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A B S T R A C T

This paper presents the derivation of the homogenized equations for the macroscopic response of time-
dependent dielectric composites that contain space charges varying spatially at the length scale of the
microstructure and that are subjected to alternating electric fields. The focus is on dielectrics with periodic
microstructures and two fairly general classes of space charges: passive (or fixed) and active (or locally mobile).
With help of a standard change of variables, in spite of the presence of space charges, the derivation amounts to
transcribing a previous two-scale-expansion result introduced in Lefèvre and Lopez-Pamies (2017a) for perfect
dielectrics to the realm of complex frequency-dependent dielectrics. With the objectives of illustrating their
use and of showcasing their ability to describe and explain the macroscopic response of emerging materials
featuring extreme dielectric behaviors, the derived homogenization results are deployed to examine dielectric
spectroscopy experiments on various polymer nanoparticulate composites. It is found that so long as space
charges are accounted for, the proposed theoretical results are able to describe and explain all the experimental
results. By the same token, more generally, these representative comparisons with experiments point to the
manipulation of space charges at small length scales as a promising strategy for the design of materials with
exceptional macroscopic properties.

1. Introduction

In this paper, we concern ourselves with the determination of
the homogenized equations for time-dependent dielectric composites,
containing space charges that vary spatially at the length scale of
the microstructure, under alternating electric fields. The work is, in a
sense, a generalization of that of Lefèvre and Lopez-Pamies [1], who
considered the analogous problem in the time-independent setting of
perfect dielectrics. Like in that work, the focus is on dielectrics with
periodic microstructures and on two fairly general classes of space
charges: passive and active.

Passive charges refer to fixed space charges that are present within
the dielectric from its fabrication process. Arguably, the most promi-
nent type of materials that can be regarded as dielectrics containing
passive space charges are the so-called electrets; see, e.g., Kestelman
et al. [2] and Bauer et al. [3]. On the other hand, active space charges
refer to locally mobile space charges that are not present from the
outset but that, instead, ‘‘appear’’ as a result of externally applied
electric fields or currents. Polymers filled with nanoparticles, featuring
in one way or another extreme dielectric behaviors, are thought to
be examples of materials that can be viewed as dielectrics containing
active space charges; see, e.g., Lewis [4] and Lopez-Pamies et al. [5].
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We begin in Section 2 by formulating the local initial-boundary-
value problem to be homogenized. Through a standard change of
variables, in spite of the presence of source terms (i.e., space charges),
this time-dependent problem is recast as a time-independent boundary-
value problem, given by Eqs. (9), for a complex scalar field 𝜑̃𝛿(𝐗, 𝜔)
that fully characterizes the harmonic steady-state electric potential in
the dielectric composite under consideration. In Section 3, we then
work out the homogenization limit of the governing equations (9) for
𝜑̃𝛿(𝐗, 𝜔) when the size of the microstructure 𝛿 → 0 for the case of
passive charges. This is accomplished by exploiting the similar mathe-
matical structure of the governing equations here with those studied by
Lefèvre and Lopez-Pamies [1] for time-independent dielectrics. In turn,
we work out in Section 4 the homogenization limit for the case of active
charges, in particular, when the space charges are active in the sense
that they are proportional to the resulting macroscopic electric field.
In Section 5, we spell out the specialization of the effective complex
permittivity 𝜺̃⋆(𝜔) that emerges in the homogenized equations for the
case of active charges to a broad class of isotropic particulate composite
materials. Finally, in Section 6, we deploy the results for 𝜺̃⋆(𝜔) put
forth in Section 5 to compare with and examine dielectric spectroscopy
experiments on various polymer nanoparticulate composites and we
discuss as well the main conclusions from the ensuing comparisons.
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2. The problem

Consider a dielectric composite material with periodic microstruc-
ture of period 𝛿 that occupies a bounded domain 𝛺 ⊂ R𝑁 (𝑁 = 1, 2, 3),
with smooth boundary 𝜕𝛺 and closure 𝛺 = 𝛺 ∪ 𝜕𝛺. In this paper,
we restrict attention to initial-boundary-value problems when the given
dielectric of interest, schematically depicted in Fig. 1, does not deform.

Constitutive behavior. The constitutive relation between the electric
displacement 𝐃𝛿(𝐗, 𝑡) and the electric field 𝐄𝛿(𝐗, 𝑡) at any given material
point 𝐗 ∈ 𝛺 and time 𝑡 ∈ [0, 𝑇 ] is taken to be given by the linear causal
relation1

𝐷𝛿
𝑘(𝐗, 𝑡) = ∫

𝑡

−∞
𝜀𝛿𝑘𝑙(𝐗, 𝑡 − 𝜏)

𝜕𝐸𝛿𝑙
𝜕𝜏

(𝐗, 𝜏)d𝜏. (1)

Precisely, with help of the notation 𝑌 = (0, 1)𝑁 , the time-dependent
permittivity tensor 𝜺𝛿(𝐗, 𝑡) is taken to be of the form

𝜀𝛿𝑘𝑙(𝐗, 𝑡) ∈ R and 𝜀𝛿𝑘𝑙(𝐗, 𝑡) = 𝜀𝑘𝑙(𝛿−1𝐗, 𝑡) with 𝜀𝑘𝑙(𝐲, 𝜔) 𝑌−periodic.

Basic physical considerations2 dictate that

𝜀𝛿𝑘𝑙(𝐗, 𝑡) = 𝜀𝛿𝑙𝑘(𝐗, 𝑡) and 𝜀𝛿𝑘𝑙(𝐗, 𝑡)𝜉𝑘𝜉𝑙 ≥ 𝜀0𝜉𝑚𝜉𝑚 ∀ 𝝃 ≠ 𝟎,

where 𝜀0 ≈ 8.85 × 10−12 F/m stands for the permittivity of vacuum.

Boundary conditions. For later direct comparison with dielectric spec-
troscopy experiments (see, e.g., the book edited by Kremer and Schön-
hals [6]), we consider further that the dielectric is subjected to a
prescribed electric potential or voltage, over the entirety of its bound-
ary, which is independent of the size of the microstructure and, more
specifically, is of the time harmonic form

𝜙(𝐗, 𝑡) = 𝜙(𝐗, 𝜔)𝑒𝑖𝜔𝑡, (𝐗, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ], (2)

where 𝜔 is the angular frequency, 𝑖 =
√

−1, and the function 𝜙(𝐗, 𝜔) ∈
C.

Source term. Moreover, following Lefèvre and Lopez-Pamies [1], we
consider that the dielectric contains a distribution of space charges
that vary spatially at the length scale of the microstructure and its
density (per unit volume) is of the following divergence form in space
and harmonic form in time:

𝑄𝛿(𝐗, 𝑡) = 𝑄̃𝛿(𝐗, 𝜔)𝑒𝑖𝜔𝑡, (𝐗, 𝑡) ∈ 𝛺 × [0, 𝑇 ] (3)

with

𝑄̃𝛿(𝐗, 𝜔) = −𝛿 𝜕
𝜕𝑋𝑙

[

𝑓𝑘(𝐗, 𝜔)
𝜕
𝜕𝑋𝑙

[

𝜓𝑘(𝛿−1𝐗, 𝜔)
]

]

= 𝛿−1𝑓𝑘(𝐗, 𝜔)𝑔𝑘(𝛿−1𝐗, 𝜔) −
𝜕𝑓𝑘
𝜕𝑋𝑙

(𝐗, 𝜔)𝜏𝑘𝑙(𝛿−1𝐗, 𝜔). (4)

Here, 𝐟 (𝐗, 𝜔) ∈ C𝑁 is any arbitrary function of choice, 𝐠(𝐲, 𝜔) ∈ C𝑁 is
any 𝑌−periodic function of choice such that

∫𝑌
𝐠(𝐲, 𝜔) d𝐲 = 𝟎, (5)

while 𝜏𝑘𝑙(𝐲, 𝜔) = 𝜕𝜓𝑘(𝐲, 𝜔)∕𝜕𝑦𝑙 with 𝝍(𝐲, 𝜔) defined in terms of 𝐠(𝐲, 𝜔)
as the unique solution of the linear elliptic boundary-value problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝜕2𝜓𝑘
𝜕𝑦𝑙𝜕𝑦𝑙

(𝐲, 𝜔) = 𝑔𝑘(𝐲, 𝜔), 𝐲 ∈ 𝑌

−
𝜕𝜓𝑘
𝜕𝑦𝑙

(𝐲, 𝜔)𝑛𝑙 = 0, 𝐲 ∈ 𝜕𝑌

∫𝑌 𝜓𝑘(𝐲, 𝜔)d𝐲 = 0

, (6)

1 Throughout this paper, unless otherwise stated, we employ the Einstein
summation convention.

2 Here and subsequently, we will refrain from digressing into mathematical
considerations, such as stating the appropriate functional spaces for the various
variables involved. The relevant rigorous treatment will be reported elsewhere.

where 𝐧 in (6)2 stands for the outward unit normal to the boundary
𝜕𝑌 of the unit cell 𝑌 ; see Fig. 1(b). Note that the form (4) comprises
two constitutive inputs: the functions 𝐟 (𝐗, 𝜔) and 𝐠(𝛿−1𝐗, 𝜔). Roughly
speaking, the latter dictates the local distribution of charges at the
microscopic length scale 𝛿 of each unit cell. The former, on the other
hand, dictates the possibly non-uniform distribution of charges at the
macroscopic length scale of 𝛺. As it will become more apparent further
below in the comparisons with experiments, the choice of space-charge
density (4) has the merit to be functionally rich enough to be able to
describe a range of experimental observations.

