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Abstract This work lays out the two-potential
framework for the constitutive modeling of dielectric
elastomers. After its general presentation, where the
constraints imposed by even electromechanical cou-
pling, material frame indifference, material symmetry,
and entropy imbalance are all spelled out, the frame-
work is utilized to put forth a specific constitutive
model for the prominent class of isotropic incom-
pressible dielectric elastomers. The model accounts
for the non-Gaussian elasticity and electrostriction
typical of such materials, as well as for their defor-
mation-enhanced shear thinning due to viscous dissi-
pation and their time-dependent polarization due to
electric dissipation. The key theoretical and practical
features of the model are discussed, with special
emphasis on its specialization in the limit of small
deformations and moderate electric fields. The last
part of this paper is devoted to the deployment of the
model to fully describe the electromechanical behav-
ior of a commercially significant dielectric elastomer,
namely, the acrylate elastomer VHB 4910 from 3M.
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1 Introduction

Over the last two decades, fueled by their potential to
enable a broad spectrum of new technologies ranging
from soft robots, to energy harvesters, to speakers, to
biomedical and haptic devices [3, 6, 15, 36, 49],
increasing efforts have been devoted to gain precise
quantitative insight into the electromechanical behav-
ior of dielectric elastomers.

On the theoretical front, most of the reported efforts
have restricted attention to the idealization that
dielectric elastomers are elastic dielectrics, that is,
materials that deform and polarize without incurring
dissipation of energy [9, 11,27, 28, 32,34, 43]. While
such an idealization may be justified under certain
loading conditions, it is not appropriate in general as
dielectric elastomers are inherently dissipative solids:
they dissipate energy through viscous deformation and
through friction in their electric polarization process.

Recognizing their true nature, a handful of dissipa-
tive models have been proposed over the last decade
following different ad hoc approaches. The majority
of such models account only for mechanical—and not
for electric—dissipation and, save for a few
works [5, 46], most assume ideal dielectric behavior
[2, 18, 47, 51]. The motivation for this bias is that the
mechanical relaxation time of dielectric elastomers is
much larger that their electric relaxation time. Yet,
accounting for electric dissipation, in addition to
mechanical dissipation, is critical when dealing with
applied alternating currents, which is often the case in
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applications. Two exemptions that account for both
mechanical and electric dissipation are the models
presented in [10] and [38]. The former corresponds to
a model for the special case of a non-ideal dielectric
elastomer with Gaussian elasticity, constant viscosity,
and a single relaxation time due to electric dissipation.
The latter corresponds to a model for a different
special case, that of an ideal dielectric elastomer with
non-Gaussian elasticity, also constant viscosity, and
an ad hoc electric dissipation attributed to leakage
current that is strictly applicable to a one-dimensional
setting. In this context, our purpose in this paper is
threefold.

First, we introduce a general constitutive frame-
work to construct models for the dissipative elec-
tromechanical behavior of dielectric elastomers that
automatically feature the distinguishing even elec-
tromechanical coupling of this class of materials as
well as seamlessly comply with material frame
indifference, material symmetry, and the entropy
imbalance requirements. As elaborated in Sect. 2, this
framework is nothing more than the celebrated two-
potential framework in mechanics [13, 16,24, 53, 54]
extended to account for the coupling with Maxwell’s
equations.

Second, we make use of the general two-potential
framework to construct a specific model for the
prominent class of isotropic and incompressible
dielectric elastomers. As elaborated in Sect. 3, the
proposed model corresponds to a generalization of the
rubber viscoelastic model of Kumar and Lopez-
Pamies [24]. Accordingly, it accounts for the non-
Gaussian elasticity and the deformation-enhanced
shear-thinning viscosity typical of dielectric elas-
tomers. It also accounts for their characteristic elec-
trostriction and time- and deformation-dependent
polarization. Section 3 also includes a detailed anal-
ysis of the specialization of the model in the funda-
mental limit of small deformations and moderate
electric fields.

Third, for demonstration purposes, we deploy the
proposed model to describe the electromechanical
behavior of the acrylate elastomer VHB 4910 in full.
As illustrated in Sect. 4 by means of direct compar-
isons with experimental data available in the literature,
the model is capable both of describing and predicting
the electromechanical behavior of this popular and
commercially significant dielectric elastomer from
3M.
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2 The two-potential framework for dielectric
elastomers

2.1 Kinematics

Consider a deformable and polarizable homogeneous
solid that occupies in its initial—undeformed, stress-
free, and unpolarized—configuration (at time ¢t = 0)
an open bounded domain Qy C R3, with boundary
0Qp and unit outward normal N. We identify material
points by their initial position vector X € €. Ata later
time ¢ € (0, T, due to the applied boundary conditions
and source terms described below, the position vector
X of a material point moves to a new position specified
by

X = Y(Xv t)7

where y is an invertible mapping from Qg to the
current configuration Q(z), also contained in R, We
write the associated deformation gradient and its
determinant at X and ¢ as

_

F=VyX,?) = X

(X,7) and J = detF.

2.2 Constitutive behavior

Following the two-potential formalism [13, 16, 24,
53, 54], absent changes in temperature, the constitu-
tive behavior of the solid can be expediently charac-
terized by two thermodynamic potentials that describe
how the solid stores and dissipates energy through
deformation and polarization, namely: (i) a free-
energy function v and (ii) a dissipation potential ¢.
The functional form of these two potentials must be
selected so as to be descriptive of the three basic
defining features of dielectric elastomers, to wit:

e dielectric elastomers exhibit even electromechan-
ical coupling,

e when all mechanical forces and electric fields are
removed after an arbitrary loading path, dielectric
elastomers creep to their original undeformed,
stress-free, and unpolarized initial configuration,
and

e when subject to mechanical (electric) relaxation
and creep loading conditions, dielectric elastomers
exhibit a transient response that then evolves into
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an equilibrium state of deformation (voltage) and
stress (polarization).

