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Abstract

The 2D+slab superposition model of solar wind turbulence has its theoretical foundations in nearly
incompressible magnetohydrodynamics (NI MHD) in the plasma beta ∼1 or =1 regimes. Solar wind
turbulence measurements show that turbulence in the inertial range is anisotropic, for which the superposition
model offers a plausible explanation. We provide a detailed theoretical analysis of the spectral characteristics of the
Elsässer variables in the 2D + NI/slab model. We find that (1) the majority 2D component has a power spectrum

( ) ~¥
^ ^

-G k k 5 3 in perpendicular wavenumber k⊥; (2) the strongly imbalanced minority NI/slab turbulence has
power spectra ( ) ~^ ^

-G k k 5 3* and ( ) ~ -G k kz z
5 3* , where kz is aligned with the mean magnetic field; (3) NI/slab

turbulence can exhibit a double-power-law spectrum, with the steeper part being G*(k)∼k−5/3 and corresponding
to strong turbulence and the flatter spectrum satisfying G*(k)∼k−3/2 and corresponding to weak turbulence; (4)
there is a critical balance regime for NI/slab turbulence that satisfies ( ) ~ -G k kz z

2* and ( ) ~^ ^
-G k k 5 3* ; and (5)

the forward and backward Elsässer power spectra can have different spectral forms provided that the triple-
correlation times for each are different. We use the spectral analysis to compute the total power spectra in
frequency parallel to the solar wind flow for the superposition model, showing that strongly imbalanced turbulence
yields an f−5/3 spectrum for all angles between the mean flow and magnetic field, and that double power laws are
possible when the nonlinear and Alfvén timescales are both finite.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830)

1. Introduction

Solar wind flows that are highly aligned with the mean
magnetic field have been examined carefully in an attempt to
identify the underlying anisotropy of low-frequency magneto-
hydrodynamic (MHD) turbulence (Horbury et al. 2008, 2012;
Podesta 2009; Wicks et al. 2010; Forman et al. 2011; Wang
et al. 2015; Telloni et al. 2019; Wu et al. 2020). Much of this
work was motivated by prior studies that investigated the
separation of solar wind fluctuations into slab and 2D
components (Matthaeus et al. 1990; Bieber et al. 1996; Saur
& Bieber 1999; Dasso et al. 2005) and its wide application to
numerous solar wind problems, ranging from coronal heating
(Zank et al. 2018b), to turbulence transport throughout the solar
wind (Adhikari et al. 2017a), to cosmic-ray transport (Zhao
et al. 2017). As summarized in Forman et al. (2011), the
analyses of solar wind turbulence measurements show that
turbulence in the inertial range is anisotropic, and two
theoretical approaches offer plausible explanations for the
observed anisotropy. These are the so-called “2D + slab”
turbulence model (Matthaeus et al. 1990; Zank & Matthaeus
1992, 1993; Bieber et al. 1996) and the “critical balance” (CB)
model (Goldreich & Sridhar 1995, 1997). Forman et al. (2011)
fit a 2D + slab and a CB model to two sets of Ulysses data
(their Figures 2 and 4) and find that both models fit the data
quite well. Indeed, their Figure 4 suggests that there is little to
choose between the two models. However, Forman et al.
(2011) suggest that the 2D + slab model does not predict the
anisotropy in power or spectrum from physical principles. This
was correct at their time of writing. The theoretical foundation
on which the 2D + slab or “superposition” model is based is
nearly incompressible MHD (NI MHD) in the plasma beta ∼1

or =1 regimes (Zank & Matthaeus 1992, 1993; Hunana &
Zank 2010), but until recently (Zank et al. 2017) no
corresponding spectral analysis was formulated. We stress that
the NI MHD decomposition in the plasma beta ∼1 or =1
regimes is not strictly into a 2D plus slab component—instead,
the NI MHD approach separates the leading-order or dominant
fluctuating component into 2D fluctuations and NI compres-
sible corrections that include both slab (counterpropagating
Alfvén waves) and higher-order quasi-2D fluctuations. This
addresses in part the general criticism (e.g., Oughton &
Matthaeus 2020) of the standard 2D + slab model (e.g., Bieber
et al. 1996) that spectral power resides only in the 2D plane
perpendicular to and along the ẑ -axis parallel to the mean
magnetic field B0. The purpose of this paper is to provide a
detailed spectral analysis of MHD turbulence in the solar wind
from the perspective of the NI MHD form of the “2D + slab”
equations, which we refer to as the 2D + NI/slab model.
Telloni et al. (2019) used Wind spacecraft data to identify 17

highly magnetic-field-aligned high-speed solar wind flows
exhibiting low magnetic field compressibility. By using a
Hilbert spectral analysis of arbitrary order with empirical mode
decomposition, Telloni et al. (2019) were able to eliminate the
effects of spurious harmonics and artifacts near sharp data
transitions that plague analyses based on traditional Fourier or
wavelet transforms (Huang et al. 1998). Telloni et al. (2019)
find that (i) a 

-k 5 3 magnetic field spectrum is observed
persistently in the fast solar wind during periods of strong
turbulence (kP is the wavenumber parallel to the radial solar
wind flow and almost parallel to the mean magnetic field) and
(ii) the normalized cross-helicity is measured to be ∣ ∣ s 1c ,
indicative of unidirectionally propagating Alfvén waves. Both

The Astrophysical Journal, 900:115 (14pp), 2020 September 10 https://doi.org/10.3847/1538-4357/abad30
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
http://astrothesaurus.org/uat/830
https://doi.org/10.3847/1538-4357/abad30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abad30&domain=pdf&date_stamp=2020-09-08
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abad30&domain=pdf&date_stamp=2020-09-08


points (i) and (ii) are inconsistent with critical balance, which
generally assumes σc;0 (i.e., balanced turbulence with equal
energy in counterpropagating Alfvén waves) and that the
parallel spectrum satisfies 

-k 2. Indeed, ∣ ∣ s 1c ensures the
absence of nonlinear interactions between Alfvén waves. Zhao
et al. (2020a) identify examples of highly magnetic-field-
aligned flow observed by the Parker Solar Probe (PSP)
spacecraft, for which the magnetic power spectrum is 

-k 5 3

and ∣ ∣ s 1c .
The paper is structured as follows. In Section 2, we review

briefly the measurement of anisotropic spectra in the solar wind
using the approach of Bieber et al. (1996) and Saur & Bieber
(1999) before analyzing (Section 3) the spectral characteristics
of 2D + slab models from the NI MHD perspective. Finally,
conclusions are listed in Section 4.

2. Measurement of Anisotropic Spectra in the Solar Wind

Bieber et al. (1996) developed a straightforward method to
use the frequency power spectra of the time series of magnetic
fluctuations measured by single spacecraft in the solar wind to
determine the geometry of solar wind turbulence. This
approach has been adopted in numerous subsequent studies
(e.g., Saur & Bieber 1999; Horbury et al. 2008; Forman et al.
2011). Since these results are needed for the theoretical
modeling below, we review briefly the salient aspects of the
Bieber et al. (1996) and Saur & Bieber (1999) approach and
provide a modest generalization.

Let the local mean magnetic field B0 define the ẑ-axis, and
let the x̂-axis be defined by the plane made by the mean
magnetic field and the solar wind flow velocity vector U0. The
angle Ψ is the angle between B0 and U0. The ŷ-axis is
orthogonal to the x̂-ẑ plane.

