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A B S T R A C T

In a recent contribution, Kumar et al. (2018) have introduced a phase-field formulation and associated numerical
implementation aimed at modeling the nucleation and propagation of fracture and healing in elastomers un-
dergoing arbitrarily large quasistatic deformations, phenomena that have come into clear focus thanks to new
experiments carried out at high spatiotemporal resolution (Poulain et al., 2017; 2018). With the object of ex-
plaining the nucleation of internal fracture observed in those experiments, Kumar et al. (2018) also provided a
specific model within the general formulation that accounted for fracture nucleation at material points in the
bulk that are subject to purely hydrostatic stress. The first of two objectives of this paper is to introduce a
complete model within the general formulation that accounts for fracture nucleation at large, be it within the
bulk (under arbitrary states of stress, not just hydrostatic), from large pre-existing cracks, small pre-existing
cracks, or from smooth and non-smooth boundary points.
The second objective is to showcase the capabilities of the proposed complete model by deploying it to

simulate the nucleation and propagation of fracture in a class of conspicuous experiments, that of rubber bands
subject to tensile loading. Specifically, 3D simulations are presented of very short, short, and long rubber bands
under tension, which are representative of two famed experiments known to feature very different — and, for the
cases of the very short and the short rubber bands, very complex — types of nucleation and propagation of
fracture.

1. Introduction

Investigations of both the nucleation and propagation of fracture in
elastomers subject to externally applied mechanical loads have been
intensely pursued for over a century, but mostly as separate subjects;
see, e.g., the review articles of Busse [6] and Gent and Mars [17]. In a
recent contribution, per contra, the experiments of Poulain et al. [37,38]
have indicated that to convincingly understand both processes, it is
imperative to consider them together from a unifying point of view.
Those experiments have further revealed that fracture that nucleates
internally within the bulk of elastomers can self-heal. The process of
healing, being in a sense one and the same as the process of fracture,
must too be considered together with nucleation and propagation of
fracture on an equal footing in order to ultimately reach a complete
understanding of the fracture mechanics of elastomers.

In this context, Kumar et al. [23] have introduced a regularized

theory of fracture — of phase-field type — that views the nucleation
and propagation of fracture as well as the possibility of healing as three
intertwined parts of the same phenomenon. The theory can be thought
of as a generalization of the phase-field regularization [4,5] of the
variational theory of brittle fracture of Francfort and Marigo [11] in
that it modifies the former on two counts, one pertaining to nucleation,
the other to healing1. The generalization goes as follows.

Recall first that for a nonlinear elastic solid with stored-energy
function F( ) and critical elastic energy release rate Gc occupying an
open bounded domain 0

3 in its undeformed and stress-free con-
figuration, with boundary 0 and unit outward normalN, the standard
phase-field approximation of the variational theory of Francfort and
Marigo [11] amounts to considering the class of minimization pro-
blems, written here discretely in time for simplicity,
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with

= +b X y X t X y X(t ) ( , t )· d ( , t )· dk k k
0 0

for the deformation field y X( , t) and phase field z X( , t) within 0 at
any given discrete time = … … =+t {0 t , t , , t , t , , t T}k m m M0 1 1 . In
these expressions, 0 is the part of the boundary 0 where a
deformation y X( , t )k is prescribed, =0 0 0 is its com-
plementary part where a nominal traction t X( , t )k is prescribed,
b X( , t )k stands for a body force, F y y( ) denotes the gradient
of the deformation field >y, 0 is a regularization or locali-
zation length, and s are continuous monotonic functions such that

= = = =s s(0) 0, (1) 1, (0) 1, (1) 0, and c s z z( ) ds 0
1 is a nor-

malization parameter. Note that the phase field z takes values in [0, 1]
and that =z 1 identifies regions of the sound elastomer, whereas =z 0
identifies regions of the elastomer that have been fractured.

Although more comparisons with experiments should be carried
out, there is already strong evidence that the phase-field formulation
(1) provides an accurate description of the propagation of cracks in
elastomers under arbitrary quasistatic loading conditions, so long as
viscous dissipation is small and there is no strain crystallization so that
the behavior of the elastomers is predominantly elastic. By contrast, it is
now well understood that the phase-field formulation2 (1) cannot
properly describe fracture nucleation, irrespectively of the choice of
functions z s z( ), ( ), and value of the localization length . This is
because the formulation (1) is purely energetic and as a result it cannot
account for one essential ingredient that is not energetic, but rather
stress-based: the strength of the elastomer; see Section 3.1 in Kumar et al.
[23], Kumar et al. [25], and Section 3 below. Furthermore, the for-
mulation (1) describes fracture as an irreversible and purely dissipative
process ruling out thus the possibility of healing. Kumar et al. [23]
proposed alterations to (1) that circumvent these limitations on nu-
cleation and healing while keeping undisturbed the proven ability of (1)
to model crack propagation. Roughly speaking, the idea behind the
phase-field framework proposed in Kumar et al. [23] amounts:

• to consider the Euler–Lagrange equations of (1) — and not the
variational principle (1) itself — as the primal model,
• to add an external driving force ce in the Euler–Lagrange equation
governing the evolution of the phase field z that represents the
macroscopic manifestation of the presence of the inherent micro-
scopic defects in the elastomer and hence that brings into the model
direct dependence on its strength, and
• to remove the irreversibility constraint on the phase field z by in-
troducing a critical energy release rate or toughness with two
branches, = =k z k G( ) c if z 0 and k if >z 0, one to describe
fracture, the other to describe healing.

