …
of GL.n;AE / satisfying equation (1.1),

�… ' …˝ !;

where ! is an idele class character of E such that its restriction to CF corresponds by Artin
reciprocity to a primitive character of the cyclic group Gal.E=F /.

If … satisfies (1.1), it will, for a suitable choice of a function � 2 C1c .GL.n;AE //,
contribute a non-zero term to the trace

(4.1) Trace.I� .Rdisc ˝ !
�1/.�//:

This follows from strong multiplicity one for cuspidal representations. HereRdisc is the discrete
part of the representation of GL.n;AE / on

A2 WD L
2.GL.n;E/AGnGL.n;AE //:

Here AG is R�
C

embedded diagonally into GL.n;Ew/ at all Archimedean places w of E. The
operator I� is given by f .g/ 7! f .��1.g//, where f 2 A2 and � is our chosen generator
of † D Gal.E=F /.
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There is a general formula for the trace in equation (4.1) due to Kottwitz–Shelstad [7]
and Moeglin–Waldspurger [14]. (In fact, this trace must be completed by Arthur’s “discrete
terms”, which we will describe presently in our case.) The formula is

(4.2) Tdisc.� � � I!
�1/ D

X
G0�E

�.G0/STG
0

disc.�
G0/:

Here G0 runs over the elliptic endoscopic data consisting of triples of the form .G0;G 0; Qs/:
these will be reviewed in the next paragraph; G0 is a reductive F -group and �G

0

is a function
on G0.AF / associated to �.

The so-called “stable discrete trace formula” STG
0

disc will be very simple in our case, asG0

will be a group GL.m/: see Section 7. The terms in Tdisc.� � � I!
�1/ are as follows:

(1) The traces Trace.I� .…˝ !�1/.�// for a cuspidal representation … of GL.n;AE / such
that �… ' …˝ !. The operator I� sends an automorphic form f .g/ 7! f .��1.g//,
g 2 GL.n;AE /. The cusp forms occur with multiplicity one and I� is an intertwining
operator sending … to �….

(2) Similar traces where … belongs to the discrete spectrum (and is not cuspidal) (see [13]).
This means that n D ab, and that there exists �a, a cuspidal representation of GL.a;AE /,
such that … is a quotient of the representation

� D �aj � j
b�1

2 � �aj � j
b�3

2 � � � �� �aj � j
1�b

2 ;

where j � j denotes the idele norm, seen as a character of GL.a;AE / via the determinant;
and the notation � denotes, as usual, parabolic induction, here from the parabolic sub-
group of GL.n/ of type .a; : : : ; a/. Now if �… ' …˝ !, the same is true of �. Since
the representation �a is almost tempered, this implies that ��a ' �a ˝ !. By induction
(since a < n), this is impossible.

(3) There are now the discrete terms defined by Arthur, which do not come from the dis-
crete spectrum. We first consider the simplest case. Here … D �1 � � � �� �t ; where
�i is a cuspidal representation of GL.ni ;AE /, and

Pt
iD1 ni D n. We assume then

�… ' …˝ !; of course
�… D ��1 � � � �� ��t ;

and this equivalence implies that there is an element s 2 WM , the Weyl group corre-
sponding to the Levi component GL.n1/ � � � �GL.nt / such that

��i ' �s.i/!:

We must further assume that s is “regular”, i.e., asM D aG , where aM (resp. aG) denote
the Lie algebra of the split component of the center ofM andG respectively. This implies
thatM is homogeneous (n D ab) and that ��i ' �s.i/!, where s is a cyclic permutation
of order b. The corresponding term is the trace of the product of …!�1.�/, and of an
intertwining operator associated to s � � , defined by Arthur, acting on the space of ….
Its precise form will be irrelevant.

(4) Finally, we can build similar terms with …i cuspidal replaced by a residual, discrete
spectrum representations as in (2) above.

We note that all the representations of type .1; 2/ occur with multiplicity 1. Furthermore,
their Hecke eigenvalues are independent from those of the representations of type .3; 4/: fix
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a finite set of primes S , containing the Archimedean primes, and consider a finite set of such
representations, unramified outside S . Let T be a sufficiently large set of (finite) primes disjoint
from S . Our representations, via their Hecke matrices, define characters of the tensor product,
over the primes in T , of the local, unramified Hecke algebras. Then these characters, indeed
for representations of different types .1; 2; 3; 4/, are all distinct.

In the next paragraph, we compute the right-hand side, i.e., the endoscopic terms.
For more information on the endoscopic stabilization of the trace formula, and in particu-

lar the use of formula (4.2), we refer to [14]; in particular Sections I.6.4 and X.5.9. Suffice it to
say here that if… is a representation of GL.n;AE / occurring in the left-hand side of (4.2), i.e.,
in the discrete part of Arthur’s trace formula as reviewed above, there will be an endoscopic
group G0, and a representation � 0 of G0.AF / such that � 0 and… are associated, i.e., the Hecke
matrices of … are deduced at almost all primes from those of � 0 in a prescribed manner, deter-
mined by the endoscopic datum, given in [13, Section 6.4]. In our case, there will be a unique
datum G0 (or none at all) and the relation between � 0 and … will be quite explicit.

5. Endoscopic data

We now consider the right-hand side of equation (4.2). We must first describe the endo-
scopic data. We use Waldspurger’s formalism for base change [2, 18].