For fluctuations expressed in terms of the Elsässer variables
m r= z u b 0 0 , where u and b are velocity and magnetic

field fluctuations about the mean fields B0 and U0 (i.e.,
U=U0+u, á ñ =U U0, á ñ =u 0; B=B0+b, á ñ =B B0,
á ñ =b 0), the power spectrum associated with the two-point
correlation tensor ( ) ( ) ( )= á + ñ  r x x rR z zij i j for spatially
homogeneous turbulence can be expressed as (e.g., Zank 2014)

( )
( )

( )·òp
=  -kP R e d r

1

2
, 1k r

ij ij
i

3
3

for wavenumber k and separation distance r. Use of the Taylor
hypothesis4 allows one to relate the temporal and spatial two-
point correlation tensors using

( ) ( ) ( )( ) ( )= - Y - Y R t R U t U tsin , 0, cos , 2x
ij

t
ij 0 0

from which one relates the measured frequency f spectrum
( )P fij to the 3D wavenumber spectrum ( ) kPij ,

( ) ( ) ( )( )ò= p  - Y+ YkP f e P e dtd k. 3ij
i ft

ij
i k U k U t2 sin cos 3x z0 0

For turbulence axisymmetric with respect to the mean magnetic
field, we will consider below either fluctuations with wavevectors
aligned only with ẑ (PB0), i.e., slab turbulence, or fluctuations
with wavevectors only orthogonal to B0, i.e., 2D turbulence. The
general form of the slab and 2D power spectral tensors is

(Matthaeus & Smith 1981)

( ) ( ) ( ) ( ) ( )

( ) ( )

d d= =

=

  k k

k

P P G k k k

P

slab: ;

0; 4

xx yy z x y

zz

* * *

*

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

d

d

=

=

=

¥
¥

^

^

¥
¥

^

^
¥

^

k

k

P
G k

k
k k

P
G k

k
k k

P k

2D: ;

;

0, 5

xx y z

yy x z

zz

3
2

3
2

where = +k̂ k kx y
2 2 , G* (kz), and ( )¥

^G k are the amplitudes
of slab and 2D turbulence and functions of kz and k⊥,
respectively, and δ (x) is the Dirac delta function. From
Equations (4) and (5), it is straightforward to show that the
frequency spectra are given by (Bieber et al. 1996; Saur &
Bieber 1999)

( ) ( ) ( )

( )

p

p

= =
Y

=
Y

  P f P f
U

G k

k
f

U

slab:
2

cos
;

2

cos
; 6

xx yy z

z

0

0

* * *

( )

( )

( )

∣ ∣
( )

∣ ∣
( )

ò

ò

= -

=

=

p

p

p

¥
Y

¥
^ ^

¥
Y

¥

-
^

Y

¥
^

^

¥
^

^ ^

P f k k dk

P f k dk

k

2D: ;

;

, 7

xx U k

G k

k x

yy U x k

G k

k k k

x
f

U

4

sin
2 2

4

sin
2 1

2

sin

x

x x

0
2

0
2 2 2

0

and that ( )¥P fxx and ( )¥P fyy are related through

( ) ( ) ( )= -¥
¥

P f f
dP f

df
. 8yy

xx

An observed power spectrum is a superposition of both
components; thus,

( ) ( ) ( ) ( )= +  P f P f P f . 9xx yytotal

It is typically assumed (Bieber et al. 1996; Saur & Bieber 1999;
Horbury et al. 2008; Forman et al. 2011) that G*(kz) is a power
law in kz, and similarly the integrals in Equation (7) are taken to
be power laws in k⊥. As we show below, the NI/slab spectrum
may not be a simple power law, whereas we show that the 2D
spectrum is a power law in k⊥. For the slab component, if

( ) ( ) ( )p
= + =

Y
    P P f P f C

U
G f

2

cos
,xx yytotal

0

* * * * *

we have

( ) ( ) ( )

( ) ( ) ( ) ( )


p

p

= =
Y

= =
Y

 





^





P f P f
C

U
G f

P f P f
C

U
G f

2

2

cos
;

2

2

cos
, 10

xx

yy

0

0

* * *
*

* * *
*

where C* is the amplitude of the total forward/backward slab
Elsässer fluctuations. For a simple power law with index −q*

(i.e., ~ -kz
q*), G*( f ) would be replaced by ( ( ))p YU2 cos q

0
* .

In Equation (10), the subscripts P and ⊥ refer to the Elsässer
spectrum projected parallel or perpendicular to the solar wind
flow vector. Similarly, for the 2D component of turbulence,

4 This argument will need modification for observations made deep in the
solar corona, where the PSP speed can no longer be neglected.
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now assuming a power-law spectrum with spectral index ¥q
(i.e., ~ ^

- ¥
k q ) (Bieber et al. 1996),

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( )

( )


p p

p p

= =
+ Y Y

=

=
+ Y Y

¥ ¥
¥

¥

-

^
¥ ¥

¥

¥
¥

-

¥

¥

P f P f
C

q U

f

U

P f P f

q

q
C

U

f

U

1

2

sin

2

sin
;

1

2

sin

2

sin
,

11

xx

q

yy

q

0 0

0 0

where ¥C is the amplitude of the total forward/backward 2D
Elsässer fluctuations. Hence, for a superposition of 2D and slab
fluctuations the frequency spectrum observed parallel and
perpendicular to the solar wind flow is (Bieber et al. 1996; Saur
& Bieber 1999; Horbury et al. 2008; Forman et al. 2011)

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( )

( ) ( )

  

p
p

= +

=
+

Y

+
Y

 ¥ 

¥

¥

-
-




¥
¥

P f P f P f

C

q

U
f

C

U
G f

1

sin

2

2

2

cos
; 12

q
q

total

0
1

0

*

*
*

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( )

( ) ( )

p
p

= +

=
+

Y

+
Y

^


^
¥

^


¥

¥
¥

-
-




¥
¥

P f P f P f

q

q
C

U
f

C

U
G f

1

sin

2

2

2

cos
. 13

q
q

total

0
1

0

*

*
*

These expressions are used below. Expressions for 2D and NI/
slab turbulence spectra are derived below.

3. NI MHD and 2D + Slab Models

NI MHD is a formulation of MHD in a weakly compressible
or nearly incompressible regime and was developed for both
homogeneous flows (Klainerman & Majda 1982; Montgomery
et al. 1987; Matthaeus & Brown 1988; Zank & Matthaeus
1992, 1993) and inhomogeneous flows (Bhattacharjee et al.
1998; Hunana & Zank 2010). The solar wind and solar corona,
at least away from the heliospheric current sheet, are typically
in a plasma beta regime βp∼1 or =1, where βp=P
/(B2/2μ0) (P≡thermal pressure, ∣ ∣= BB , B is the magnetic
field, and μ0 is the magnetic permeability). Zank & Matthaeus
(1992, 1993) showed that the βp=1, ∼1 NI MHD description
comprised a superposition of a dominant 2D component (i.e.,
transverse magnetic fluctuations (Bx, By,0) in a plane
orthogonal to the mean magnetic field ˆ=B zB0 0 with nonzero
wavenumber vector k⊥=(kx, ky,0)) and a minority NI
component that includes Alfvén waves with transverse
fluctuations and a wavevector kzP B0, higher-order quasi-2D
fluctuations with wavenumber vector k⊥=(kx, ky,0), and
compressible fluctuations such as magnetosonic modes.
Specifically, the magnetic field can be expressed as

( )= + +¥B B B B , 140 *

where the NI MHD convention is that ¥B denotes the majority
2D component of the magnetic field fluctuations and B*

describes higher-order corrections including slab, quasi-2D,
and compressible fluctuations. Zank & Matthaeus (1992, 1993;

see in particular the discussion about renormalization in Zank
et al. 2017) showed that the ordering of the magnetic field
components satisfies ∣ ∣ ∣ ∣ ∣ ∣ =¥B B B M M: : 1 : :A

t
A
t

0
2* , where

º á ñM u VA
t

A
2 1 2

0 denotes the turbulent Alfvén Mach number
since á ñu2 1 2 is the standard deviation of the turbulent velocity

fluctuations and ( )m r=V BA0 0
2

0 0 is the mean Alfvén speed,

with ρ0 the mean background density. Since á ñ ~u 102 1 2 km
s−1 and VA0∼50 km s−1 in the solar wind, ~M 0.2A

t , which
implies that ∣ ∣ ∣ ∣ ~¥B B 0.2* , giving roughly the ratio
∣ ∣ ∣ ∣ =¥B B: 80 : 20* . Rather surprisingly, given the crudeness
of this estimate, Bieber et al. (1996) and Saur & Bieber (1999)
find observational support in the solar wind for such a ratio of
majority 2D to slab turbulence (see also Adhikari et al. 2017b;
Zhao et al. 2018).
By restricting our attention to incompressible fluctuations

exclusively (i.e., setting ∇·u*=0, where u* is the NI
velocity; see Zank et al. 2017), Zank et al. (2017) introduce
the “2D” (superscript “¥”) and “slab”5 (superscript “

