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a b s t r a c t 

Standard particulate fillers utilized to enhance the macroscopic elasticity of elastomers —

most notably, carbon black and silica particles — are inherently of nanometer size. Because 

their size is comparable to the typical lengths of the polymer chain segments between 

crosslinks in the embedding elastomers, there is a plurality of microscopic mechanisms by 

which such fillers provide macroscopic enhancement. Well-known among these is the so- 

called hydrodynamic effect , which has long been thought to become increasingly dominant 

as the size of the fillers increases from nanometer to micrometer or larger length scales. 

This paper reports a combined experimental/theoretical investigation aimed at critically 

examining such a belief by isolating — that is, by excluding the presence of other enhanc- 

ing mechanisms, such as interphases and occluded rubber — and quantifying the hydro- 

dynamic effect behind the enhanced nonlinear elastic response of a prototypical class of 

particle-filled elastomers: polydimethylsiloxane (PDMS) featuring various cross-link densi- 

ties filled with an isotropic distribution of glass spherical particles of monodisperse mi- 

crometer size. The close agreement found between the experiments for a variety of filled 

PDMS elastomers with the predictions based on recently developed rigorous homogeniza- 

tion results corroborate that the observed enhancement in the nonlinear elastic response 

of the PDMS elastomers upon the addition of the glass particles is indeed solely due to the 

hydrodynamic effect. In addition to filling a lacuna in the basic experimental knowledge of 

filled elastomers, the findings reported here also have direct practical implications on the 

modeling of a number of emerging active filled elastomers, such as for instance magne- 

torheological elastomers, wherein the iron filler particles — in contrast to standard fillers 

— are typically micrometer in size. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

Owing to the multifaceted benefits that they provide, carbon black and silica have long been pervasively used as the pre-

ferred fillers to enhance the elasticity and numerous other mechanical properties of elastomers; see, e.g., Wiegand (1937) ,

Wagner (1976) , Leblanc (2010) . However, because of the inherent nanometer size of carbon black and silica fillers, the mul-
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tiple mechanisms by which they provide enhancement — as is the case with other emerging nanofillers — still remain

quantitatively unresolved to date; for recent progress on the subject, see, for instance, the works of Heinrich et al. (2002) ,

Frogley et al. (2003) , Berriot et al. (2003) , Fukahori (2007) , Mark and Erman (2007) , Zou et al. (2008) , Valentin et al. (2008) ,

Qu et al. (2011) , Benevides and Nunes (2015) , Tadiello et al. (2015) , Song and Zheng (2016) and Meddeb et al. (2019) . Om-

nipresent among the various possible enhancing mechanisms is the so-called hydrodynamic effect , 1 which refers to the apri-

orism that the addition of fillers to an elastomer results in a two-phase composite material whose macroscopic elastic

properties are, by construction, some “weighted” average of the elastic properties of the soft elastomer and the compar-

atively rigid fillers. It is now well understood that the “weights” in that average depend on the specifics of the amount,

the shape, and the spatial distribution of the filler particles and are determined by means of the homogenization of the

governing elasticity equations; see, e.g., Hill (1972) , Braides (1985) , and Müller (1987) . 

While the hydrodynamic effect is commonly expected to become increasingly dominant as the size of the fillers increases

and, more critically, to constitute the sole enhancing mechanism for the case when the fillers are micrometer or larger in

size (i.e., when the fillers are much larger than the average length of the underlying polymer chain segments between

crosslinks in the elastomer), experimental investigations of such a pivotal expectation do not appear to have been reported

in the literature, especially at finite deformations. From a theoretical perspective, by contrast, the recent works of Lopez-

Pamies et al. (2013a,b) , Goudarzi et al. (2015) , and Lefévre and Lopez-Pamies (2017a,b) have provided a fairly general string

of rigorous 2 analytical and numerical homogenization results that describe the macroscopic nonlinear elastic response of

isotropic incompressible elastomers embedding isotropic distributions of filler particles directly in terms not only of the

hydrodynamic effect but also of other well-established enhancing mechanisms. Indeed, the more general version of these

results presented in Lefévre and Lopez-Pamies (2017b) applies to filler particles of any content, any shape, and any spatial

distribution, as well as accounts for the presence of interphases, often referred to as bound rubber, and of the so-called

occluded rubber. 

In this context, the first objective of this paper is to report an integrated set of experimental results that are aimed

precisely at isolating and quantifying the hydrodynamic effect in the macroscopic elastic response of a prototypical class

of synthetic elastomers — namely, polydimethylsiloxane (PDMS) elastomers featuring various cross-link densities — by the 

addition of prototypical fillers of micrometer size — namely, glass spherical particles of about 50 μm in diameter — over a

wide range of quasistatic homogeneous and non-homogeneous finite deformations; the focus here is on the fundamental case

of isotropic additions of a moderate amount of fillers sufficiently away from percolation, in this paper, c = 10% in volume

fraction. The second objective is to analyze such experimental results qualitatively and quantitatively by confronting them

directly with the aforementioned corresponding theoretical homogenization results. 

The organization of the paper is as follows. Section 2 outlines the fabrication process of the unfilled as well as of the filled

PDMS elastomers and presents optical microscopy images of the microstructures of the latter. Section 3 describes the uni-

axial tension tests performed on the fabricated specimens and reports the experimental results of their macroscopic stress-

stretch responses. Section 4 introduces the constitutive models that are employed to describe the nonlinear elastic response

of the various PDMS elastomers featuring different cross-link densities used to make the specimens. Section 5 presents

the theoretical analysis of the experiments reported in Section 3 . Specifically, the results in Subsection 5.1 correspond to

computational finite-element (FE) homogenization solutions, whereas those in Subsection 5.2 correspond to the analytical

homogenization solution introduced in Lopez-Pamies et al. (2013b) . Section 6 presents additional experimental results and

the corresponding theoretical analysis of the stretching of specimens containing a cylindrical hole. Finally, Section 7 places

on record a number of conclusions. 

2. Specimen fabrication 

The fabrication of elastomers filled with particles of micrometer or larger size requires careful steps that differ from

those routinely followed for elastomers filled with the more standard particles of nanometer size. 

Materials: the elastomers and the filler particles. In this work, the class of elastomers used in all of the fabricated specimens

is the popular PDMS Sylgard 184 supplied by Dow Corning as a two-part kit, which comprises a base liquid and a curing

agent; we also explored the use of other silicone-based elastomers, such as Bluesil RTV 3040 and 4130, but those exhibited

an extremely poor adhesion to the glass filler particles and were therefore discarded. Precision sieve calibration glass beads

obtained from Corpuscular Inc. were used for the filler particles. These are essentially spherical in shape and monodisperse

in size with diameters narrowly ranging from 53 to 63 μm. 