The precise mathematical formulation of the framework is spelled
out below in Section 2. In their original work, aimed at explaining the
nucleation of internal fracture observed in the experiments of Poulain
et al. [37,38], Kumar et al. [23] also proposed a specific constitutive
prescription for the external driving force ce that restricted attention to
accounting for the strength of the given elastomer of interest only under
hydrostatic stress. The first objective of this paper is to introduce a
complete constitutive prescription for ce that accounts for the entire

strength of the elastomer under arbitrary stress states. The resulting
phase-field model is thus one capable of describing fracture nucleation
at large, be it within the bulk (under arbitrary states of stress, not just
hydrostatic), from large pre-existing cracks, small pre-existing cracks,
or from smooth and non-smooth boundary points. This new external
driving force ce is presented in Section 4, following an instructive recap
in Section 3 of all the various ways in which fracture can nucleate in
elastomers. The second objective of this paper is to demonstrate the
capabilities of the proposed complete model by examining via full 3D
simulations its predictions for the nucleation and propagation of frac-
ture in a class of conspicuous experiments, that of rubber bands subject
to tensile loading. Specifically, Section 5 presents simulations on very
short, short, and long rubber bands of initially circular cross section.
The very short and short rubber bands correspond to the so-called
poker-chip specimens studied experimentally by many, see, e.g., the
classical works of Busse [6], Gent and Lindley [15], and Lindsey [29].
The long rubber bands, on the other hand, are representative of the
celebrated specimens — invented by Stephen Perry in the 1840s — that
most of us have used and played with since childhood.

2. The phase-field formulation of Kumar et al. (2018)

As outlined in the Introduction, the phase-field formulation of
Kumar et al. [23] is not based on a variational principle but, instead, on
a coupled system of nonlinear PDEs (partial differential equations) that
governs the evolution of the deformation field y X( , t) and the phase
field z X( , t). Those PDEs correspond to a time-continuous version of the
Euler–Lagrange equations of the variational problem (1), for the choice
of degradation and surface localization functions

= =z z s z z( ) and ( ) 1 ,2 (2)

that include the presence of an external driving force

×c X X( , t), ( , t) [0, T]e 0 (3)

in the Euler–Lagrange equation for the phase field z X( , t) and that in-
troduce a two-branch toughness featuring possibly different critical
energy release rates for fracture ( <z 0) and for healing ( >z 0):

= =
>

k z k G z
k z

( ) if 0
if 0

c

(4)

with z zX X( , t) ( , t)/ t. Precisely, taking =y X X( , 0) and
=z X( , 0) 1 and rewriting (without loss in generality) the stored-energy

function describing the elasticity of the elastomer in the form

= +W gF F F( ) ( ) ( ), (5)

the governing PDEs for y X( , t) and z X( , t) read as
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2 The same shortcoming is shared by the broader class of formulations where
only a “tensile” part + F y( ( )) of the elastic energy F y( ( )) is multiplied by
the degradation function z( ); see, e.g., Amor et al. [2], Miehe et al. [32],
Chambolle et al. [7].
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Remark 1. The degradation and surface localization functions z( ) and
s z( ). The choice of degradation function (2)1 is just one among many
possible choices. It is a choice, nonetheless, that has the advantage of
being mathematically simple and that has been tested thoroughly in the
literature. On the other hand, the surface localization function (2)2 is
not just a choice among many, but it is one with unique merits.
Specifically, beyond being mathematically simple, it leads to sharp and
localized transitions of the phase-field variable from =z 1 to =z 0 and
thus its interpretation in terms of sharp cracks is straightforward even
for a finite value of the localization length , and not only in the limit of

0; see Pham et al. [36] and Sicsic and Marigo [40]. The specific
combination (2) is sometimes labeled as AT1, AT referring to the work
of Ambrosio and Tortorelli [1] and 1 for the exponent 1 for the term

z(1 ).

Remark 2. The external driving force c X( , t)e . Physically, the external
driving force (3) represents the macroscopic manifestation of the
presence of the inherent microscopic defects in the elastomer. It is
hence the quantity that allow us to incorporate the strength of the
elastomer into the model. For clarity, the details of how this is actually
done are deferred to Section 4 below, after spelling out in Section 3 the
precise and general concept of strength alongside other basic
ingredients for the modeling of fracture nucleation in elastomers.

Remark 3. The toughness function k z( ). The first branch in the toughness
function (4) states that the propagation of fracture progresses according
to the critical energy release rate Gc of the elastomer. The second
branch, on the other hand, states that such a propagation of fracture is
not necessarily a purely dissipative and irreversible process. Instead,
cracks can heal so long as the healing toughness < k G0 c. The
classical assumption of fracture irreversibility is recovered by setting
k 0; for the “sharp-theory” view of the healing toughness k , see
Francfort et al. [12]. As elaborated in Section 3.2 of Kumar et al. [23],
the two branches in (4) can be generalized to be material functions of
the cumulative history of fracture and healing as opposed to just
material parameters. The simulations presented below do not require
such a level of generality and hence we take Gc and k to be material
parameters here.

Remark 4. The form (5) of the stored-energy function F( ) and the
parameters W and . The parameter in (5) is a non-negative material
parameter that serves to measure the compressibility of the elastomer
under investigation: it is defined such that in the limit as + , the
elastomer is incompressible and its stored-energy function reduces to

= =
+
WF F F( ) ( ) if det 1

otherwise
.

An example, to be used in the simulations presented below, is given by
the stored-energy function [30]
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where bj and µj =j( 1, 2) are material parameters and where one can
readily identify that
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and that = + +µ b µ b µ2 /3 2( )/31 1 2 2 in terms of the first and
second Lamé constants and = +µ µ µ1 2 in the limit of small
deformations. In the above expressions, the notation F F· stands for
the square of the Frobenius norm, that is, = F FF F· ij ij.

The associated parameters W and in (6) stand for small positive
numbers that serve to aid the numerical tractability of the vanishingly
small stiffness of the regions of the elastomer that have undergone

fracture. When dealing with nearly incompressible elastomers, the
compressibility parameter is typically 103 to 104 larger than the rest of
material parameters describing the elasticity of the elastomer. Thus, to
ensure that the fractured regions are indeed of vanishingly small stiff-
ness, and, in particular, “empty” of an elastic fluid, the parameter
needs to be chosen in general much smaller than W . For example, in
the simulations presented below for a typical nearly incompressible
PDMS elastomer, we set = µ( / ) W , where, again, µ stands for the
second Lamé constant or initial shear modulus of the elastomer.