*
”)

Elsässer variables

( )
( ) ( )

m r

m r

= 

= 

¥
^

¥ ¥



z x u B

z x u B

t

t

, ,

, , 15
0 0

0 0* * *

to express the majority 2D and minority NI/slab NI MHD
equations, respectively, as

⎛
⎝⎜

⎞
⎠⎟·

· ( )



r m
¶
¶

+  = -  +

 =

¥
¥

^
¥

^
¥

¥

^
¥

z
z z

z

t
P

B1

2
;

0; 16
0

2

0

⎛
⎝⎜

⎞
⎠⎟

· ·

· ·

· ·

· ( )

 

 

r m m

¶
¶

 + 

+  + 

= -  + +

 =


 ¥ 

¥ 

¥



z
V z z z

z z z z

B B B B

z

t

P
1 1 1

;

0. 17

A0

0 0
0

0

*
* *

* * *

* * *

*

Here ( )=¥ ¥
^u u x t, and ( )=¥ ¥

^B B x t, are the 2D velocity
and magnetic field components and functions of x⊥=(x, y,0)
only (ẑ is in the direction of B0), and ∇⊥=(∂x, ∂y); u

*=
u* (x, t) and B*=B* (x, t) are the corresponding NI/slab
quantities and functions of x=(x, y, z). Equation (17) supports
both Alfvén wave propagation and higher-order quasi-2D
corrections to the majority 2D component. The linear wave
characteristics of Equation (17) are discussed in Zank et al.
(2017) (see also Zank et al. 2019).
It is important to recall (Zank & Matthaeus 1993) that

Equation (16), the leading-order NI MHD description, enters at
( )O MA

t
0 , and the correction (17) enters at the next order

(( ) )O MA
t
0

2 , in accord with the discussion of the ordering of the
magnetic field fluctuations above. Consequently, the ratio of
the 2D and NI/slab energy densities is ordered as

(( ) )á ñ á ñ ~¥z z O MA
t2 2
0

2* . This ordering has to be borne in
mind when developing a spectral theory of NI MHD, including

5 We sometimes use the term “slab” somewhat loosely in the context of the
NI MHD equations since the NI contribution contains both Alfvénic and
higher-order (compared to the dominant “¥” contribution) quasi-2D fluctua-
tions—a more precise statement is NI/slab fluctuations.
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when comparing timescales between Equations (16) and (17).
This is discussed further below.

Although the spectral analysis of the 2D incompressible
Equations (16) is conventional (see Zhou et al. 2004 for an
excellent discussion), some elaboration is useful for the
subsequent analysis of Equation (17). The nonlinear term in
Equation (16) may be approximated as

( )


l t
=

á ñ
º¥ ¥

¥

^


¥

¥
NL z

zz
18

2 1 2

(Pouquet et al. 1976; Dobrowolny et al. 1980a, 1980b; Grappin
et al. 1982, 1983; Matthaeus & Zhou 1989; Zank et al.
2012, 2017). The length scale l̂ is the correlation length for
2D “forward” and “backward” modes, and hence t¥

 is the
corresponding nonlinear timescale. The ensemble-averaged
one-point energy-containing transport equation for the total
energy á ñ = á ñ + á ñ¥ ¥+ ¥-z z z2 2 2 is then simply (von Karman
& Howarth 1938; Matthaeus et al. 1994; Zank et al. 1996,
2012, 2017)

( )
l

á ñ
= -

á ñ¥ ¥

^
¥

d z

dt

z
, 19

2 2 3 2

where we have assumed that ( )t¥
+ -1 = ( )t l= á ñ =¥

- - ¥
^
¥z1 2 1 2

t¥
-1.
Spectral transfer in the inertial range is governed by a

phenomenological expression for the steady energy flux or
transfer rate (Zhou et al. 2004)

( )e
t

t
t

=
á ñ

=
á ñz z

, 20
s nl

2
3

2

2

where the spectral transfer time t t t=s nl
2

3, τnl is the nonlinear
dynamical timescale, and τ3 is the timescale for decay of the
transfer function correlations, i.e., the triple-correlation
timescale.

For the 2D model Equations (16), Equations (18) and (19)
show that t t l= = á ñ^

¥ ¥znl3
2 1 2. If we assume isotropic

turbulence in the 2D plane orthogonal to B0, we have

( ) ( ) ( )òp
= ~¥ ¥

^ ^
¥

^ ^kz E k d E k k
1

2
, 212 2

where ∣ ∣=^ k̂k is the length of the wavenumber in the 2D
plane and E(k⊥) is the 1D Elsässer energy spectrum, i.e., the
energy between wavenumbers k⊥ and (k⊥+dk⊥) per wave-
number interval dk⊥. Hence, using Equation (20), we obtain the
familiar results

( ) ( ) ( )
e

e

á ñ ~

º =

¥
¥ ^

-

¥
^

¥
^ ^ ¥ ^

-

z C k

G k E k k C k

and

, 22

K

K

2 2 3 2 3

2 3 5 3

where e¥ is the dissipation rate of 2D incompressible MHD
turbulence and CK is the Kolmogorov constant. The majority
2D component therefore possesses the classical Kolmogorov
spectrum ^

-k 5 3 in perpendicular wavenumber.
Following Zank et al. (2017), we introduce the total NI

energy á ñ = á ñ + á ñ+ -z z z2 2 2* * * . Quite generally, we may

express

( ) ( )

( ) ( )

( )

ò ò ò ò
ò ò
p p

á ñ = =

= ~

^ ^

^ ^ ^ ^ ^

k k k kz E d E k d dk

E k k k dk dk E k k k k

1

2

1

2
,

, , ,

23

z z

z z z z

2

2

* * *

* *

after assuming isotropy in the 2D plane perpendicular to B0. Of
particular importance in Equation (17) is the nonlinear
interaction of the 2D ( ¥z ) and NI/slab ( z* ) components.
Equation (17) describing the minority NI component in the
incompressible limit incorporates both Alfvénic fluctuations
(properly described as the slab component) and higher-order
quasi-2D fluctuations. Both the slab/Alfvénic and higher-order
quasi-2D fluctuations interact with the majority 2D component
via passive scalar-like terms. Equation (17) includes the higher-
order nonlinear term z* ·∇ z* . Zank et al. (2017) included
this term as an ( )O MA

t 4 correction (the remaining terms in
Equation (17) are ( )O MA

t 2 ; see Zank & Matthaeus 1993) to
derive the “richest” evolution equation.
The interaction of the NI/slab modes with the dominant 2D

fluctuations is essentially a passive scalar process. This is seen
as follows. From Equation (17), we can derive the one-point
moment equations,

·
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 

l

l l

¶
¶

á ñ á ñ -
á ñ á ñ

-
á ñ á ñ

-
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^
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,

24

A
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2 1 2 2

2 1 2 2 2 1 2 2 1 2 2 1 2

* *
*

* *
*

* *
*

after crudely approximating · ( · )á  ñ ¥z z z* * by the last
term in Equation (24) (see Zank et al. 2017 for further
discussion) and assuming á ñ = á ñ º á ñ¥+ ¥- ¥z z z2 2 2 . The
inverse timescales satisfy  l lá ñ á ñ^

¥
^
¥z z2 1 2 2 1 2* * thanks

to the NI ordering, and so the middle term on the right-hand
side of Equation (24) is not as important as the other two. This
implies that the spectral transfer associated with NI/slab
fluctuations is determined by the passive coupling of z*
fluctuations to the dominant and independently evolving ¥z
fluctuations. On adding the two equations of Equation (24), we
obtain

·
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l
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¶
¶
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-
á ñ á ñ á ñ

¥

^
¥
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* * *
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*

where º á ñ - á ñ+ -E z zc
2 2* * * is the NI/slab cross-helicity (the

normalized NI/slab cross-helicity is given by s º á ñE zc c
2* * * ).