We consider GL.n/=E as an F -group by restriction of scalars and denote it by G. We
will sometimes denote by G0 the group GL.n/ over E. The generator � of † D Gal.E=F /
acts on G by F -automorphisms; as such we denote it by � . We fix an isomorphism � 7! �.�/

between † and Z=dZ. For w 2 WF ; �.w/ is then defined by composition.
The connected component of identity of the dual group of G is

OG D GL.n;C/d D
Y

i2Z=dZ

GL.n;C/I

the F -structure on G gives an action of Gal. NF=F / on OG quotienting through †:

(5.1) �.g1; : : : ; gd / D .g1C�.�/; : : : ; gdC�.�//:

Then LG D OG ÌWF , the action of WF being so obtained. On the other hand, � defines an
automorphism O� of OG,

O�.g1; : : : ; gd / D .g2; : : : ; gd ; g1/:

Suppose we are given a character ! of A�E , which defines via the determinant an abelian char-
acter of G.AF / D GL.n;AE /. By a result of Langlands [11] we can see ! as an element
a2H 1.WF ; Z. OG//. Note thatZ. OG/D .C�/d , the action ofWF being given by equation (5.1).
In general, the element a is only defined modulo the group

ker1.F;Z. OG// D ker
�
H 1.WF ; Z. OG//!

M
v

H 1.WFv
; Z. OG//

�
;

where v ranges over the places of F (see [7, 18]).
In our case, however, Shapiro’s lemma implies that

H 1.WF ; Z. OG// D H
1.WE ;C

�/;
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with trivial action of WE . Hence,

H 1.WF ; Z. OG// D Homct .WE ;C�/ D Homct .CE ;C�/;

where CE is the group of idele classes. Similarly, for a place v of F ,

H 1.WFv
; Z. OG// D

M
wjv

H 1.WEw
;C�/:

Thus, ker1.F;Z. OG// is the group of idele class characters that are locally trivial, so

ker1.F;Z. OG// D ¹1º:

Now an endoscopic datum for .G; �; a/ is a triple, G0 D .G0;G 0; Qs D s O�/ subject to the follow-
ing conditions:

(E1) G0 is a quasisplit connected reductive group over F .

(E2) Qs D s Q� is a semisimple element in OG Ì‚, where ‚ D h O�i ' Z=dZ.

(E3) G 0 � LG is a closed subgroup.

(E4) There exists a split exact sequence

1! OGQs ! G 0 ! WF ! 1;

where OGQs is the neutral connected component of the centralizer of Qs and G 0 ! WF is
induced by the map LG ! WF . In particular, G 0 \ OG D OGQs . For this action of WF ; OGQs
is a dual group of G0.

(E5) For .g; w/ 2 G 0,
s O�.g/w.s/�1 D a.w/g;

where a.w/ is a 1-cocycle of WF with values in Z. OG/ and defining a.

We will denote byH the groupG0. We note that any semisimple Qs D s O� is conjugate to an
element Qs such that s D .s0; 1; : : : ; 1/. In this case, OH D OGQs D OG0;s0 is diagonally embedded
in OG. Here OG0;s0 is the centralizer of s0 in OG0, which is connected. Thus,

OGQs D ¹.h; : : : ; h/ j h 2 OH º D ¹diag.h/ j h 2 OH º;

where diag W GL.n;C/! GL.n;C/d is the diagonal map. We look for

� W G 0 ! LG;

where G 0 admits an exact sequence (E4). Thus for h 2 OH ,

� W .h; 1/ 7! .diag.h/; 1/;

while for w 2 WF ,
� W .1; w/ 7! .n.w/; w/ D .n.w/; 1/.1; w/:

Here we have chosen a splitting n W WF ! G 0 for G 0. Let us denote by h 7! wh the action
of WF on OH coming from (E4). Then

.wh; 1/ D .n; w/.h; 1/.n; w/�1;
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where we are writing for short n D n.w/ and .h; 1/ D .diag.h/; 1/. Hence

.wh; 1/ D .n; 1/.1; w/.h; 1/.1; w/�1.n; 1/�1 D .n; 1/.h; 1/.n; 1/�1;

since h, being diagonal in OG, is invariant by the action (5.1) of WF . Write

n D n.w/ D .n1; : : : ; nd /;

so

(5.2) n diag.h/n�1 D .n1hn�11 ; : : : ; ndhn
�1
d / D diag.h0/

for some h0 2 OH .
We now assume that s0 D .s1; : : : ; sa/ is given by diagonal scalar matrices si of degree bi

with distinct eigenvalues ti . Then

OH D

aY
iD1

GL.bi / � GL.n/:

Write a D a1 C � � � C ar (ak � 1) with

b1 D b2 D � � � D ba1
< ba1C1 D � � � D ba1Ca2

< � � � :

Since ni normalizes OH ,

ni 2

rY
kD1

GL.bk/
ak ÌSak

with obvious notation. We choose explicitly as representatives of the Weyl group Sak
the

obvious block matrices with blocks of size bk equal to either 0 or 1.
Write W D

Qr
kD1Sak

, so that the normalizer of OH is OHW . By equation (5.2),

Ad.ni /h D Ad.nj /h for all i; j and all h 2 OH:

Hence ni D hi� , where � 2 W is independent of i and hi 2 OH ; moreover,

Ad.hi /h D Ad.hj /h for all i; j and all h 2 OH:

Thus hi D .zij /h with .zij / 2 Z. OH/ D .C�/a. Hence we can write

n.w/ D .zi .w/h.w/�.w//i ; where zi .w/ D .zi1.w/; : : : ; zia.w// 2 .C�/a:

In the stabilization of the trace formula, we are only interested in the elliptic endoscopic data,
i.e., those such that the neutral component ofZ. OH/WF and ofZ. OG/WF ; O� coincide. The second
group is equal to C� embedded diagonally in GL.n;C/d . We haveZ. OH/ D

Qr
kD1.C

�/ak and
n.w/ acts by �.w/ 2

Q
k Sak

. Thus Z. OH/WF is the set of fixed points of the �.w/, w 2 WF .
In particular, it contains the product

Q
k C�, embedded diagonally in

Q
k GL.bk/.

If H is elliptic, we see that r D 1, so OH D GL.b/a is homogeneous. Furthermore, WF
acts on .C�/a via �.w/ 2 Sa. The image of WF by w 7! �.w/ must therefore be a transitive
subgroup of Sa.