The choice of PDMS Sylgard 184 was motivated by several of its attributes. It is a class of elastomers that: ( i ) exhibits

almost purely elastic behavior with very little viscous dissipation, ( ii ) provides facile access to a wide range of cross-link

densities, ( iii ) is transparent and thus amenable to optical microscopy through its volume, and ( i v ) can feature fairly strong
1 This effect is also sometimes referred to as the strain amplification effect, a term coined by Mullins and Tobin (1965) . The more pervasive terminology 

of hydrodynamic effect stems from earlier analogous studies on the macroscopic viscosity of suspensions of particles in viscous fluids ( Einstein, 1906; Guth 

and Gold, 1938; Smallwood, 1944 ). 
2 Prior to these results, starting with the pioneering work of Mullins and Tobin (1965) , a plurality of approximations were proposed in the literature 

either based on heuristic or on variational arguments; see, e.g., Meinecke and Taftaf (1988) , Govindjee and Simo (1991) , Bergström and Boyce (1999) and 

Lopez-Pamies and Ponte Castañeda (2006) . 
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Fig. 1. (a) Photographs of the three different specimen geometries utilized in the uniaxial tension tests for the unfilled and the filled PDMS elastomers. (b) 

Schematic with dimensions (thickness 3 mm) and laboratory frame of reference for the rectangular specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

adhesion to glass. The rationale behind the choice of the glass beads as fillers is that their size and shape are accurately

known from the outset and, once embedded, their spatial distribution within the specimens can be readily visualized simply

by means of optical microscopy. 

Specimens. Fig. 1 (a) shows the three types of specimen geometries that were utilized in the experiments to probe the

response of the elastomers under uniaxial tension. The discrepancies in the responses measured from different specimen

shapes and sizes were checked to be negligibly small; all the results reported in this paper pertain to specimens with the

rectangular geometry whose dimensions are indicated in Fig. 1 (b). The main issue in obtaining accurate measurements lied

on the setup of the gripping conditions so as to avoid slipping during the mechanical tests. This issue is discussed in detail

further below. 

Fabrication of the unfilled elastomers. With the objective of directly determining their bulk nonlinear elastic response,

which is an essential input needed in the bottom-up analysis presented below in Section 5 , we first fabricated and tested

specimens of unfilled PDMS elastomers featuring the three weight ratios of base to curing agent of interest in this work,

namely, 10:1, 15:1, and 20:1. Larger ratios correspond to smaller cross-link densities and hence softer behaviors and larger

extensibilities. The fabrication process of the unfilled specimens can be summarized as follows. 

An appropriate weight of base liquid is measured and poured into a container. Then the target amount of curing agent —

again, with a base-to-curing-agent weight ratio of 10:1, 15:1, or 20:1 — is measured and subsequently added to and mixed

with the base for several minutes. The container with the mixture is placed in a vacuum chamber for about 30 min to

degas entrapped air bubbles. Subsequently, the mixture is poured into several molds and these placed again in the vacuum

chamber to be degassed once more for about 30 min. After this second degassing, the molds filled with the mixture are

placed in an oven (a Benchmaster BTRS environmental chamber) for 6 h at 65 ◦C, after which the specimens are removed

from the molds and — to ensure their fully cured state, c.f. Johnston et al. (2014) — are left at room temperature for at least

three days before testing. 

Fabrication of the filled elastomers. All the specimens of the filled PDMS elastomers were fabricated with the same volume

fraction of particles, namely, c = 10% . The rationale behind this value is that it is large enough to lead to a significant

enhancement of the mechanical behaviors of all three types of unfilled PDMS elastomers considered in this work. At the

same time, it is small enough to allow without difficulty for the uniform non-percolative dispersion of the particles within

the elastomers. The fabrication process of the filled specimens requires additional steps, as described next. 

In order to improve their adhesion to the PDMS elastomers, the glass particles were cleaned first with alcohol, then with

acetone, and finally they were coated with a thin layer of Dow Corning 92-023 primer; removing the final step of coating

the particles with the primer did not have any noticeable impact in obtaining good adhesion between the PDMS elastomers

and the glass beads. Right after the base and curing agent have been combined at a specified ratio, the appropriate weight

(so that c = 10% ) of glass particles is added to the container and subsequently mixed for a few minutes. To avoid the sed-

imentation of the particles — note that the mass density of the PDMS in liquid form is 1.03 g/cm 
3 , while that of the glass

particles is 2.52 g/cm 
3 — and to achieve their uniform dispersion throughout the specimens, the container is then placed in

the oven at 65 ◦C for about 5 min, removed for further mixing, then placed in the oven for about 5 min again. This process

is repeated several times (typically three) until the mixture possesses enough viscosity to prevent the sedimentation of the

particles. Once the desired viscosity is achieved, the container with the mixture is degassed and then the mixture is poured
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Fig. 2. Optical microscopy images of a filled PDMS specimen at two different magnifications. 

Table 1 

Specifications of the tested specimens. 

Specimens Base-to-curing-agent weight ratio Filler ( c = 10% ) Initial Young’s modulus 

E N (MPa) 

10N 10:1 No 1.90 

15N 15:1 No 0.86 

20N 20:1 No 0.65 

E F (MPa) 

10F 10:1 Yes 2.40 

15F 15:1 Yes 1.10 

20F 20:1 Yes 0.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into molds and degassed again before placing them back in the oven for the final curing, also carried out at 65 ◦C for 6 h.
We emphasize that the about-outlined process requires a careful monitoring of the viscosity of the mixture, given that if

the mixture is overcured, it no longer flows into the molds nor can be degassed. 

Fig. 2 shows two representative optical microscopy images of the microstructure of a filled specimen at two different

magnifications. These illustrate that the spatial distribution of the particles is uniform, random, and essentially isotropic, as

desired; note that the volume fraction of particles appears to be greater than c = 10% since the micrographs show particles

positioned through the thickness. With the naked eye, the filled specimens appear white as shown in Fig. 1 (a), however,

under the optical microscope, the transparency of the PDMS and the glass beads become apparent. 

For subsequent convenience, Table 1 lists and labels the six different types of specimens that were fabricated and tested.

At least three separate specimens were made and tested for each type. 

3. Uniaxial tension tests 

The mechanical behavior of the above-described specimens was probed under states of homogenous deformations via

uniaxial tension tests. For definiteness, use was made of the laboratory frame of reference indicated in Fig. 1 . Granted the

experimentally verified (nearly full) isotropy and incompressibility of the fabricated unfilled and filled elastomers, the first

Piola-Kirchhoff stress tensor S and the deformation gradient tensor F take then the form S = Se 3 � e 3 and F = λ−1 / 2 (e 1 �

e 1 + e 2 � e 2 ) + λe 3 � e 3 , where λ stands for the applied stretch. 