For fully balanced turbulence with á ñ = á ñ+ -z z2 2* * , =E 0c* in
Equation (25), which becomes

( )
l l

l
l

¶
¶

á ñ = -
á ñ á ñ

-
á ñ á ñ¥

^
¥

¥

^
¥

^
¥

^t
z

z z z z
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2 1 2 2 2 1 2 2

*
* *

*

Since it is reasonable to assume that l l~^
¥ *̂ , the dissipation

rate ε* is determined to within a factor of ∼2 from the
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dominant 2D component,

( )e e= á ñ á ñ = á ñ¥ ^ ¥ ^z k z C k z . 27K
2 1 2 2 1 2 1 3 2 3 2

* * *

From Equation (23), we therefore obtain the spectrum

( ) ( )e e=^ ^
-

¥
-

^
- -E k k k C k k, . 28z K z

2 1 2 1 3 2 3 1* *
Thus, for k⊥=kz the Kolmogorov spectrum ( )^G k* ≡

~^ ^
-E k k2 5 3* holds. This spectrum is the result of the passive

coupling of z* to the turbulent dominant 2D fluctuations and
is not due to nonlinear couplings between z* modes (the
second and third terms on the right-hand side of Equation (24)).
We discuss the incorporation of spectral coupling between the

z* components and the passive coupling to ¥z below.
Consider now the opposite limit in which all the energy

resides in a single NI component, say, á ñ ¹+z 02* and
á ñ =-z 02* . In this case, Equation (24) yields exactly

· ( )
l

¶
¶

á ñ - á ñ = -
á ñ á ñ+ +

¥ +

^
¥V

t
z z

z z
, 29A

2
0

2
2 1 2 2

* *
*

and the á ñ-z 2* equation is identically zero. Unlike Equation (25),
in which we neglected the higher-order nonlinear terms, the
corresponding nonlinear terms are identically zero in
Equation (29). If there were no passive coupling to the 2D
modes, Equation (29) would describe the evolution of the energy
density in unidirectionally propagating Alfvén waves. In this
case, on letting eA

*
denote the dissipation rate of á ñ+z 2* , the same

reasoning as above shows that Equation (28) holds (with ε*
replaced by eA

*
) and ( ) ~ -G k kz z

5 3* and ( ) ~^ ^
-G k k 5 3* for

k⊥=kz. Hence, the passive scalar response of unidirectionally
propagating Alfvén waves to dominant 2D turbulence is a k−5/3

spectrum.
Consider now the timescales for NI MHD. The dissipation

term for the 2D Elsässer total energy density á ñ¥z 2 is

l t
á ñ á ñ

=
á ñ¥ ¥

^
¥

¥

¥

z z z
,

2 1 2 2 2

after defining the 2D nonlinear timescale, from Equation (16),
as

( )t
l

=
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¥
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¥

^
¥

z
. 301

2 1 2

The higher-order Alfvénic terms can be expressed dimension-
ally as

·
l

á ñ ~
á ñ



V z
V z

,A
A

A
0

2 0
2

*
*

where the Alfvén correlation lengths lA have been introduced.
The ratio of the 2D and Alfvénic terms above is

( )
l

t
l

t
t
t

á ñ
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

¥ ¥  ¥
¥V z

z

V
M ,A

A

A

A
A
t

A

0
2

2
0

0
2*

after defining the NI Alfvén timescale as

( ) ( )t
l

=- V
M . 31A

A

A
A
t1 0
0

2

The form of the Alfvén timescale is consistent with the NI
MHD ordering explicit in the NI decomposition (16) and (17)

of the MHD equations. Expression (31) is the NI MHD form of
the usual Alfvén timescale VA0/λA. Finally, the NI nonlinear
timescale is of order ( )MA

t
0

2 higher than the Alfvén timescale,
from the same argument as above, and is given by

( ) ( )t
l

=
á ñ-

^

z
M , 32A

t1
2 1 2

0
2

*
*
*

where the higher-order NI nonlinear correlation length l̂* has
been introduced. Since (( ) )á ñ á ñ ~¥z z O MA

t2 2
0

2* , the time-
scale of Equation (32) is (( ) )O MA

t
0

4 , which is consistent with
the NI ordering implicit in Equation (17) and that the nonlinear
term was included as a higher-order correction to determine the
richest evolution equation (Zank et al. 2017). The correlation
length is the characteristic length scale for the spatial
decorrelation of turbulence and is independent of wavenumber.
Before concluding this discussion, let us reconsider briefly

the form of the Alfvén timescale (31). There are two properties
that the Alfvén timescale should capture ideally: (1) For
unidirectional Alfvén wave propagation, Equation (29) holds,
i.e., the Alfvénic term is a propagation term exclusively and
does not contribute to spectral transfer. (2) Spectral transfer
mediated by the Alfvén term is possible only when á ñ+z 2* ¹
á ñ ¹-z 02* , for which ¹E 0c* . These two effects are not
captured by the Alfvén timescale (31). The left-hand side of
Equation (25) can be rewritten as

⎛
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*
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*

*
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Expressed in this form, Equation (33) shows that there are two
timescales associated with the Alfvén term,

t
l

t
l
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A
A
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A
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2

2 0
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For a single spectral transfer timescale that captures properties
(1) and (2) above, we construct

( ) ( )( )t t t
l

º =
á ñá ñ

á ñ
-

+
-

-
-

+ -V z z

z
M ,A A A

A

A
A
t1 2 1 1 0

2

2

2 2

2 2 0
4* *

*

after setting l l l= =+ -
A A A, i.e.,

( ) ( )

t
l

l
s

=
á ñ á ñ

á ñ

= -

-
+ -V z z

z
M

V
M1 , 34

A
A

A
A
t

A

A
c A

t

1 0
2 1 2 2 1 2

2 0
2

0 2 1 2
0
2

* *

*

*

sinceá ñá ñ á ñ+ -z z z2 2 2* * * = ( )( )á ñ + á ñ - á ñz E z E zC C
2 2 2* * * * * =

s-1 c
2* . This simple extension of Equation (31) captures

properties (1) and (2) above. We have (i) t =- 0A
1 if ∣ ∣s = 1c* ,

i.e., no spectral transfer can occur for unidirectional Alfvén wave
propagation (unless mediated by the “passive” response to
2D turbulence), and (ii) balanced turbulence yields t =-

A
1

( )( )lV MA A A
t

0 0
2 since ∣ ∣s = 0c* . We treat ( )sº -s 1 c

2 1 2* ,
sä[0, 1], as a parameter in the analysis below.
Let us return to the full spectral interaction problem for the

NI component, for which the passive scalar coupling discussed
above is moderated by Alfvén wave propagation effects and the
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weaker (in terms of NI orderings) nonlinear term. For slab and
2D fluctuations to interact, the Alfvén and nonlinear spectral
timescales cannot be completely disparate, i.e., neither quasi-
2D nor wave propagation processes should be so strong that
one controls the decorrelation of the other. If quasi-2D
nonlinear interactions dominate (the spectral timescale inequal-
ity ( ) ( )t t¥ k̂ kA z must hold), the turbulence may be thought
of as strong, whereas if wave propagation processes dominate
( ( ) ( )t t¥ k̂ kA z ), the turbulence is described as weak. The
t  ¥A limit was discussed above, and Alfvén wave
propagation and 2D turbulence are fully decorrelated, respond-
ing only in a passive sense to 2D turbulence. For the present
with τA finite, the NI fluctuations z* possess both slab/
Alfvénic (i.e., nonzero kz) and quasi-2D (k⊥) modes distinct
from the ¥z fluctuations that are exclusively 2D. Nonetheless,
NI interactions are dominated by their interaction with the
majority 2D ¥z modes (in this case, the passive scalar-like
resonant interaction yields k‴=k′+k″, ± VA0 · k‴ =
− VA0·k″, where k′ is the wavenumber of a zero-frequency
dominant 2D ¥z mode, k″ is the wavenumber of a z* mode

[ · ( )]µ k x Vi texp A0 , and k‴ is the wavenumber of the
resonantly excited z* mode), showing that the energy transfer
occurs primarily in k⊥ as usual. Hence, energy transfer in the
NI regime is not due primarily to counterpropagating slab/
Alfvén fluctuations, and indeed energy transfer continues
efficiently even when the normalized cross-helicity is close
to ±1.

