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Creating a water risk
index to improve
community resilience

Flood risk reduction is an existent discourse and agenda in policy and
insurance. Existing approaches such as linking hydrological models to
economic loss models may be highly inequitable between areas of
different socio-economic vulnerability. To our knowledge, no one has
tried to adapt the more advanced known heat risk theory by first
informing flood risk with the socio-economic vulnerability, and then
investigating the sensitivity of risk reduction policies to that flood risk.
In this article, we demonstrate two methods to combine water hazard
data with a derived water vulnerability index to characterize water
risk. We then compare the costs of two potential government policies:
buyout of the home versus funding for foundation elevation. We use the
case study area of Pittsburgh, PA, which faces severe precipitation and
riverine flooding hazards. We find that while small differences in
characterizing flood risk can result in large differences between flood
risk maps, the cost of the flood risk reduction policy is not sensitive to

the method of representing the socio-economic vulnerability. This
suggests that while validation of flood risk incorporating socio-
economic data is needed, for some policies, policymakers can
prioritize environmental justice with little to no additional cost.

1 Introduction
Floods are expensive. In 2018, the National Oceanic and
Atmospheric Administration (NOAA) recorded 10 of 14
billion-dollar disasters as related to hurricanes, severe storm
events, or flooding, with another two such events already
recorded as of April 2019 [1]. Exacerbating this, many of
the nation’s most devastating floods are expected to
increase in magnitude and frequency in the future [2, 3].
This threat prompts the research community to consider
flood risk and associated risk reduction options.
Classically, risk is combination of a number of hazard,
exposure, susceptibility, resilience, adaptive capacity, and
vulnerability [4], and sometimes strictly defined as hazard
x exposure x vulnerability [5, 6]. Given there are multiple
plausible ways these could be combined, existing flood risk
literature has attempted multiple approaches to calculate
flood risk. As a result, some studies seek to reflect risk by
combining physical vulnerability and exposure, such as
using flood data to represent vulnerability due to inundation
[7] or using a hazard model to calculate economic losses due

Digital Object Identifier: 10.1147JRD.2019.2945301

to inundation [8-10]. Other studies seek to create decision
aids showing personalized flood hazard or exposure
probabilities, such as the NOAA’s Sea Level Rise Viewer,
Climate Central’s Surging Seas [11-13]. However, this type
of approach fails to consider the socio-economic
components of the flood risk vulnerability and adaptation
efforts.

Political economy literature suggests adaptation is social in
nature [14], and thus vulnerability is more than just proximity
to a hazard. Indeed, since many different definitions of
vulnerability exist, incorporating a vulnerability metric into
flood risk is not straightforward [ 15]. Consider that
vulnerabilities vary between communities; some
communities may have aging infrastructure, or an older/
poorer population less able to absorb a flood, putting them at
increased risk from the hazards.

Using combinations of deductive, hierarchical, or
inductive reasoning, researchers have attempted to identify
the physical, social, economic, and environmental factors
that contribute to flood vulnerability [16-19]. We
conducted a literature review to determine characteristics
that could be used as a proxy for water vulnerability. Of the
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sources identified, about half of these focused on general
vulnerability to environmental hazards, such as social
vulnerability or vulnerability to heat hazards (e.g., [20, 21]).
We identified five papers that specifically focused on flood
vulnerability indices [22—26] and three additional papers
eliciting vulnerability characteristics from local experts
[16-18]. These studies find that households at risk to
flooding often share several characteristics, called
vulnerability factors, which can be unified into a
vulnerability index through statistical methods [20]. The
literature identifies five main classes of vulnerability
indicators (economic, infrastructure, social, emergency
management, and land use). Note that, while some of the
flood vulnerability indices mentioned physical
characteristics and attempted to reflect risk by directly using
the percent of land within the floodway within the
vulnerability index (e.g., [24]), the majority of these
characteristics are not physical. Rather, they are spread
across socioeconomic variables related to people,
infrastructure, social ties, and ground features.