The tests were carried out in a MTS C43 testing system equipped with a 100 N load cell. This load cell was suitably

selected in order to monitor accurately the forces involved; the maximum forces reached in each test were in the range of

10 to 40 N. While the forces were measured straightforwardly and accurately, as is typically the case with soft solids, the

biggest challenge turned out to be the accurate measuring of the deformations. Two methods were employed. One set of

measurements was obtained from the cross-head displacement recorded by the MTS C43 testing machine itself. The other

set of measurements was obtained optically via a digital image correlation (DIC) system. Although the employed DIC system

can produce both full displacement and full strain fields over the surfaces of the deformed specimens, the latter are not

sufficiently accurate when dealing with large deformations. Accordingly, only the displacement measurement capability of 

the DIC system was utilized in our analysis. Specifically, prior to their testing, the specimens were sprayed with a speckle

pattern in order to better resolve the displacement field. During their testing, images were recorded at a frequency of 100 Hz

using a Tokina f2.8 AT-X M100 Pro-D Macro lens and the software FlyCapture. The images were analyzed with the software

VIC-2D in order to extract the full displacement field. We remark here that we did not use the DIC system for all the tests,

since its use requires taking and storing hundreds of photographs for a single load cycle. Given that we fabricated 50+

specimens and each was tested between 3 and 5 cycles of loading/unloading, data acquisition and interpretation with DIC

for all of them was not viable. Instead, we relied on the displacement measurements obtained from the MTS C43 testing

machine, which were checked to be consistent with those obtained from the DIC system. 

Given that our main goal is to investigate the hydrodynamic effect provided by the addition of the glass filler particles

over the entire range of possible (small and large) deformations, the specimens were elongated up to stretches near or all
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Fig. 3. Representative uniaxial tension responses of the filled PDMS elastomers over four cycles of loading/unloading. The results are shown for the nominal 

stress S as a function of the applied stretch λ. Parts (a)–(b) show cycles 1–2 and 3–4 for a filled PDMS elastomer with a ratio 20:1 of base to curing agent 

(20F) under cyclicly increased maximum stretch ( λmax = 1 . 3 , 1 . 4 , 1 . 5 , 1 . 6 ). Parts (c)–(d) show cycles 1–2 and 3–4 for a filled PDMS elastomer with 10:1 

ratio of base to curing agent (10F) under cyclicly fixed maximum stretch ( λmax = 1 . 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the way to their failure (which occurred by fracture apparently originating from surface defects near the grips), precisely,

up to uniaxial stretches in the range of λ = 1 . 30 to 1.70. Now, because of their incompressibility, the specimens become

thinner as the applied stretch is increased. This leads to the loosening of the grips and in turn to the possible slipping

of the specimens. Since conventional gripping fixtures are not suitable to hold soft specimens, we acquired a set of screw

action grips with self-pivoting faces. These grips lowered the amount of slipping compared to the conventional grips, but

still they did not maintain sufficiently large clamping forces at the larger stretches. Ultimately, we made use of a further

modification to the grips, essentially by making use of binder clips to hold the specimens in place. With this configuration,

the slipping was negligible for all tests except for those performed on the specimens made with the stiffer PDMS elastomer,

that is, the one with 10:1 ratio of base to curing agent. For these stiffer specimens, the stretches measured from the MTS

testing machine were suitably calibrated based on comparisons with the stretches measured from the DIC system. 

In all, more than 50 uniaxial tension tests were carried out. All of them comprised from 3 to 5 cycles of loading and

unloading. The maximum stretch λmax in each cycle was either set constant or monotonically increased. In each test, the

loading/unloading time was set at 40 s per complete loading/unloading cycle, which corresponds to stretch rates of around

| ̇ λ| = 0 . 025 s −1 . We also carried out tests at 20 and 120 s per cycle and found the results to be nearly identical. This

independence of the loading rate is consistent with the findings of Poulain et al. (2018) , who reported that PDMS Sylgard

184 elastomers with a broad spectrum of cross-link densities exhibit small viscous dissipation. 
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Fig. 4. Experimental measurements of the uniaxial stress-stretch response of the filled (solid lines) and unfilled (dotted lines) PDMS elastomers with the 

three different ratios of base to curing agent 10:1, 15:1, and 20:1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows typical measurements of the uniaxial stress-stretch response 3 of the filled elastomers. Specifically, Figs. 3 (a)–

(b) show results for a 20F specimen (i.e., a filled PDMS elastomer with a ratio 20:1 of base to curing agent) for a case when

the maximum stretch in each loading/unloading cycle is progressively increased from λmax = 1 . 3 to 1.4, 1.5, and finally to

1.6. On the other hand, Figs. 3 (c)–(d) show results for a stiffer 10F specimen (i.e., a filled PDMS elastomer with a base to

curing agent ratio 10:1) for a case when the maximum stretch is kept constant at λmax = 1 . 4 over four loading/unloading

cycles. The mechanical behaviors of both types of specimens are not only nonlinear but also exhibit some hysteresis (i.e.,

different paths for loading and unloading). The 20F specimen exhibits similar behavior for all loading/unloading cycles. This

was the case for all specimens (filled and unfilled) 20F, 20N, 15F, and 15N. By contrast, the behavior of the 10F specimen

during the first loading is clearly different from that of the subsequent loadings. Moreover, the specimen appears to retain

some residual stretch (about λ = 1 . 02 ) upon the first unloading. This was also the behavior observed for all specimens (filled

and unfilled) 10F and 10N, for which the residual stretches varied form λ = 1 . 005 to 1.04, depending on the specimen type

and the maximum applied stretch λmax . In the sequel, we restrict our investigation to the repeatable loading response of

the specimens after their first loading/unloading cycle, and do not concern ourselves with their slightly hysteretic behavior

thereafter. 

Fig. 4 shows the uniaxial stress-stretch response of the filled elastomers 10F, 15F, 20F and the corresponding unfilled

elastomers 10N, 15N, 20N. Each plot corresponds to the average response of three different specimens. The maximum dif-

ference in the response between any two specimens made of the same material was less than 6% in the nominal stress

value S for a given stretch λ; error bars indicating this variation among specimens are not included in Fig. 4 for clarity, but

they are included below in subsequent figures where the data for unfilled and filled elastomers is presented separately. The

bulk of this variation appears to arise from slight unavoidable differences in the fabrication of the specimens and not from

the measurements of the forces and deformations. Indeed, the mechanical behavior of PDMS Sylgard 184 is highly sensitive

to its curing so that small differences in the ratio of base to curing agent used in their fabrication, together with differences

in the curing time (even after days of curing) can result in small but noticeably different behaviors. 