As indicated by Equation (24) and consistent with
Equations (31)–(32), the three timescales that govern spectral
transfer for z* in the case of imbalanced and fully balanced
turbulence are t-A

1 ∼ ( )sV M kA A
t

z0 0
2 , t ~ á ñ¥

- ¥ ^z k1 2 1 2 , and
t ~ á ñ-

^z k1 2 1 2
* * . These timescales can be used to form the
effective triple-correlation time τ3 (Equation (20)), which,
together with the higher-order NI/slab nonlinear timescale τ*
(Equation (32)), allows us to express the spectral transfer time
τs as t t t= s

2
3* . On following the suggestion of Matthaeus &

Zhou (1989), Zhou & Matthaeus (1990), and Zhou et al.
(2004), we may invoke a Kolmogorov phenomenology for the
NI/slab Equation (17), i.e.,

( )e t
t

=
á ñz

353

2

2*
*

*

(ε* is the NI/slab dissipation rate), and express the triple-
correlation time τ3 as
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From Equation (35), using t = á ñ-
^z k1 2 1 2

* * , we find e =*
t á ñ ^z k3

2 2 2* , which, from Equation (23), yields
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For strongly imbalanced turbulence, t t¥A , and we recover
Equation (28) other than some slight differences in the
dissipation constants.
To examine the content of Equation (37) a little

more closely, introduce a transitional wavenumber -kt
1 ≡

( ( ) )e¥s V M CA A
t

K
3

0
3

0
6 3 2 and note that the ratio of the 2D

nonlinear timescale t¥ to the Alfvén timescale τA is simply
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Since the 2D dissipation rate is governed by e =-
¥CK

3 2
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where ( )mrº á ñ = á ñ + á ñ¥ ¥ ¥ ¥M z V u B VA A A0
2 2

0
2 2 2

0 0
2 .

Recall that the NI MHD expansion is based on MA
t
0 =

á ñu V 1A
2 1 2

0 , whereas ¥MA0 here is defined by the kinetic
and magnetic energy density in fluctuations, implying >¥MA0

MA
t
0. Evidently, ( )l> ^

¥ -kt 1, but it depends on the magnitude of
MA

t
0 and the level of imbalance in the NI/slab component (i.e., s)

whether kt falls into the inertial range of observed turbulence or
not. Unidirectional wave propagation implies s=0 and =-k 0t

1 .
The physical content of kt is threefold. First, it delineates
wavenumber regions of strong and weak turbulence.
From Equations (37) and (38), <^

-k k kz t
2 3 1 3 = ¥MA

( ) ( )l̂¥ -sMA
t
0

2 1 3 implies that t t<¥ A, and hence the turbulence
in this wavenumber regime is strong and dominated by quasi-2D
interactions. By contrast, >^

-k k kz t
2 3 1 3 implies the 2D timescale

t t>¥ A, and the turbulence in this wavenumber regime is weak
and dominated by propagation effects associated with Alfvén wave
interactions. The wavenumber space in which these two regimes
exist is illustrated in Figure 1, where the bounding curve

( )
( )

( )l
=^

^
¥

¥k
s M

M
k 40A

t

A
z

3 2
0

3

0
3 2

3 2

separates the region where t <¥ or >τA. Three curves
corresponding to the choices of s=0.01, 0.1, and 1 are shown.
Figure 1 also shows that the NI/slab model includes wave
power in the full wavenumber plane and not only along the
mean magnetic field direction. The presence of wave power in
the full wavenumber plane distinguishes the 2D + NI/slab
model (Zank et al. 2017) from the standard 2D + slab model
(Bieber et al. 1996; Oughton & Matthaeus 2020). Second, if
plasma conditions are such that the transitional wavenumber kt
falls outside the inertial range, then the inertial range spectral
index will be determined by whether the turbulence is in the
strong or weak regime, i.e., −5/3 or −3/2, as observed in solar
wind data. Third, as we discuss below, if kt happens to fall into
the inertial range (i.e., is smaller than the dissipation scale), it
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identifies a point at which the inertial range spectrum changes
slope asymptotically.

Consider now a possible relationship between k⊥ and kz,
provided that it exists, such that

( )=^ -k
k

k
, 41z

a

t
a 1

for a>0 and s¹0. Evidently, from Equation (38) an arbitrary
choice of a preserves dimensionality. In the context of the
minority NI/slab component, the parameter a is simply a
measure of wavenumber anisotropy, with a=1 meaning
isotropy. Wavenumber anisotropy has been discussed in terms
of the velocity and magnetic field fluctuations having
correlation lengths different in the direction perpendicular to
the magnetic field than in the parallel direction, as suggested by
the so-called “Maltese Cross” configuration of the correlation
function (see Matthaeus et al. 1990; Dasso et al. 2005;
Weygand et al. 2009; Ruiz et al. 2011; Horbury et al. 2012). On
substituting Equation (41) into Equation (37), we obtain
expressions in either kz or k⊥,
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We need to be careful in interpreting Equations (42) and (43) as
spectra in kz or k⊥. Consider the spectrum in k⊥ first. From

Equation (23)
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which yields, after using Equation (43),
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The 1D spectrum for k⊥ is therefore given by

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( )

( )
( )

e eº =

´ +

^ ^ ^ ¥ ^
-

^
- -

G k E k k k C k

k

k
1 , 45

z K

t

a a

1 4 1 2 1 6 5 3

2 3 3 1 2

* *
*

which is always~ ^
-k 5 3 for t t> ¥A regardless of the choice of

a. For t t< ¥A , Equation (45) yields ( )~ ^
- -k a a4 1 2 , for which

the choice of a=1 then yields the perpendicular spectrum as
∼k−3/2, i.e., the Iroshnikov–Kraichnan (IK) spectrum. This
should be expected since t t< ¥A implies that Alfvén wave
propagation effects dominate.
A related argument shows that the 1D spectrum for kz is

given exactly by Equation (42).
Several points are immediately apparent about the NI/slab

spectra (42) and (43). Recall that the second term under the
square root is the ratio ( ) ( )t t¥ ^k k k,z A z . Evidently, the choice
of a=3/2 renders the timescale ratio t t¥ A independent of
wavenumber, and one finds from Equation (42)