Remark 5. Eqs. (6) and (7) as an approximation of a sharp theory. Much
like in the standard formulation (1), the localization length in Eqs. (6)
and (7) is just a regularization parameter that is void of any further
physical meaning. In principle, accordingly, one should undertake the
task of passing to the limit as 0 in the system of Eqs. (6) and (7),
showing that it converges to a set of equations that models nucleation
and propagation of sharp fracture and healing in elastomers. Although
numerical evidence points to the existence of such a set of equations, for
now, passing to the limit remains a formidable task because of the
technical challenges involved.

Remark 6. Eqs. (6) and (7) as an Allen–Cahn phase-transition model. As
elaborated in Kumar et al. [24], Eqs. (6) and (7) are in the parlance of
phase transitions of Allen–Cahn type, also often referred to as
Ginzburg–Landau type; see, e.g., Gurtin [19].

Precisely, Eq. (6)1 stands for the balance of Newtonian forces
driving the deformation:

+ =S b 0Div ,

while Eqs. (7)1−2 stand for the balance of configurational forces driving
the nucleation and propagation of fracture and healing:

+ + =
< < =
+ + = =

c c
z z
c c if z

C
X X

C X
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c
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c

denote the configurational internal force ci and the configurational
stress C, conjugate to the configurational variables z and z , at any
material point X 0 and time t T[0, ]. In this setting, we also note
that the external driving force ce is referred to as the configurational
external force.

By the same token, Eqs. (6) and (7) also fall squarely within the
realm of governing equations for the so-called non-local generalized
standard materials [35]. Two recent contributions that have been de-
rived within that realm for concrete-like materials and that feature an
additional driving force of the sort ce to deal with fracture nucleation
are the works of Lorentz [31] and Narayan and Anand [34].

3. Nucleation of fracture in elastomers

At this point, before proceeding with the constitutive prescription of
the external driving force c X( , t)e , it is instructive to recall all the
various ways in which fracture can nucleate in elastomers. As estab-
lished by an abundance of experimental results, macroscopic crack
nucleation in homogeneous elastomers — like in any other class of
homogeneous elastic brittle materials — falls into one of the three
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different types schematically depicted in Fig. 1: (i) nucleation in the
bulk, (ii) nucleation from large pre-existing cracks, and (iii) nucleation
from the boundary and small pre-existing cracks. We describe each of
these different types in the sequel, one at a time.

Nucleation in the bulk: the strength. Like all materials, elastomers
contain inherent defects. These are of possibly different natures, but by
and large all of them are submicron in size. When an elastomer is
subjected to a state of monotonically increased uniform stress, fracture
will nucleate from one or more of those pre-existing defects at a finite
critical value of the applied stress. The set of all such critical stresses
defines a surface in stress space. In terms of the first Piola–Kirchhoff
stress tensor S, we write it

=S( ) 0. (9)

Such a surface is intrinsic, albeit stochastic, and thus a material datum.
We refer to it as the strength surface of the elastomer.

For the prevalent case of elastomers whose elastic response is isotropic,
it is reasonable to postulate that their strength surface is also isotropic. For
those elastomers, (9) admits the expedient representations

= = =s s sS( ) ( , , ) ( , , ) 01 2 3 1 2 3 (10)

in terms of the eigenvalues s s s, ,1 2 3 of the Biot stress
= +S S R R S R( )/2,T T(1) denoting the rigid rotation stemming from the

polar decomposition =F RU of the deformation gradient, and associated
principal invariants

=
=

=

S
S S

S

tr ,
[(tr ) tr( ) ],

det .

1
(1)

2
1
2

(1) 2 (1) 2

3
(1) (11)

In practice, it is difficult to carry out experiments that probe the
entire space of uniform stresses in order to measure the entire strength
surface (9) or even (10) of a given elastomer of interest. Most of the
strength data available in the literature is narrowly restricted to uni-
axial tensile strength sts (when = sS diag( , 0, 0)ts with >s 0ts ), hydro-
static tensile strength shs (when = s s sS diag( , , )hs hs hs with >s 0hs ), and,
to a lesser extent, biaxial tensile strength sbs (when = s sS diag( , , 0)bs bs
with >s 0bs ); see, e.g., Smith [41], Smith and Rinde [42], Dickie and
Smith [8], Gent and Mars [17], and Poulain et al. [37,38].

Remark 7. Strength surfaces in other stress spaces. Because of the scarcity
of experimental results, it is unclear what measure of stress — whether
the first Piola–Kirchhoff stress S, the second Piola–Kirchhoff stress

=S F S(2) 1 , the Cauchy stress =T F SF(det ) T1 , or some other stress
measure — is more convenient to describe the strength of elastomers. In

this work, we choose the first Piola–Kirchhoff stress S because it is the
stress measure naturally present in the governing Eqs. (6) and (7) and,
moreover, it is the easiest to access experimentally.

Nucleation from large pre-existing cracks: the critical energy release.
When the domain under investigation contains a large3 pre-existing
crack, fracture may nucleate from the crack front. In other words, the
pre-existing crack may propagate. Experimental results have by now
settled that the nucleation of fracture from large cracks in elastomers is
well described by the Griffith [18] competition between bulk elastic
energy and surface fracture energy; see, e.g., Rivlin and Thomas [39]
and Extrand and Gent [10]. Roughly speaking, fracture may nucleate
from a large pre-existing crack whenever the criterion

=E Gc (12)

is satisfied, namely, whenever the change in potential energy E in the
structure with respect to an added surface area to the crack reaches
the critical elastic energy release rate Gc of the elastomer.

Nucleation from the boundary and small pre-existing cracks: the tran-
sition zone. Fracture nucleation from a boundary point, be it smooth or
sharp, or a small pre-existing crack in an elastomer is quantitatively less
well understood than that taking place in the bulk or from large pre-
existing cracks. Qualitatively, nevertheless, it is well established that
fracture nucleation from those sites is governed by the mediation be-
tween the strength (9) of the elastomer and the Griffith competition
(12) between its bulk elastic energy and surface fracture energy.