The last two of the above defining features dictate the
following functional form:
Y =y"(F.E) +y"(F.EFF E-E) (1)

for the free-energy function and
¢ =¢(F,E,F"E" F'E) (2)

for the dissipation potential; the first feature is
summoned further below in Sect. 2.2.1 together with
other fundamental constraints that the functions yy and
¢ ought to satisfy. In relation (1), /4 characterizes the
energy storage in the dielectric elastomer at states of
mechanical and electric (i.e., thermodynamic) equi-
librium, while ™" characterizes the additional
energy storage at non-equilibrium states (i.e., the part
of the energy that gets dissipated eventually). Accord-
ingly, the former is a function solely of the deforma-
tion gradient F and the Lagrangian electric field' E.
On the other hand, the function leEq depends on F, E,
and additionally on the internal variables F” and E" via
the combinations

F*:=FF"' and E‘:=E-E"

In relation (2), the variables F” and E’ stand for the
time derivatives of the internal variables, that is, F =
OF"(X,1)/dr and E¥ = OE"(X, 1) /0r.

Remark 1 The specific choice of internal variables
F” and E” in the formulation (1)-(2) is one among
several possible constitutive choices. It is a choice,
nonetheless, that has the advantages of being amply
general and yet mathematically simple and of having a
clear physical meaning. Indeed, F” and E" stand for
measures of the “dissipative parts” of the deformation
gradient F and the electric field E. They are consistent
with standard and well-tested choices in the separate
literatures of mechanics and dielectrics; see, e.g.,
[24, 33, 39].

Remark 2 In the spirit of the classical linear theories
of viscoelasticity [14] and time-dependent dielec-
trics [4], it proves instructive to visualize the physical
meaning of the two potentials (1) and (2) pictorially in
the form of an electrorheological model. Figure 1

" In this paper, for definiteness, we restrict attention to the
Lagrangian electric field E as the independent electric variable.

d) o w NEq

Fig. 1 Electrorheological model of dielectric elastomers. The
curly coils and parallel plates represent elastic springs and
capacitors, while the dashpot and sharp coil represent a viscous
dashpot and a resistor. The elastic springs and capacitors
symbolize the ability of dielectric elastomers to store elastic and
electric energy, while the viscous dashpot and resistor symbol-
ize their ability to dissipate energy through viscous deformation
and molecular friction during their polarization

provides such a representation, which can be readily
identified as the classical Zener model for viscoelastic
solids [50] and the Debye model for dielectrics [8]
generalized to account for their electromechanical
coupling as well as for the constitutive and geometric
nonlinearities inherent at finite deformations and finite
electric fields.

Granted the two potentials (1) and (2), it follows
that the “total” first Piola—Kirchhoff stress tensor S
(accounting for both, the mechanical and electric
contributions [9]) and the Lagrangian electric dis-
placement D at any material point X € Qy and time
t € [0,T] are given by the relations

0 Eq o NEq
S(X,1) = é<+%F (3)
and
0 Eq 0 NEq
D(X,1) = — é//E - ‘gE : (4)

where F'(X, ) and E"(X, ) are defined implicitly as
solutions of the coupled system of ordinary differen-
tial equations (ODEs)

AR

L2

OF  oF" (5)
oyt o

OE"  OE’
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in time subject to the initial conditions F*(X,0) =1
and E"(X,0) = 0.

Remark 3 The total Cauchy stress tensor T, Eulerian
electric field e, and Eulerian electric displacement d at
the position x € Q(f) occupied by the material point X
attime 7 € [0, T] are given in terms of their Lagrangian
counterparts by the relations

T(x,7) = J 'SF7,
e(x,t) =F'E, (6)
d(x,r) = J'FD.

Moreover, the polarization p at any x € Q(¢) and 7 €
[0, T] is given by

p(x, 1) = d(x,1) — ee(x, 1),

where ¢ stands for the permittivity of vacuum.

2.2.1 Constraints on the functions Yy*, YN, ¢

As is the case with the two-potential modeling of any
dissipative solid, any specific choice of functions y/*9,
YNE9 ¢ in the formulation (1)—(2) must satisfy certain
basic physical requirements. We spell out each of
these requirements in the sequel, one at a time.

Even electromechanical coupling. As alluded to
above, the constitutive relations (3)—(4) for dielectric
elastomers must exhibit even electromechanical cou-
pling. This requirement implies that the functions /™4,
YNE9 b must satisfy the conditions
qu(Fv *E) = qu(Fv E)a
YN(F, —E, F¢, —E°) = y"(F,E,F*,E°),
¢(F,~E,F",—E"F', -E") = ¢(F,E,F".E" F", E"),

(7)
for arbitrary F, E, F”, and E".

Material frame indifference. Under a change of
observer, it is required that the free-energy function s
and dissipation potential ¢ remain invariant. A

standard calculation shows (see, e.g., Section 2
in [24]) that this requirement implies that the func-

tions Y59, YyNB9, ¢ must satisfy the conditions
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Y™ (QF,E) = y"™(F,E),

yN"(QF,E, QF*,E°) = y""(F,E,F*, E°),

¢(QF,E,F" E" F" . E") = $(QF E,F",E", F" E")
(8)

for all Q € Orth™ and arbitrary F, E, F*, and E".

Material symmetry. For dielectric elastomers with
material symmetry group Symm C Orth™, it is
required that the free-energy function y and dissipa-
tion potential ¢ remain invariant under a change of
reference configuration described by any element
K € Symm. Again, a standard calculation shows (see,
e.g., Section 2 in [24]) that this requirement implies
that the functions %™, Y™, ¢ must satisfy the
conditions

Y™ (FK,K'E) = y"(F, E),
Yy N(FK,K'E, F*, K"E) = y"™(F,E, F*, E°),
»(FK,K'E,F’K, K"E", 'K, K"E")
= ¢(F.E,F . E' F" . E)
©)

for all K € Symm and arbitrary F, E, F’, and E; in the
condition for N9, note that use has been made of the
result FK(F'K) ™' = FKK'F'~! = FF*~! = F°.

Entropy imbalance. In the context of isothermal
processes of interest here, the entropy imbalance or
second law of thermodynamics in the form of the
reduced dissipation inequality (see the Appendix)

imposes the following constraint on the dissipation
potential ¢:

0 o .