The stress-stretch results in Fig. 4 clearly reveal that the addition of the glass filler particles to all three types of PDMS

elastomers leads to a significant enhancement of their elastic response at small as well as at large deformations. The initial

tangent moduli of all six results, that is, the initial Young’s moduli — labeled, for clarity, E N for the unfilled elastomers and E F 
for the filled — are listed in Table 1. For all three types of PDMS elastomers, the moduli are seen to feature roughly the same

increase of about 28% with the addition of fillers. At larger deformations, the enhancement appears to be systematically

more pronounced (that is, there is a larger difference between corresponding stress ‘F’ and ‘N’ values at any given stretch)

in the elastomers with smaller ratio of base to curing agent, that is, in the stiffer and less extensible elastomers. The precise

microscopic origin of this enhancement is analyzed in Section 5 . 
3 We remark again that the loading/unloading results presented in Fig. 3 correspond to measurements carried out at a constant stretch rate and that 

the loading starts at λ = 1 and the unloading finishes also at λ = 1 . This implies that the specimens experience some small amount of compression upon 

completion of the unloading when returning to λ = 1 . 
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Table 2 

Material constants in the hyperelastic models (1) for the three types of unfilled PDMS elastomers 

10N, 15N, 20N. The associated initial Young’s moduli E N are also included for expediency. 

Mooney-Rivlin C 1 (MPa) C 2 (MPa) E N = 6(C 1 + C 2 ) 

10N 0.5107 −0 . 2412 1.6170 

15N 0.1509 −0 . 0088 0.8526 

20N 0.0776 0.0313 0.6534 

Ogden ν1 (MPa) ν2 (MPa) β1 β2 E N = 3(ν1 + ν2 ) 

10N 0.5053 0.1416 −3 . 271 6.875 1.9407 

15N 0.2851 0.0120 0.875 8.356 0.8913 

20N 0.1139 0.1097 2.661 −3 . 221 0.6708 

Lopez-Pamies μ1 (MPa) μ2 (MPa) α1 α2 E N = 3(μ1 + μ2 ) 

10N 0.5254 0.0952 2.924 −19 . 77 1.8618 

15N 0.2624 0.0314 1.600 −12 . 40 0.8814 

20N 0.2036 0.0143 0.8393 −34 . 60 0.6537 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Hyperelastic models for the unfilled PDMS elastomers 

In preparation for the theoretical analysis of the experimental results compiled in Fig. 4 , we spell out next the models

employed to describe the nonlinear elastic response of each of the unfilled PDMS elastomers 10N, 15N, 20N. Irrespectively of

their ratio of base to curing agent, all these three types of elastomers are essentially isotropic and incompressible. For def-

initeness, we make use of the following well-established isotropic and incompressible hyperelastic stored-energy functions,

due to Mooney (1940) , Ogden 4 1972 , and Lopez-Pamies (2010a) , to model their nonlinear elastic behaviors: 

W (F ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

φMR (I 1 , I 2 ) = C 1 [ I 1 − 3 ] + C 2 [ I 2 − 3 ] 

ϕ OG (λ1 , λ2 , λ3 ) = 

2 ∑ 

r=1 

2 

β2 
r 

νr 

[ 
λβr 

1 
+ λβr 

2 
+ λβr 

3 
− 3 

] 

ψ LP ( I 1 ) = 

2 ∑ 

r=1 

3 1 −αr 

2 αr 
μr 

[
I αr 

1 
− 3 αr 

]
(1)

subject to the incompressibility constraint det F = 1 . In these expressions, I 1 = F · F = λ2 
1 + λ2 

2 + λ2 
3 and I 2 = F −T · F −T =

λ2 
1 
λ2 
2 

+ λ2 
1 
λ2 
3 

+ λ2 
2 
λ2 
3 

stand for the first and second principal invariants of the right Cauchy-Green deformation tensor

C = F T F , while λ1 , λ2 , λ3 denote the singular values of the deformation gradient tensor F , i.e., the principal stretches. Note

that the required number of material constants are two for the Mooney-Rivlin model, C 1 and C 2 , and four for the Ogden

and Lopez-Pamies models, ν1 , ν2 , β1 , β2 and μ1 , μ2 , α1 , α2 , respectively. Considering the three different models (1) shall

prove helpful below in the analysis of the experimental results. 

For the case of uniaxial tension when S = Se 3 � e 3 and F = λ−1 / 2 (e 1 � e 1 + e 2 � e 2 ) + λe 3 � e 3 , the nominal stress-

stretch relations implied by the stored-energy functions (1) are simply given by 

S = 

d W 

d λ
(F ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d φMR 

d λ
= 2 C 1 

[
λ − λ−2 

]
+ 2 C 2 

[
1 − λ−3 

]
d ϕ OG 

d λ
= 

2 ∑ 

r=1 

2 

βr 
νr 

[
λβr −1 − λ−1 −βr / 2 

]
d ψ LP 

d λ
= 

(
λ − λ−2 

) 2 ∑ 

r=1 

3 1 −αr μr 

[
λ2 + 2 λ−1 

]αr −1 

. (2)

Relations (2) can be readily fitted via least-squares to the uniaxial tension data in Fig. 4 for the unfilled PDMS elastomers

10N, 15N, 20N. This fitting process (without biasing any subset of data points) renders the values for the material constants

listed in Table 2 . 

The resulting uniaxial stress-stretch relations (2) based on the material constants in Table 2 are plotted in Fig. 5 for

direct comparison with the experimental data. In the context of small deformations, the initial Young’s moduli described by

the three models — given, respectively, by the formulas E N = 6(C 1 + C 2 ) , E N = 3(ν1 + ν2 ) , E N = 3(μ1 + μ2 ) for the Mooney-

Rivlin, Ogden, and Lopez-Pamies models — are all in fairly good agreement with the experimental data reported in Table 1 .

For the PDMS elastomers 15N and 20N with the larger base-to-curing-agent ratios of 15:1 and 20:1, all the hyperelastic

models are seen to fit very well the experimental data over the entire range of finite stretches considered. However, for the

PDMS elastomer 10N with ratio 10:1, the Ogden and Lopez-Pamies models still show good agreement but the Mooney-Rivlin
4 Note that we are making use of a notation that is slightly different from the usual one for the material parameter β r in the Ogden model (1) 2 . 
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Fig. 5. Comparisons of the measured uniaxial stress-stretch response of the unfilled PDMS elastomers 10N, 15N, 20N (empty circles) and the corresponding 

predictions (lines) by the hyperelastic models (1) , given by formulas (2) with the material constants listed in Table 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model exhibits some deviation from the data. This is because the 10N elastomer starts to exhibit limiting chain extensibility

already at around a finite stretch of λ = 1 . 3 , a feature that the Mooney-Rivlin model is known not to account for. 