The three basic material inputs for the modeling of fracture nucleation:
F S( ), ( ), and Gc. Summing up, it is plain from the above that any

attempt at a comprehensive macroscopic theory of fracture nucleation
in elastomers should account for the stored-energy function F( ) de-
scribing their elasticity, the strength surface S( ) describing the nu-
cleation of fracture in their bulk, and the critical energy release rate Gc
describing nucleation of fracture from the large pre-existing cracks that
they may contain. In addition, any such attempt should account for a
proper mediation between nucleation in the bulk and from large pre-
existing cracks so as to describe properly nucleation of fracture from
boundary points and small pre-existing cracks.

The standard phase-field formulation (1) accounts for F( ) and Gc,
but not for S( ). This is why the approach provides a good description
of fracture nucleation from large pre-existing cracks, but cannot prop-
erly describe when fracture nucleation occurs in the bulk, from
boundaries, or from small cracks. To be precise, in the limit as the lo-
calization length 0, the formulation (1) predicts critical loads at
nucleation from large pre-existing cracks that are at worst only a few
tens of a percent larger4 than the corresponding exact solutions based
on the Griffith criterion (12). On the other hand, the formulation (1)
incorrectly predicts that the critical applied loads at which fracture
nucleates in the bulk, from boundaries, or from small cracks will in-
crease to infinity as the length5 0, this for any choice of z( ) and
s z( ).

The presence in the phase-field formulation (6) and (7) of the

Fig. 1. Schematic of a structure made of a homogeneous elastomer under
general quasistatic boundary conditions. Fracture may nucleate: (i) at material
points in the bulk, (ii) from large pre-existing cracks, or (iii) from the boundary,
be it smooth or sharp, or small pre-existing cracks. Fracture nucleation in the
bulk is governed by the strength of the elastomer. On the other hand, fracture
nucleation from large pre-existing cracks is governed by the Griffith competi-
tion between the material bulk elastic energy and surface fracture energy.
Finally, fracture nucleation from the boundary and from small pre-existing
cracks is governed by the interaction among all three properties of the elas-
tomer: its strength, its bulk elastic energy, and its surface fracture energy.

3 “Large” refers to large relative to the characteristic size of the inherent
microscopic defects in the elastomer under investigation. By the same token,
“small” refers to sizes that are of the same order or just moderately larger than
the sizes of the inherent defects.
4 For a discussion on the use of “damaged notch conditions” along the front of

pre-existing cracks as a practical approach to minimize this overshoot, see, e.g.,
Tanné et al. [44].
5 Fixing the value of to some “physically meaningful” length, as advocated

recently in the literature, does not circumvent the problem. Just to mention one
issue, fixing the value of to match fracture nucleation in the bulk under
uniaxial tension according to a given tensile strength sts (or to any other single
strength data point for that matter) would arbitrarily privilege a single point on
the strength surface while ignoring the rest of that surface; see Section 3.1 in
Kumar et al. [25].

A. Kumar and O. Lopez-Pamies Theoretical and Applied Fracture Mechanics 107 (2020) 102550

4



stored-energy function F( ) and the critical energy release rate Gc is
directly inherited by construction from the standard phase-field for-
mulation (1). As anticipated in Remark 2 and elaborated in the next
section, the strength surface S( ) enters the formulation (6) and (7) via
the external driving force c X( , t)e . Once the strength surface S( ) has
been accounted for via c X( , t)e , the phase-field formulation (6) and (7)
provides automatically for a proper mediation between the Griffith-
dominated and the strength-dominated fracture nucleation regimes.
This built-in feature is illustrated by an example in the next section.

4. The constitutive prescription of the external driving force
c X( , t)e for isotropic elastomers

We are now in a position to delve into the details of how to con-
stitutively prescribe the external driving force c X( , t)e in order to in-
corporate a given strength surface S( ) into the phase-field formulation
(6) and (7). For clarity of exposition, we restrict the presentation to the
prominent class of elastomers with overall constitutive isotropy, and
within this class, elastomers featuring (with a slight abuse of notation)
stored-energy functions of the form6

= +W I J g JF( ) ( , ) ( )1 (13)

and strength surface of the form

= =S( ) ( , ) 0.1 2 (14)

In relation (13), the arguments I1 and J stand for the first and the square
root of the third principal invariants of the right Cauchy-Green de-
formation tensor =C F FT , namely,

=
=
= =

I
I
I J

C
C C

C

tr ,
[(tr ) tr ],

det ,

1

2
1
2

2 2

3
2 (15)

the function W I J( , )1 is taken to satisfy the linearization conditions

= + =W W W(3, 1) 0, 2 (3, 1) (3, 1) 0,I J1

where we have introduced the notation W I J W I J J( , ) ( , )/I 1 11 and
W I J W I J J( , ) ( , )/J 1 1 for simplicity, and growth condition

+W I J CI F( , ) asp
1 1

/2 (16)

for some real exponent >p 1 and positive constant C, while the func-
tion g J( ) is taken to satisfy the linearization conditions

= =g g(1) (1) 0.

In this last expression and subsequently, the standard convention
=y x y x x( ) d ( )/d is used to denote the derivative of functions of a single

scalar variable.

4.1. The constitutive prescription of Kumar et al. [23] to account for the
hydrostatic strength shs

Prior to introducing the general constitutive prescription for c X( , t)e
that accounts for the entire strength surface (14), it is appropriate to
recall that introduced by Kumar et al. [23], which accounts only for the
strength of the elastomer under hydrostatic tensile loading.