[ d) (F,E,FV,EV,FV,EV)] -F'+
oF”

(10)

d o .
[ ¢ (F, EFEFE)} ‘E'>0
OE

for arbitrary F, E, F¥, E", with equality holding only
when F* = 0 and E" = 0.

2.3 Boundary conditions and source terms

We now specify the external stimuli applied to the
solid, which comprise both prescribed mechanical and
electric boundary data and source terms in the bulk.
Electrically, consistent with the manner in which
electric fields are applied in practice, we take that the
solid is immersed in a surrounding space (e.g., air)
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where there is a heterogeneous electric field E(X,¢)
and corresponding electric displacement D(X, ¢) that
result from the electrodes connected to part of the
boundary of the solid together with the nearby
presence of space charges and/or other polarizable
bodies and the interaction of these with the solid. We
can then compactly write the boundary condition as

ExN=ExN, (X,t)€0dQ x[0,7]

or, equivalently,

D -N=D -N-0g(X,1), (X,f)€dQ x[0,7]

over the entirety of the boundary of the domain
occupied by the solid, where ¢(X,¢) stands for the
density of surface charges present on 0Q, (for
instance, at electrodes). Throughout €j, we also
consider that the solid contains a distribution of space
charges with density

0X,1), (X,1)€Qyx][0,T].

Mechanically, on a portion OQ(? of the boundary 0Qy,
the deformation field y is taken to be given by a known
function ¥(X, ), while the complementary part of the

boundary 6(26\/ =00 \ 6QOD is subjected to a pre-
scribed mechanical traction t(X, 7). Precisely,

SN =1+SyN, (X,1)e€d) x[0,7].

In this last expression, Sy, stands for the Maxwell
stress outside of the solid. In the case when the solid is
surrounded by air,

) fo) Eq NEq
DIV[ g/F (Vy,—Vo) + %F
det Vy(X, 1) > 0,
y(X7 t) = y(Xa t)7
aqu leEq

e T N
sM:FTE®D—§(F*TE-FTE)F r

where D=6 JF 'F 'E and where we emphasize
that the meaning of the deformation gradient F—as
well as the notion of material points X—in the air
needs to be interpreted appropriately; see, e.g., Sec-
tion 6 in [29]. Finally, throughout Q,, we also
consider that the solid is subjected to a mechanical
body force with density

£(X,1), (X,1) € Qyx]0,T].

2.4 Governing equations

Absent inertia and in the context of electro-quasi-
statics, the relevant equations of balance of linear and
angular momenta read as

DivS+f=0 and SF’ =FS”, (X,1)€Qyx [0,T]

(11)

while the relevant equations of Maxwell read as

DivD=Q and CuwlE=0, (X 7)€ R x][0,T].

(12)

The balance of angular momentum (11); is automat-
ically satisfied by virtue of the material frame
indifference granted by condition (8);,. Faraday’s
law (12), can also be automatically satisfied by
introducing a scalar potential ¢ such that
E = —Vo(X,1). It then follows that the governing
equations for the solid reduce to the following coupled
system of boundary-value problems:

(Vya _Vq)7 VyFV7la _V(p - Ev):| + f(X7 t) = 07 (Xa t) € QO X [07 T]

(X,1) € Qy x [0,7]
(X,1) € 0QF x [0, 7]

(Vy,~Vo, VyF'™!, -V — E") — SM] N =1(X,1), (X,7) € 0Q) x [0, 7]

(13)

@ Springer
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and
) fo Eq NEq
D1V|: ng (Vy,—Vo) + lgE
alqu l//NEq
o o —ve) + 2

(Vy7—V(p,VyFV I v EV ] -0(X,1), (X,1)€Qyx][0,T]

(Vy, Ve, VyF' ! -V — E”)} ‘N =a(X,t) = D(X,) - N, (X,) € 0Q x [0, 7]

(14)

together with the coupled system of evolution equa-
tions

oyt . o .
v (Vy’ V(/Lvav _V Ev) +_ (Vya V(vavaEvvFV;Ev) = 07
OF oF”
F'(X,0) =
and
oyt o 0¢
_ FV _ _ EV
g (VY —Vo, VyE' —Vo — E') + T
E'(X,0) =

finite-element and time-integration schemes; see,
g., [25, 28, 30, 40].

(Vy, V(vaV7EV7FVaEV) = Oa
XeQ

(X)€@ x (0.7] 5

XEQ()

(X,1) € Qo x (0,7] (16)

for the deformation field y(X, ¢), the electric potential
¢(X,t), and the internal variables F"(X,¢) and
E'(X,1).

Remark 4 In general, the boundary data D(X,¢) in
(14), is not known a priori. This is because it is
implicitly defined by the solution of Maxwell equa-
tions (12) in R \ Q. Nevertheless, there is a plurality
of specific domain geometries Q and specific bound-
ary conditions of practical interest for which the
boundary condition (14), can be written in explicit
form, often in terms of an electric potential or voltage
applied across electrodes.

Remark 5 The two-potential framework introduced
above is admittedly general, as it applies to dielectric
elastomers of arbitrary anisotropy and compressibility
featuring a wide range of dissipative mechanical and
electric behaviors, and yet relatively simple, as the
resulting governing equations (13)—(14) with (15)-
(16) for any boundary-value problem of interest are
amenable to numerical solution by well-established
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Moreover, the handful of models for dielectric
elastomers (accounting for dissipative phenomena)
that have been proposed in the literature over the past
few years following different ad hoc approaches are
all special cases of the above two-potential frame-
work, that is, they can be readily generated by
appropriate choices of the free-energy functions 1™
YNE9 and the dissipation potential ¢. As noted in the
Introduction, however, the majority of such models
account only for mechanical dissipation and, save for a
few works [5, 46], most further assume ideal dielec-
tric behavior [2, 18, 47, 51]. Two exemptions that
account for both mechanical and electric dissipation
are the models presented in [10] and [38].