The governing equations. In the setting of electro-quasistatics, when the
time derivative of the magnetic induction 𝜕𝐁𝛿∕𝜕𝑡 is negligibly small,
direct use of the constitutive relation (1), boundary conditions (2), and
source term (3) in the relevant equations of Maxwell (see, e.g., Chapter
X in the monograph by Owen [7])

Div𝐃𝛿(𝐗, 𝑡) = 𝑄𝛿(𝐗, 𝑡) and Curl𝐄𝛿(𝐗, 𝑡) = 𝟎

can be readily shown to reduce to the initial-boundary-value problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
𝜕𝑋𝑘

[

−∫

𝑡

−∞
𝜀𝑘𝑙(𝛿−1𝐗, 𝑡 − 𝜏)

𝜕2𝜑𝛿

𝜕𝜏𝜕𝑋𝑙
(𝐗, 𝜏)d𝜏

]

= 𝑄̃𝛿(𝐗, 𝜔)𝑒𝑖𝜔𝑡,

(𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]
𝜑𝛿(𝐗, 𝑡) = 𝜙(𝐗, 𝜔)𝑒𝑖𝜔𝑡, (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ]

(7)

for the electric potential 𝜑𝛿(𝐗, 𝑡), defined here so that 𝐸𝛿𝑙 (𝐗, 𝑡) =
−𝜕𝜑𝛿(𝐗, 𝑡)∕𝜕𝑋𝑙. Note that the restriction of the governing PDE (7)1 to
the domain 𝛺 occupied by the dielectric (as opposed to the entire space
R𝑁 where Maxwell’s equations ought to be solved) is sufficient in the
present context thanks to the prescription of the Dirichlet boundary
condition (7)2. Of course, we are only interested in the real part of
(7), but, for algebraic expediency and relatively more elegance, dealing
throughout with complex-value quantities is preferable. We should
also emphasize that implicit in the applicability of (7) is that the
characteristic length scale of the microstructure is much smaller than
the wavelengths of the traveling electromagnetic waves, symbolically,
𝛿 ≪ 𝜆.

The focus of this paper is on the harmonic steady-state solution of
the initial-boundary-value problem (7) at sufficiently large times 𝑡 > 0,
once the transient terms associated with the applied boundary data and
source term have effectively vanished. We thus look for solutions to (7)
of the form

𝜑𝛿(𝐗, 𝑡) = 𝜑̃𝛿(𝐗, 𝜔)𝑒𝑖𝜔𝑡. (8)

Substituting this last expression in the Eqs. (7) and subsequently car-
rying out standard algebraic manipulations (see, e.g., [8]; Chapter VIII
in [9]) renders the following boundary-value problem:

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑋𝑘

[

−𝜀𝑘𝑙(𝛿−1𝐗, 𝜔)
𝜕𝜑̃𝛿

𝜕𝑋𝑙
(𝐗, 𝜔)

]

= 𝑄̃𝛿(𝐗, 𝜔), 𝐗 ∈ Ω

𝜑̃𝛿(𝐗, 𝜔) = 𝜙(𝐗, 𝜔), 𝐗 ∈ 𝜕Ω
(9)

for the function 𝜑̃𝛿(𝐗, 𝜔) characterizing the space-varying part of the
harmonic electric potential (8) in the steady state, where

𝜀𝑘𝑙(𝛿−1𝐗, 𝜔) = 𝑖𝜔∫

∞

0
𝜀𝑘𝑙(𝛿−1𝐗, 𝑧)𝑒−𝑖𝜔𝑧d𝑧 (10)

happens to correspond to a one-sided Fourier transform of the time-
dependent permittivity tensor 𝜺(𝛿−1𝐗, 𝑡) and where it is recalled that
the function 𝑄̃𝛿(𝐗, 𝜔) is given by expression (4) in terms of 𝛿 and the
two constitutive inputs 𝐟 (𝐗, 𝜔) and 𝐠(𝛿−1𝐗, 𝜔).

The governing equations (9) for the complex field 𝜑̃𝛿(𝐗, 𝜔) feature
the same mathematical structure as the governing equations for the real
electric potential in a time-independent dielectric composite material
that contains time-independent space charges, with density of the form
(4), varying spatially at the length scale of the microstructure and that
is subjected to a prescribed electric potential on its boundary, c.f.,
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Fig. 1. (a) Schematic of a dielectric composite material containing a distribution of space charges that vary spatially at the length scale of the microstructure 𝛿. (b) Schematic of
the unit cell 𝑌 = (0, 1)𝑁 that defines the periodic microstructure (of period 𝛿) of the dielectric with the explicit illustration of the distribution of space charges characterized by
the time-dependent space-charge density 𝑄𝛿 (𝐗, 𝑡).

Eq. (8) in [1]; the only two differences are that the constitutive proper-
ties, boundary conditions, and source term in (9) are of complex value
and, in addition, are parameterized by 𝜔, which, again, stands for the
angular frequency chosen for the applied loading. Accordingly, much
like in the classical setting of dielectrics containing no space charges
(see, e.g., the classical works of Wagner [10], Sillars [11], Hashin [12]),
the same techniques of solution used for the time-independent and
conservative problem apply mutatis mutandis to the time-dependent and
dissipative problem of interest here.

In the next two sections, we make use of the results put forth in
Lefèvre and Lopez-Pamies [1] to determine the homogenization limit
of the governing equations (9) when the period of the microstructure
𝛿 → 0. Section 3 deals with the case of passive space charges, while
Section 4 deals with the case of active space charges when, in particular,
the function 𝐟 (𝐗, 𝜔) in (4) is taken to be proportional to the resulting
macroscopic field for the electric potential.

3. The homogenized equations for the case of passive charges

By suitably transcribing the results put forth in Section 2 of Lefèvre
and Lopez-Pamies [1], it is a simple matter to deduce that in the limit
as the period of the microstructure 𝛿 → 0 the solution 𝜑̃𝛿(𝐗, 𝜔) of the
boundary-value problem (9) is given asymptotically by

𝜑̃𝛿(𝐗, 𝜔) = 𝜑̃(𝐗, 𝜔) − 𝛿
(

𝜒𝑝
(

𝛿−1𝐗, 𝜔
) 𝜕𝜑̃
𝜕𝑋𝑝

(𝐗, 𝜔)

+ 𝛩𝑝
(

𝛿−1𝐗, 𝜔
)

𝑓𝑝(𝐗, 𝜔) + 𝜑̃𝛿𝐵𝐿(𝐗, 𝜔)
)

+𝑂(𝛿2),

where 𝜒𝑝(𝐲, 𝜔) and 𝛩𝑝(𝐲, 𝜔) are the 𝑌 -periodic functions defined implic-
itly as the unique solutions of the linear elliptic PDEs

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑦𝑘

[

𝜀𝑘𝑙 (𝐲, 𝜔)
𝜕𝜒𝑝
𝜕𝑦𝑙

(𝐲, 𝜔)
]

=
𝜕𝜀𝑘𝑝
𝜕𝑦𝑘

(𝐲, 𝜔) , 𝐲 ∈ 𝑌

∫𝑌 𝜒𝑝(𝐲, 𝜔)d𝐲 = 0
(11)

and
⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑦𝑘

[

𝜀𝑘𝑙 (𝐲, 𝜔)
𝜕𝛩𝑝
𝜕𝑦𝑙

(𝐲, 𝜔)
]

= 𝑔𝑝(𝐲, 𝜔), 𝐲 ∈ 𝑌

∫𝑌 𝛩𝑝(𝐲, 𝜔)d𝐲 = 0
, (12)

𝜑̃𝛿𝐵𝐿(𝐗, 𝜔) is the function needed to conform with possible boundary
layer effects, and where, more importantly, the leading order term
𝜑̃(𝐗, 𝜔) is defined implicitly by the following boundary-value problem:

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑋𝑘

[

−𝜀 ∗𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔)
]

= 𝑄̃∗(𝐗, 𝜔), 𝐗 ∈ Ω

𝜑̃(𝐗, 𝜔) = 𝜙(𝐗, 𝜔), 𝐗 ∈ 𝜕Ω
. (13)

Here,

𝜀 ∗𝑘𝑙(𝜔) = ∫𝑌
𝜀𝑘𝑝 (𝐲, 𝜔)