5. Theoretical analysis of the uniaxial tension tests 

In this section, we set out to establish that the enhancement exhibited by the filled PDMS elastomers 10F, 15F, 20F in

Fig. 4 is entirely due to the hydrodynamic effect. 

Microscopic description of the filled PDMS elastomers. To this end, in view of the fabrication process and microscopy re-

sults outlined in Section 2 and the uniaxial tension experiments presented in Section 3 , we begin by regarding the filled

PDMS elastomers as two-phase composite materials made up of a homogeneous isotropic incompressible hyperelastic ma-

trix embedding an isotropic distribution of perfectly bonded 5 rigid 6 particles of the same size and spherical shape. That is,

the presence of stiff interphases, or bound rubber, as well as the presence of occluded rubber is ruled out; see, e.g., the

works of Goudarzi et al. (2015) and Meddeb et al. (2019) for a discussion on the notable and even dominant enhancement

provided by these other mechanisms in elastomers filled with particles of submicron size. 

Moreover, we consider that the PDMS elastomer in a given filled specimen exhibits the same nonlinear elastic response

as the same type of PDMS elastomer would when synthesized in the absence of filler particles. We emphasize that this is

not expected to be the case in elastomers filled with submicron particles, wherein the matrix material generally exhibits a

different (typically softer) response than the same material would when synthesized in the absence of those fillers; see, e.g.,

Valentin et al. (2008) and Meddeb et al. (2019) . 

The macroscopic response. Granted the statistically uniform distribution of the glass filler particles and their much smaller

size ( ∼50 μm) with respect to the smallest size of the specimens (3 mm in thickness), the filled PDMS elastomers can

be safely considered as “homogeneous” materials at the length scale of the specimens. Consequently, their macroscopic

nonlinear elastic behavior can be determined from their microscopic behavior — that is, from the nonlinear elastic behavior

of the underlying PDMS matrix, the rigid behavior of the glass particles, as well as from the amount, shape, and spatial

distribution of the particles — through homogenization. 

In the next two subsections, we work out two homogenization results by means of two different techniques. Specifi-

cally, in Subsection 5.1 , we work out the homogenized response of the filled PDMS elastomers computationally, while in

Subsection 5.2 we work out their homogenized response analytically by appropriately specializing the results introduced in

Lopez-Pamies et al. (2013b) . 

5.1. Computational homogenization 

Following by now a well-established practice ( Gusev, 1997; Lefévre and Lopez-Pamies, 2017b; Lopez-Pamies et al., 2013b;

Michel et al., 1999; Segurado and Llorca, 2002 ), the filled elastomers studied in this work can be accurately yet efficiently
5 The possibility of particle debonding is discussed in Section 7 . 
6 For all practical purposes, given that the initial shear modulus of glass is about 70 GPa whereas that of the stiffest PDMS elastomer used in the 

experiments is in the order of 1 MPa, the glass filler particles can be considered as mechanically rigid. 
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Fig. 6. FE mesh in the undeformed configuration of a representative unit cell Y 0 = (0 , L ) 3 containing a random distribution of N = 120 rigid spherical 

particles at c = 10% volume fraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximated as infinite media made out of the periodic repetition of a unit cell containing a random distribution of a

sufficiently large but finite number N of spherical particles. In the present context, for definiteness, we select the defining

unit cell to be a unit cube Y 0 = (0 , L ) 3 with edges of length L that contains a total of N = 120 spherical particles of radius

R = L ( 3 c/ 4 πN ) 1 / 3 = 0 . 05838 L, so that their volume fraction in the unit cell, and hence in the entire composite material,

is c = 10% as in the actual specimens. The interested reader is referred to Section 5.1 in Lopez-Pamies et al. (2013b) and

Section 4.2 in Lefévre and Lopez-Pamies (2017b) for details of the construction of realizations with such microstructures via

a random sequential adsorption algorithm incorporating geometric constraints that allow for the eventual FE discretization

of the resulting unit cells. We emphasize that the number N = 120 of particles in the unit cells was carefully selected

based on a parametric study that confirmed that it is sufficiently large to render overall nonlinear elastic behaviors for the

materials of interest here that are indeed approximately isotropic; the isotropy of the generated microstructures is discussed

in further detail in Remark 1 . 

Having identified the relevant unit cells, the next step is to carry out their spatial discretization. We do so with 10-node

tetrahedral quadratic elements by means of the mesh generator code Netgen ( Schöbel, 1997 ). Since the particles are rigid,

we do not need to discretize them, instead we constrain the nodes defining their surfaces to undergo the appropriate trans-

lations and rotations dictated by the governing equations of elastostatics ( Chi et al., 2016 ) Because of the incompressibility of

the matrix material, we employ a hybrid FE formulation in which the elements feature approximations that are quadratic in

the displacement field and linear in the pressure field. In particular, since use is made of the commercial FE code ABAQUS to

carry out the calculations, we employ the C3D10H hybrid elements built in this code (see ABAQUS Version 6.14 Documenta-

tion (2014) ). Discretizations with approximately 60 0,0 0 0 elements and 90 0,0 0 0 nodes were checked to produce sufficiently

accurate results in the sense that the computed total energy and the average stress over the unit cell exhibited converged

values. Fig. 6 shows an example of such a discretization. 

The loading is prescribed by enforcing periodic boundary conditions and by increasing the applied average stretch λ
in a chosen direction N with increments smaller than 
λ = 0 . 01 . We remark that the applied average stretch λ in the

simulations corresponds precisely to the macroscopic stretch λ applied in the experiments, thus the use of the same symbol.

The corresponding nominal stress S is determined by first averaging the computed first Piola-Kirchhoff stress S over Y 0 and

then computing the magnitude S = ‖ SN ‖ of the associated traction in the direction of the applied average stretch; see,
e.g., Section 5 and Appendix in Lefévre and Lopez-Pamies (2017b) for further relevant details. In all the simulations, the

maximum average stretch was set at λmax = 1 . 50 , but many simulations were terminated earlier due to lack of convergence.