3 A specific constitutive model for isotropic
incompressible dielectric elastomers

In the sequel, we employ the general two-potential
constitutive framework laid out in the preceding
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section to construct a specific model for the prominent
class of isotropic and incompressible dielectric
elastomers.

The proposed model corresponds to a generaliza-
tion of the viscoelastic model of Kumar and Lopez-
Pamies [24]—which accounts for the non-Gaussian
elasticity and the deformation-enhanced shear-thin-
ning viscosity typical of elastomers [1, 12, 21, 31]—
aimed at accounting for the time- and deformation-
dependent polarization and electrostriction character-
istic of dielectric elastomers [7, 17, 22, 48].

We begin in Sect. 3.1 by presenting the prescrip-
tions for the functions ", YN, ¢ and then present
the constitutive response that they imply in Sect. 3.2
together with the key theoretical and practical features
of the model. We devote Sect. 3.3 to discussing in
detail its specialization in the so-called limit of small
deformations and moderate electric fields.

3.1 The functions ™, yNE9, ¢

The equilibrium free-energy function tqu in the
proposed model is given by

E myg — & myg .
qu_{ LS(11)+ 5 14—715 if J=1
+o00 otherwise
(17)
with

Eq 2 31_% o, ol
LP(II) = Zﬁﬂr[llr -3 ']>
r=I1 r

where 1}, 1, I5 stand for the standard invariants

L =uC, IL=E-E, Is=E-C'E,

written here in terms of the right Cauchy-Green
deformation tensor C = F’F, and where I
(r = 1,2) stand for the material parameters (with unit
force/length? and unitless) describing the elasticity of
the dielectric elastomer at states of mechanical and
electric equilibrium, while the material parameters ¢
and my denote, respectively, its initial permittivity and
electrostriction coefficient (both with units capaci-
tancellength), also at equilibrium states.

Remark 6 1t is a simple matter to check that the
equilibrium free-energy function (17) satisfies the
requirements of even electromechanical coupling (7)1,

material frame indifference (8);, and material sym-
metry (9); for the case of isotropic dielectric elas-
tomers of interest here.

The non-equilibrium free-energy function Y™™ is
taken to be given by the same functional form as the
equilibrium free energy (17) evaluated at appropriate
deformation-gradient and electric-field arguments
compliant with the constraints (7)2, (8)2, (9),.
Specifically,

ng — €

NE; e e ng . e
lpNEq:{ () + > 14—315 if Je=
—+00 otherwise
(1)
with
NE 2 315 P
qu(lf) = Z 25 vr[lf r— 3ﬁ'},
r=1 r

where If, J¢, I§, Z¢ stand for the pseudo-invariants
=wc=cCc-C!
J
J¢ = detF® = —
e 7
I,=E - E=E-E)- (E-E"
I¢=E - C'E°=(E-E)-C'(E-E)
(19)

and where vy, 81, v2, B, €, ng stand for the six material
parameters analogous to f;, oy, L, 02, & Mg in the
equilibrium branch (17); for later use, in these last
expressions we have introduced the notation
C°=F"F, C"' =F"F, J" = detF".

Remark 7 Similar to (17), it is a simple matter to
check that the non-equilibrium free-energy function
(18) satisfies the requirements of even electromechan-
ical coupling (7),, material frame indifference (8),,
and material symmetry (9), for Symm = Orth™.

Remark 8 While in principle natural choices as
arguments in "9, the pseudo-invariants I =E°-
C°'E¢ and I =E°¢-C°’E° do not satisfy the
material symmetry requirement (9),. On the other
hand, the pseudo-invariants 7% = E° - C 'E° and
Ii=E°. C2E¢ do satisfy such a constraint, thus
the use of Z¢ in (18).

Finally, the dissipation potential ¢ is prescribed as

@ Springer
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¢ _ %Fvval . [A(F’Fe)Fvval]
] _ ' (20)
+ EF*TEV - [B(F,E,E)F"E']

with
A (F,F) =2 (17, 15, 17) Kijia + 303.T ijua (21)
and
BU(F,E7E6) = {0y, (22)

where J;; denotes the Kronecker delta, and /C and J
stand for the standard shear and hydrostatic orthogonal
projection tensors

1
K ==

2 | .
5 Oidj + 0itd — 5517514 s T = §5ijbk1~

(23)
In the constitutive prescriptions (21)-(22), yg, 5, and
{ are material functions/parameters that describe,
respectively, the viscosity and the polarization friction
of the dielectric elastomer. The two viscosity coeffi-
cients are given by
Mo — oo + Ki [} — 3]

72
1+ (K2 5™)

171(([;715710 =1 =+

with
NE 152 2 1 ’
= (1?_15) 23]7&‘91?&7
r=1
and
nJ = +OO,

where we recall that I{ is given by (19); in terms of C
and C",

5= % {(tr C”)2 —tr Cez]
- % [(C oy _ele CCH} g
I'=uC’

and 15 > 1., >0, 7,20, 7,20, K; >0, K, >0 are
material parameters; the units of 7, 1y, ., K1 are
force x time/ lengthz, 1> 7, are unitless, while K, has
units of length*/force*. The polarization-friction

@ Springer

parameter { is taken to be a non-negative material
constant with unit capacitance x time/length.

Remark 9 It is not difficult to verify that the
dissipation potential (20) satisfies the requirements
of even electromechanical coupling (7);, material
frame indifference (8)3;, and material symmetry (9);
for Symm = Orth™. Noting the inequalities #y, >0,
n; >0, (>0, it is also straightforward to check that
the dissipation potential (20) complies as well with the
reduced dissipation inequality (10).

Remark 10 The polarization-friction coefficient { in
the dissipation potential (20) can be vastly generalized
to be a function of the deformation gradient F, the
electric field E, and/or the internal variable E, instead
of just a constant. For instance, any (suitably well-
behaved) non-negative function of the generic form

(={(h,1s,15,15,7%)

may be employed. Because of the current lack of
guiding experimental results, we choose { to be a
constant in this work.