(

𝛿𝑙𝑝 −
𝜕𝜒𝑙
𝜕𝑦𝑝

(𝐲, 𝜔)
)

d𝐲 and

𝑄̃∗(𝐗, 𝜔) = − 𝜕
𝜕𝑋𝑘

[

𝛼∗𝑘𝑙(𝜔)𝑓𝑙(𝐗, 𝜔)
]

(14)

with

𝛼∗𝑘𝑙(𝜔) = ∫𝑌

(

𝜀𝑘𝑝 (𝐲, 𝜔)
𝜕𝛩𝑙
𝜕𝑦𝑝

(𝐲, 𝜔) + 𝑦𝑘𝑔𝑙(𝐲, 𝜔)
)

d𝐲

= ∫𝑌

(

𝑦𝑘 − 𝜒𝑘(𝐲, 𝜔)
)

𝑔𝑙(𝐲, 𝜔)d𝐲. (15)

Eqs. (13) are nothing more than the homogenized equations for the
macroscopic field 𝜑̃(𝐗, 𝜔) characterizing the sought after steady-state
harmonic solution (8), precisely,

𝜑𝛿(𝐗, 𝑡) = 𝜑̃(𝐗, 𝜔)𝑒𝑖𝜔𝑡 + 𝑂 (𝛿) ,

of the initial-boundary-value problem (7) in the limit of separation of
length scales when the characteristic size of the microstructure 𝛿 is
much smaller than the macroscopic size of the dielectric composite
material 𝛺.

The following remarks are in order:

i. Physical interpretation of the homogenized equations (13). Eqs. (13)
correspond to the governing equations for the complex elec-
tric potential 𝜑̃(𝐗, 𝜔) within a homogeneous dielectric medium,
with effective complex permittivity tensor 𝜺̃ ∗(𝜔), which contains
a non-homogeneous distribution of space charges characterized
by the effective complex space-charge density 𝑄̃∗(𝐗, 𝜔) and is
subjected to Dirichlet boundary conditions.
Besides identifying the field 𝜑̃(𝐗, 𝜔) as the relevant macro-
variable for the complex electric potential, glancing at (13) also
suffices to recognize that the macro-variables for the correspond-
ing complex electric field and the electric displacement are
defined by

𝐸𝑘(𝐗, 𝜔) ≐ −
𝜕𝜑̃
𝜕𝑋𝑘

(𝐗, 𝜔) and 𝐷̃𝑘(𝐗, 𝜔) ≐ −𝜀 ∗𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔).

(16)

Here, it is insightful to notice that in terms of the local electric
field

𝐸𝛿𝑘(𝐗, 𝜔) = −
𝜕𝜑̃𝛿

𝜕𝑋𝑘
(𝐗, 𝜔) = 𝐸(0)

𝑘
(

𝐗, 𝛿−1𝐗, 𝜔
)

+ 𝑂 (𝛿) , (17)

with 𝐸(0)
𝑘 (𝐗, 𝐲, 𝜔) = −𝜕𝜑̃(𝐗, 𝜔)∕𝜕𝑋𝑘 +

(

𝜕𝜑̃(𝐗, 𝜔)∕𝜕𝑋𝑝
) (

𝜕𝜒𝑝(𝐲, 𝜔)∕
𝜕𝑦𝑘

)

+ 𝑓𝑝(𝐗, 𝜔)𝜕𝛩𝑝(𝐲, 𝜔)∕𝜕𝑦𝑘, and the local electric displacement

𝐷̃𝛿
𝑘(𝐗, 𝜔) = 𝜀𝑘𝑙

(

𝛿−1𝐗, 𝜔
)

𝐸𝛿𝑙 (𝐗, 𝜔) = 𝐷̃(0)
𝑘

(

𝐗, 𝛿−1𝐗, 𝜔
)

+ 𝑂 (𝛿) ,

(18)
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the macro-variables (16) read as

𝐸𝑘(𝐗, 𝜔) = ∫𝑌
𝐸(0)
𝑘 (𝐗, 𝐲, 𝜔) d𝐲 (19)

and

𝐷̃𝑘(𝐗, 𝜔) = ∫𝑌
𝐷̃(0)
𝑘 (𝐗, 𝐲, 𝜔) d𝐲 +

(

∫𝑌
𝜒𝑘(𝐲, 𝜔)𝑔𝑙(𝐲, 𝜔)d𝐲

)

𝑓𝑙(𝐗, 𝜔).

(20)

Expression (19) indicates that the macro-variable (16)1 coin-
cides with the macro-variable found in the absence of space
charges, namely, it corresponds to the average over the unit
cell 𝑌 of the leading-order term of the local electric field, here,
𝐸𝛿𝑘(𝐗, 𝜔); see, e.g., Chapter 2 in [13]. From (20), we see that
the same is not true about the macro-variable (16)2 for the
electric displacement, which in addition to the average over
the unit cell 𝑌 of the leading-order term of the local electric
displacement features a contribution due to the presence of space
charges. This additional contribution is nothing but the expected
manifestation of the fact that the local electric displacement is
no longer divergence free in the presence of space charges.

ii. The effective complex permittivity tensor 𝜺̃ ∗(𝜔). The effective com-
plex permittivity tensor (14)1 in the homogenized equations
(13) is the standard effective permittivity that emerges in di-
electric composite materials containing no space charges; see,
e.g., Sanchez-Hubert and Sanchez-Palencia [14], Chapter 6 in
Sanchez-Palencia [15], and Section 6.4 in Hashin [12]. Accord-
ingly, the result (14)1 is independent of the domain 𝛺 occupied
by the dielectric, the boundary conditions on 𝜕𝛺, the presence
of space charges, and it satisfies the standard properties

𝜀 ∗𝑘𝑙 = 𝜀 ∗𝑙𝑘(𝜔), Re
{

𝜀 ∗𝑘𝑙(𝜔)
}

𝜉𝑘𝜉𝑙 ≥ 𝜀0𝜉𝑚𝜉𝑚 ∀ 𝝃 ≠ 𝟎

of the complex permittivity of a homogeneous dielectric medium.
From a practical point of view, we remark that the evaluation of
the formula (14)1 for 𝜺̃

∗(𝜔) requires knowledge of the 𝑌 -periodic
function 𝜒𝑘(𝐲, 𝜔) defined by the boundary-value problem (11).
While this problem does not admit an analytical solution in
general, it can be readily solved numerically by a variety of
methods, for instance, the finite element method.

iii. The effective complex space-charge density 𝑄̃∗(𝐗, 𝜔). The effective
complex space-charge density (14)2 with (15) in the homoge-
nized equations (13) is independent of the domain 𝛺 occupied
by the dielectric and the boundary conditions on 𝜕𝛺, but de-
pends on both of the constitutive functions 𝐟 (𝐗, 𝜔) and 𝐠(𝛿−1𝐗, 𝜔)
defining their local density (4). It is also worth noticing that
the total content of macroscopic space charges implied by the
effective complex space-charge density (14)2 with (15),

∫𝛺
𝑄̃∗(𝐗, 𝜔)d𝐗 = −∫𝛺

𝛼∗𝑘𝑙(𝜔)
𝜕𝑓𝑙
𝜕𝑋𝑘

(𝐗, 𝜔)d𝐗,

need not be zero. Indeed, only certain choices of the constitutive
function 𝐟 (𝐗, 𝜔) render macroscopic charge neutrality.
According to the first equality in (15), evaluation of the formula
(14)2 for 𝑄̃∗(𝐗, 𝜔) requires knowledge of the 𝑌 -periodic function
𝛩𝑘(𝐲, 𝜔) defined by the boundary-value problem (12). Remark-
ably, in view of the second equality in (15), which is a direct
consequence of the divergence theorem and the 𝑌 –periodicity of
the PDEs (11)–(12), the effective complex space-charge density
𝑄̃∗(𝐗, 𝜔) can also be obtained solely from knowledge of 𝜒𝑘(𝐲, 𝜔)
without having to compute 𝛩𝑘(𝐲, 𝜔).

iv. An alternative physical interpretation of the homogenized equations
(13). In view of the divergence form of the effective complex
effective-charge density (14)2, the homogenized equations (13)
can be rewritten in the alternative form

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑋𝑘

[

−𝜀 ∗𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔) + 𝛼∗𝑘𝑙(𝜔)𝑓𝑙(𝐗, 𝜔)
]

= 0, 𝐗 ∈ Ω

𝜑̃(𝐗, 𝜔) = 𝜙(𝐗, 𝜔), 𝐗 ∈ 𝜕Ω
.