So far we have shown that OH D GL.b/k , and

n.w/ D .ni .w//; where ni .w/ D zi .w/h.w/�.w/;

with zi .w/ 2 Z. OH/ ' .C�/a.
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The group G 0 D OH ÌWF is defined as a semi-direct product, by the conjugation action
of n.w/ on OH . Dually, H �F NF ' GL.b/a= NF , where the rational structure will be described
presently. In particular, the derived subgroup of H is simply connected. This implies (see
[7, Section 2.2]), that G 0 is an L-group, i.e., that for a suitable choice of section the action
of WF on OH preserves a Borel subgroup and a splitting.

We have seen that n.w/ D .zi .w/h.w/�.w//i acts by conjugation on OH . If h.w/ D 1,
this is easily seen to preserve a splitting. Conversely, if n.w/ preserves a splitting, it can be con-
jugated within OH to a section preserving the trivial splitting: one then checks that the h.w/ 2 OH
must act trivially by conjugation, so we may assume h.w/ � 1. With this section (if it is one),
G 0 Š LH is naturally embedded in LG, whence a homomorphism of L-groups

� W LH ! LG:

The contribution of this endoscopic datum will be deduced from � .
Since now n.w/ D .zi .w/�.w//i , we must still check the cocycle relation

n.ww0/ D n.w/:wn.w0/;

where the action of w is given by the structure of LG. If w 2 WF is sent to �k 2 †, with
k D �.w/, this says that

ni .ww
0/ D ni .w/niCk.w

0/:

Write zi .w/ D .zi;˛.w// according to the decomposition Z. OH/ D .C�/a for ˛ D 1; : : : ; a.
Thus

zi .ww
0/�.ww0/ D zi .w/�.w/ziCk.w/�.w

0/;

i.e.,
zi .ww

0/ D zi .w/:�ziCk.w
0/��1;

with � D �.w/ 2 Sa. Now �..z˛// D z��1˛, so the cocycle relation reads

(5.3) zi;˛.ww
0/ D zi;˛.w/ziCk;��1˛.ww

0/;

where k D �.w/.

6. Endoscopy, with character

We now have to introduce the character ! in the endoscopic computations. This inter-
venes through formula (E5) in the definition of endoscopic datum. We want to make the
element a 2 H 1.WF ; Z. OG//, or rather a representative a 2 Z1.WF ; Z. OG//, explicit. We write
for w 2 WF ,

a.w/ D .ai .w//; ai .w/ 2 C�:

Since ! is a character of CE , it can be identified with an element of H 1.WE ;C�/. We
now need Shapiro’s lemma. For its explicit description, we follow Langlands [10] (see also
Serre [17]). Recall that

WEnWF ' Gal.E=F / ' Z=dZ;

the isomorphism sending the generator � of† to 1. We choose a representative � 2 WF of this
generator, which we also denote by � . Now ¹�; �2; : : : ; �d º are representatives of WEnWF .
Note that �d ¤ 1 as follows from class field theory, cf. (7.4), (7.5) below.
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For any w 2 WF ,
� iw D ıi .w/�

j ;

where j � i C k .mod d/ if k D �.w/ (see equation (5.1)) and ıi .w/ 2 WE . We set

ai .w/ D !.ıi .w//:

For w 2 WE , � iw D ıi .w/� i , so

(6.1) ai .w/ D .!.�
iw��i // D !.�

i

w/ D ! ı � i .w/;

since the lifting � acts by conjugation, on the abelianized Weil group CE of E, through its
image in Gal.E=F /.

Consider our chosen lift � 2 WF . Then

� i� D � iC1 D ıi .�/�
ŒiC1�;

where Œi C 1� is the representative of i C 1 in ¹1; : : : ; dº. The foregoing equation implies

(6.2) ıi .�/ D 1 for i D 1; : : : ; d � 1; ıd .�/ D �
d
2 WE :

This defines completely a.w/. Now,

� W WF ! Z. OG/ ÌWF ; w 7! .ai .w/; w/;

defines an L-parameter for the L-group of ResE=F GL.1/, corresponding to the character !.
We now have to introduce the condition

!jA�F
D "E=F :

In cohomological terms, this is given by the corestriction

Cor W H 1.WE ;C
�/! H 1.WF ;C

�/

dual to the transfer map WF =W der
F ! WE=W

der
E . Explicitly, the transfer is given as follows

([17, Chapter VII, Section 8]): it associates to w 2 WF the image in WE=W der
E of

Q
i ıi .w/.

Our condition is therefore, for w 2 WF ,

(6.3)
Y
i

ai .w/ D
Y
i

!.ıi .w// D "E=F .w/;

where both sides are seen as characters of the Weil groups (recall that "E=F is here seen as
a character of the Galois group). For w 2 WE , "E=F .w/ D 1 and the left-hand side isY

i

� i

!.w/ D !.NE=F z/;

where z 2 CE is the image of w. Since ! restricts trivially toNE=F .CE / � CF , relation (6.3)
is satisfied.

On the other hand, .ıi .�// D .1; : : : ; 1; �d /, thus equation (6.3) is equivalent to

a.�/ D .1; : : : ; �/;

where � D "E=F .�/ is a primitive root of unity of order d . (In particular, !.�d / D � when �d

is seen as an element of WE=F , hence of CE , etc.)
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Now consider condition (E5) on the endoscopic group

(6.4) s O�.g/w.s/�1 D a.w/g; .g;w/ 2 G 0:

For w D 1, this is the condition defining OH D OG0. Consider the image .n.w/; w/ of the sec-
tion n for w 2 WF . We have

n.w/ D .zi .w/�.w//i :

Write for simplicity �; zi ; ai for �.w/; zi .w/; ai .w/, respectively. If k D �.w/, then

w.s/ D w.s0; 1; : : : ; 1/ D .1; : : : ; s0; : : : ; 1/;

where s0 occurs at the place l D d C 1 � k with the convention that l D 1 if k D 0. Equa-
tion (6.4) reads