3.2 The constitutive response

Having introduced the free-energy functions (17) and
(18) and the dissipation potential (20), it is now a
simple matter to spell out the constitutive relations
(3)-(4) with evolution equations (5) that they imply.
Indeed, the first Piola-Kirchhoff stress S and Lagran-
gian electric displacement D are given simply by

2
S = 2317“"#,1;‘"_1 F—-pF 7T
r=1
2
+ 1> 3 (C c“)l’rl} FC'! (24)
r=1
+mF TEQF'F'E
+mFT(E-E)@F 'FT(E-E")
and

D = (¢ — mg)E +mgF 'F'E
+ (e —ng)(E—E") + nkF'FT(E - E),
(25)

where p stands for the arbitrary hydrostatic pressure
associated with the incompressibility constraintJ = 1,
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and where C" and E' are defined implicitly as
solutions of the evolution equations

. 2 314y (C. - 1h!
Cv:Zr=l3 ‘;((5 F ) |:C_1(C‘CV71)CV
(I, 15, 1Y) 3
C'(X,0) =1
(26)
and
. ng € — Nng
E=—(—-1+ C>E—EV
(Fregc)e—e), @)
E'(X,0) =0

note that the dependence on the internal variable F”
enters only through the combination C" = F*TF".

The remainder of this section is dedicated to
describing key features of the proposed constitutive
model (24)—(27).

The Eulerian description. It follows from the
constitutive relations (24)—(25) and the connections
(6) that the Cauchy stress T and Eulerian electric
displacement d are given by

2
T= Z3I“ru,.1ff—‘] FF" —p1
r=1
2
+ Z317ﬁrvr(c . Cvfl)ﬂ,.fl FCV*IFT
r=1
+mge®e+ ng(e —e') ® (e —e”)
and

d = [(¢ — m)FF" + mylI]e

+ [(€ = ng)FF" + ngl] (e — €") (28)

in terms of the Eulerian electric field e = F~TE, where
use has been made of the notation e’ = FTE".

The special case when E = E" = 0. In the absence
of electric fields when E = E" = 0, the model (24)—
(27) reduces to the viscoelastic model of Kumar and
Lopez-Pamies [24], precisely, the first Piola-Kirch-
hoff stress (24) reduces to

2

Z 311,[ur1?r1‘| F— p FfT

r=1

S =

2
> 3y, (C- C”l)ﬁ"_l] FC' !,

r=1

+

where CV is still defined by the evolution equation
(26). Because such a model accounts for the non-
Gaussian elasticity and the deformation-enhanced
shear-thinning viscosity typical of elastomers, it is
expected to be descriptive and predictive of the
viscoelastic behavior of most standard elastomers;
see Section 3.1 in [24] for comparisons with
experiments.

The special case when F = F* = Q € Orth™. In the
absence of stretch when F = F’ = Q € Orth™, the
model (24)—(27) reduces to the classical Debye
model [8], precisely, the electric displacement (25)
reduces to

D =¢E +¢E—-E"),

where EV is solution of the evolution equation
E = % (E - EY)
E'(X,0) =0 .

This constitutive relation describes reasonably well
the time-dependent polarization response of most
standard dielectric elastomers all the way up to their
electric breakdown; see, e.g., the experimental results
presented in [7, 17, 22, 52].

Numerical solution of the evolution equations (26)
and (27). The evolution equations (26) and (27) for the
internal variables C” and E" are decoupled from one
another and hence can be solved independently.
Moreover, while the evolution equation (27) for the
electric internal variable E” does depend on both the
deformation and the electric field in the dielectric
elastomer via C and E, the evolution equation (26) for
the mechanical internal variable C” does not depend
on E.

From a mathematical point of view, both evolution
equations are systems of first-order ODEs. Whereas
the system (27) for E” is linear, the system (26) for C”
is nonlinear. An efficient and robust® numerical
scheme to generate solutions for both of these systems
is the explicit fifth-order Runge-Kutta scheme with
extended region of stability due to Lawson [25]. For a
generic system of nonlinear first-order ODEs

2 Numerical experiments have shown that this scheme remains
stable and accurate over very long times, while, at the same
time, it also outperforms in terms of computational cost all of the
various implicit methods that we have examined.
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A1) = G(1,A(1)),

denoting by A the numerical approximation of the
solution A(#) at the discretized time #, this
scheme provides the solution A, in terms of the
solution at the previous time step A,, for a given
discretized time interval [t,, t,,], by the rule

At
Au = Ant 5 (Thi +32ks -+ 12ks + 32Ks + Tk)

90
with
k| =G(t,,A,)
At At
k2 ZG(l" *F?,An +k1 7)

At At
k3 :G(ln +Z:An + (3k1 +k2) E)

At At
= n _aAn k3 —
k4 G(t + > + k3 2)

3At At
Ks :G(zn + T7A” +3(—ky + 2k; + 3ks) E)

At
k¢ :G(zn + At, A, + (K + 4k, + 6k; — 12k4 + 8Ks) 7),

where At = 1,1 — t,.

Material parameters and their determination from
experiments. The model (24)—(27) contains nineteen
material parameters:

— four (y;, oy, Wy, o) describing the non-Gaussian
elasticity at states of mechanical and electric
equilibrium,

— four (vy, B, v2, B,) describing the additional non-
Gaussian elasticity at non-equilibrium states,

- six (g, Nsos V15 V2» K1, K2) describing the viscous
dissipation that stems from the motion of the
underlying polymer chains,

— two (e, my) describing the polarization and elec-
trostriction at states of mechanical and electric
equilibrium,

— two (¢, ng) describing the additional polarization
and electrostriction at non-equilibrium states, and

— one ({) describing the frictional dissipation that
stems from the process of polarization.

The fourteen purely mechanical parameters (y;, o,
Has 02, V15 Bis V2, Bas Moy Moos 715 V25 Kis K2) can be
determined by simply fitting (e.g., by means of least
squares) the model simultaneously to a set of uniaxial
relaxation data and a set of uniaxial
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tension/compression data at constant stretch rate.
Alternatively, they can be determined by fitting
simultaneously two sets of uniaxial tension/compres-
sion data at two sufficiently different constant defor-
mation rates; see Section 3.1 in [24].