( ) ( )e e
= ¥ -G k

V
k2 , 46z

A
z

1 2 1 2

0

2* *

for example (Goldreich & Sridhar 1995, 1997). If a<3/2, then
both wavenumber regimes kz<kt and k⊥<kt correspond to
t t<¥ A (implying that 2D nonlinear interactions dominate),
whereas the wavenumber regimes kt<kz and kt<k⊥ are
equivalent to t t>¥ A (implying that wave-like interactions
dominate larger wavenumbers). By contrast, for a>3/2, these
regimes are swapped, and instead both kz<kt and k⊥<kt
correspond to t t>¥ A (wave-dominated regime) and kt<kz and
kt<k⊥ imply t t<¥ A (dominated by nonlinear interactions).
For strongly imbalanced turbulence s=1, we can neglect

the t-A
1 term in Equation (37) to obtain the inertial range

spectrum for the NI/slab turbulence component as

( )
( ) ( )( ) ( )

e e

e e

=

=
^ ¥ ^
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¥
- - +

G k k

G k k k

and

, 47z t
a

z
a

1 2 1 6 5 3

1 2 1 6 2 1 3 2 3 3

*
*

*
*

or G* ( ) ~ -k kz z
5 3 if a=1. Evidently this is the only choice that

yields a Kolmogorov spectrum. Moreover, when s=1 or even
0, =-k 0t

1 and only =a 1 ensures that Equation (47) is sensibly
defined. Of course, one can introduce an arbitrary normalization.
As we discuss further below, this result, in combination with the
dominant 2D component, may describe the highly magnetic field
−solar wind flow-aligned observations of Telloni et al. (2019)

Figure 1. Plot showing the strong (t t<¥ A) and weak (t t>¥ A) turbulence
regimes in NI/slab wavenumber space. The boundary curve in the figure is
given by Equation (40) and corresponds to the critical balance condition
t t=¥ A. Three curves corresponding to the choices of s=0.01, 0.1, and 1 are
shown. The normalization is to ( ) ( ) ( ) lº = =- - ¥

^
¥k k s M M1t t A

t
A0

1 1
0

6
0

3 . See
text for details.
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and Zhao et al. (2020a), i.e., strongly imbalanced Alfvén wave
propagation ∣ ∣ s 1* and a 

-k 5 3 spectrum (here P refers to the
spectrum parallel to the flow vector). This requires, however, that
a=1 (k⊥=kz).

Although formally allowed, the choice of a=3/2 in
Equation (47), which gives the spectrum for fluctuations
aligned with B0 as ~ -kz

2 (and for fluctuations perpendicular to
B0 as ~ ^

-k 5 3), is inconsistent with the critical balance
assumption of t t= ¥A (Goldreich & Sridhar 1995, 1997).

On assuming that t¥ and τA are finite, the asymptotic forms
corresponding to spectra (42) and (45) are
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It is straightforward to see that the NI/slab double-power-law
spectra predicted by Equation (42) and (45) and Equation (48)
and (50) for both a<3/2 and a>3/2 possess a steeper slope
for kz<kt that then flattens for kt<kz.
As discussed above, the choice of a=1 yields
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showing that the wavenumber regime smaller than the
transitional wavenumber kt is asymptotic to the Kolmogorov
spectrum and dominated by quasi-2D nonlinear interactions.
The wavenumber regime for kz>kt admits IK scaling
asymptotically and is dominated by wave-like interactions.
The general NI/slab spectrum for a=1 is illustrated in the top
row of Figure 2, showing that the = =- -

^
-k k kz

5 3 5 3 5 3

spectrum transitions to a k−3/2 spectrum at k=kt. Some
evidence for the flattening of Elsässer spectra has been found in
Helios data (Tu et al. 1989, 1990; Marsch & Tu 1990).

We note that the choice of a=3 (i.e., =^
-k k kz t

3 2) yields
the spectrum
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Plots of the NI/slab compensated spectra are plotted in
Figure 2 for a=1, 3/2, and 3, corresponding to the three

cases discussed above. The wavenumber regimes in which
( ) t t¥A for the a¹3/2 cases are identified.

In closing this discussion, consider briefly the separate
spectra of á ñ+z 2* and á ñ-z 2* (e.g., Dobrowolny et al. 1980a,
1980b; Marsch 1991; Zhou et al. 2004; Zank et al. 2012).
Generalizing the above slightly, we set

( )


e
t

t
t

=
á ñ

=
á ñ






z z
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where 
t = á ñ-

^z k1 2 1 2
* * . This yields simply e

*
= t á ñ +z3

2*

á ñ-
^z k2 2* , which from Equation (23) yields á ñ 

^z E k kz2 2* * .
Hence, e t=  + -

^E E k kz3
6 2

*
* * . There are several possibilities in

choosing t
3 . If we choose to use Equation (36), then t t=+ -

3 3 ,
which implies e e=+ -

* *
and =+ -E E* * . In this case,
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from which the corresponding results for G* (k⊥) and G*
(kz), Equation (42) or Equation (45), follow as before, i.e., both
the +G* and -G* spectra are steeper for k<kt and flatter for
k>kt.
Alternatively, one might argue that t t¹+ -

3 3 , in which case
different spectra for +G* and -G* would result. For example,
suppose that t t¥A for á ñ+z 2* , giving ( ) ~+

^ ^
-G k k 5 3* for

a=1. Conversely, if τA and t¥ are both finite for á ñ-z 2* and
a=1, then the spectra for -G* (k⊥) and -G* (kz) have the
asymptotic form given by Equation (48), i.e., ( ) ~-

^ ^
-G k k 5 3* ,

k⊥<kt; ~ ^
-k 3 2, kt<k⊥ and ( ) ~- -G k kz z

5 3* , kz<kt;
~ -kz

3 2, kt<kz. Hence, +G* and -G* can have different
spectral forms, such as found by Tu et al. (1989, 1990) and
Marsch & Tu (1990)—see in particular Figure 2 of Tu et al.
(1989). However, observations of the total spectrum will reflect
the mediation by the dominant 2D component, which depends
on the obliquity between the solar wind flow and magnetic field
vectors, as discussed below.
Let us now consider the spectrum of 2D + NI/slab

fluctuations measured by a spacecraft in the solar wind based
on the formulation above. For this discussion, we will consider
three choices of a. For the first, we take a=1 for the NI/slab
turbulence because asymptotically this choice yields the
Kolmogorov spectrum when t t> ¥A and the IK spectrum in
the opposite regime. For the second, we choose a=3/2 since
it yields the critical balance spectrum in kz and k⊥ for the NI/
slab component. The third case is a=3. We will also consider
a=1 but for t t¥A , corresponding to ( ) ~ -G k kz z

5 3* .
From Sections 2 and 3, we can use

⎛
⎝
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⎛
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which yields

( ) ( ) ( ) ( )  = +¥P f P f P f , 59total *

where =¥q 5 3 and
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Figure 2. Top: plot of the predicted NI/slab inertial range compensated omnidirectional spectrum, showing that the spectrum transitions from a steeper Kolmogorov
spectrum to a flatter IK spectrum at a transitional wavenumber ( ) ( )eº-

¥k s V M Ct A A
t

K
1 3

0
3

0
6 3 2 . The orange region to the left of k=kt corresponds to t t<¥ A, and blue

region to the right corresponds to t t>¥ A. For strongly imbalanced turbulence, the predicted spectrum is strictly Kolmogorov with G* (k)∼k−5/3 when a=1. The
labeling of the dashed asymptotic lines refers to the uncompensated asymptotic wavenumber spectrum. Middle: plot of the NI/slab spectrum (46) when a=3/2.
Bottom: plot of the compensated NI/slab spectrum when a=3. See text for details.
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Plotted in Figure 3 are compensated frequency power spectra
for the total energy á ñ = á ñ + á ñ¥z z z2 2 2* for different choices
of angle Ψ between the interplanetary magnetic field and the
solar wind flow. The top left panel of Figure 3 reflects the
choice a=1, and the top right panel corresponds to a=1 and
t t¥A . The bottom left panel shows the a=3/2 case, and

the bottom right panel shows the a=3 case. Here =¥C
C0.8 total, C*=0.2Ctotal.
The top left panel of Figure 3, corresponding to a=1,

shows that for large values of Ψ the spectral slope of the

frequency power spectrum remains close to −5/3 except for
wavenumbers much greater than kt, which exhibit IK scaling.
For small angles Ψ (∼15°, 5°), the frequency spectra are f−5/3

for (2πf/U0)/kt<1, but thereafter are f−3/2. Most of the
power is found at an angle Ψ;60°. The top right panel of
Figure 3, corresponding to a=1 and highly imbalanced
turbulence t t¥A , shows that the spectra have a fixed
spectrum f−5/3 regardless of Ψ, with the only difference being
that the most power is found when Ψ;60°. This example
corresponds to the cases of highly imbalanced turbulence with
a −5/3 frequency spectrum discussed in Telloni et al. (2019)
and Zhao et al. (2020a) when Ψ<15°. The bottom left panel
of Figure 3, for a=3/2, is quite different from the a=1
plots. Only for low frequencies and angles Ψ<45° does the
frequency spectrum satisfy f−2; otherwise, the spectrum is close
to f−5/3. Most of the power is found in angles close to Ψ;30°
for this case. The bottom right panel of Figure 3, for a=3,
possesses a double-power-law structure, with low frequencies
satisfying f−7/2 and the higher frequencies being dominated by