(6.5) .s0; 1; : : : ; 1/.z2�; : : : ; z1�/.1; : : : ; 1; s
�1
0 ; : : : ; 1/ D ..aizi�//i :

Thus,

s0z2� D a1z1�;(6.6)

z3� D a2z2�;
:::

zlC1�s
�1
0 D alzl�;

:::
z1� D adzd �:

(If k D 0, s0z2�s�10 D a1z1� , etc.; if k D 1, l D d and the last equation is z1�s�10 D adzd � .)
Write �s�1o D �s

�1
0 ��1. Then equation (6.6) is equivalent to

s0z2 D a1z1;(6.7)

z3 D a2z2;
:::

zlC1
�s�10 D alzl ;

:::
z1 D adzd :

Note that all these elements are contained in Z. OH/, hence commute. (For k D 0, the first line
is s0z0�s�10 D a1z1; for k D 1, the last line is z1�s�10 D adzd .) Taking the product, we see
that

s0
�s�10 D

Y
ai D "E=F .w/;

by equation (6.3), so s0 D "E=F .w/�s0.
Now s0 2 Z. OH/ D .C�/a, and � 2 Sa. Write s0 D .s0;˛/; ˛ D 1; : : : ; a. Thus we have

�s0 D .s0;��1˛/, whence

(6.8) s0;�˛ D "E=F .w/s0;˛:

Assume that w 2 WF is sent to the chosen generator � 2 †, so "E=F .w/ D �. Recall that
s0 2 Z. OH/ is given by block-diagonal matrices s0;˛ of the size b with distinct eigenvalues.
Equation (6.8) now implies that the s0;˛ can be partitioned into a0 D a

d
subsets of the form

(6.9) .s1; �s1; : : : ; �
d�1s1I s2; �s2; : : : ; �

d�1s2I : : : /I
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the entries being block-diagonal, we assimilate them to scalars. In particular, d j a, so d j n. The
scalars sj (j D 1; : : : ; a0) verify sj ¤ �sj 0 for any � 2 �d .C/. Equation (6.8) now uniquely
determines �1 D �.�/: it is a product of a0 d -cycles.

Consider now an arbitrary element w 2 WF . If w 2 WE , "E=F .w/ D 1 and equation
(6.8) implies that � D 1, the eigenvalues being distinct. Thus WF acts via † D WF =WE and
�.w/ D �

�.w/
1 . The image of WF is therefore a cyclic subgroup of Sa, of order d , preserving

the strings of length d in equation (6.9). The ellipticity of H now implies that this action is
transitive, so a D d .

Since we have determined n.w/ up to central elements in OH , we have now computed
the F -groupH . Indeed, OH D GL.b/ � � � � � GL.b/ (a D d factors) andWF acts via†, cycli-
cally permuting the factors. This implies that H is isomorphic to ResE=F .GL.b/=E/. This
embedding into OG is given on OH by

.h1; : : : ; hd / 7! diag.h1 ˚ � � � ˚ hd / 2 GL.n;C/d :

We can now summarize the main result of this section:

Proposition 4. The following statements hold:

(1) If d − n, there exists no elliptic endoscopic group for .�; !/.

(2) If n D db, there exists (at least) one endoscopic datum for .�; !/ given by the foregoing
construction.

To complete the proof of the proposition, we still have to show that we can choose the
zi .w/ so as to satisfy equations (E5) and (6.5). We will obtain in fact a more precise result.

The permutation � associated to w 2 WF is a cyclic permutation on the indices ˛. We
have �.z˛/��1 D .z��1˛/. We now assume that for �.w/ D k, ��1.˛/ D ˛ � k. Relation (5.3)
now reads

(6.10) zi;˛.ww
0/ D zi;˛.w/ziCk;˛�k.w

0/:

We consider all indices as elements of Z=dZ. Now fix ˇ (mod d ). Now equation (6.10) yields
for i C ˛ D ˇ,

zi;ˇ�i .ww
0/ D zi;ˇ�i .w/ziCk;ˇ�i�k.w

0/:

Set �ˇi .w/ D zi;ˇ�i .w/: we now have

�
ˇ
i .ww

0/ D �
ˇ
i .w/�

ˇ

iCk
.w0/:

This can be understood as follows. Let OH0 D GL.b/d be the “absolute” dual group of H . We
have OHd

0 �
OG D GL.n/d : The elements z.w/ D .zi;˛.w// belong to the center OU D

Q
i;˛ C�

of . OH0/d . The datum (now fixed) � determines an action ofWF on OU , by .zi;˛/ 7! .ziCk;˛�k/:

By (6.13), zi;˛ is a 1-cocycle of WF , with values in OU , for this action.
For ˇ fixed, the factor of OU given by i C ˛ D ˇ, isomorphic to .C�/d , is preserved by

this action, and the resulting action of WF on .C�/d is the action defined by seeing .C�/d

as the dual group of ResE=F .GL.1//. However, H 1.WF ; .C�/d /, for WF acting by its action
on the dual group of ResE=F .GL.1// is equal toH 1.WE ;C�/ D Hom.CE ;C�/ by Shapiro’s
lemma. Thus each character �ˇ of CE defines such a cocycle, by �ˇi .w/ D �ˇ .ıi .w//. We can
then set

(6.11) zi;˛.w/ D �iC˛.ıi .w//;



Clozel and Rajan, Solvable base change 19

and we see that a section (and therefore a subgroup) is defined by the choice of the charac-
ters �ˇ . Call

�1 W
LH ! LG

the corresponding morphism.
For further reference, we note that OU � OG is the centralizer, in OG, of OH (for its diagonal

embedding.)
We still have to fulfill the condition given by equation (6.7). Assume first that w 2 WE .