Clearly, there are wide disagreements on the “correct”
way to reflect socio-economic vulnerability in flood risk
characterizations. However, to our knowledge, no one has
attempted to ask the bigger question: Does this matter? More
specifically, is the cost for different policy alternatives
sensitive to the different approaches to characterizing flood
risk, or does the choice of vulnerability/risk index not really
matter? A study on heat vulnerability indices suggests that
the choice of index does not really affect policy choices on
where to cite cooling centers [21]. It may be that this is
similar for a flood vulnerability or risk index.

This article creates a method to combine water hazard
data with a derived water vulnerability index to help a
community understand their current and future water risk.
We use the case study area of Pittsburgh, PA, USA, which
faces severe precipitation and riverine flooding hazards.
Building on present literature of factors influencing water
vulnerability contextualized to the Pittsburgh region, we
identify, quantify, and map the top factors impacting
water vulnerability. We combine these with flood maps
to identify the geospatial distribution of water risk. Then,
we investigate whether costs for policy alternatives are
sensitive to the calculated local variations in flood risk.

2 Method

We use the case study area of Pittsburgh, PA, which
experiences precipitation, riverine flooding, and flash
floods. Building on present literature of factors influencing
water vulnerability contextualized to the Pittsburgh region,
we identify, quantify, and map the top factors impacting
water vulnerability. We combine these with flood maps to
identify the geospatial distribution of water risk, and then
calculate the cost of a government intervention to reduce
risk. We then test the sensitivity of our results across two
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Table 1 Data used for the water vulnerability index
calculation. While these metrics are included based on a
literature review of other flood index methods, the
majority of the data is census data. Data marked with an
asterisk (¥) are sourced from the Federal Emergency
Management Agency, data marked with a double asterisk
(*") are sourced from the City of Pittsburgh’s Division of
City Planning (2015), and all other data are sourced from
the U.S. Census Bureau 2010.

Data Description

Age, Elderly | % 65 years and older
Age, Youth | % younger than 14 years old

Building | Ratio area of buildings to area of
Density** | land (square feet)

Educational | % without high school degree
Attainment

Flooding Risk* | % of land within floodway
Gender | % female
Housing, Rented | % of occupied houses rented

Housing, | % of houses vacant

Vacancy
Race/ethnicity | % Non-white
Unemployment | % of labor force unemployed

Wealth | % with annual income below
$25,000

different approaches to mapping risk, two potential
government policies to address risk (buyout versus
foundation elevation), and two potential scenarios of
prioritizing risk (prioritize riskiest versus no prioritization).

2.1 Water vulnerability index calculation and data
It is clear that vulnerability is not simply the result of
proximity to a body of water that exhibits creates flood
hazards. Thus, researchers have identified physical, social,
economic, and environmental factors that contribute to
vulnerability.

Based on the literature review described in Section 1
[16-18, 22-26] and subsequent data limitations, we
were able to collect data for 11 characteristics (mainly
census data) that could be used as proxies for building
vulnerability to flooding (see Table 1). Data collected
include social and economic data from the U.S. Census
Bureau (e.g., age, tenancy status, and education levels) [27]
and infrastructure data from the City of Pittsburgh’s Division
of City Planning (e.g., structural properties of residences)
[28]. All data were converted via Geographic Information
System (GIS) to assignments at the 2010 census block group
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level. Note that, while floodplain data were available, we
consider this to be the hazard, not the vulnerability, and thus
discuss its consideration in the next section.

Next, we created the water vulnerability index from the
publicly available data via, first, a multicollinearity test,
second, a factor analysis, and third, normalization. First, we
note there are many datasets spatially distributed across the
same region, some variables may be representing the same
dynamics. To reduce “double counting,” we conduct a
multicollinearity test to identify and remove variables. To
determine whether multicollinearity exists, we performed a
multiple regression rotating through each variable as the new
dependent variable, with the remaining variables as
independent variables. This multiple regression tests for
multicollinearity in groups of variables, which makes it more
robust than a test comparing only two variables at a time.

After removing variables that fail the multicollinearity
test, we performed a factor analysis using varimax rotation
and standard statistical criteria (e.g., the fewest number of
factors that explain 70% of the variance). This approach
allows for dimension reduction by, first, identifying the
ways in which certain indicator variables tend to clump
together (providing the same information) and, second,
collecting these indicator variables together into
vulnerability factors that explain the majority of the
variance in the data.