Figure 3. Compensated frequency power spectra for the total energy as expressed through the Elsässer variables for different choices of angle Ψ between the
interplanetary magnetic field and the solar wind flow according to the 2D—NI/slab model (59)–(64). The angles range from highly aligned (Ψ=5°) to highly oblique
(Ψ=85°). Top left: a=1. Top right: a=1 and t t¥A , i.e., highly imbalanced turbulence. Bottom left: a=3/2. Bottom right: a=3. See text for details.
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Figure 4. Compensated frequency power spectra for the total energy as expressed through the forward and backward Elsässer variables á ñ+z 2* and á ñ-z 2* for different
choices of angle Ψ=5°, 30°, 60°, and 85° between the interplanetary magnetic field and the solar wind flow according to the 2D—NI/slab model. =+ -C C 1.5

* * .
See text for details.
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the majority 2D component with an f−5/3 spectrum because the
NI/slab f−3 spectrum has very little power at high frequencies.

Figure 4 illustrates spectra for the forward and backward
Elsässer energy densities á ñ+z 2* and á ñ-z 2* discussed above
when a=1 and t t¹+ -

3 3 , t t¥A for á ñ+z 2* and τA and t¥
finite for á ñ-z 2* . For this case, we have

( ) ( ) ( ) ( )  = + ¥ P f P f P f , 65total *

where ( )
¥P f is given by Equation (60) and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( )


p p

p

=
Y Y

´ +
Y

- -
-

-

P f
U

C
f

U

f

U
k

2

cos

1

2

2

cos

1
2

cos
; 66t

0 0

5 3

0

1 3
1 3

1 2

* *

⎛
⎝⎜

⎞
⎠⎟( ) ( )

p p
=

Y Y
+ +

-

P f
U

C
f

U

2

cos

1

2

2

cos
. 67

0 0

5 3

*
*

Note that = ++ -C C C* * * to preserve the ratio between the 2D
and NI/slab components. Figure 4 shows four angles for
Ψ=5°, 30°, 60°, and 85°, with an assumed ratio of

=+ -C C 1.5* *
. The distinction between the forward and

backward spectra is most pronounced for small values of Ψ,
although the flattening of the á ñ-z 2* power spectrum persists
for all U–B angles, offering an intriguing explanation for a
similar flattening seen sometimes in Helios data (Tu et al.
1989, 1990; Marsch & Tu 1990).
Figure 5 is a plot of the integrated power measured parallel

to the solar wind flow as a function of angle Ψ, i.e.,

( )ò YP f df,
f

f total

low

high for each of the four cases illustrated in

Figure 3. Each curve is normalized to its total power at Ψ=0°.
For a=1 and both τA finite or infinite, the largest measured
power is found when Ψ;65° since this angle maximizes the
NI/slab contribution in the 2D + NI/slab superposition model.
By contrast, the power for the a=3/2 case decreases
monotonically and without inflection as Ψ increases from 0°

to 90°, primarily because the spectrum at low frequencies is
dominated by NI/slab fluctuations with an f−2 spectrum even
though the 2D fluctuations are energetically dominant. The
a=3 curve is similar in that the integrated power parallel to
the solar wind flow decreases monotonically with increasing Ψ
but has an inflection point as Ψ approaches 90°.

4. Conclusions and Discussion

The foundation of the popular 2D + slab superposition solar
wind turbulence model is NI MHD in the plasma beta ∼1 or
=1 regimes. Based on the equations describing NI MHD in
this regime, we provide a detailed spectral analysis appropriate
to 2D + NI/slab turbulence. In part this analysis was motivated
by a series of studies (Matthaeus et al. 1990; Bieber et al. 1996;
Saur & Bieber 1999; Dasso et al. 2005; Horbury et al.
2008, 2012; Podesta 2009; Wicks et al. 2010; Forman et al.
2011; Wang et al. 2015; Telloni et al. 2019; Wu et al. 2020;
Zhao et al. 2020a) investigating the underlying anisotropy of
low-frequency MHD turbulence and the possibility that the 2D
+ NI/slab model may be important to coronal turbulence and
the associated heating problem (Zank et al. 2018a; Adhikari
et al. 2020b; Zhao et al. 2020b). Unlike the standard 2D + slab
model, in which spectral power resides only in the 2D plane
perpendicular to and along the ẑ -axis parallel to the mean
magnetic field B0, the NI MHD-based 2D + NI/slab model has
wave power throughout the wavenumber plane.
Our principle results can be summarized as follows.

1. The ordering underlying the NI MHD expansion in the
plasma β∼1 or =1 regime implies that the ratio of the
magnetic energy density in 2D to slab fluctuations is
roughly 80:20, i.e., the 2D (in the plane orthogonal to the
mean magnetic field B0) component is the dominant or
majority component and the slab component is the
minority turbulence component.

2. The majority 2D component possesses the classical
Kolmogorov spectrum ( ) ~¥

^ ^
-G k k 5 3 in the perpend-

icular wavenumber k⊥.

Figure 5. Integrated power measured parallel to the solar wind flow ( )ò YP f df,
f

f total

low

high as a function of angle Ψ between the interplanetary magnetic field and the

solar wind flow. Here p l= ^
¥f U2low 0 . For the four curves, the power is normalized by the value of the total power at Ψ=0°.
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3. NI MHD shows that the NI/slab component is coupled in
a passive sense to the dominant 2D fluctuations. The
incompressible NI component comprises both Alfvénic
and higher-order quasi-2D fluctuations (the latter are not
strictly 2D, unlike the majority component). The passive
coupling of 2D and NI fluctuations ensures that the 2D
nonlinear timescale is important in determining the triple-
correlation timescale for the minority NI turbulence
component.

4. In the NI limit in which all the energy resides in a single
NI component (e.g., á ñ ¹+z 02* and á ñ =-z 02* ), the NI
spectrum is given by ( ) ~ -G k kz z

5 3* and ( )^G k* ∼ ^
-k 5 3

for kz=k⊥. For solar wind flows that are highly aligned
with the mean magnetic field, this result corresponds to
observing approximately unidirectional Alfvén wave
propagation and a 

-k 5 3 spectrum, where kP is the
wavenumber parallel to the mean flow. The physical
interpretation of this result is that nonlinear interactions
are not the result of counterpropagating Alfvén waves but
instead unidirectionally propagating Alfvén waves
responding in a passive sense to the majority 2D
turbulence. Such observations in the solar wind are
interpreted typically as “Alfvénic solar wind turbulence”
despite the inability of unidirectional Alfvén wave
propagation to support turbulence and the associated
dissipative heating needed to produce a nonadiabatic
solar wind temperature profile. Instead, our results
indicate that the fast and slow solar wind is dominated
by quasi-2D turbulence that in the case of highly
magnetic-field-aligned flows cannot be measured by a
single spacecraft. However, the Alfvénic and/or slab
component of the 2D + NI/slab decomposition of NI
MHD can be measured directly by a single spacecraft,
which then leads to an interpretation as “Alfvénic
turbulence.” Adhikari et al. (2020a) present a coupled
solar wind—coronal plasma and turbulence transport
model that incorporates the evolution and dissipation of
quasi-2D turbulence and unidirectionally propagating
Alfvén waves. The model appears to be consistent with
observations of the fast solar wind made by the PSP
mission.