Then � D 1, and the condition is simply

ziC1.w/ D ai .w/zi .w/:

Now zi D .zi;˛/with zi;˛ D �iC˛.ıi .w// D �iC˛ ı � i .w/ by equation (6.11) and the descrip-
tion, before (6.1), of the cocycle associated to a character. Applying the same to ! and a.w/
(w 2 WE ), we see that the condition is

�iC1C˛ ı �
iC1.w/ D ! ı � i .w/�iC˛ ı �

i .w/

(w being seen as an element of CE � � �), i.e.,

�ˇC1 ı � D !�ˇ ; ˇ D 1; : : : ; d:

We can now write the condition of equation (6.7) for w D � . Recall from equation (6.2) that
.ıi .�// D .1; : : : ; 1; �

d / with �d 2 WE . We still have zi;˛.w/ D �iC˛.ıi .w//, whence

zi;˛.�/ D 1; 1 � i � d � 1;

zd;˛.�/ D �˛.�
d /:

Moreover, as before,
�˛C1 ı �.�

d / D !.�d /�˛.�
d /;

and ��d��1 D �d ; !.�d / D �, whence

.zd;˛.�//˛ D .�; ��; : : : ; �
d�1�/;

where � D �1.�d /. Write zi D .zi;˛/ D .zi;˛.�//. Then equation (6.7) for � reads

s0z2 D z1;(6.12)

z3 D z2;
:::

zd D zd�1;

�s�10 z1 D �zd ;

and is obviously not satisfied. Recall that for k D k.�/ D 1 we have set

.�s0/˛ D s0;��1˛ D s0;˛�1

and, cf. equation (6.8), s0;�˛ D s0;˛C1 D �s0;˛. We can choose

s0 D .1; �; : : : ; �
d�1/:
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Substituting s0 �s�10 D � in equation (6.12), we get

s0z2 D z1;(6.13)

z3 D z2;
:::

zd D zd�1;

s�10 z1 D zd :

Now we can replace the zi by cohomologous elements for the action of WF on OU described
above, and giving the cocycle relation (5.3), i.e.,

w.zi˛/ D ziCk;˛�k :

A coboundary is given for w 2 WF , k D �.w/, by

�i˛.w/ D vi˛v
�1
iCk;˛�k :

In particular, for w D � ,
�i˛.�/ D vi˛v

�1
iC1;˛�1:

Fix ˇ 2 Z=dZ. Proceeding as we did forWE , let us write uˇi WD �i˛.�/ with ˇ D i C ˛. Thus
we have uˇi D v

ˇ
i .v

ˇ
iC1/

�1, with vˇi D vi;ˇ�i . The uˇi must then satisfy for each ˇ the condi-
tion

(6.14)
Y
i

u
ˇ
i D 1:

Replacing the cocyle zi by the cohomologous cocycle zi�i .�/ D .zi˛uiC˛i /˛, our equations
then become, with ˛ D 1; : : : ; d ,

s0;˛u
2C˛
2 D u1C˛1 ;

u3C˛3 D u2C˛2 ;
:::

ud�1C˛
d�1

D ud�2C˛
d�2

;

zd;˛u
˛
d D u

d�1C˛
d�1

;

s�10;˛u
1C˛
1 D zd;˛u

˛
d :

Write u D u2 D .u˛/. Then the d � 3 lines yield

u1C˛iC1 D u
˛
i ; i D 2; : : : ; d � 2;

so

(6.15) u˛i D u
˛�iC2; i D 2; : : : ; d � 1:

Thus

s0;˛u
2C˛
D u1C˛1 ;

zd;˛u
˛
d D u

˛C2;

s�10;˛u
1C˛
1 D zd;˛u

˛
d I

these equations are obviously compatible. We determine u1 and ud by the first equations. Thus,

u˛1 D s0;˛�1u
˛C1; u˛d D z

�1
d;˛u

˛C2:
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However, we must choose the uˇi verifying, for each ˇ, equation (6.14). (Note that we have
retained for the upper indices the notation ˛, naturally stemming from formulas (6.13). We
now use, more naturally, ˇ.) The product is then

dY
iD1

u
ˇ
i D s0;ˇ�1z

�1
d;ˇu

ˇC1

 
d�1Y
iD2

uˇC2�i

!
uˇC2:

The range of upper indices affecting u is the translate by ˇ of

¹1; 0;�1;�2 : : : ; 3 � d; 2º D ¹1; 2; : : : ; dº mod d:

The condition is therefore
dY
iD1

ui D zd;ˇ s
�1
0;ˇ�1;

which must be true for any ˇ. But

zd;ˇ s
�1
0;ˇ�1 D ��

ˇ�1.�ˇ�2/�1 D ��;

independently of ˇ.
We can now define the new cocycle in Z1.WF ; OU/ by multiplying the previous map by

the coboundary just obtained. It defines a new section s2, which verifies the defining condi-
tion (6.7), obviously for w 2 WE , for all powers of � , and therefore for w 2 WF . This proves
the second part of Proposition 4, and moreover it exhibits an explicit section.

Recall that �1 was defined by a cocycle z.w/, which we now denote by z1.w/:

�1 W h 7! diag.h/ .h 2 OH/;(6.16)

w 7! .s1.w/; w/ D .z1.w/�; w/ .w 2 W /;

so .h; w/ 7! .hz1.w/�; w/. Similarly, we define �2 , replacing z1 by z2, where z2 is our coho-
mologous cocycle

z2.w/i D .z
1.w/i /vi .�v�

�1/�1iCk :

We have moreover:1)

Lemma 3. The new section s2 is conjugate in OG to the section s1 given by the zi;˛.
In particular, �1 and �2 define (up to conjugation by an element of OG) the same embedding
LH ! LG.