The three purely electric parameters (&, ¢, {) can be
determined from conventional broadband dielectric
spectroscopy measurements; see, e.g., Chapter 2
in [23].

Finally, the two remaining electromechanical
parameters (my, ng) can be determined from elec-
trostriction experiments and from broadband dielec-
tric spectroscopy measurements in pre-stretched
specimens; see, e.g., [22, 28, 37, 48].

Dielectric spectroscopy on pre-stretched speci-
mens. As just mentioned, a standard experimental
technique to probe the electromechanical behavior of
dielectric elastomers is the dielectric spectroscopy of
pre-stretched specimens.

Customarily, as a first step, a thin layer of the
dielectric elastomer of interest is stretched biaxially,
say A; in the e; direction and /, in the perpendicular
direction e, and held in place for long enough
(usually, about a day) to reach mechanical equilibrium
so that, according to the model (24)—(27), the defor-
mation gradient F and internal variable C" are of the
spatially homogeneous and constant-in-time forms

A 0 0
P |0 i ?
0 O h
20 0 (29)
and Cj=Cy= 0 % ?
0 0 52

with respect to the Cartesian laboratory axes {ej, e,
e}, where e3 denotes the thin layer normal.

Keeping the stretched configuration (29) fixed, as a
second step, electrodes are placed on the opposite
surfaces of the specimen and these are then connected
to a power source that sets a time-harmonic voltage
across. Neglecting fringe effects, the Lagrangian
electric field E and internal variable E' in the
specimen specialize to be of the forms



Meccanica

0
E=| 0 with E(t) = Egpe™ (30)
E(1)
and
0 E
E'=| 0 with  E"(f) = —— (ei“" — e_f),
1 +iwt
E"(1)

(31)
where w is the angular frequency of the applied
harmonic voltage, i = V=1, Ey is the amplitude of the
induced Lagrangian electric field, and

1292
T I (32)
(1 = AA5)ng — €
has been introduced for notational convenience.
Physically, this last quantity characterizes the electric
relaxation time of the dielectric elastomer at the
stretched configuration (29).

The third and last step consists in running the
experiment for a sufficiently long period of time
(usually, a few miliseconds suffice) so that the initial
transient part of the response—characterized by the
term e~¢ in (31)—vanishes and a harmonic relation-
ship can be established between the Eulerian electric
displacement d = FD = d(¢)e; and the Eulerian elec-
tric field e=F7E = M)QEoei‘”’e3 = eoei‘”’eg. It
immediately follows from (28), (29);, (30), and (31)
that that harmonic relationship is given by

d(l) = 8* (0); ll, ig)€0€i{m
with

&+ € —mg —ng

12,2
Ay

— n .
I+iot\ " 7272

Clearly, the quantity (33) can be thought of as the
apparent permittivity of the dielectric elastomer at the
stretched configuration (29) and this is how (33) is
precisely interpreted in the experimental literature.

8*(60;217/12) = myg + ng +

Using the convention e* (w; A1, p) = e (w3 A1, Jo)—

. n " . li " . .
ie* (w; 21, 42), its real ¢* (w; A1, 4,) and imaginary

" 4
e*" (w; A1, A7) parts read as

e+e—mg —ng

12,2
A4

34
1 n € — ng (34)
— n
T+ \ 7 22

" wT

* , €—ng
) = - £ 35
eosh ) = - (nH ;%)7 )

where we recall that 7 is given by (32). Relations (34)—
(35) make it plain that the dielectric spectroscopy of
pre-stretched specimens is indeed an expedient
approach to determine the electromechanical material
parameters my and ng of any dielectric elastomer of
interest. Section 4 below presents an example of such
a calibration process for the acrylate elastomer VHB
4910.

s*l(w; A,y Aa) = mg + ng +

and

3.3 The limit of small deformations and moderate
electric fields

The distinguishing even electromechanical coupling
of dielectric elastomers comes forth most plainly in the
so-called limit of small deformations and moderate
electric fields. Such a limit has been studied exten-
sively in the restricted setting of elastic dielectrics,
when both mechanical and electric dissipation are
absent; see, e.g., [26, 41, 42, 44, 45]. In this
subsection, we work out the limit of small deforma-
tions and moderate electric fields for the proposed
model (24)—(27) in the general setting when mechan-
ical and electric dissipation are both present.

Consider ¢ to be a non-negative scalar parameter of
choice and take the deformation gradient and the
Lagrangian electric field to be of the orders ||F —I|| =
0(é) and ||E|| = O(&). In the limit as & \, 0, making
use of the notation H=F — 1 and H' =F" —1, it
follows that the constitutive response (24)—(27)
reduces asymptotically to leading order to

S =LMH + LNYH - H") — pI
+MMEQE +MMM(E - E) ® (E - EY),
(36)

subject to the constraint tr H = 0, and
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D = ¢E + (E - EY) (37)
with

L™ =2(; + 1)K,
MEq - mK(’C + ‘7)7

=l M=l

LN = 2(v; 4+ K,
MNEd = e (IC+ ), (38)

where p stands for the arbitrary hydrostatic pressure
associated with the incompressibility constraint
trH =0, KC and J stand, again, for the orthogonal
projection tensors (23), and H” and E" are defined by
the evolution equations

V1+V2

Mo
H'(X,0)=0

=

(H—H)

and

= (E-E)
E'(X,0) =0 ’

Ev

which admit the closed-form solutions

I—s

L e m
H;(X,l) :/ e‘g HU(X,S>dS (39)
0 m
and
167%
El.V(X,t):/ . E;(X,s)ds. (40)
0 e

In these last expressions, we have introduced the
notation t, = #,/(vi +v2) and 1, = —{/e. Physi-
cally, these quantities characterize the mechanical
and electric relaxation times of the dielectric elas-
tomer in the limit of small deformations and moderate
electric fields. Typically, 1, is in the order of 10°
seconds, while 7, is in the much faster range of
[107°,1073] seconds.