5. The inverse triple-correlation time that determines in part
spectral transfer for the NI component is to leading order
the sum of the inverse majority 2D nonlinear timescale t¥
and a generalized form of the inverse Alfvén timescale

( )( )t l s= -- V M1A A A c A
t1

0
2 1 2

0
2* . The new form of the

Alfvén timescale captures the properties that (1) t =- 0A
1 if

∣ ∣s = 1c* , ensuring that no spectral transfer can occur for
unidirectional Alfvén wave propagation (unless mediated by
the “passive” response to 2D turbulence), and (2) balanced
turbulence yields ( )( )t l=- V MA A A A

t1
0 0

2 since ∣ ∣s = 0c* .
6. Use of a Kolmogorov phenomenology shows that the

spectrum is governed by the ratio of the nonlinear and
Alfvén timescales, with distinctly different spectra corresp-
onding to either strong turbulence, when the turbulence is
dominated by quasi-2D interactions ( t t¥A ), or weak
turbulence, which is dominated by propagation effects
associated with Alfvén waves ( t t¥ A). The strong and
weak turbulence regimes are separated in k by a transition
wavenumber ( ) ( ) lº- ¥

^
¥k s M Mt A

t
A

1 3
0

6
0

3 that exceeds the
wavenumber associated with the 2D correlation length.
Depending on parameters, kt may lie in the observed

inertial length, in which case we would expect the Elsässer
energy spectral slope to undergo a change in slope. The
transition wavenumber kt is a measure of the strength of the
turbulence and hence whether nonlinear or wave effects
dominate the cascade.

7. The observed anisotropy of the wavenumber correlation
function suggests that there is a nonlinear relation between
k⊥and kz. We introduce one possible relation between
wavenumbers perpendicular to and aligned with the mean
magnetic field, ~k̂ kz

a, a>0. Here the anisotropy
parameter a may be regarded as a measure of wavenumber
anisotropy, and a=1 corresponds to isotropy. Based on
this relation, general forms of the 1D spectra along and
perpendicular to B0, G

*(kz) (Equation (42)) and G*(k⊥)
(Equation (45)), respectively, can be derived for the NI/
slab component. Regardless of the choice of a, ( ) ~^G k*

^
-k 5 3 for strong turbulence always.

8. For a choice of a=1, i.e., k⊥=kz (i.e., wavenumber
isotropy), and finite t¥ and τA, the 1D inertial range
spectrum for strong NI/slab turbulence is Kolmogorov
with G*(k)∼k−5/3, whereas that for weak NI/slab
turbulence is the IK spectrum G*(k)∼k−3/2. The
transition from strong/Kolmogorov (t t> ¥A ) to weak/
IK (t t>¥ A) turbulence occurs at the transition wave-
number kt, provided that it lies in the inertial range,
illustrating that the wavenumber spectrum can flatten for
k>kt.

9. The choice of a=3/2 corresponds to balanced time-
scales t t= ¥A , or equivalently that the ratio t t¥ A is
independent of wavenumber, i.e., critical balance. In this
case, the NI/slab spectra are given by ( ) ~ -G k kz z

2*
and ( ) ~^ ^

-G k k 5 3* .
10. The choice of a<3/2 implies that t t> ¥A for all k<kt

(i.e., strong turbulence) and t t>¥ A for all k>kt (i.e.,
weak turbulence), and that the spectrum flattens in
transitioning from the strong to weak turbulence regime.
Such a transition is obviously absent when a=3/2
because t t¥ A is independent of wavenumber. The
choice of a>3/2 implies that t t>¥ A for all k<kt
(wave-dominated or weak turbulence regime) and t >A
t¥ for all k>kt (i.e., strong turbulence and dominated by
nonlinear interactions). For the latter case, the transition
from a steep to a flatter spectrum corresponds now to a
transition from weak to strong NI/slab turbulence.

11. For strongly imbalanced turbulence, ( ) ~^ ^
-G k k 5 3*

always and for a=1, ( ) ~ -G k kz z
5 3* .

12. The NI spectral analysis was extended to include the
forward and backward Elsässer variables z* with
corresponding triple-correlation timescales t

3 . In the
case that t t=+ -

3 3 , we recover the same spectral results
found for á ñ = á ñ + á ñ+ -z z z2 2 2* * * , i.e., ( )G kz* and

( )
^G k* are given by Equations (42) and (45), respec-

tively, and the +G* and the -G* spectra are the same.
However, if t t¹+ -

3 3 , the spectra for +G* and -G* are
different. For example, if t t¥A for the forward
Elsässer component +z* and both τA and t¥ are finite for
the backward component -z* , then +G* (k)∼k−5/3 and

-G* (k)∼k−5/3 for k<kt and ∼k−3/2 for k>kt, i.e.,
the forward and backward Elsässer variable spectra differ
in that one is Kolmogorov and the other has a double-
power-law form, flattening from −5/3 to −3/2 in
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spectral index. Tu et al. (1989, 1990) and Marsch & Tu
(1990) report observations of Elsässer spectra that
resemble such a predicted form.

13. By computing the total spectrum in frequency parallel to
the solar wind flow for the 2D + NI/slab model, i.e.,

( ) ( ) ( )  = +¥P f P f P ftotal * , we can predict the fre-
quency spectrum that a spacecraft would observe as a
function of the angle Ψ between the mean flow vector U
and magnetic field B0. For finite t¥ and τA and a=1,

( ) ~ -P f ftotal 5 3 for all k�kt and all possible angles Ψ.

For k>kt, the spectrum flattens with ( ) ~ -P f ftotal 3 2.

For strong turbulence ( t t¥A ) and a=1, ( ) ~P ftotal

-f 5 3 for all k and all Ψ. By contrast, setting a=3/2
yields ( ) ~ -P f ftotal 2 for low frequencies and angles
Ψ<45°; otherwise, the spectrum is close to f−5/3

because the 2D component begins to dominate the
spectrum. Finally, we note that for values a>3/2, such
as a=3, a double-power-law structure is possible for

( )P ftotal , with higher frequencies having a spectrum
f−5/3 because the 2D component dominates.

14. An important point is that the frequency spectrum for
highly aligned flows will be determined by the slab
component predominantly rather than by quasi-2D
fluctuations. Since the slab fluctuations are Alfvénic,
they will not be intermittent, whereas more oblique flows,
being increasingly dominated by quasi-2D turbulence and
structures, will exhibit higher levels of intermittency.

15. In the case that t t¹+ -
3 3 , distinctly different spectra for

( )P ftotal are most easily observed when Ψ is small.
16. Finally, we find that the integrated power measured

parallel to the solar wind flow as a function of Ψ
possesses very different characteristics depending on
whether a<3/2, a=3/2, or a>3/2. For a<3/2
(a=1), the power increases from Ψ=0° until it peaks
at about Ψ=65°, after which it decreases modestly until
Ψ=90°. By contrast, the power for the critical balance
case a=3/2 decreases without inflection from Ψ=0°
to 90°. In the case of a>3/2 (a=3), the power
decrease is similar to the a=3/2 case, although
somewhat faster before flattening for values Ψ�60°.

In summary, based on the theory of NI MHD, we have
provided a complete analysis of the spectral characteristics of
the majority 2D + minority NI/slab superposition model. The
analysis provides a framework within which observations of
solar wind turbulence in the inertial range can be interpreted. It
is of some interest that the anisotropies associated with critical
balance emerge from the NI MHD description in the plasma
beta regime β∼1 and =1.
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