Finally, we converted units to even groups of standard
deviations [29-32]. Here, for each factor, we calculated the
value at each census block group, then divided the results
into six equal increments of 1.0 standard deviation, and
finally assigned each census block group an integer value
ranging from 1 (more than two standard deviations less than
the mean) to 6 (more than two standard deviations more
than the mean). Finally, each block group’s vulnerability
index was mapped geospatially.

2.2 Combining the water vulnerability index with
flood map hazard
Here, we investigated two potential models of combining
hazard and vulnerability data in order to reflect risk. Both
models considered only the subset of single-family homes
listed in the publicly available Allegheny County tax
record data [33] that was physically located in the Federal
Emergency Management Agency floodplain [34, 35], or a
total of 221 buildings. While this subset better enables the
cost methodology in the next section, both models could be
expanded to other types of housing.

In Model One, recall that risk is sometimes defined as
hazard x exposure x vulnerability [5, 6]. Given binary
floodplain maps (either in the 100-year floodplain or outside
the 100-year floodplain), then risk would be a 1% chance per
year (hazard) for the subset of homes within the floodplain
(exposure) x the vulnerability map (vulnerability). We thus
calculated the hazard x exposure by starting with the subset
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of single-family homes in City of Pittsburgh tax record data,
geocoding the addresses, and using GIS to determine the
overlap with the Federal Emergency Management Agency
(FEMA) floodplain map. We then assigned each exposed
house to a vulnerability score based on its census block group.

In Model Two, recall that some of the flood vulnerability
indices mentioned physical characteristics had attempted to
reflect risk by directly using the percent of land within the
floodway within the vulnerability index (e.g., [24]). Here,
we conducted a second vulnerability index calculation with
the additional input dataset of the percent of land within the
floodplain for each census block group. We then assigned
the vulnerability to the subset of single-family homes
listed in the Allegheny County tax record data that were
physically located in the FEMA floodplain.

While these models are just two of the multiple
approaches to risk that might be used, they provide a
first look at investigating the sensitivity of policy
recommendations to different water risk analysis
approaches.

2.3 Costanalysis

Next, we investigated the sensitivity of costs for different
water risk policies to the different water risk models.

There are many different options a local, state, or federal
government actor could undertake to reduce water risk,
ranging from community-wide efforts to efforts focused on
specific homes (e.g., [34, 36, 37]). To understand the
sensitivity of results to different policies, we considered two
existing policy alternatives that might be employed to
support a single-family home: first, a government buyout of
the house at the fair market value listed in the tax record
data (buyout) and, second, funding to elevate the building
out of the floodplain (foundation elevation).

To provide a comparable analysis, we assumed a few
items were consistent for each policy alternative. First, we
assumed that each policy alternative occurs over four years,
with a government discount rate of 1.3% [38]. Next, the
number of housing units processed per year was based on
two scenarios. The first scenario (Scenario A) prioritized
the riskiest units based on the risk score from either Model
One or Model Two. More specifically, all units with scores
less than or equal to 3 were processed in Year 1, between 3
and 3.5 in Year 2, between 3.5 and 4 in Year 3, and above 4
in Year 4. The second scenario (Scenario B) assumed no
prioritization and, thus, an even distribution across all risks
addressed each year.

For the buyout policy, we assumed the cost would be the
market value of the building and the land as given in the
Allegheny County tax record data.

For the elevation policy, we understand that elevation
costs are a function of the height to be elevated and building
characteristics (e.g., building size, condition of the building
and foundation, and construction type) [37]. First, we
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Table 2 Multiplicative factors for calculating the cost
of the elevation as a function of building.