(21)

The equivalent set of Eqs. (21) correspond to the governing
equations for the complex electric potential 𝜑̃(𝐗, 𝜔) within a ho-
mogeneous dielectric medium, with effective complex permittiv-
ity tensor 𝜺̃ ∗(𝜔), that contains no space charges but that features
instead a non-homogeneous effective complex pre-polarization
characterized by the quantity 𝛼∗𝑘𝑙(𝜔)𝑓𝑙(𝐗, 𝜔), and that is sub-
jected to Dirichlet boundary conditions.
In the form (21), much like in the form (13), the macro-variable
for the complex electric field is still given by (19). However,
the macro-variable for the complex electric displacement is now
defined by

𝐷̃𝑘(𝐗, 𝜔) ≐ −𝜀 ∗𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔) + 𝛼∗𝑘𝑙(𝜔)𝑓𝑙(𝐗, 𝜔),

which in terms of the local electric displacement (18) reads as

𝐷̃𝑘(𝐗, 𝜔) = ∫𝑌
𝐷̃(0)
𝑘 (𝐗, 𝐲, 𝜔) d𝐲 +

(

∫𝑌
𝑦𝑘𝑔𝑙(𝐲, 𝜔)d𝐲

)

𝑓𝑙(𝐗, 𝜔)

= ∫𝜕𝑌
𝑦𝑘𝐷̃

(0)
𝑙 (𝐗, 𝐲, 𝜔) 𝑛𝑙d𝐲.

4. The homogenized equations for a class of active charges

The homogenized equations (13), or equivalently (21), are valid for
arbitrary choices of the functions 𝐟 (𝐗, 𝜔) and 𝐠(𝛿−1𝐗, 𝜔) characterizing
the local space-charge density (4). In particular, these functions may be
selected not to be fixed or passive, but to be active instead by designating
them to depend in part or in full on the local complex electric potential
𝜑̃𝛿(𝐗, 𝜔). In this section, following Lopez-Pamies et al. [5] and Lefèvre
and Lopez-Pamies [1], we consider a class of active charges wherein the
function 𝐠(𝛿−1𝐗, 𝜔) is taken to be arbitrary but fixed while the function
𝐟 (𝐗, 𝜔) is set to be proportional to the macroscopic complex electric
field, precisely,

𝑓𝑘(𝐗, 𝜔) = −
𝜕𝜑̃
𝜕𝑋𝑘

(𝐗, 𝜔). (22)

From a physical point of view, the form (22) entails that at a macro-
scopic material point 𝐗 the space charges, roughly speaking, scale in
magnitude and align in direction with the complex electric field at that
point. At present, there is little direct experimental knowledge about
the constitutive behavior of active space charges in dielectrics. For in-
stance, for the prominent case of polymers filled with (semi)conducting
or dielectric nanoparticles, locally mobile space charges are expected
to be present in the regions of the polymer immediately surrounding
the nanoparticles (see, e.g., [4,16–18]), but direct measurements of
the precise content and local mobility of these have proved thus far
difficult. As elaborated further below in comparisons with various sets
of experimental results [19–21], the prescription (22) can be thought of
perhaps as the simplest physically plausible prototype that is consistent
with the available macroscopic experimental measurements.

Now, granted the choice (22) for the function 𝐟 (𝐗, 𝜔), it is a simple
matter to deduce that the homogenized equations (13), or equivalently
(21), specialize in this case to

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑋𝑘

[

−𝜀⋆𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔)
]

= 0, 𝐗 ∈ Ω

𝜑̃(𝐗, 𝜔) = 𝜙(𝐗, 𝜔), 𝐗 ∈ 𝜕Ω
(23)

with

𝜀⋆𝑘𝑙(𝜔) = 𝜀 ∗𝑘𝑙(𝜔) + 𝛼
∗
𝑘𝑙(𝜔) = ∫𝑌

{

𝜀𝑘𝑝 (𝐲, 𝜔)
(

𝛿𝑙𝑝 +
𝜕𝜒̆𝑙
𝜕𝑦𝑝

(𝐲, 𝜔)
)

+ 𝑦𝑘𝑔𝑙(𝐲, 𝜔)
}

d𝐲
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= ∫𝑌

{

𝜀𝑘𝑝 (𝐲, 𝜔)
(

𝛿𝑙𝑝 −
𝜕𝜒𝑙
𝜕𝑦𝑝

(𝐲, 𝜔)
)

+
(

𝑦𝑘 − 𝜒𝑘(𝐲, 𝜔)
)

𝑔𝑙(𝐲, 𝜔)
}

d𝐲, (24)

where, for later convenience, the notation 𝜒̆𝑙(𝐲, 𝜔) = 𝛩𝑙(𝐲, 𝜔) − 𝜒𝑙(𝐲, 𝜔)
has been introduced and where it is recalled that 𝜒𝑙(𝐲, 𝜔) and 𝛩𝑙(𝐲, 𝜔)
are the 𝑌 -periodic functions defined by the PDEs (11) and (12). The
following two remarks are in order:

i. Physical interpretation of the homogenized equations (23). Eqs. (23)
correspond to the governing equations for the complex electric
potential 𝜑̃(𝐗, 𝜔) within a homogeneous dielectric medium, with
effective complex permittivity tensor 𝜺̃⋆(𝜔), that is subjected to
Dirichlet boundary conditions.
Thus, in stark contrast to the results (13) and (21) obtained for
passive charges in the previous section, neither an effective com-
plex space-charge density nor a pre-polarization appear in the
homogenized equations (23). Instead, the effect of the presence
of space charges shows up in the effective complex permittivity
tensor 𝜺̃⋆(𝜔).
On the other hand, similar to the results (13) and (21) for passive
charges, it is plain from (23) that the macro-variables for the
complex electric field and complex electric displacement are
defined by

𝐸𝑘(𝐗, 𝜔) ≐ −
𝜕𝜑̃
𝜕𝑋𝑘

(𝐗, 𝜔) and 𝐷̃𝑘(𝐗, 𝜔) ≐ −𝜀⋆𝑘𝑙(𝜔)
𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔),

which in terms of their local counterparts (17) and (18) read as

𝐸𝑘(𝐗, 𝜔) = ∫𝑌
𝐸(0)
𝑘 (𝐗, 𝐲, 𝜔) d𝐲

and

𝐷̃𝑘(𝐗, 𝜔) = ∫𝑌
𝐷̃(0)
𝑘 (𝐗, 𝐲, 𝜔) d𝐲 −

(

∫𝑌
𝑦𝑘𝑔𝑙(𝐲, 𝜔)d𝐲

)

𝜕𝜑̃
𝜕𝑋𝑙

(𝐗, 𝜔)

= ∫𝜕𝑌
𝑦𝑘𝐷̃

(0)
𝑙 (𝐗, 𝐲, 𝜔) 𝑛𝑙d𝐲.

ii. The effective complex permittivity tensor 𝜺̃⋆(𝜔). The effective com-
plex permittivity tensor (24) in the homogenized equations (23)
is different from the standard result (14)1 that emerged in the
homogenized equations (13) for the case of passive charges.
Specifically, while it is also independent of the domain 𝛺 oc-
cupied by the dielectric and the boundary conditions on 𝜕𝛺,
the effective tensor (24) does depend strongly on the presence
of space charges via the constitutive function 𝐠(𝛿−1𝐗, 𝜔), which,
once more, controls the local distribution of the space charges
at the length scale of the microstructure. Because of this de-
pendence, the effective tensor (24) is not necessarily symmetric,
nor positive definite for the cases when is symmetric. More-
over, because they are proportional to the constitutive function
𝐠(𝛿−1𝐗, 𝜔), the real and imaginary parts of the components of
𝜺̃⋆(𝜔) can be made to achieve arbitrarily large positive or nega-
tive values. All these features have deep physical implications
as they indicate that shrewd manipulation of space charges
in dielectrics provides a promising path towards the design of
materials with exceptional macroscopic properties ranging from
materials with unusually large permittivities to metamaterials
featuring negative permittivity.
We close this remark by noticing from the two different but
equivalent formulas (24) that the effective complex permittivity
tensor 𝜺̃⋆(𝜔) can be obtained either from knowledge solely of
the 𝑌 –periodic function 𝜒𝑙(𝐲, 𝜔) without having to determine
𝛩𝑙(𝐲, 𝜔) or from knowledge of the 𝑌 –periodic function 𝜒̆𝑙(𝐲, 𝜔) =
𝛩𝑙(𝐲, 𝜔) − 𝜒𝑙(𝐲, 𝜔), which is solution of the additive combination
of (11) and (12), namely,

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑦𝑘

[

𝜀𝑘𝑚 (𝐲, 𝜔)
(

𝛿𝑚𝑙 +
𝜕𝜒̆𝑙
𝜕𝑦𝑚

(𝐲, 𝜔)
)]

= 𝑔𝑙 (𝐲, 𝜔) , 𝐲 ∈ 𝑌

∫𝑌 𝜒̆𝑙(𝐲, 𝜔)d𝐲 = 0
.

5. Specialization of the result for 𝜺̃⋆(𝝎) to a class of isotropic
particulate composites containing active charges

The homogenized equations put forth in Section 4, much like those
introduced in Section 3, apply to dielectric composite materials with
arbitrary local complex permittivity 𝜺̃(𝛿−1𝐗, 𝜔) and also to arbitrary
local complex space charge function 𝐠(𝛿−1𝐗, 𝜔) subject to the condition
of local charge neutrality (5). In preparation for the comparisons with
experiments on polymer nanoparticulate composites presented below,
we spell out next the specialization in R3 of the result (24) for the effec-
tive complex permittivity tensor 𝜺̃⋆(𝜔) in the homogenized equations
(23) to a class of isotropic particulate composite materials containing
active charges.