Reduced set of material parameters. Out of the total
of nineteen in the full model (24)-(27), only a
combination of eight material parameters shows up
in the asymptotic constitutive response (36)—(40):
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— one (4= + u,) describing the initial shear
modulus at states of mechanical and electric
equilibrium,

— one (v =v; + ) describing the additional initial
shear modulus at non-equilibrium states,

— one (ty =1y/(vi +v2)) describing the initial
mechanical relaxation time,

— two (e, mg) describing the initial permittivity and
electrostriction at states of mechanical and electric
equilibrium,

— two (€, ng) describing the additional initial permit-
tivity and electrostriction at non-equilibrium
states, and

— one (te = —(/e) describing the initial electric
relaxation time.

Electrostriction. As alluded to above, a fairly acces-
sible and thus popular experiment to probe the coupled
electromechanical behavior of dielectric elastomers
consists in measuring their deformation—commonly
referred to as electrostriction—that results from an
imposed spatially homogeneous electric field in the
absence of stresses. This is routinely achieved by
sandwiching a thin layer of the dielectric elastomer
between two compliant electrodes connected to a
battery. In such a setup, the stress is indeed roughly
zero everywhere (inside the dielectric elastomer as
well as in the surrounding space), while the electric
field is roughly uniform within the dielectric elastomer
and zero outside of it.

Consider hence a thin layer of dielectric elastomer
subject to electromechanical states where the stress S
and electric field E are of the spatially homogeneous—
albeit time dependent—forms

0 0 0 0
Si=10 0 0 and E;=| 0
0 00 E(1)

with respect to some Cartesian laboratory axes {ej, €5,
e}, where, as in the preceding section, e; denotes the
thin layer normal.

It follows from the constitutive relations (36)
through (40) that
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——H(1) 0 0
Hi=1 —%H(t) 0
0 0 H(t)
0
and D; = 0o 1,
D(t)

where the electrostriction strain H(t) in the direction of
the applied electric field is defined implicitly by the
Volterra integral equation

m
S33 = (W + pp +vi +v2)H(2) +TKE2(I)_

1—s

Lo o
(V1+V2)/0 - H(s)ds+ (41)

s 2
g Te %
— | E(t) — E(s)d =
3<<t> J <s>s> 0

while the sole non-trivial component D(f) of the
Lagrangian electric displacement is given explicitly
by the relation

D(r) = (e +€)E(t) — e/
0 Te

The result (41) generalizes the classical result for the
electrostriction of elastic dielectrics with even elec-
tromechanical coupling to account for both mechan-
ical and electric dissipation. Indeed, for the case of
applied electric fields E(¢) with a fixed constant value
for times larger than a certain threshold time, say
E(t) = Es for t > t;, the electrostriction strain H(¢) de-
fined by (41) reduces asymptotically to the classical
result (see, e.g., Section 2.25 in [42] and Eq. (60)
in [41])

nmy 2

—F
3(py + 1)

for ¢ > t¢, once the mechanical and electric dissipa-
tion has taken place and the dielectric elastomer has
reached its equilibrium state.

H(t) =Hs = —

4 Application to VHB 4910

In this last section, for demonstration purposes, we
determine the material parameters in the proposed

model (24)—(27) for the acrylate elastomer VHB 4910
from 3M by fitting experimental data available in the
literature. To illustrate the model’s predictive capa-
bilities, we also present comparisons between its
predictions and additional experimental data.

Due in part to its growing commercial significance,
a plurality of experimental works aimed at character-
izing different aspects of the electromechanical
behavior of such a dielectric elastomer have been
reported in the literature over the past fifteen years.
Presumably because of the technical difficulties in
carrying out the experiments, however, the reported
results are not entirely consistent with one another.
Here, for definiteness, we choose subsets of the
experimental data reported in [19] and [37] in order
to determine the nineteen material parameters in (24)—
27).

Precisely, we make use of the results reported
in [19] for the equilibrium states in a multi-step
relaxation test together with those from two uniaxial
tension loading/unloading tests at the constant stretch
rates of 0.01 and 0.05 s~! in order to determine the
fourteen purely mechanical parameters (u;, oy, fy, 02,
Vs B1s V25 Bas Mo Moo V15 V25 K1, K2) in the model. The
resulting values from such a calibration process are
listed in Table 1. Figures 5(a)—(b) in [24] compare the
three sets of experimental data and the fitted response
described by the model.

Furthermore, we make use of the dielectric spec-
troscopy results reported in [37] for an undeformed
specimen and a biaxially pre-stretched specimen, with
an equal biaxial stretch of 2, in order to determine the
remaining three purely electric parameters (¢, €, {) and

Table 1 Material parameters for VHB 4910 determined from
experiments in [19] and [37]

1, = 13.54kPa i, = 1.08kPa
o = 1.00 o0 = —2.474

v; = 5.42kPa v, = 20.78 kPa
By =-10 B, = 1.948

no = 7014kPa - s Ne = 0.1kPa-s
y, = 1.852 7, = 0.26

Ki = 3507kPa-s K> = 1 kPa™?

e = 4.48¢ myg = 3.08¢&

e = —2.68¢ ng = —0.2788¢,

{=3.695 x 107°s
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[|Experiment @
Model

10" 10?2 100 100 10°
f(Hz)

Fig. 2 The model response (34) fitted to the experimental
dielectric spectroscopy data of Qiang et al. [37] for the real part
of the apparent permittivity of undeformed (1; = 4, = 1) and
biaxially stretched (1; = 4, =2) VHB 4910 specimens. The
results are shown as functions of the frequency f = w /27, from
f=0.1to010° Hz

the two electromechanical parameters (my, ng). The
results of such a calibration process are also reported
in Table 1. Figure 2 compares those two sets of
experimental data and the fitted response described by
the model. There it is of note that the experimental
data for intermediate frequencies is not accurately
captured by the model suggesting that the polariza-
tion-friction coefficient { should not be assumed to
simply be constant but rather a function of the electric
field E. We shall explore this generalization in future
work.