Because of their typical near incompressibility, elastomers are prone
to fracture within the bulk in regions where the hydrostatic part of the

stress is tensile and large while, at the same time, the elastic energy is
comparatively small (because the deformation is small). This con-
sistently happens around regions of the elastomer that are bonded to
stiff fillers or substrates; see, e.g., the analysis presented by Lefèvre
et al. [27] of the classical experiments of Gent and Lindley [15] and
Gent and Park [16]. In order to be able to describe nucleation of frac-
ture in those regions, one must therefore account for the hydrostatic
tensile strength of the elastomer, that is, for the critical value shs of the
stress s at which fracture nucleates in the elastomer when this is sub-
jected to states of uniform stress of the form = s s sS diag( , , ) with >s 0.
To do so, Kumar et al. [23] proposed the following external driving
force

=c z
I

g JX( , t) 3 ( ).
p

pe
/2

1
/2 (17)

Here, the term g J( ) corresponds to the hydrostatic part T(1/3)tr of
the Cauchy stress = JT SFT1 associated with the compressibility
parameter , where =S F F( )/ . The preceding quotient is a nor-
malized measure of stretch, which takes the value of 1 in the absence of
stretch when +OrthF . For large stretches, the quotient — and hence
the force ce — approaches zero with the inverse of the norm I p

1
/2, which

controls the growth (16) of the elastic energy at large stretches. The
dimensionless coefficient is given by the formula (see the Appendix
in [23])

=
g

G W g
( )

3
8

2 (3 , ) 2 ( )
p

chs

hs
3 hs

2
hs
3

hs
3

(18)

with hs defined implicitly as the smallest root larger than 1 of the
nonlinear algebraic equation

= + +s W W g2 (3 , ) (3 , ) ( ),I Jhs hs hs
2

hs
3

hs
2

hs
2

hs
3

hs
2

hs
3

1 (19)

where, again, shs stands for the hydrostatic tensile strength of the given
elastomer.

Remark 8. The case of nearly incompressible elastomers. In the limit of
incompressibility as + , the nonlinear algebraic Eq. (19) admits
the explicit asymptotic solution

= + +s
g

O1
3 (1)

1 .hs
hs

2

In turn, the expression (18) for the coefficient reduces to leading
order to the fully explicit expression

= G
s
3

8
.c

hs

Remark 9. Stochasticity of the hydrostatic strength shs. The value of the
hydrostatic strength shs is not expected to be constant throughout the
domain 0 occupied by the elastomer but, instead, to take spatially
random heterogeneous values in some range s s[ , ]min max

hs hs . This is because
the strength at a macroscopic material point X depends on the nature of
the underlying microscopic defects from which fracture initiates, and
this is known to exhibit a stochastic spatial variation in any given piece
of elastomer; see, e.g., Gent [13].

Remark 10. Predictive capabilities. The direct comparisons reported by
Kumar et al. [23],[24] with the experiments of Poulain et al. [37,38] on
three different types of PDMS elastomers have shown that the external
driving force (17) renders a phase-field model (6) and (7) capable of
accurately predicting fracture nucleation at material points in the bulk
that are subject to a purely hydrostatic stress.

6 We emphasize that the development presented in this section applies mutatis
mutandis to any isotropic stored-energy function of choice. Our restriction to
stored-energy functions of the form (13) is based purely on clarity of pre-
sentation. From an applications point of view, we also emphasize, however,
that stored-energy functions of the form (13) include many models — such as
the Neo-Hookean [45], Arruda and Boyce [3], Gent [14], and Lopez-Pamies
[30] models — which have been shown to describe reasonably well the re-
sponse of a broad variety of elastomers.
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4.2. A constitutive prescription that accounts for the entire strength surface
( , )1 2

We now turn to the new constitutive prescription for the external
driving force c X( , t)e that generalizes (17) to account for the entire
strength surface (14) of the elastomer.

As alluded to earlier, the strength surface (14) of a given elastomer
of interest is at best only known at a few select points in stress space.
Mostly, only the uniaxial tensile strength sts and the hydrostatic tensile
strength shs may be freely available in the literature. So in practice one
must resort to the use of a model to extrapolate the available strength
data to the entire stress space.

In the sequel, for definiteness, we present a constitutive prescription
for the external driving force c X( , t)e for the case when the given
strength surface (14) is of the Drucker-Prager type

= + + =( , )
3

0,1 2
1
2

2 1 1 0 (20)

where 0 and 1 stand for material parameters; in their original work,
Drucker and Prager [9] proposed a surface of the form (20) to model
the yielding of soils. When the material parameters 0 and 1 are cali-
brated with the uniaxial tensile and hydrostatic tensile strengths, they
read as

= =s s
s s

s
s s

3
3

and
3 (3 )

.0
hs ts

hs ts
1

ts

hs ts (21)

By way of an example, Fig. 2 presents plots of the strength surface (20)
with material parameters (21) for the values =s 0.41ts MPa and

=s 0.50hs MPa, which are representative of one of the six different types
of PDMS Sylgard 184 elastomers7 investigated by Poulain et al. [37,38],
specifically, the one labeled PDMS 30:1. Fig. 2(a) shows the entire
strength surface in the space of principal stresses s s s( , , )1 2 3 . Fig. 2(b)
shows the strength surface in the projected space s s( , )1 2 with =s s3 2 and
singles out the values of the uniaxial tensile strength sts and the hy-
drostatic tensile strength shs.

Now, in a companion contribution, Kumar et al. [25] have provided
a road map that allows one to construct an external driving force
c X( , t)e for any given strength surface in the basic context of linear

elastic brittle materials. Roughly speaking, the idea is to choose an
external driving force that:

• has identical functional form as the given strength surface but whose
coefficients are -dependent and suitably selected so that, in the
limit as the localization length 0, the resulting phase-field model
(6) and (7) predicts fracture nucleation in the bulk exactly according
to the given strength surface, and
• features a suitably selected prefactor that makes the force vanish at
crack fronts so that the resulting phase-field model (6) and (7)
predicts a propagation of fracture that is undisturbed by the pre-
sence of such a force and hence remains governed by the critical
energy release rate Gc.

The same two-pronged idea applies mutatis mutandis to the hyper-
elastic brittle materials of interest here. Accordingly, following Kumar
et al. [25], a constitutive prescription for c X( , t)e that accounts for the
strength surface (20) is given by

= =
+

+ +c cX( , t) ( , ; ) 1
1 3

,e e 1 2
3 1

2 2
1
2

2 1 1 0
(22)

where 1 and 2 are the principal invariants (11)1,2 of the Biot stress
tensor associated with the given stored-energy function (13) and the
degradation function (2)1, namely,

= + +z W I J JW I J Jg JS U U U[2 ( , ) ( , ) ( ) ],I J
(1) 2

1 1
1 1

1 (23)

and where the coefficients , ,0 1 2 , and 3 are given by

=

= + +

= + + +

=

+

+( )
( )

( )
( )

( )
( ) ,

,

,

.