Elements Foundation Elevation
Adj. Factor - | 0.751f <2750 sqft.;

BullBing e | o soverwun i inchoding 2750 568 4230
sqit.;

1.25 if above 4230 sqft.
Adj. Factor- | 0.9if<2;

Buildi
“;fg 1 if between and including 2 and 4;
1.1if>4
Adj. Factor - | 0.8 if Frame;
Constm;;;r; 1 if Frame with Masonry;
1.2 if Masonry
Adj. Factor - | 0.75if A, 0.8 if B+,
Foundation 5 ;
Status 0.85if B, 0.9 if B-,

0.95ifC+ 1ifC,
1.05 if C-, L.1if D+
1.15if D, 1.2 if D-

Adj. Factor - | 1.2 for all units, i.e. assume the most
Elevation | expensive choice of elevating by one story
Method | due to lack of data on elevation height.

calculated a baseline cost by averaging over contractor
estimates for the national average to elevate a house
(assuming the foundation does not need rebuilt) [39, 401,
yielding a national average baseline cost of $5,800. We then
applied five multiplicative adjustment factors to adjust the
cost for each specific building as described in the tax record
data. Each factor was guided by FEMA documentation
[37], and Table 2 describes the resulting multiplicative
factors applied. First, we considered building size (the
square footage for each floor) and applied a multiplicative
factor of —25% to +25% across quartiles visible in the data.
Next, we considered the building status describing the
overall condition of the data (with the smaller the number,
the better the condition) and applied a —10% to +10%
range. Third, we considered the construction type (frame,
masonry frame, or masonry) and applied a range of —20% to
+20% (assuming brick aligned with masonry). Next, we
considered the foundation status ranging from “A” as best to
“D—" as worst and applied + 5% for each level above or
below the midpoint “C.” Finally, we assumed all buildings
would be elevated one story, thus allowing for the new
ground floor to be purposed into a garage or other storage
space, which we assumed would add a +20% charge over
baseline. Other factors that may affect the project cost
including the number of floors, foundation type, time to
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Vulnerability

low High J—

Water vulnerability index for Pittsburgh, PA. Light (dark) red means
low (high) vulnerability on a scale of 1 to 6.
_—————————

finish, labor costs, liability/insurance costs, landscaping
costs, and other miscellaneous costs are also considered
for this analysis. However, due to the lack of data on these
factors, we assumed no adjustment to the baseline cost.

Given these assumptions, we then conducted a net
present value (NPV) analysis for each policy alternative.
We then conducted a sensitivity analysis across the input
variables of discount rate (testing 1.3% to 4.5%) and the
values in Table 2.

3 Results

3.1 Water vulnerability index
Figure 1 shows the resulting water vulnerability index, with
the full factor analysis plots and resulting scree plots given
in Appendix A. In the rotated matrix, we find two factors
have an eigenvalue of more than one and explain more than
76% of the variance. The first factor appears to reflect
wealth (percent of those below the poverty line), with the
second reflecting education (percent of those without a high
school education).

We find that the resulting flood vulnerability index
shows that the areas near the rivers show low vulnerability,
whereas the more vulnerable regions (e.g., Hill District,
East Liberty/Larimer/ Homewood, Perry Hills, and
Southside Slopes) are outside the floodway. This may
be a reflection of Pittsburgh’s efforts to move vulnerable
communities outside of the floodway and away from flood
hazards, such as efforts to repurpose the point where the
three rivers meet into Point State Park.

3.2 Combining the water vulnerability index with
flood map hazard

Figure 2 shows the resulting risk scores assigned as a

function of census block groups for model one and model
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Water risk models for Pittsburgh, PA’s floodway. Light (dark) red
means low (high) risk on a scale of 1 to 6. 1) The top figure reflects
Model One, and thus shows the subset of Figure 1 census block groups
that are within the FEMA floodplain map (and thus which scores are
assigned to the single family homes). 2) The bottom figure shows the
full factor analysis results for Model Two.

two (with the factor analysis and scree plot for Model Two
given in Appendix A). At first glance, it appears that the
risk scores assigned to the census block groups intersecting
the floodplain (the subset of census block groups in

Figure 2.1) seem similar. However, recall that we then
assigned these risk scores to the single-family houses.
Figure 3 shows a histogram of the assigned scores,
showing a marked difference between the models.
Specifically, Model One (Figure 3.1) shows a histogram
similar to a normal distribution, with most of the houses
assigned a middle risk score. Conversely, Model Two
(Figure 3.2) creates a histogram where the risk scores are
clumped at low and high extremes. It is unclear which of
these results are “more correct.” This marked difference
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suggests that the decision maker’s approach to floodplain
management may result in very different outcomes if the

policy choice is a strong function of risk.