The primary reason for non-convergence was the excessive distortion of elements between adjacent particles because of the

large local stretches that can arise there. This point is illustrated by the contour plots displayed in Fig. 7 . These show the

maximum λloc 
max and minimum λloc 

min 
local stretches as well as the hydrostatic part σh = tr σ/ 3 of the Cauchy stress σ = SF T 

at each material point x in the deformed configuration of the unit cell Y for a representative case of a 15F specimen at the

applied average stretch λ = 1 . 5 . Note that the local stretch reaches values as large as λloc 
max = 3 . 1 in tension and as small

as λloc 
min 

= 0 . 1 in compression between adjacent glass particles. The hydrostatic stress σ h between adjacent glass particles is

also clearly seen to exhibit large variations. 

Remark 1. Isotropy of the computational models. Because of the use of the finite number N = 120 of particles in the unit

cells, the resulting computational models can only be approximately (and not exactly) isotropic. In order to identify the

realizations that “best” represent isotropic microstructures out of the tens that we constructed, a series of filtering checks
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Fig. 7. Contour plots over the deformed configuration of the unit cell Y of the maximum λloc 
max and minimum λloc 

min 
local stretches and the hydrostatic part 

σ h of the Cauchy stress at the applied average stretch λ = 1 . 5 for a 15F specimen wherein the matrix is characterized with the Lopez-Pamies model (1) 3 
and the material constants given in Table 2 . For clarity, the contour plots in the top row show the surfaces of the particles and unit cell boundaries, while 

those in the bottom row show a representative cross section of the matrix within the unit cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on their constitutive response was conducted. First, we checked that their linear elastic response in the small deformation

limit is sufficiently isotropic by computing the deviation of their entire homogenized modulus of elasticity tensor from exact

isotropy; see Appendix A in Spinelli et al. (2015) for an outline of the involved calculations. Second, we checked that their

average uniaxial stress-stretch responses when stretched in several different directions are not substantially different from

one another. Realizations were accepted as sufficiently isotropic when such a difference was less than 0.1% under small de-

formations and gradually increased under larger deformation but remained less than 0.5% at the maximum applied average

stretch λmax = 1 . 50 . Third, we checked that the co-axiallity between the average Cauchy stress tensor and the average left

Green-Cauchy strain tensor over the deformed configuration Y under various types of loading conditions (not just uniax-

ial tension) remained small. Realizations were accepted as sufficiently isotropic when such a difference was less than 0.05

radians. 

We close this remark by noting that due to the weaker nonlinearities of the underlying PDMS elastomers 15N and 20N,

the simulations for the specimens 15F and 20F start exhibiting high degrees of isotropy already for unit cells containing just

N = 30 particles. Because of the stronger nonlinearity of the PDMS elastomer 10N, this is not the case for the simulations for

the specimens 10F, thus the need to consider at least N = 120 . Not all realizations that we generated with N = 120 particles

turned out to be sufficiently isotropic in the above-outlined sense for the specimens 10F. The FE results that we report in

the sequel correspond to the realization that exhibited the highest degree of isotropy. 

Fig. 8 shows the macroscopic uniaxial stress-stretch response of the filled PDMS elastomers determined from the FE com-

putations up to the point at which convergence was achieved; note, in particular, that convergence beyond the small stretch

of λ = 1 . 04 was not achieved for the case of the Mooney-Rivlin 10F model. Results for the cases when the underlying PDMS
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Fig. 8. Comparisons of the FE homogenization predictions (lines) with the experimental data (solid circles) for the uniaxial stress-stretch response of the 

filled PDMS elastomers 10F, 15F, and 20F. The FE results are shown for all three types of hyperelastic models (1) , with the material constants given in 

Table 2 , for the underlying PDMS elastomers. 

Table 3 

Comparisons of the FE homogenization predictions with the experimental data for the initial 

Young’s modulus E F of the filled PDMS elastomers 10F, 15F, and 20F. 

E F (MPa) 

specimens experiments FE – Mooney-Rivlin FE – Ogden FE – Lopez-Pamies 

10F 2.40 2.11 2.53 2.42 

15F 1.10 1.11 1.16 1.15 

20F 0.84 0.85 0.87 0.85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elastomers are modeled with the Mooney-Rivlin, Ogden, and Lopez-Pamies stored-energy functions (1) and the material

constants in Table 2 are all included in the figure. Fig. 8 also includes the experimental results for direct comparison. 

A number of observations can be readily made. The primary one is that all three sets of FE results are seen to be in fairly

good qualitative and quantitative agreement with the experiments over the entire range of applied stretches. This overall

agreement suggests that the enhancement exhibited by the filled PDMS elastomers 10F, 15F, 20F is indeed entirely due to

the hydrodynamic effect, as we set out to establish. 

There are, however, a few nuances worth recoding. In the context of small deformations, Table 3 shows that the differ-

ences between the initial Young’s moduli E F determined from the FE computations and those measured experimentally are

by and large within a few percent. For finite deformations, it is also of note that all of the FE predictions consistently feature

a slightly stiffer stress-stretch response than the corresponding experimental data. Among the three sets of FE results, the

ones wherein the underlying PDMS elastomers are described with the Lopez-Pamies model (1) 3 exhibit a closer agreement

with the experiments. This despite the fact that the uniaxial stress-stretch response of the Ogden and Lopez-Pamies models

are nearly identical for all three unfilled PDMS elastomers 10N, 15N, 20N (see Fig. 5 ). In general, furthermore, the FE results

are seen to be in better agreement with the experimental results for the specimens made with the softer PDMS elastomers.

The discussion of all of these observations is deferred to Section 7 . 

5.2. Homogenization via a theoretical explicit result 

By leveraging recent advances in iterative and comparison medium nonlinear homogenization methods ( Lopez-Pamies,

2010b; Lopez-Pamies et al., 2013a, b ) derived an analytical homogenization result for a general class of filled elastomers for

the basic case of interest in this work — namely, for the case when the filled elastomers are free of interphases and can

be regarded plainly as two-phase composite materials — that is fully explicit and remarkably simple. Precisely, their result

states that the macroscopic nonlinear elastic response of an isotropic incompressible elastomer, whose nonlinear elastic

behavior is characterized by any suitably well-behaved stored-energy function of the form W (F ) = ψ(I 1 ) , that is filled with

an isotropic distribution of firmly bonded equiaxed — but of arbitrary shape otherwise — rigid particles at volume fraction
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Fig. 9. Comparisons of the homogenization predictions (solid lines) generated from the formula (8) with the experimental data (solid circles) for the 

uniaxial stress-stretch response of the filled PDMS elastomers 10F, 15F, and 20F. The theoretical results correspond to the case when the underlying PDMS 

elastomers are modeled with the Lopez-Pamies stored-energy function (1) 3 and the material constants given in Table 2 . The corresponding FE results 

(dotted lines) are also included in the figure for further comparison. 