The results presented by Figs. 5(c) and (d) in [24]
have already shown that the model (24)—(27) with the
material parameters listed in Table 1 can predict the
purely mechanical response of VHB 4910 reasonably
well. The results presented by Figs. 3 and 4 here
indicate that this is also the case more generally for its
coupled electromechanical response.

Specifically, Fig. 3 confronts the response (34)
predicted by the model with the experimental data of
Qiang et al. [37] for the real part of the apparent
permittivity of biaxially pre-stretched (4, = 4 =
1,1.5,2,2.5,3,3.5, and 4) VHB 4910 specimens at
the frequency f = /27 = 10 Hz; see Fig. 6 in [37].
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Fig. 3 Real part of the apparent permittivity of biaxially pre-
stretched (42 =4;) VHB 4910, at the frequency
f=/2n =10 Hz, as a function of the pre-stretch ;. The
solid circles correspond to the experimental data of Qiang
et al. [37], while the solid line corresponds to the response (34)
predicted by the model with the material parameters listed in
Table 1
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Fig. 4 Load/unload response of uniaxially pre-stretched
(41 = 3) VHB 4910 subject simultaneously to a uniaxial stretch
Ay perpendicular to the pre-stretch direction, applied at the
constant stretch rate of |iy) =0.01 s~', and a constant
Lagrangian electric field E; = 8.6 MV/m. The solid circles
correspond to the experimental data of Hossain et al. [20], while
the solid line corresponds to the response predicted by the model
with the material parameters listed in Table 1
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On the other hand, Fig. 4 compares the model
prediction with the experimental data of Hossain
et al. [20] for the stress-stretch (S,,—/1;) response of a
uniaxially pre-stretched (4; = 3) specimen that is
loaded/unloaded in the direction perpendicular to the
pre-stretch at the constant stretch rate of 0.01 s~! in the
presence of a 5 kV voltage applied across its thickness
resulting in a constant Lagrangian electric field of
E; = 8.6 MV/m; see Fig. 5 in [20].
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Appendix. The reduced dissipation inequality

Denote by v(x, ¢) the velocity of the material point that
occupies the location x € Q(¢) at time ¢ € [0, T] and
assume that at any x € Q(r) and time ¢ € [0,7] the
following quantities exist and are sufficiently regular
both in space and time: the mass density p(x, 1), the
mechanical Cauchy stress T"(x, ), the mechanical
body force " (x, 7) (per unit volume), the electric force
f¢(x, 1) (per unit volume), the electric couple g¢(x, )
(per unit volume), the electric field e(x, ¢), the electric
displacement d(x, 7), the space charge g(x, 7) (per unit
volume), the internal energy u(x, ) (per unit mass), the
heat source r(x, ) (per unit mass), the heat flux q(x, 7),
the entropy #(x,) (per unit mass), and the absolute
temperature 0(x, t).

Conservation of mass

Conservation of mass is said to be satisfied provided
that

dp

or (x,1) €Q() x [0,T]. (A1)

+ div(pv) =0,

Balance of linear and angular momenta

Absent inertia, the balance of linear and angular
momenta are said to be satisfied provided that

divI" + "+ =0, (x,1) € Q) x [0,7]

(A.2)
and

T =g, (x,1) € Q1) x [0,T], (A.3)

where € stands for the permutation symbol.

In the context of electro-quasi-statics of interest
here, the electric force and couple take the form (see,
e.g., Egs. (7.38) and (7.48) in [35])

f¢ = ge + (grad e)Tp and g° = —p xe,

where we recall that p=d — ¢ye stands for the
polarization.

Upon defining the electric stress
T¢ :e®d—%0(e-e)l
and invoking Gauss’s (A.6) and Faraday’s (A.7) laws
introduced further below, the balance of linear (A.2)
and angular (A.3) momenta can be recast as

divT +f" =0, (x,7) € Q(t) x[0,T] (A4)
and
T=T", (x,1)€Q)x][0,T] (A.5)

in terms of the total Cauchy stress T = T + T¢. With
help of the connections (6) and the definition f = Jf"',
Egs. (A.4)—(A.5) can be further recast as those sum-
moned in the main body of the text, namely, (11).

Maxwell’s equations
In the context of electro-quasi-statics of interest here,

Maxwell’s equations are said to be satisfied provided
that

divd =g, (x,1) € R*x[0,T] (A.6)
and
cule =0, (x,¢) € R® x [0,T]. (A7)

With help of the connections (6) and the definition
0 = Jg, Egs. (A.6)—(A.7) can be recast in the form
(12) provided in the main body of the text.
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Balance of energy

Granted the balance Egs. (A.1), (A.2), (A.3), (A.6),
(A.7), balance of energy is said to be satisfied provided
that
pu+divq—pr—T"-T—p-e
- (tr r)p e = 07 (X7 t) € Q(t) X [Oa T]a

(A.8)
where I' = 0v(x, 1) /0x stands for the Eulerian velocity
gradient.

Throughout this appendix, a superposed “dot”
denotes the material time derivative.

Entropy imbalance

Granted the balance Eq. (A.1), the entropy imbalance
is said to be satisfied provided that

pﬁ—i—div(%) —% >0, (x,1)€Q(r)x0,T].
(A.9)

Upon defining the free energy (per unit mass)
1

Y=u—0n——p-e
p

and invoking the balance Eq. (A.8), the entropy
imbalance (A.9) can be recast as the reduced dissipa-
tion inequality

p(‘{"+n9)me~F+p‘é

438 (rad0) <0,

which, in the context of isothermal processes of
interest in this work, specializes to

(x,1) € Q(t) x [0,T],

p¥ —T"-T+p-6<0, (x,1)€Qt)x[0,T].

(A.10)
With help of the definition

W= Jp¥ — %OJF*TE FTE

and the connections (6), the reduced dissipation
inequality (A.10) can be further recast as
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y—S-F+D-E<0, (X,1)eQ x][0,7T].

(A.11)
Writing now
Y = yH(F.E) + y"™(F.E,FF""| E — E")

and making use of the connections (3)—(5), the
inequality (A.11) reduces finally to the form (10)
provided in the main body of the text.
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