3.3 Cost analysis
For Scenario One (prioritizing by risk), the NPV of the
buyout was $39.4 million for Model One and $39.8 million
for Model Two, and the NPV of foundation elevation was
$1.27 million using either Model One or Model Two. This
suggests that when considering policies meant to address all
houses at risk, the choice of policy intervention outweighs
(by several orders of magnitudes) the differences between
the two vulnerability models.

For Scenario Two (no particular prioritization for risk),
the total NPV for both Model One and Model Two of
buyout was $39.2 million, whereas the NPV of cost of
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foundation elevation is estimated to be $1.26 million. Taken
in consideration with Scenario One, this further suggests
that if all at risk properties are to be addressed over a 4-year
period, choosing to prioritize more vulnerable properties
does not greatly alter costs. That is, even though the quality
and value of the housing stock may be inferior in cases of
lower-income households, a decision maker could prioritize
those properties with a minor effect on total costs.

A sensitivity analysis was conducted to test the effect on
the foundation elevation project cost NPV from each of the
five key adjustment factors listed above. We find that our
results are most sensitive to the assumption of elevation
height (+16%), followed by the assumption of construction
type (£12%). Full results are given in Appendix B.

4 Conclusion

This study characterized two different types of approaches
to incorporating socio-economic vulnerability into flood
risk. We create several novel datasets (e.g., vulnerability
and risk indices) and combine them in a novel way with tax
record data to understand the performance of two flood risk
reduction policies. We find that while the flood risk maps
generally show higher risk near the three rivers of
Pittsburgh, the resulting flood risk indices show different
histograms of risk, suggesting that slight differences in
approach to flood risk characterization can result in very
different results. However, we then find that the cost of the
two flood risk reduction policies considered (buyout and
foundation elevation) is not sensitive to the method of
representing the socio-economic vulnerability. This
suggests that while validation of flood risk incorporating
socio-economic data is needed, for some policies,
policymakers can prioritize fair and equal treatment, or
environmental justice (e.g., [41]), with little to no
additional cost.

One limitation of this study is data availability. While not
available for this study, data that could be collected include
hazard data such as drainage and rain patterns to
characterize flash flood and combined sewer overflow
hazards, vulnerability data such as whether houses have
floodproofing or not, and cost data such as the actual height
required to elevate each house out of the base flood
elevation level. Given a much larger dataset, the same
factor analysis would be conducted again to determine
which variables can explain greater variances in
vulnerability, specifically as related to physical hazards
such as location within a floodway. In addition, additional
data and modeling could allow for investigation of other
policy options. For example, one study has found that
Pittsburgh residents may be willing to pay more on their
utility bill for infrastructure that contains stormwater on site
[42]. Another study found that the optimal strategy to
elevate a house is a function of beliefs on how quickly
uncertainty will be reduced [43]. Given improved local
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information on how green infrastructure could reduce the
risk, this study could be extended to consider this type of
policy alternative.

Then, a second limitation of this study is that we may
not have picked “the right” set of flood vulnerability
indices to consider. For example, an index that relies
heavily on census data may be less applicable to a less
populated rural area. Clearly, validation of the flood
vulnerability/risk index would help ensure that the results
are robust. Unfortunately, many existing indices
hypothesize vulnerability based on the literature (e.g., [24;
26]) and/or subject matter expertise [16, 17], thus failing
to validate the hypothesized vulnerabilities against actual
damages [44]. Furthermore, some have noted that using a
deductive, hierarchical, or inductive approach for choosing
factors can greatly affect the resulting index [45]. For
example, some approaches may lack proxies for risk
characteristics [46], such as risk perception, coping
strategies, and other local traits [47]. In other cases, it may
be that resilience or social capital should be considered. As
a result, some studies have tested vulnerability and risk
indices against actual economic damages or deaths.
Considering all types of hazard events, one study [48]
finds that Peacock et al.’s Community Disaster Resilience
Index [49] and Foster's Resilience Capacity Index [50]
correlate significantly with economic damages and
fatalities, whereas Cutter et al.’s Social Vulnerability
Index [20] correlates significantly with presidential disaster
declaration. Another study agrees, suggesting that after
controlling for flood exposure, the Social Vulnerability
Index may not predict damages and may instead predict
housing assistance applicants [51]. However, both of these
studies test general indices, as opposed to flood
vulnerability or flood risk indices. This suggests that if a
policy for flood risk reduction appears to be sensitive to
the representation of socio-economic vulnerability, then
more work is needed to understand and validate flood risk
indices.