 

 

 

 

 

 

 

 

c is characterized by the stored-energy function 

W (F , c) = (1 − c) ψ ( I 1 ) with I 1 = 

I 1 − 3 

( 1 − c ) 
7 / 2 

+ 3 (3) 

subject to the incompressibility constraint det F = 1 . 

The interested reader is referred to Sections 3 and 4 in Lopez-Pamies et al. (2013b) for the derivation of the result (3) and

for a thorough discussion of its theoretical and practical features. For subsequent use, we spell out two of the latter: 

i. Linearization . In the limit of small deformations as F → I , the stored-energy function (3) reduces asymptotically to 

W (F , c) = 

E N 
3(1 − c) 5 / 2 

tr ε 2 + O 

(|| ε 3 || ) (4) 

subject to the incompressibility constraint tr ε = 0 . Here, ε = (F + F T − 2 I ) / 2 stands for the infinitesimal strain tensor

and use has been made of the connection 7 E N = 6 ψ 
′ (3) , where, again, E N denotes the initial Young’s modulus of the

underlying elastomer. It immediately follows from (4) that the stored-energy function (3) implies the result 

E F = 

E N 
(1 − c) 5 / 2 

(5) 

for the initial Young’s modulus of the filled elastomer. Here, it is fitting to remark that expression (5) agrees identically

with the classical Brinkman-Roscoe result ( c.f. Eq. (12) in Roscoe, 1973 ) for the Young’s modulus of an isotropic incom-

pressible linearly elastic solid reinforced by an isotropic distribution of rigid spherical particles of infinitely many diverse

sizes. In the dilute limit of small volume fraction of particles as c ↘ 0, the Young’s modulus (5) reduces asymptotically to

the classical Einstein-Smallwood result ( c.f. Eq. (12) in Smallwood, 1944) 

E F = E N + 

5 

2 
E N c + O (c 2 ) . (6) 

For the case of interest here with c = 0 . 1 , the formula (5) predicts E F = 1 . 30 E N , while its dilute approximation (6) pre-

dicts E F = 1 . 25 E N . 

ii. Specialization to uniaxial stress-stretch loading . For the case of uniaxial tension, say when S = Se 3 � e 3 and F = λ−1 / 2 (e 1 �

e 1 + e 2 � e 2 ) + λe 3 � e 3 , the nominal stress-stretch relation implied by the stored-energy function (3) is given by 

S = (1 − c) 
d ψ 

d λ
( I 1 ) = 

2(λ − λ−2 ) 

(1 − c) 5 / 2 
ψ 

′ 
(

λ2 + 2 λ−1 − 3 

(1 − c) 7 / 2 
+ 3 

)
. (7) 
7 Throughout this section, we make use of the standard convention y ′ = d y (x ) / d x to denote the derivative of functions of a single scalar variable. 
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When the underlying elastomer is characterized by the Lopez-Pamies model (1) 3 , i.e., choosing ψ = ψ LP , the uniaxial

stress-stretch relation (7) specializes to 

S = (1 − c) 
d ψ LP 

d λ
( I 1 ) = 

λ − λ−2 

(1 − c) 5 / 2 

2 ∑ 

r=1 

3 1 −αr μr 

[
λ2 + 2 λ−1 − 3 

(1 − c) 7 / 2 
+ 3 

]αr −1 

. (8)

Fig. 9 shows the macroscopic uniaxial stress-stretch response of the filled PDMS elastomers 10F, 15F, and 20F, as predicted

by the theoretical homogenization result (8) with the material constants μ1 , μ2 , α1 , α2 given in Table 2 for the three

types of underlying PDMS elastomers with base-to-curing-agent ratios 10:1, 15:1, 20:1 and with volume fraction of particles

c = 10% . The experimental results, as well as the corresponding FE results, are included in the figure for direct comparison. 

It is immediate that the theoretical results are in good qualitative and quantitative agreement with the three sets of

experimental data over the entire range of applied stretches. Together with the FE results presented in Fig. 8 , this consistent

agreement between the homogenization results and the experiments strongly suggests that the enhancement exhibited by

the filled PDMS elastomers 10F, 15F, 20F is by and large solely due to the hydrodynamic effect. 

Three other observations are also of note from Fig. 9 . The initial Young’s modulus E F predicted by the theory, given by the

formula (5) , coincides identically with the corresponding FE results reported in Table 3 , namely, E F = 2 . 42 , 1.15, and 0.85 MPa

for the specimens 10F, 15F, and 20F, respectively. These are within 5% of the experimental values. For finite deformations,

the theoretical predictions exhibit a marginally but systematic stiffer stress-stretch response than the experimental data,

more so for the specimen 10F. For that same specimen, the theoretical prediction shows a noticeably softer response than

the corresponding FE result. These observations are discussed in Section 7 . 

6. Tension tests of specimens with a cylindrical hole 

In this section, we report further evidence indicating that the enhanced elasticity of the filled PDMS elastomers 10F, 15F,

20F is the lone manifestation of the hydrodynamic effect. Complementary to the macroscopically homogeneous deformations

of interest in the preceding uniaxial tensions tests, the focus here is on non-homogeneous deformations. 

For definiteness, we consider the structural response of rectangular specimens that contain a cylindrical hole located at

their center. The specimens are clamped at opposite ends and are subjected to a tensile force P that is applied quasistat-

ically. Fig. 10 (a) shows a photograph of one such specimen for the case of a filled PDMS elastomer 15F in its undeformed

configuration with the various relevant dimensions indicated. Fig. 10 (b) shows the same specimen in the deformed config-

uration at the applied force P = 20 . 2 N, which corresponds in this case to a displacement between the grips of u = 25 . 2

mm. 
Fig. 10. Photographs and initial dimensions (initial thickness 3 mm) of a 15F specimen with a cylindrical hole in: (a) the undeformed configuration (without 

speckles) and (b) the deformed configuration (with speckles) at the applied force P = 20 . 2 N corresponding to the displacement u = 25 . 2 mm between the 

grips. Part (c) shows the FE simulation of the deformed state in (b); the contours correspond to the maximum local stretch. 
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Fig. 11. Comparisons of the total force-displacement response measured experimentally (solid and empty circles) and simulated by FE (solid and dotted 

lines) for 15F and 15N specimens with a cylindrical hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimens made with both filled and unfilled PDMS elastomers were fabricated for all three ratios of base to curing

agent 10:1, 15:1, 20:1. The fabrication process followed exactly the same steps outlined in Section 2 for the uniaxial ten-

sion specimens, with the sole exception that the mold in which they were cured was different. The tests were performed

in the same MTS C43 testing system equipped with the same 100 N load cell as the uniaxial tension tests. The displace-

ment u between the grips was measured directly from the testing frame. In addition, DIC was utilized to measure the full

displacement field over the surfaces of the deformed specimens. 