Specifically, we consider three-phase dielectrics exhibiting overall
isotropic behavior that are made up of a matrix filled with spherical
particles bonded to the matrix through constant-thickness interphases
containing active space charges. The matrix, particles, and interphases
all feature different homogeneous isotropic complex permittivities,
𝜀𝚖(𝜔), 𝜀𝚙(𝜔), and 𝜀𝚒(𝜔). The local complex permittivity of this class of
dielectrics can thus be expediently written in the form

𝜺̃(𝐲, 𝜔) = 𝜀(𝐲, 𝜔)𝐈 with

𝜀(𝐲, 𝜔) = (1 − 𝜃𝚙(𝐲) − 𝜃𝚒(𝐲))𝜀𝚖(𝜔) + 𝜃𝚙(𝐲)𝜀𝚙(𝜔) + 𝜃𝚒(𝐲)𝜀𝚒(𝜔), (25)

where 𝐈 denotes the identity second-order tensor while 𝜃𝚙(𝐲) and 𝜃𝚒(𝐲)
stand for, respectively, the indicator functions of the spatial regions
occupied by the particles and the surrounding interphases. Following
Lopez-Pamies et al. [5], the density 𝑄̃𝛿(𝐗, 𝜔) of the active space charges
within the interphases is taken to be characterized by the functions (22)
and

𝐠(𝐲, 𝜔) = 𝜃𝚒(𝐲)q𝚒(𝚁𝚙, 𝜔)
𝐲 − 𝐲𝚙
|𝐲 − 𝐲𝚙|

with q𝚒(𝚁𝚙, 𝜔) =
𝑞𝚒(𝜔)
𝚁𝚙

. (26)

Here, 𝐲𝚙 and 𝚁𝚙 stand for the centers and the normalized —with respect
to the microscopic length scale 𝛿 — radii of however many particles
are selected to be contained in the unit cell 𝑌 = (0, 1)3, while 𝑞𝚒(𝜔) ∈ C
is any function of choice (with unit F/m, like 𝜀(𝐲, 𝜔)) of the angular
frequency 𝜔. Note that the required condition of local charge neutrality
(5) is indeed satisfied by the form (26) and that its dependence on 𝚁𝚙
implies that smaller particles feature a larger density of active charges
within their surrounding interphases. It is also fitting to remark that the
functional forms (22) together with (26), while phenomenological, are
consistent with the interphasial charge distributions found in isotropic
suspensions of dielectric spherical particles in electrolytic solutions
featuring enhanced macroscopic permittivities; see, e.g., Schwan et al.
[22] and Chew and Sen [23].

Granted the restriction to dielectrics with overall isotropic behavior,
the local complex permittivity (25), and the local space charge func-
tions (22) and (26), it is a simple matter to deduce that the result (24)
for the effective complex permittivity tensor specializes to

𝜺̃⋆(𝜔) = 𝜀⋆(𝜔)𝐈 (27)

with

𝜀⋆(𝜔) = ∫𝑌

{

𝜀 (𝐲, 𝜔)
(

1 +
𝜕𝜒̆𝑘
𝜕𝑦𝑘

(𝐲, 𝜔)
)

+ 𝜃𝚒(𝐲)𝑞𝚒(𝜔)
𝑦𝑘(𝑦𝑘 − 𝑦𝚙𝑘 )
𝚁𝚙|𝐲 − 𝐲𝚙|

}

d𝐲

𝑘 = 1, 2, 3; no summation, (28)

where 𝜒̆𝑘(𝐲, 𝜔) is implicitly defined as the solution of the PDE

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑦𝑙

[

𝜀 (𝐲, 𝜔)
(

𝛿𝑘𝑙 +
𝜕𝜒̆𝑘
𝜕𝑦𝑙

(𝐲, 𝜔)
)]

= 𝜃𝚒(𝐲)𝑞𝚒(𝜔)
𝑦𝑘 − 𝑦𝚙𝑘
𝚁𝚙|𝐲 − 𝐲𝚙|

, 𝐲 ∈ 𝑌

∫𝑌 𝜒̆𝑘(𝐲, 𝜔)d𝐲 = 0
.

(29)

In the next three subsections, we further specialize the result (27)–(28)
to two types of spatial distributions and size dispersions of the spherical
filler particles, and spell out some specific constitutive models for the
complex permittivities of the matrix, particles, and interphases, 𝜀𝚖(𝜔),
𝜀𝚙(𝜔), 𝜀𝚒(𝜔), as well as for the complex space charge function, 𝑞𝚒(𝜔).
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Fig. 2. Schematic of the unit cell 𝑌 = (0, 1)3 illustrating the simple cubic distribution
of monodisperse spherical particles and the surrounding constant-thickness interphases
containing the space charges.

5.1. A simple cubic distribution of spherical particles of monodisperse size

The most basic type of arrangement of spherical particles sur-
rounded by constant-thickness interphases that leads to an overall
isotropic behavior is arguably that of a simple cubic distribution of
particles of monodisperse size. For this type of microstructures, the
indicator functions 𝜃𝚙(𝐲) and 𝜃𝚒(𝐲) in the local complex permittivity
(25) take the simple form

𝜃𝚙(𝐲) =
{

1 if |𝐲 − 𝐲𝚙| < 𝚁𝚙

0 otherwise
and

𝜃𝚒(𝐲) =
{

1 if 𝚁𝚙 < |𝐲 − 𝐲𝚙| < 𝚁𝚙 + 𝚝𝚒

0 otherwise
, (30)

where, for definiteness, 𝐲𝚙 = (1∕2, 1∕2, 1∕2), and where 𝚁𝚙 = (3𝑐𝚙∕4𝜋)1∕3,
𝚝𝚒 = (3(𝑐𝚙 + 𝑐𝚒)∕4𝜋)1∕3 − (3𝑐𝚙∕4𝜋)1∕3 with 𝑐𝚙 = ∫𝑌 𝜃𝚙(𝐲)d𝐲 and 𝑐𝚒 =
∫𝑌 𝜃𝚒(𝐲)d𝐲 denoting the volume fractions of particles and interphases
in the dielectric. Fig. 2 shows a schematic of the defining unit cell 𝑌 .

For the case of indicator functions (30), the PDE (29) does not
generally admit explicit solutions, but it is straightforward to generate
numerical solutions for it, for instance, via the finite element method.
In turn, once such numerical solutions for the field 𝜒̆𝑘(𝐲, 𝜔) have been
generated, the integral (28) can be evaluated by means of a quadrature
rule to finally determine the resulting effective complex permittivity
tensor (27). In the next section, we shall present a sample of such
numerical solutions.

5.2. A random isotropic distribution of spherical particles of polydisperse
sizes

The second type of arrangement of spherical particles surrounded by
constant-thickness interphases that we consider is that of an assemblage
of homothetic multicoated spheres made up of a core (the particle),
an inner shell (the interphase), and an outer shell (the matrix), that
fills in the entire unit cell 𝑌 = (0, 1)3; see, e.g., Hashin [24], Chapter 7
in [25], Chapter 25 in [26] for a historical account and for various
perspectives on coated sphere assemblages in the absence of space
charges and Lopez-Pamies et al. [5] for a neutral-inclusion perspective
of coated sphere assemblages containing interphasial space charges. In
such microstructures, there are infinitely many particles in the unit cell
and these have random centers 𝐲𝚙 ∈ 𝑌 and polydisperse normalized
radii in the range 0 < 𝚁𝚙 < 1∕2 − (3(𝑐𝚙 + 𝑐𝚒)∕4𝜋)1∕3 + (3𝑐𝚙∕4𝜋)1∕3,
where, again, 𝑐𝚙 and 𝑐𝚒 stand for the volume fractions of particles
and interphases in the dielectric. Accordingly, the indicator functions
𝜃𝚙(𝐲) and 𝜃𝚒(𝐲) in the local complex permittivity (25) are the union of
indicator functions of the form (30) for all the homothetic multicoated
spheres in the assemblage. Fig. 3 shows a schematic of the defining unit
cell 𝑌 .

Now, thanks to the choice (26)2 for q𝚒(𝚁𝚙, 𝜔) in the complex space
charge function 𝐠(𝐲, 𝜔), the homothetic multicoated spheres described

above can be shown to behave as neutral inclusions and so, by leverag-
ing the same neutral-inclusion derivation introduced in Lopez-Pamies
et al. [5], the PDE (29) can be solved in closed form and the integral
(28) can in turn be evaluated explicitly. Omitting the argument 𝜔 for
notational simplicity, the result reads as given in Box I. We remark
that the simple explicit result (31) is nothing more than the formula3
(10) in Lopez-Pamies et al. [5] transcribed to the realm of complex
frequency-dependent permittivities.