µ
s

G

µ s
s s

G
s

s s
µ

s s
µ G

µ s s s
s s

G s s s
µ

s s
s s

s s s
µ G

s
µ G

0
3
8

1 3
3
8

2
3

9
8

6

2
( )(3 )

3
3
8

3 3 (3 )
8

6 2
3

2 3 ( 3 )

3

c

c
c

c

c

c

ts

ts
ts hs

hs
hs

ts hs ts hs hs

ts hs ts

hs ts
2

hs ts ts hs ts ts hs
hs ts

ts ts ts hs hs

ts
(24)

In these last expressions, is an -dependent coefficient whose selec-
tion is described further below while ts and hs stand for the values
of the stored-energy function (13) along uniaxial and hydrostatic tensile
uniform stress states at which fracture nucleates in the given elastomer.
Precisely,

Fig. 2. Strength surface (20) with material parameters (21) for =s 0.41ts MPa and =s 0.50hs MPa, which are representative of a PDMS elastomer. (a) Plot of the entire
surface in the space of principal stresses s s s( , , )1 2 3 . (b) Plot of the surface in the space of principal stresses s s( , )1 2 with =s s3 2.

7 It is worth noting here that PDMS Sylgard 184 elastomers, supplied by Dow
Corning, have long been utilized in a variety of research and practical contexts;
see, e.g., Gent and Park [16], Johnston et al. [22], Milner et al. [33], and
Leonard et al. [28].
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= + +
= +

W g
W g

( 2 , ) ( ),
(3 , ) ( ),

l l lts ts
2 2

ts
2

ts
2

hs hs
2

hs
3

hs
3

where the pair of stretches ( , lts ) and the stretch hs are defined
implicitly as the roots closest to (1,1) and 1 of the systems of nonlinear
algebraic equations

= + + + +
= + + +

+

s W W g
W W

g

2 ( 2 , ) ( 2 , ) ( )
0 2 ( 2 , ) ( 2 , )

( )

I l l l J l l l l

l I l l l J l l

l l

ts ts ts
2 2

ts
2 2

ts
2 2

ts
2 2

ts
2

ts
2 2

ts
2

ts ts
2 2

ts
2

ts ts
2

1

1

(25)

and

= + +s W W g2 (3 , ) (3 , ) ( ),I Jhs hs hs
2

hs
3

hs
2

hs
2

hs
3

hs
2

hs
3

1 (26)

respectively.

Remark 11. Explicit dependence on the deformation field y X( , t) and the
phase field z X( , t). A straightforward calculation shows that the
invariants (11)1,2 of the Biot stress (23) entering the constitutive
prescription (22) for the external driving force c X( , t)e can be
compactly written as

= + +z i W I J z i W I J g J2 ( , ) ( ( , ) ( ))I J1
2
1 1

2
2 11

and

= + + +
+

z i W I J z i J W I J g J
z i i J W I J g J W I J

4 ( , ) ( ( , ) ( ))
2 ( 3 )( ( , ) ( )) ( , )

I J

J I

2
4

2
2

1
4

1 1
2

4
1 2 1 1

1

1

in terms of the principal invariants (15) of the right Cauchy-Green
deformation tensor C and of the first and second principal invariants of
the right stretch tensor U:

= =i iU U Utr and 1
2

[(tr ) tr ].1 2
2 2

(27)

Recalling that the invariants (27) ofU can be written explicitly in terms
of the invariants (15) of C permits to circumvent having to carry out
(numerically) the polar decomposition of the deformation gradient
tensor F and, in turn, to write explicitly the dependence of the external
driving force (22) on the deformation field y X( , t). Note that the
dependence of (22) on the phase field z X( , t) is explicit as well. For
completeness, we report here the explicit connections between i i,1 2
and I I J, ,1 2 :

=
+ + +

+ =

= +

+i
I I I

I I I

i I i J

2 2 if 2

2 if 2

2

,

J
I

1

1
2 1 3 1 3

16
2 3 1

1 2 3 1

2 2 1

1 3

(28)

where

= + + +I2
3

( ) ( )3 1 1 2
1/3

1 2
1/3

with

= +

= + +

I I I J

I I I I J I I J J

(2 9 27 ) and

(4 4 18 27 );

1
2
27 1

3
1 2

2

2
2
27 2

3
1
2

2
2

1
3 2

1 2
2 4

5

10

see Hoger and Carlson [20] and Steigmann [43].

Remark 12. The material inputs entering the external driving force (22).
The external driving force (22) with coefficients (24) depends on the
stored-energy function (13) describing the elasticity of the elastomer
via the parameters µ, , ,ts hs, on the material parameters s s,ts hs
describing its strength surface (20), as well as on its critical energy

release rate Gc. It is fully explicit up to the evaluation of the quantities
,ts hs, which requires the numerical solution of the nonlinear

algebraic Eqs. (25), (26), and the prescription of the coefficient ,
which is described in Section 4.2.2 below.

4.2.1. Nucleation in the bulk
Under states of uniform stress S, the phase-field model (6) and (7)

with external driving force (22) and coefficients (24) predicts that the
phase field z ceases to be identically 1 and localizes near 0 whenever
the algebraic equation8

= + =W I J g J c G( , , ) 2 ( , ) 2 ( ) ( , ; ) 3
8

0c
1 2 3 1 e 1 2 (29)

is satisfied, where , ,1 2 3 stand for the invariants (11) of the Biot
stress S(1) associated with the applied uniform first Piola–Kirchhoff
stress S and where the arguments I1 and J in the energetic termsW and g
are given in terms of these stress invariants by the implicit relations

+ + =
+ + + + =

+ + + + +

+ =

i W I J i W I J g J
i W I J i J W I J g J i i J W I J g J W I J

JW I J J W I J g J i i W I J g J W I J

i i J W I J g J W I J

2 ( , ) ( ( , ) ( )) ,
4 ( , ) ( ( , ) ( )) 2( 3 )( ( , ) ( )) ( , ) ,

8 ( , ) ( ( , ) ( )) 4( 2 )( ( , ) ( )) ( , )