Appendix A: Factor analysis results

Tables A.1 and A.2 and Figures A.1 and A.2 contain the
full factor analysis results and resulting scree plot for
this study.

Appendix B: Factor analysis results

Table B.1 contains the full results of the sensitivity
analysis on the foundation elevation. Values are similar
between choice of risk map (Model One and Model
Two), with slight differences between whether more
risky buildings are prioritized over others (Scenario A
and Scenario B).
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Table A.1 Factor analysis results (rotated component matrix) for water vulnerability index that does not
include the floodplain (used in Model One). The rotation method was varimax with Kaiser normalization, and
the rotation converged in eight iterations.

Characteristic Component
1 2 3 4 5 6 7 8

Percent below poverty line .805 187 .238 130 137 076 180 -.102

Percent of buildings that are 125 =007 .070 .941 -012 .005 165 -.034
vacant

Percent of buildings that are .B57 =223 -.078 .035 -.146 .248 .027 .045
rented

Percent with a high school 102 .786 .009 .318 146 245 211 .068
degree or less

Percent unemployed 167 114 .163 .185 -.005 -.017 .942 -.053

Percent non-white 511 .030 .653 .284 22 -.068 .205 -.058

Percent older than 65 years .000 121 -.057 -.006 971 107 -.001 -.043

Percent younger than 14 years -.003 219 .841 -.028 -143 .297 .106 -.095

Percent female .239 .032 .202 .009 133 .889 -.023 -.129

Building density (number per 121 -.825 -.238 .248 -.052 144 .018 01
square feet)

Table A.2 Factor analysis results (rotated component matrix) for water vulnerability index that includes the
floodplain (used in Model Two). The rotation method was varimax with Kaiser normalization, and the rotation
converged in eight iterations.

Characteristic Component
1 2 3 4 5 6 7

Percent below poverty line .809 .048 191 -.006 .267 -.069 =178

Percent of buildings that are 374 -.049 149 10 .879 -.024 .002
vacant

Percent of buildings that are 591 -.339 .594 -.234 154 -.123 .008
rented

Percent with a high school .203 759 319 .054 .280 .318 .094
degree or less

Percent unemployed .826 .186 .042 .292 .048 A7 .057

Percent non-white 713 -.022 .049 406 324 .108 -133

Percent older than 65 years .057 126 .044 .026 =019 .968 =112

Percent younger than 14 289 225 .225 .840 .098 017 =147
years

Percent female 113 .031 .880 .308 120 1103 -.170

Building density (number per 017 -.841 .257 -.191 .237 .003 A72
square feet)

Percent of land in the -.109 -.069 -121 -.118 -.003 -.110 .956
floodplain
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Figure A.1
Scree plot of factors for water vulnerability index that does not include the floodplain.
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Figure A.2
Scree plot of factors for water vulnerability index that includes the floodplain. Note that while this is very similar to Figure A.1's scree plat, there are differences.
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Table B.1

Sensitivity analysis results

Sensitivity test Scenario A - Risk Prioritized % Change Scenario B - No % Change
. e prioritization (in $
(in $ millions) millions)
All Adjustment $1.27 = $1.26 -
Factors Unchanged
Controlling for $1.19 -6.00% $1.17 -7.39%
4.5% Discount Rate
(Mortgage Interest)
Controlling for $1.32 +4.18% $1.31 +3.97%
Building Size
Controlling for $1.24 -1.80% $1.24 -1.85%
Building Status
Controlling for $1.42 +12.12% $1.41 +12.11%
Construction Type
Controlling for $1.27 -0.04% $1.26 -0.11%
Foundation Status
Controlling for $1.06 -16.67% $1.05 -16.67%
Elevation Method
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