5.3. Constitutive models for 𝜀𝚖(𝜔), 𝜀𝚙(𝜔), 𝜀𝚒(𝜔), and 𝑞𝚒(𝜔)

The preceding results are valid for any choice of isotropic complex
permittivities 𝜀𝚖(𝜔), 𝜀𝚙(𝜔), 𝜀𝚒(𝜔) and any choice of complex space
charge function 𝑞𝚒(𝜔). Out of these, 𝜀𝚖(𝜔) and 𝜀𝚙(𝜔) are directly mea-
surable from standard spectroscopy experiments. On the other hand, as
already alluded to above, 𝜀𝚒(𝜔) and 𝑞𝚒(𝜔) are difficult to have access to
experimentally, even indirectly, due to the inherent nanometer scale of
interphases.

In the comparisons with the experiments that follow, we will make
use of direct experimental data for 𝜀𝚖(𝜔) and 𝜀𝚙(𝜔) whenever available.
In the absence of direct experimental data over the complete range
of frequencies of interest, we will make use of the well-established
five-parameter Havriliak–Negami model, precisely,

𝜀𝚖(𝜔) = 𝜀𝚖∞ +
𝜀𝚖0 − 𝜀𝚖∞

(

1 +
(

𝑖𝜔𝜏𝚖
)𝛼𝚖)𝛽𝚖

and

𝜀𝚙(𝜔) = 𝜀𝚙∞ +
𝜀𝚙0 − 𝜀𝚙∞

(

1 +
(

𝑖𝜔𝜏𝚙
)𝛼𝚙)𝛽𝚙

, (32)

where 𝜀𝚖∞ , 𝜀𝚖0 ≥ 0 denote, respectively, the limiting values of the
permittivity of the matrix at high and low frequencies, while the
material constants 𝜏𝚖 ≥ 0, 𝛼𝚖 > 0, and 0 < 𝛽𝚖 ≤ 1∕𝛼𝚖 describe its
relaxation behavior (idem for 𝜀𝚙∞ , 𝜀𝚙0 , 𝜏𝚙, 𝛼𝚙, and 𝛽𝚙). We recall that the
Havriliak–Negami model is a combination of the Cole–Cole (𝛽𝚖 = 1) and
the Davidson–Cole (𝛼𝚖 = 1) models – which in turn are generalizations
of the basic Debye (𝛼𝚖 = 𝛽𝚖 = 1) model – that has been shown to be well
descriptive of a broad spectrum of materials, including a wide variety of
polymers; see Debye [27], Cole and Cole [28], Davidson and Cole [29],
Havriliak and Negami [30] for the derivation of these models and their
comparisons with a wide range of experimental results, see, e.g., also
Garrappa et al. [31] for a recent description and discussion of these
models in the time domain.

For the complex permittivity of the interphases 𝜀𝚒(𝜔), we will make
use of one of the following three limiting models:

𝜀𝚒(𝜔) = 𝜀𝚖(𝜔) or 𝜀𝚒(𝜔) = 𝜀0 + 𝑖
𝜎𝚒
𝜔

with

⎧

⎪

⎨

⎪

⎩

𝜎𝚒 = +∞
or
𝜎𝚒 = 0

. (33)

The choice (33)1 corresponds to the limiting case when the dielectric
behavior of the interphases is identical to that of the matrix, in other
words, when there are no interphases. The choice (33)2 with 𝜎𝚒 = +∞
corresponds to the case when the interphases are perfect conductors.
On the other hand, the choice (33)2 with 𝜎𝚒 = 0 corresponds to the
opposite limiting case when the interphases are perfect dielectrics fea-
turing the permittivity of vacuum, in other words, when the interphases
are vacuous.

Finally, for the complex space charge function 𝑞𝚒(𝜔), we will also
make use of a Havriliak–Negami-type model. We write

𝑞𝚒(𝜔) = 𝑞∞ +
𝑞0 − 𝑞∞

(

1 +
(

𝑖𝜔𝜏𝑞𝚒
)𝛼𝑞𝚒

)𝛽𝑞𝚒
, (34)

where we recall that 𝑞𝚒(𝜔) has units of F/m, like the complex permit-
tivities 𝜀𝚖(𝜔), 𝜀𝚙(𝜔), and 𝜀𝚒(𝜔).

3 The third term in the formula (10) reported in Lopez-Pamies et al. [5]
contains typographical errors which are corrected in (31).
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Fig. 3. Schematic of the unit cell 𝑌 = (0, 1)3 replete with an assemblage of homothetic multicoated spheres. The filler spherical particles and their surrounding constant-thickness
interphases containing the space charges are randomly distributed in space and polydisperse in size.

𝜀⋆ = 𝜀𝚖 +
3𝜀𝚖(𝑐𝚒 + 𝑐𝚙)

[

𝑐𝚒(𝜀𝚒 − 𝜀𝚖)(2𝜀𝚒 + 𝜀𝚙) + 3𝑐𝚙𝜀𝚒(𝜀𝚙 − 𝜀𝚖)
]

𝜀𝚙
[

𝜀𝚒(1 − 𝑐𝚒 − 𝑐𝚙)(𝑐𝚒 + 3𝑐𝚙) + 𝑐𝚒𝜀𝚖(𝑐𝚒 + 𝑐𝚙 + 2)
]

+ 𝜀𝚒
[

𝜀𝚖(𝑐𝚒 + 𝑐𝚙 + 2)(2𝑐𝚒 + 3𝑐𝚙) + 2𝑐𝚒𝜀𝚒(1 − 𝑐𝚒 − 𝑐𝚙)
]

+

3𝜀𝚖𝑐𝚙(𝑐𝚒 + 𝑐𝚙)
⎛

⎜

⎜

⎝

3

(

1 +
𝑐𝚒
𝑐𝚙

)1∕3

(2𝜀𝚒 − 𝜀𝚙) +
𝑐𝚒
𝑐𝚙

(

1 +
𝑐𝚒
𝑐𝚙

)1∕3

(2𝜀𝚒 + 𝜀𝚙) + 3(𝜀𝚙 − 2𝜀𝚒)
⎞

⎟

⎟

⎠

𝑞𝚒

4𝜀𝚙
[

𝜀𝚒(1 − 𝑐𝚒 − 𝑐𝚙)(𝑐𝚒 + 3𝑐𝚙) + 𝑐𝚒𝜀𝚖(𝑐𝚒 + 𝑐𝚙 + 2)
]

+ 4𝜀𝚒
[

𝜀𝚖(𝑐𝚒 + 𝑐𝚙 + 2)(2𝑐𝚒 + 3𝑐𝚙) + 2𝑐𝚒𝜀𝚒(1 − 𝑐𝚒 − 𝑐𝚙)
] . (31)

Box I.

6. Application to polymer nanoparticulate composites and final
comments

In the sequel, we deploy the foregoing theoretical framework for
the effective complex permittivity 𝜺̃⋆(𝜔) to compare with and examine
three representative sets of experimental data available in the literature
for polymer nanoparticulate composites. The objective is to illustrate
the use of the proposed homogenization results and to showcase their
ability not only to describe the macroscopic response of emerging poly-
mer nanoparticulate composites featuring extreme dielectric behaviors
in terms of space charges varying at the length scale of their filler
nanoparticles but also, and more critically, to point to the manipulation
of space charges as a promising strategy for the bottom-up design of
materials with exceptional macroscopic properties.

6.1. The experiments of Huang et al. [19] on polyurethane filled with
o-CuPC nanoparticles

We begin by examining the experimental results of Huang et al.
[19] for the dielectric response at room temperature of a polyurethane
(PU) polymer isotropically filled with semi-conducting copper phthalo-
cyanine oligomer (o-CuPc) nanoparticles of roughly spherical shape,
coated with a polyacrylic acid, at volume fraction 𝑐𝚙 = 0.073 under
a uniform alternating electric field with frequencies4 𝑓 = 𝜔∕2𝜋 ranging
from 20 Hz to 1 MHz. These results are reproduced (solid lines) in Fig. 4
for the real 𝜀⋆′(𝜔) and imaginary 𝜀⋆′′(𝜔) parts of the effective complex
permittivity 𝜀⋆(𝜔) = 𝜀⋆′(𝜔) − 𝑖𝜀⋆′′(𝜔) of the composite, normalized by
the permittivity of vacuum 𝜀0, as functions of the frequency 𝑓 . To aid
in the discussion, Fig. 4 includes the corresponding response (dashed

4 A quick estimate of the wavelengths involved in these and the following
two sets of experiments suggest that the assumption of electro-quasistatics
invoked in this work remains applicable for the entire range of frequencies
considered.

lines) of the unfilled PU polymer, which was also reported by Huang
et al. [19].