This is clear: if we define by s2 the new section, so

s1.w/ D z1.w/�; s2.w/ D z2.w/�;

with � D �.w/, and, with k D �.w/,

z2.w/i D .z
1.w/i /vi .�v�

�1/�1iCk;

1) We could avoid this verification by using [3, Lemma 4.5]. It will be clearer explicitly to exhibit the
conjugation.
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with v D .vi / 2 OU , � acting diagonally. Thus,

s2.w/ D z1.w/v�.viCk/�1

so
s2.w/ D v.z1.w/�/w.v/�1;

and .s2.w/; w/ is conjugate by OG to .s1.w/; w/.
In particular, �1 and �2 send “Hecke matrices” ( OH -conjugacy classes in LH ) to the same

conjugacy classes in LG, so they yield the same endoscopic transfer from automorphic repre-
sentations of H.AF / to automorphic representations of G.AF /.

Recall that two endoscopic data

G01 D .G
0
1;G
0
1; Qs1/ and G02 D .G

0
2;G
0
2; Qs2/

are equivalent if there exists g 2 OG such that

gG 01g
�1
D G 02; g Qs01g

�1
D x Qs2

for an element x 2 Z. OG/. (Recall that Qsi D .si ; O�/ with si 2 OG.)

Proposition 5 (Waldspurger). Assume that d j n. Then there exists only one equivalence
class of elliptic endoscopic data for .G; �; a/.

Consider first the case of our particular cocycle a. It follows from our analysis that we
must take s0 D .1; �; : : : ; �d�1/ (in fact, block matrices of size b) up to a scalar. For two choices
we therefore have g Qs1g�1 D x Qs2, x 2 Z. OG/ (take g 2 GL.n/d diagonal). We can therefore
assume that s0 is fixed. Then OH � OG is well defined.

If G 0 � OG ÌWF is an endoscopic subgroup, its fiber G 0w overw 2 WF is equal to OGQss.w/
for any section s. In particular, it is equal to OH s.w/ in our case, with of course OH � OG given
by the diagonal embedding.

Our previous analysis shows that a section s is of the form s.w/ D z.w/� , z.w/ being
an element of Z1.WF ; OU/. If s, s0 are two sections, t D s.s0/�1 is an element of Z1.WF ; OU/.
Now s, s0 have to verify (E5). This implies that s O�.t.w//s�1 D t.w/, i.e., t.w/ 2 OH (diagonally
embedded.) Thus s.w/ 2 OH s0.w/

However, the description of the endoscopic subgroups also depended on the choice of
a representative a of the cocycle a 2 Z1.WF ; Z. OG/: Assume then that G D ¹.s.w/; w/º ver-
ifies (E5) for a cocycle b, and G 0 D ¹.s0.w/; w/º for a cocycle a. Then a.w/ D b.w/x=w.x/
for an element x 2 Z. OG/. We first note that the description of s0 and OH was independent of
the explicit cocycle, cf. (6.7). Thus we may, as before, assume s0 fixed. Conjugation by y 2 OG
sends .g; w/ 2 G to .ygw.y/�1; w/ 2 G 0: Thus, assuming (E5),

(6.17) s O�.g/w.s/�1 D b.w/g;

we must deduce

s O�.gyw.y/�1/w.s/�1 D b.w/.x=wx/.ygw.y/�1/:

Assume y 2 Z. OG/. The last equation is easily seen, given (6.17), to be equivalent to

(6.18) O�.y=wy/ D .x=wx/.y=wy/:
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Note that WF now acts via †. It is easily seen that (6.18) is verified if it is verified for the
generator � . Now O�.y=�y/.�y=y/ is of the form O�.u/=u for u D y=�y; these elements u are
exactly the elements of Z. OG/ verifying

Q
ui D 1. We have to solve (replacing u by u�1):

O�.u/=u D �x=x:(6.19)

Recall that O� and � act by the same permutation .x1; x2; : : : ; xd / 7! .x2; x3; : : : ; x1/ onZ. OG/.
A solution is u D x, but x does not in general satisfy

Q
xi D 1. However, if we set ui D vxi

for v 2 C�, u now verifies (6.19) and is an adequate element if vd
Q
xi=1.

We have shown that conjugation by some element y 2 Z. OG/ sends the fiber Gw to the
fiber G 0w . Since these fibers are principal homogeneous spaces under OH , which commutes
with y, they are conjugate. Since y Qsy�1 D y O�.y/�1 Qs, the second condition for equivalence
is also satisfied. This concludes the proof.

7. Proof of Theorem 1

7.1. We now have to understand the effect of our homomorphism �1 of L-groups on the
data pertinent to the stabilization, i.e., on the data composed of Hecke matrices for almost all
primes. Note that

LH D GL.b;C/d ÌWF
is not a direct product, so a “Hecke matrix” at a prime v is in fact a conjugacy class in
OH � Frobv under the conjugation action of OH .

For this we must first consider a simple case. Assume that ! D 1, so we are in the case
of non-twisted base change, i.e., characterizing the representations …n of GL.n;AE / such
that �…n ' …n.

Recall [1, 4] the two natural operations associated to (cyclic) base change. The first is
automorphic restriction, denoted earlier by BCEF , sending representations of GL.n;AF / to
representations of GL.n;AE /. It is associated to the diagonal embedding LG0 !

LG, where
LG0 is the L-group of GL.n/=F , LG the L-group of ResE=F .GL.n/=E/, so OG D GL.n;C/d :

.g; w/ 7! .diag.g/; w/ .w 2 WF /:

Suppose n D db. The second operation is automorphic induction, denoted by AIFE , sending
representations of GL.b;AE / to those of GL.n;AF /. The associated embedding LH !L G0
is given by

.g1; : : : ; gd / 7! g1 ˚ � � � ˚ gd .gi 2 GL.b;C//

and
.1; w/ 7! .�.w/; w/;

where �.w/ 2 Sd (realized as before by block-scalar matrices in GL.n;C/), and

�.˚gi /�
�1
D .giCk/;

where k D i.w/, so ��1i D i C k.
We simply write Res and Ind for these two operations, the fields being here F and E.