2( 2 ) ( ( , ) ( )) ( , ) ;

I J

I J J I

I J J I

J I

1 1 1 2 1 1

2 1
2

1 1 1 2 1 2 1 1 1 2

1
3

1 2 1 3 2
2

1 1 1
2

1

1
2 2 1 2

1 1 3

(30)

recall that the invariants i1 and i2 are given in terms of I I,1 2, and J by
expressions (28). Id est, Eq. (29) defines the strength surface — in the
space of first Piola–Kirchhoff stresses — predicted by the phase-field
model. In the limit as the localization length 0, assuming rather
generally that the asymptotic behavior of the coefficient is taken to
be of the form = + + + …+ +r r r

0 1
1

2
2 for some >r 0, it is a

simple matter to establish that Eq. (29) reduces asymptotically to

= + + =+
µG

s
( , , ) 3

8 3
0c

r1 2 3
0

ts 0
1

1
2

2 1 1 0

to leading order, where we recall that the material parameters ,0 1 are
given by expressions (21). Id est, the strength surface (29) predicted by
the phase-field model (6) and (7) with external driving force (22) and
coefficients (24) agrees identically with the given strength surface (20) of
the elastomer in the limit as 0, this for any choice of the coefficient
with the asymptotic behavior indicated above. For finite values of ,

moreover, the strength surface (29) predicted by the phase-field model
provides an approximation for the given strength surface (20) that — by
construction — has the merit to agree identically with it along uniaxial
and hydrostatic tension, namely, when = = =s , 01 ts 2 3 and

= = =s s s3 , 3 ,1 hs 2 hs
2

3 hs
3 , respectively. This agreement is possible

for any value of the coefficient and any value of the localization
length thanks to the choice of corrections of O (1) and O ( ) in the
expressions (24)2−3 for the coefficients 1 and 2 .

Remark 13. The case of nearly incompressible elastomers. In the limit of
incompressibility as + , it is straightforward to show that the
implicit relations (30) reduce asymptotically to the partially explicit
expressions

8 Note that condition (29) is nothing more than the right-hand side of the
evolution Eq. (7)1 for the phase field z evaluated at =z 1 with <z 0 and set to
zero. For a discussion of its physical meaning as a stability condition, we refer
the interested reader to Appendix B in Kumar et al. [25].
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2)

2
2 1 1 1

4( 1
3 3 1 2 1

2
2
2

2
3)

2
2 1

2
1

1
2

1
3

2
3

2(3 1 1
2 2 2 2

2)

2
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2
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2
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3

1
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4)

2
3 1
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1
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(31)

and, in turn, that the strength surface (29) predicted by the phase-field
model reduces to

= =W I c G( , , ) 2 ( , 1) ( , ; ) 3
8

0c
1 2 3 1 e 1 2

to leading order, where the argument I1 in the energetic termW is given
now in terms of the stress invariants , ,1 2 3 by the implicit relations
(31)2,3.

Remark 14. Stochasticity of the strength material parameters sts and shs. As
already pointed out in Remark 9 in the context of the basic external
driving force (17), the values of the strength material parameters sts and
shs in the external driving force (22) with (24) are not expected to be
constant throughout the domain 0 occupied by the elastomer, but to
take spatially random heterogeneous values in some ranges s s[ , ]min max

ts ts
and s s[ , ]min max

hs hs . Once more, this is because the strength at a
macroscopic material point X depends on the specifics of the
underlying microscopic defects from which fracture initiates, and
these exhibit a stochastic spatial variation in any given piece of
elastomer.

4.2.2. Nucleation from large pre-existing cracks: The selection of the
coefficient

The preceding subsection has established that the phase-field model
(6) and (7) with external driving force (22) and coefficients (24) pre-
dicts fracture nucleation in the bulk according to the strength surface
(20) of the given elastomer, this for any choice (within a very large
class) of the coefficient . It turns out, however, that the value of
does affect when the phase-field model predicts nucleation from large
pre-existing cracks and hence must be calibrated accordingly.

In order to determine the correct value of for a given set of
material function +W I J g J( , ) ( )1 and parameters s s G, , cts hs and a
given localization length , one must consider and solve a boundary-
value problem for which the nucleation from a large pre-existing crack
is determined first according to the Griffith criterion (12) and then have
the phase-field model (6) and (7) with external driving force (22) and
coefficients (24) match that solution thereby determining .

Among plenty of possible boundary-value problems to choose from,
because of its computational and experimental accessibility, one nat-
ural candidate is the so-called “pure shear” test introduced by Rivlin
and Thomas [39]. As schematically illustrated by Fig. 3(b), the spe-
cimen in this test consists of an elastomer sheet of initial height l0 and
much larger width w0 that contains a large pre-existing crack, of length
a say, on one of its sides along its centerline. The sheet is clamped on its
top and bottom and subject to a prescribed displacement u. It is indeed
a simple matter to solve this problem numerically9 — for instance, via
finite elements — to determine the critical value ucr of the applied
displacement u at which the crack will propagate according to the
Griffith criterion (12). It is equally straightforward to carry out the
corresponding experiment with conventional equipment.

For demonstration purposes and later use in the simulations

presented in Section 5, Fig. 3(a) reports the computed value of the
coefficient for which the phase-field model (6) and (7), with external
driving force (22) and coefficients (24), predicts the same critical dis-
placement ucr as the Griffith criterion (12) at which the crack propa-
gates in the “pure shear” test of a PDMS elastomer. Specifically, the
results are presented as a function of the localization length and
correspond to computations for a specimen with initial height =l 100
mm, width =w 500 mm, and crack length =a 10 mm made
of a 2-mm-thick sheet of elastomer featuring stored-energy
function (8) with elastic material parameters =µ 0.031921 MPa,

= =b µ1.39107, 0.018571 2 MPa, = = + =b µ µ1.02103, 10 ( )2
3

1 2
50.49 MPa, strength material parameters =s 0.41ts MPa, =s 0.50hs MPa,
and critical energy release rates =G 20c J/m2 and =k 0, material
properties which are representative of the PDMS 30:1 elastomer in-
vestigated by Poulain et al. [37,38]. For completeness, we summarize in
the Appendix the calibration process behind the above-listed material
parameters for the PDMS 30:1 elastomer.