First, Fig. 4(a) and (b) confront the experimental data to the theo-
retical results for the basic case when there are no interphases and no
space charges. Specifically, the theoretical results presented in Fig. 4(a)
and (b) correspond to the effective complex permittivity (31) for a
random isotropic distribution of polydisperse spherical particles with
𝑐𝚙 = 0.073, 𝑐𝚒 = 0, 𝑞𝑖(𝜔) = 0 where the complex permittivities for
the PU polymer 𝜀𝚖(𝜔) and for the o-CuPC nanoparticles 𝜀𝚙(𝜔) take the
experimental values reported by Huang et al. [19] and Wang et al.
[32], respectively. The primary and immediate observation from these
figures is that the basic assumption of perfect bonding between the o-
CuPC nanoparticles and the PU polymer is inadequate to explain the
drastic enhancement – more than three orders of magnitude at low
frequencies – of both the real and the imaginary parts of the complex
permittivity of this nanoparticulate composite.

Fig. 4(c) and (d) present the same type of comparisons as Fig. 4(a)
and (b), but now the theoretical results incorporate the presence of
interphases between the o-CuPC nanoparticles and the PU polymer.
Given that the o-CuPC nanoparticles have an average radius of roughly
20 nm, it is reasonable to assume that they may be surrounded by
interphases of about 5 nm in average thickness, which would translate
into a total volume fraction of interphases of 𝑐𝚒 = 0.070; see, e.g., Qu
et al. [33] and Meddeb et al. [34] for relevant experimental work
on the measurement of the geometry of interphases. Moreover, in
order to obtain the maximum enhancement possible from the presence
of such interphases, it is reasonable to assume that they are perfect
conductors.5 Accordingly, the theoretical results in Fig. 4(c) and (d)
correspond to the effective complex permittivity (31) with 𝑐𝚙 = 0.073,
𝑐𝚒 = 0.070, 𝑞𝑖(𝜔) = 0, where, again, the complex permittivities for

5 This is effectively equivalent to assuming alternatively that the interphases
are perfect dielectrics with infinity permittivity, that is, 𝜀𝚒(𝜔) = 𝜀′

𝚒
with

𝜀′
𝚒
= +∞.
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the PU polymer 𝜀𝚖(𝜔) and the o-CuPC nanoparticles 𝜀𝚙(𝜔) take the
experimental values reported by Huang et al. [19] and Wang et al.
[32], and where the interphases are perfect conductors characterized
by the complex permittivity 𝜀𝚒(𝜔) = 𝜀0 + 𝑖𝜎𝚒∕𝜔 with 𝜎𝚒 = +∞. From
a quick glance at Fig. 4(c) and (d), it is plain that accounting for the
presence of interphases appears, by itself, also inadequate6 to explain
the drastically enhanced response exhibited by the composite.

Finally, Fig. 4(e) and (f) present the comparisons between the ex-
perimental data and the theoretical results now for the case when space
charges are accounted for. Precisely, the theoretical results plotted in
these figures correspond to the effective complex permittivity (31) with
𝑐𝚙 = 0.073, 𝑐𝚒 = 0.070, 𝜀𝚖(𝜔) and 𝜀𝚙(𝜔) taking, again, the experimental
values reported by Huang et al. [19] and Wang et al. [32], where
𝜀𝚒(𝜔) = 𝜀𝚖(𝜔) and the complex space charge function 𝑞𝚒(𝜔) is given by
the Havriliak–Negami-type relation (34) with parameters 𝑞0 = 1.381 ×
106𝜀0, 𝑞∞ = 460𝜀0, 𝜏𝑞𝚒 = 1.161 × 10−3 s, 𝛼𝑞𝚒 = 0.2730, and 𝛽𝑞𝚒 = 3.662.
The close agreement possible between the theoretical results and the
experimental data shown in Fig. 4(e) and (f) suggests that the presence
of active space charges might indeed be the mechanism responsible for
the drastically enhanced complex permittivity exhibited by this type of
PU polymer filled with o-CuPC nanoparticles.

6.2. The experiments of Thakur et al. [20] on polyetherimide filled with
Al2O3 nanoparticles

Next, we turn to examine the experimental data of Thakur et al.
[20] for the dielectric response of a polyetherimide (PEI) polymer
isotropically filled with a very small content of Al2O3 nanoparticles
of roughly spherical shape under a uniform alternating electric field
varying from 1 kHz to 1 MHz in frequency. While Thakur et al. [20]
reported data for a range of temperatures as well as for a range of sizes
and small volume fractions of nanoparticles, we focus here on the case
that exhibited the largest dielectric enhancement at room temperature,
namely, that of a PEI polymer filled with Al2O3 nanoparticles of 10 nm
in average radius at volume fraction 𝑐𝚙 = 0.0032. The experimental data
of interest (solid lines) for the real and imaginary parts of the effective
complex permittivity of this nanoparticulate composite is shown in
Fig. 5. The corresponding response (dashed lines) of the unfilled PEI
polymer, as reported by Thakur et al. [20], is also displayed for direct
comparison.

In complete analogy with Fig. 4, the results are presented nor-
malized by the permittivity of vacuum in terms of the frequency of
the applied electric field. Parts (a) and (b) compare the experimental
data with the theoretical results for the basic case when there are no
interphases and no space charges. Parts (c) and (d) then present the
comparisons with the theoretical results that account for the presence
of interphases between the Al2O3 nanoparticles and the PEI polymer.
Finally, parts (e) and (f) show the comparisons with the theoretical
results that incorporate the presence of space charges.

All the theoretical results in Fig. 5 correspond to the formula (31)
for the effective complex permittivity of a random isotropic distribution
of polydisperse spherical particles evaluated at 𝑐𝚙 = 0.0032 with the
complex permittivities for the PEI polymer 𝜀𝚖(𝜔) and for the Al2O3
nanoparticles 𝜀𝚙(𝜔) taking the experimental values reported by Thakur
et al. [20] and – since Thakur et al. [20] did not provide the dielectric
response of the Al2O3 nanoparticles that they used in their specimens

6 Beyond the illustrative results shown in Fig. 4(c) and (d), the inadequacy
of conducting (or high-permittivity) interphases as the mechanism of enhance-
ment can be readily deduced by recognizing from the result (31) that its
real and imaginary parts are bounded from above by 𝜀⋆′(𝜔) ≤ 𝜀′

𝚖
(𝜔) + 3(𝑐𝚙 +

𝑐𝚒)𝜀′𝚖(𝜔)∕(1 − 𝑐𝚙 − 𝑐𝚒) and 𝜀⋆′′(𝜔) ≤ 𝜀′′
𝚖
(𝜔) + 3(𝑐𝚙 + 𝑐𝚒)𝜀′′𝚖 (𝜔)∕(1 − 𝑐𝚙 − 𝑐𝚒). Thus, so

long as the combination of volume fractions of nanoparticles and interphases
𝑐𝚙+𝑐𝚒 is sufficiently away from unity, the enhancement afforded by interphases
is only of the same order of magnitude as the complex permittivity of the
embedding polymer.

– by Vila et al. [35], respectively. The results in Fig. 5(a) and (b)
correspond to the further prescription 𝑐𝚒 = 0, 𝑞𝑖(𝜔) = 0, those in
Fig. 5(c) and (d) to 𝑐𝚒 = 0.0076, 𝑞𝑖(𝜔) = 0, and 𝜀𝚒(𝜔) = 𝜀0 + 𝑖𝜎𝚒∕𝜔
with 𝜎𝚒 = +∞, while the results in Fig. 5(e) and (f) correspond to
𝑐𝚒 = 0.0076, 𝜀𝚒(𝜔) = 𝜀𝚖(𝜔), and a complex space charge function
𝑞𝚒(𝜔) given by (34) with parameters 𝑞0 = 740𝜀0, 𝑞∞ = 660𝜀0, 𝜏𝑞𝚒 =
5.291 × 10−8 s, 𝛼𝑞𝚒 = 0.1431, and 𝛽𝑞𝚒 = 0.7608. We remark that the
geometric choice of volume fraction of interphases 𝑐𝚒 = 0.0076 in
Fig. 5(c) and (d) stems from estimating that the interphases are 5 nm
in average thickness, which is a relatively large but realistic size given
that the Al2O3 nanoparticles are, again, about 10 nm in average radius.
Moreover, the constitutive choice of perfectly conducting interphases
is aimed at generating the maximum enhancement possible in the
dielectric response of the composite. On the other hand, the choice of
parameters 𝑞0 = 740𝜀0, 𝑞∞ = 660𝜀0, 𝜏𝑞𝚒 = 5.291 × 10−8 s, 𝛼𝑞𝚒 = 0.1431,
𝛽𝑞𝚒 = 0.7608 characterizing the underlying active space charges in the
results presented in Fig. 5(e) and (f) is aimed at rendering a good
agreement with the experimental data.

From all the comparisons presented in Fig. 5(a) through (d), it is
clear that the exceptionally enhanced dielectric response of the PEI
polymer filled with Al2O3 nanoparticles – note that the real (imaginary)
part of the effective complex permittivity of this nanoparticulate com-
posite is about 60% (120%) larger than that of the unfilled PEI polymer,
in spite of the fact that the volume fraction of Al2O3 nanoparticles
in it is extremely small, only 𝑐𝚙 = 0.0032 – cannot be explained on
the basic premise of perfect bonding between the polymer and the
nanoparticles. It cannot be explained either solely by the presence of
interphases between the polymer and the nanoparticles. By contrast, in
view of the favorable comparisons displayed in Fig. 5(e) and (f), space
charges might be in this case too the mechanism responsible for the
observed enhanced dielectric response.