Figs. 11 shows the total force-displacement response of two specimens, one made with the filled elastomer 15F and the

other one made with the corresponding unfilled elastomer 15N. The solid and empty circles stand for the experimental

data, whereas the solid and dotted lines stand for the associated theoretical predictions. For the unfilled specimen, the

latter correspond to FE simulations wherein the nonlinear elastic behavior of the material is characterized by the Lopez-

Pamies model (1) 3 with the material constants given in Table 2 . For the filled specimen, on the other hand, the theoretical

predictions correspond to FE simulations wherein the nonlinear elastic behavior of the material is characterized by the

homogenized stored-energy function (3) with (1) 3 and the material constants given in Table 2 for the stored-energy function

ψ describing the underlying elastomer and, of course, with c = 10% for the volume fraction of filler particles. As expected

from the preceding comparisons, the addition of the glass particles to the PDMS elastomer 15N leads to a significantly stiffer

response of the structure, which is again well described by the theoretical predictions solely based on the hydrodynamic

effect. The same was true for the 10F and 20F specimens (not reported here). 

Fig. 12 shows the contour plots of the displacement components u 2 and u 3 over the surfaces of the 15F specimen at the

applied force P = 20 . 2 N, as measured by DIC and as predicted theoretically. Much like with the global force-displacement

data reported in Fig. 11 , the theoretical predictions are seen to be in qualitative and quantitative agreement with the exper-

imental data. 

Because of the large deformations involved, we remark once more that the DIC system did not produce sufficiently

accurate strain fields for the specimens with the hole. Accordingly, we do not include those experimental results here. For

completeness, however, we do include in part (c) of Fig. 10 the contour plot of the maximum local stretch λloc 
max predicted

theoretically over the surface of the 15F specimen at the applied force of P = 20 . 2 N. The heterogeneity of λloc 
max is obvious

there. It is also worth remarking that the maximum local stretch attains its largest value λloc 
max = 1 . 71 at the longitudinal

poles of the hole. 

7. Discussion and conclusions 

The close qualitative and quantitative agreement between the computational and analytical homogenization results with 

the experiments shown in Figs. 8, 9, 11 , and 12 involving homogeneous and non-homogeneous macroscopic deformations

point to the fact that the observed enhancement in the nonlinear elastic response of all the three PDMS elastomers 10N,

15N, 20N upon the addition of the glass particles is indeed solely due to the hydrodynamic effect. To our knowledge, this is

the first set of experimental/theoretical results in the literature that has isolated and quantified this omnipresent effect in

filled elastomers under finite deformations. 

The analysis of the experimental results has also revealed a number of important practical issues. For instance, regarding

the experimental measurements themselves, a maximum variation of about 6% in the uniaxial stress-stretch response was
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Fig. 12. Comparisons of the full displacement fields u 2 and u 3 measured by DIC and simulated by FE for a 15F specimen with a cylindrical hole. The results 

correspond to the applied force P = 20 . 2 N and are shown in the deformed configuration. Part (a) shows the comparison for the displacement component 

u 2 transverse to the applied force, while part (b) shows the comparison for the displacement component u 3 in the direction of the applied force. 

Fig. 13. (a) Uniaxial and (b) biaxial stress-stretch responses of the unfilled PDMS elastomers 10N, 15N, and 20N. The results correspond to the Ogden (1) 2 
and the Lopez-Pamies (1) 3 hyperelastic models with the material constants listed in Table 2 . 

 

 

 

 

 

 

observed among specimens of the same type. This appeared to be mostly due to the fact that the underlying elastomers

of a given type may not have had exactly the same ratio of base to curing agent and therefore exhibited slightly different

cross-link densities. Further plausible sources behind the observed differences could also be attributed to the facts that the

amounts of filler particles were not exactly the same and/or that there was a different degree of debonding of some of the

particles during the loading, from specimen to specimen. 

That there was some but minor particle debonding in the experiments is consistent with the stiffer responses persistently

exhibited by the theoretical predictions, especially for the filled elastomers made with the stiffest PDMS elastomer, that is,
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again, the one with the ratio 10:1 of base to curing agent, which has been reported 8 to exhibit a relatively weaker adhesion

to glass than those with ratios 15:1 and 20:1. Howbeit, a combination of simulations accounting for debonding and DIC

analyses on the change in volume of the deformed specimens (not reported here) has indicated that if there was debonding

in the experiments, this must have been necessarily small. 

Regarding the slight quantitative differences between the experiments and the theoretical predictions, it is also important

to emphasize that the latter were generated based on hyperelastic descriptions of the underlying PDMS elastomers 10N, 15N,

20N whose parameters were fitted to uniaxial stress-stretch data. Now, the maximum macroscopic stretch achieved during

the uniaxial tests did not exceed λmax = 1 . 6 because the specimens failed due to fracture near the grips. However, as il-

lustrated by Fig. 7 , the local stretches within the elastomers in the filled specimens were multi-axial and reached values

larger than λloc = 3 far exceeding the applied maximum macroscopic stretch λmax = 1 . 6 . This entails that the material con-

stants listed in Table 2 that were utilized in the models (1) for the PDMS elastomers 10N, 15N, 20N may not necessarily

be the most adequate. To further illustrate the significance of this point, Figs. 13 (a) and (b) show the uniaxial and biax-

ial stress-stretch responses for the three unfilled PDMS elastomers 10N, 15N, 20N, as characterized by the Ogden (1) 2 and

the Lopez-Pamies (1) 3 models with the material constants listed in Table 2 . While both models exhibit essentially identical

behaviors up to about λ = 1 . 7 in uniaxial tension, as already established by Fig. 5 , they are drastically different for larger

uniaxial stretches. The differences are even more severe for biaxial loading. These point to the potential limitations of fitting

hyperelastic models only to a uniaxial data; see, e.g., Ogden et al. (2004) . 

Finally, we note that the fundamental results presented in this work have direct practical implications on the modeling

of emerging soft active materials, such as for instance magnetorheological elastomers. Indeed, as opposed to conventional

filled elastomers wherein the filler particles are nanometer in size, the iron filler particles in magnetorheological elastomers

are typically micrometer in size; see, e.g., Diguet et al. (2010) , Danas et al. (2012) and Lefèvre et al. (2017) . Accordingly, their

macroscopic mechanical response is likely to be described in terms solely of the mechanical response of their underlying

elastomeric matrix and the hydrodynamic effect provided by the iron filler particles. 
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