This corresponds to our constructions in [1], taking ! D 1. The corresponding operations are
described in [1, Chapter 3], see also [4]. They are well-defined for representations that are
“induced from cuspidal” ([1, Sections 3.1, 3.6]), i.e., induced from unitary cuspidal represen-
tations.
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Composing these two operations, we get a homomorphism of L-groups

�1 W GL.b/d ÌWF ! GL.n/d ÌWF ;

given by

.g1; : : : ; gd / 7! diag.g1 ˚ � � � ˚ gd /;(7.1)

.1; w/ 7! .diag �.w/; w/:

Recall also that for �i (i D 1; : : : ; r) representations of GL.ni ;AE /, there is an associ-
ated representation��i of GL.n;AE / obtained by parabolic induction (n D

P
ni ). We recall

the following well-known result:

Proposition 6. For �b a representation of GL.b;AE / induced from cuspidal,

Res ıInd.�b/ D �b � ��b � � � �� �d�1�b:

Consider finite primes w j v of E over F , where all data are unramified. If tw 0 is the
Hecke matrix of �b at such a prime w0, the matrix Tv of Ind.�b/ at v is

Tv D
M
w 0 j v

.t
1=f
w 0 ˚ �t

1=f
w 0 ˚ � � � ˚ �

f �1t
1=f
w 0 /;

where � is a primitive root of unity of order f D ŒEw W Fv�. The Hecke matrix Tw of Res.�/
for a representation � of GL.n;AF / is T fv . Thus the Hecke matrix of ResıInd.�b/ at a primew
is
L
w 0 j v.tw 0 ˚ � � � ˚ tw 0/, equal to

L
�2Gal.E=F / t�w , the Hecke matrix of the right-hand

side. Since the representations on the two sides of the equality are induced from cuspidal, they
are equal.

Now there exists an obvious homomorphism LH !L G realizing the operation2)

�b 7! �b � ��b � � � �� �d�1�b D ��b � � � �� �d�1�b � �b:

Let OHd D
Qd
kD1

OH: First .�1; : : : ; �d / 7! �1 � � � �� �d is given by

(7.2) OHd
! OG; .gki / 7!

�M
k

gki

�
i

;

where k corresponds to the factor in OHd (or to �k) and i is the index associated to restriction
of scalars in OH D GL.b/d ; OG D GL.n/d . It is obviously compatible with the operation of the
Weil group. On the other hand � 7!� � is given by the map OH 7! OH ,

.gi / 7! .giC1/:

So the composite operation, � 7! �� � � � �� �d�1� � � , is given by

GL.b/d ! GL.n/d ; .gi / 7!

�M
k

giCk

�
i

:

It is equivariant for the action of WF acting (via the restriction of scalars) on both sides. Thus
we get

�0 W GL.b/d ÌWF ! GL.n/d ÌWF ; .gi ; w/ 7!

��M
k

giCk

�
i

; w

�
:

2) We have change the ordering to simplify the indexes in the following formulas.
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Since the two homomorphisms of L-groups �0 and �1 have the same effect on representa-
tions, they should be conjugate by an element in OG D GL.n/d . We proceed to exhibit this
conjugation. We first consider the connected dual groups. We seek P D .Pi / 2 GL.n/d such
that

P�0.g/P
�1
D �1.g/; g D .gi / 2 GL.b/d :

Thus,

Pi

�M
k

giCk

�
P�1i D g1 ˚ � � � ˚ gd

for each i . If Q is (a block-scalar matrix) associated to a permutation � 2 Sd ,

Q

�M
k

gk

�
Q�1 D .g��1.k//:

Thus Pi must be the permutation matrix associated to � , where �.k/ D i C k.
To avoid confusion, we now replace our indices k by ˛ (in conformity with the previous

section) and write k D �.w/, w 2 WF . The conjugation of the homomorphisms on WF gives

.P; 1/.1; w/.P; 1/�1 D .diag �.w/; w/ .w 2 WF /;

so

(7.3) PiP
�1
iCk D �.w/:

The left-hand side is associated to �.˛/ D ˛ � k. Thus (with the previous choices) we must
take

�.w/ D �
�.w/
1 ; �1.˛/ D ˛ � 1

(compare with the formula for � preceding (7.1)).
We have therefore proved:

Lemma 4. With the above notation,

P�0P
�1
D �1;

where P D .Pi / 2 GL.n;C/d and Pi is the permutation matrix associated to ˛ 7! i C ˛.

7.2. Now return to the homomorphism �0 given in (7.1) realizing the operation

� 7!
d

�̨
D1

�˛�

(� being a representation of GL.d;AE /). Let �1; : : : ; �d be characters of CE , associated to
the parameters �˛.ıi .w// 2 .C�/d as discussed before equation (6.11). Now the homomor-
phisms (7.2) can be multiplied by the homomorphisms associated with the �˛, so we see that

.g˛i / 7!

�M
˛

g˛i�˛.ıi .w//

�
i

corresponds to .�˛/ 7! �˛�˛ ˝ �˛: In particular, � 7! �˛�˛� ˝ �˛, is then given by

�0 W GL.b/d ÌWF ! GL.n/d ÌWF ; .gi ; w/ 7! Œ.g˛Ci�˛.ıi .w//i ; w�:
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Conjugating by P , we obtain a homomorphism �1. On GL.b/d , it coincides with �1. In order
to make it explicit, we must compute, for w 2 WF ,

.P; 1/

��M
˛

�˛.ıi .w//

�
i

; w

�
.P�1; 1/:

The i -th component is

Pi

�M
˛

�˛.ıi .w//

�
P�1iCk D Pi

�M
˛

�˛.ıi .w//

�
P�1i �.w/

by (7.3). The conjugation by Pi is the permutation ˛ 7! i C ˛, so this is�M
˛

�iC˛.ıi .w//

�
�.w/:

In conclusion:

Lemma 5. The map � 7! �˛�˛�˝�˛ is associated to the homomorphism of L-groups

�1 W GL.b/d ÌWF ! GL.n/d ÌWF ;
�1.g1; : : : ; gd / D diag.g1 ˚ � � � ˚ gd /;

�1.w/ D

���M
˛

�iC˛.ıi .w//

�
�.w/

�
i

; w

�
:

We note that this is the homomorphism �1 obtained from endoscopy as in equations (6.16)
and (6.11).