6.3. The experiments of Nelson and Fothergill [21] on epoxy filled with
TiO2 nanoparticles

The last set of results that we consider are those presented in Fig. 6
due to Nelson and Fothergill [21] for the dielectric response at a tem-
perature of 393 K of a bisphenol-A epoxy isotropically filled with TiO2
nanoparticles, with roughly spherical shape, 12 nm in average radius,
and volume fraction 𝑐𝚙 = 0.026, under a uniform alternating electric
field with frequencies ranging from 10−2 Hz to 1 MHz. Akin to the two
preceding figures, parts (a)–(b) and (c)–(d) in Fig. 6 compare the ex-
perimental data (solid lines) with the theoretical results in the absence
of space charges when interphases between the TiO2 nanoparticles and
the epoxy resin are absent and present, respectively, while parts (e)–
(f) display the comparisons between the experimental data and the
theoretical results for the case when space charges are accounted for.
For direct comparison, all the plots in Fig. 6 include the corresponding
response (dashed lines) of the unfilled epoxy resin, as reported by
Nelson and Fothergill [21]. Note that, in contrast to the foregoing
nanoparticulate composites wherein the addition of nanoparticles led
to exceptionally large enhancements, the addition of TiO2 nanoparticles
here leads to a substantial diminishment of the dielectric response, in
spite of the fact that TiO2 features a larger (real part of the) permittivity
than epoxy for most of the frequencies considered (𝑓 > 10−1 Hz, at
least).

Much like in the two preceding figures, all the theoretical results
presented in Fig. 6 correspond to the formula (31) with 𝑐𝚙 = 0.026
where the complex permittivity for the epoxy 𝜀𝚖(𝜔) takes the experi-
mental values reported by Nelson and Fothergill [21]. These authors
did not report the dielectric response for the TiO2 nanoparticles that
they used in their specimens. Accordingly, for definiteness, the complex
permittivity 𝜀𝚙(𝜔) of these in the formula (31) is characterized with
the Havriliak–Negami model (32)2 and the material parameters 𝜀𝚙0 =
140𝜀0, 𝜀𝚙∞ = 104𝜀0, 𝜏𝚙 = 2.560 × 10−3 s, 𝛼𝚙 = 0.5788, and 𝛽𝚙 = 1.0228,
which were obtained by fitting the experimental data of Anithakumari
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Fig. 4. Comparisons between the experimental results (solid lines) of Huang et al. [19] for a PU polymer filled with o-CuPC nanoparticles and the proposed theoretical results:
(a)–(b) without interphases (triangles), (c)–(d) with interphases (solid circles), and (e)–(f) with space charges (empty circles). The comparisons are shown for the real and complex
parts of the effective complex permittivity 𝜀⋆(𝜔) = 𝜀⋆′(𝜔) − 𝑖𝜀⋆′′(𝜔), normalized by the permittivity of vacuum 𝜀0, as functions of the frequency 𝑓 = 𝜔∕2𝜋 of the applied electric
field. For further comparison, all the plots include the corresponding experimentally measured response (dashed lines) of the unfilled PU polymer.

et al. [36] for a high purity TiO2 in the frequency range 100 Hz to
1 MHz. The results in Fig. 6(a) and (b) correspond to the further
prescription 𝑐𝚒 = 0, 𝑞𝑖(𝜔) = 0, those in Fig. 6(c) and (d) to 𝑐𝚒 = 0.050,
𝑞𝑖(𝜔) = 0, and 𝜀𝚒(𝜔) = 𝜀0, while those in Fig. 6(e) and (f) correspond
to 𝑐𝚒 = 0.050, 𝜀𝚒(𝜔) = 𝜀𝚖(𝜔), and a complex space charge function
𝑞𝚒(𝜔) = 𝑞′

𝚒
(𝜔) − 𝑖𝑞′′

𝚒
(𝜔) with the real 𝑞′

𝚒
(𝜔) and imaginary 𝑞′′

𝚒
(𝜔) parts

plotted in Fig. 7. With respect to these prescriptions, we note that the
choice of 𝑐𝚒 = 0.050 for the volume fraction of interphases implies an

average interphase thickness of 5 nm. Again, since the average radius of
the TiO2 nanoparticles is 12 nm, such an average thickness is relatively
large but realistic. Moreover, the choice 𝜀𝚒(𝜔) = 𝜀0 for the complex
permittivity of the interphases is the one that maximizes the reduction
in the dielectric response of the composite. Lastly, we note that a
complex space charge function 𝑞𝚒(𝜔) characterized by the Havriliak–
Negami relation (34) is not functionally rich enough to render good
agreement with the experimental data. By construction, the choice
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Fig. 5. Comparisons between the experimental results (solid lines) of Thakur et al. [20] for a PEI polymer filled with Al2O3 nanoparticles and the proposed theoretical results:
(a)–(b) without interphases (triangles), (c)–(d) with interphases (solid circles), and (e)–(f) with space charges (empty circles). The comparisons are shown for the real and complex
parts of the effective complex permittivity 𝜀⋆(𝜔) = 𝜀⋆′(𝜔) − 𝑖𝜀⋆′′(𝜔), normalized by the permittivity of vacuum 𝜀0, as functions of the frequency 𝑓 = 𝜔∕2𝜋 of the applied electric
field. All plots include the corresponding experimentally measured response (dashed lines) of the unfilled PEI polymer.

of function 𝑞𝚒(𝜔) plotted in Fig. 7, which was obtained by directly
fitting the experimental data for 𝜀⋆′(𝜔) and 𝜀⋆′′(𝜔), does render good
agreement.

From the comparisons presented in Fig. 6(a) and (b), it is clear that
perfect bonding between the TiO2 nanoparticles and the epoxy resin
cannot possibly explain the reduction in the dielectric response featured
by this composite. As shown by Fig. 6(c) and (d), the presence of low-
permittivity interphases might help to explain some of the reduction,

but not the bulk of it. On the other hand, the comparisons presented in
Fig. 6(e) and (f) indicate that the reduction in the dielectric response
of this nanoparticulate composite might be explained in full by the
presence of space charges.

At the close of this final section, it is important to remark that
the corresponding theoretical results for a simple cubic distribution of
monodisperse spherical particles outlined in Section 5.1 are virtually
indistinguishable from those presented in Figs. 4 through 6 for the
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Fig. 6. Comparisons between the experimental results (solid lines) of Nelson and Fothergill [21] for an epoxy resin filled with TiO2 nanoparticles and the proposed theoretical
results: (a)–(b) without interphases (triangles), (c)–(d) with interphases (solid circles), and (e)–(f) with space charges (empty circles). The comparisons are shown for the real and
complex parts of the effective complex permittivity 𝜀⋆(𝜔) = 𝜀⋆′(𝜔) − 𝑖𝜀⋆′′(𝜔), normalized by the permittivity of vacuum 𝜀0, as functions of the frequency 𝑓 = 𝜔∕2𝜋 of the applied
electric field. All the plots include the corresponding experimentally measured response (dashed lines) of the unfilled epoxy resin.

random isotropic distribution of polydisperse spherical particles out-
lined in Section 5.2; the former were generated numerically via the
finite-element formulation presented in the Appendix of Spinelli et al.
[37]. This agreement suggests that the specifics of the distribution in
space and the dispersion in size of the filler nanoparticles in isotropic
polymer nanoparticulate composites with small volume fractions of
nanoparticles are of little consequence for their macroscopic dielectric

response. We have also carried out a number of calculations for ran-
dom distributions of non-spherical particles akin to those presented in
Section 6 of Lefèvre and Lopez-Pamies [38] and the conclusions are
the same, namely, the specifics of the shape of the nanoparticles have
little impact on the macroscopic response provided that the content of
nanoparticles is sufficiently away from percolation. This insensitivity
to the spatial distribution, the size, and the shape of the nanoparticles
further strengthens the conjecture made here that the presence of active
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Fig. 7. The complex space charge function 𝑞𝚒(𝜔) utilized in the theoretical results presented in Fig. 6(e) and (f). Parts (a) and (b) show, respectively, the negative of the real and
imaginary parts of the function 𝑞𝚒(𝜔) = 𝑞′

𝚒
(𝜔) − 𝑖𝑞′′

𝚒
(𝜔), normalized by the permittivity of vacuum 𝜀0, as functions of the frequency 𝑓 = 𝜔∕2𝜋 of the applied electric field.

space charges is the mechanism behind the extreme dielectric response
of emerging polymer nanoparticulate composites. By the same token,
more generally, it also points to the manipulation of space charges at
small length scales as a promising path towards the design of materials
with exceptional macroscopic properties.
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