7.3. We can now complete the proof of Theorem 1. Assume first d does not divide n.
We then have

Tdisc.� � � I!
�1/ D 0:

The cuspidal representations occurring in the discrete trace have multiplicity one, and their
families of Hecke eigenvalues (away from a finite set S of primes) are linearly independent,
and independent from those of other representations. Of course only the cuspidal representa-
tions such that �… ' …˝ ! contribute. We conclude that there are no such representations,
as was of course clear from the consideration of the central characters (see the remark after
Theorem 1).

Consider now the case when d divides n. There is only, up to equivalence, one endoscopic
datum, defining the endoscopic group H ; if �b is a cuspidal representation of H.AF /, the
associated map on Hecke matrices sends (up to conjugation) tv.�b/ to

tv.��b ˝ �1 � �2�b ˝ �2 � � � �� �b ˝ �d /

at primes where all data are unramified, as follows from the conjugation of �1 and �0. This
then remains true if �b is any automorphic representation of GL.b;AE /, in particular for those
appearing in the discrete trace formula for H . Indeed, let � be such a representation. Then �
is a subquotient – in fact a quotient if � is one of the “discrete” representations of H.AF /
described, for G, in Section 4 – of a representation �1 � �2 � � � �� �r induced from (non-
necessarily unitary) cuspidal representations of GL.bk;AE /, k D 1; 2; : : : ; r . If �v is unram-
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ified, the �i;v are unramified and the Hecke matrix of �v is the same as that of the induced
representation. Consider the Levi subgroup MH D

Qr
kD1 ResE=F GL.bk/ of H , and simi-

larly MG D
Qr
kD1 ResE=F GL.nk/, where nk D dbk . From the formulas in Lemma 5, one

immediately deduces that �1 “commutes with induction”: the homomorphism �1 is defined, by
the same formulas, for ResE=F GL.bk/; call it �k1 . Then induction from a parabolic subgroup
being given, both for G and H , by direct sums of Hecke matrices, the Hecke matrix of the
representation of G.AF / deduced from � is the sum of the Hecke matrices of the representa-
tions deduced, via �k1 , from the �k; each of these is given by the previous formula. (Note that
Proposition 6 remains true as stated when �b is not unitary.)

Now consider the identity given by the stable trace formula

(7.4) Tdisc.� � � I!
�1/ D �.G0/STG

0

disc.�
G0/:

By Proposition 5, there is only one datum, withG0DH , on the right. SinceG0.AF /DH.AF /
is GL.b;AE /, its trace formula is stable. Thus the right-hand side of (7.4) reads

(7.5) Tdisc.� � � I!
�1/ D �.G0/THdisc.�

H /:

Here �.G0/ is a positive, non-zero rational number and THdisc has been described in Section 4.
Formula (7.5) can be restricted to smaller spaces. Let F1 D

Q
v Fv, where v runs over

the set V1 of Archimedean places of F , and let ZG be the center of the enveloping algebra
of G.F1/, and similarly ZH . There is a natural map ZG ! ZH ([14, pp. 442–443]) whence
a map �0 ! � between infinitesimal characters for H and G. (This map depends on � and !.)
Furthermore, as can be deduced from the description given in [14, p. 442], ZH is, in our case,
finite over the image of ZG ; thus there are a finite number of infinitesimal characters �0 asso-
ciated to �.3)

Fix �, and let V � V1 be a finite set of places of F . We assume all data, i.e., E=F;!; �1
(and therefore G;H ) unramified outside V . We consider a decomposed function � D

N
�v

onG.AF /, with �v in the unramified Hecke algebra for v … V , �v smooth compactly supported
if v 2 V , and K1-finite if v 2 V1, K1 being a maximal compact subgroup of G.F1/. The
datum of �1 then determines a function �H , with �Hv unramified if v … V . The left-hand side
of (7.6) is now, if we consider the representations of infinitesimal character �, a finite sum

(7.6) Tdisc.� � � I!
�1/� D

X
…

a.…/ trace.I� .…V ˝ !
�1/.�V //c….�

V /;

which we write more simply

(7.7) Tdisc.� � � I!
�1/� D

X
…

b.…/c….�
V /:

Here the a.…/ are the constants affecting Arthur’s discrete terms; c… is the character of HV

(the unramified Hecke algebra outside V ) determined by …. Now Tdisc.� � � I!
�1/� is the

product of �.G0/ by the sum, over �0, of the Tdisc.�
H /�0 ([14, X.8.1]), and similarly,

(7.8) Tdisc.�
H /�0 D

X
�

bH .�/c�.�
H;V /:

3) The datum of �1 and ! also determines, from the central character of AG defining our space of automor-
phic forms on G.AF / (Section 4), a central character of AH . See [13, p. 441]. We assume the central character for
G trivial, but this will not be the case forH in general. However the spaces of automorphic forms associated to two
characters of AH are “essentially” isomorphic (twist by a character of the determinant.)



28 Clozel and Rajan, Solvable base change

Now assume that a character of HV occurs non-trivially in (7.7). It must be obtained by com-
position from a character of HV

H occurring in (7.8). This implies that, at each prime outside V ,
…v is the representation ��v ˝ �1;v � �2�v ˝ �2;v � � � �� � ˝ �d;v or, possibly, its unique
unramified subquotient. This is true for all representations � in (7.8), by the previous remark.
By the fundamental results of Jacquet and Shalika [5, 6], … cannot be cuspidal. However, if …
is our putative cuspidal representation of G.AF / D GL.n;AE / such that �… Š …˝ !, it is
easy, using strong multiplicity one, to find a function �V onG.FV / such that the corresponding
term in (7.6) does not vanish. This concludes the proof of Theorem 1.
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