We close this subsection by emphasizing that the value of ob-
tained in the above-outlined procedure is independent of the size and
type of boundary-value problem chosen to match the prediction from
the phase-field model with that of the Griffith criterion. In other words,
the coefficient can be thought of as an -dependent material para-
meter.

Remark 15. Stochasticity of the coefficient . When calibrated for
strength material parameters sts and shs taking stochastic values in
some ranges s s[ , ]min max

ts ts and s s[ , ]min max
hs hs , the coefficient will not be

constant but, instead, will inherent some of the stochasticity of the
strength material parameters. Numerical tests suggest, however, that
the use of a constant value of fitted to the average strength surface
suffices for all practical purposes (so long as none of the ranges
s s s s[ , ], [ , ]min max min max

ts ts hs hs is exceedingly large).

4.2.3. Nucleation from the boundary and small pre-existing cracks
The two preceding subsections have established that the phase-field

model (6) and (7) with external driving force (22) and coefficients (24),
granted the appropriate calibration of , predicts fracture nucleation in
the bulk according to the strength surface (20) and from large pre-ex-
isting cracks according to the Griffith competition between bulk elastic
energy and surface fracture energy (12), as desired. As remarked at the
conclusion of Section 3, such a phase-field model provides auto-
matically for a proper mediation between fracture nucleation in the
bulk and from large pre-existing cracks and is thus able to describe
fracture nucleation from boundary points and small pre-existing cracks
without any further calibration. We illustrate this built-in property by
means of an example.

For possible comparison with experiments, we consider the problem
of a 1-mm-thick sheet of the same PDMS elastomer considered in Fig. 3,
with 15 mm initial height and 5 mm initial width embedding a crack on
one of its sides along its centerline, that is clamped on its top and
bottom and subject to a prescribed displacement u; see Fig. 4(a) for a
schematic. Fig. 4(b) reports the critical stress scr predicted by the phase-
field model at which the crack starts propagating in such a test; in terms
of the critical value Pcr of the force P predicted by the model, the stress
is given by = ×s P /(1 mm 5 mm)cr cr . The results are plotted as a function
of the size a of the crack for three decreasing values of the localization
length, = 3.5, 2.0, and 0.5 µm. The corresponding values of the
coefficient can be read off Fig. 3(a). They are = 1933, 108, and

0.95, respectively.
Two main observations are clear from Fig. 4. First, the proposed

phase-field model captures correctly — at least in a qualitative sense —
the transition from the strength-dominated fracture ( =( , ) 01 2 ) to
the critical-energy-release-rate-dominated fracture ( =E G/ c). In-
deed, the results show that fracture nucleation from pre-existing cracks
that are smaller than some threshold size, in this case roughly =a 1.5

9 For the case of incompressible elastomers, Rivlin and Thomas [39] provided
an approximate formula for ucr , which is very simple, albeit implicit, and
happens to be independent of the length a of the pre-existing crack. In the
present notation, their formula reads + + =W l G( 1, 1)cr cr c

2 2
0 with

= + u l1 /cr cr 0.
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µm, is governed by the strength of the elastomer, while fracture nu-
cleation from pre-existing cracks that are larger than some other
threshold size, in this case roughly =a 25 µm, is governed by the cri-
tical energy release rate of the elastomer. Fracture nucleation from pre-
existing cracks featuring sizes between those thresholds is governed by
some interpolation, in accordance with experimental observations.

The second main observation from Fig. 4 is that the phase-field
solutions for different values of the localization length are qualita-
tively very similar to one another and seem to converge as decreases.

4.2.4. Crack propagation
The three preceding subsections have established that the presence

of the external driving force (22), with coefficients (24) and a properly
calibrated value of , in the governing Eqs. (6) and (7) renders a phase-
field model capable of modeling nucleation of fracture in the bulk, from
large pre-existing cracks, as well as from boundary points and small
pre-existing cracks in isotropic elastomers undergoing arbitrarily large

quasistatic deformations. In this final subsection, we show that the
presence of such an external driving force does not interfere with the
propagation of fracture in the sense that the proposed phase-field model
(6) and (7) predicts the same crack propagation as the standard phase-
field model (1), and hence the same crack propagation as that dictated
by the Griffith competition between bulk elastic energy and surface
fracture energy. We do so by means of an example.

A convenient boundary-value problem to investigate how a given
phase-field model describes the propagation of cracks is the “surfing”
boundary-value problem introduced by Hossain et al. [21] in the con-
text of linear elastic materials. The basic idea consists in subjecting a
long strip of the material of interest with a pre-existing crack on its side
to a suitably selected deformation boundary condition that makes the
pre-existing crack propagate at a prescribed “velocity” V. Consider
hence the 0.02-mm-thick strip of elastomer schematically depicted in
Fig. 5(a), with 0.5 mm initial width and 0.1 mm initial height, em-
bedding an edge crack of initial length =a 0.05 mm along its centerline
in the e1 direction. In order to make the crack propagate at a prescribed
“velocity” V, we subject the top ( =X 0.052 mm) and bottom ( =X 0.052
mm) boundaries of the strip to a deformation of the form

= +

=
>

y X u

u u X V X
u X V X

X X

X

( , t) ( , t) with

( , t) t ( t*, ) if 0 t t*
t* ( t, ) if t t*

.

2 2 2

2
1 2

1 2 (32)

That is, from the initial time =t 0 up to t*, the deformation is ramped
up to the point at which there is nearly enough elastic energy in the
strip for the pre-existing crack to start propagating. For times >t t*, the
applied deformation is then simply “translated” along the e1 direction
with the “velocity” V. The particular form of the function u in (32) is
not critically important. Here, for definiteness, we make use of

=u X V X A X V
d

X( t, )
2

1 tanh t sgn( ),1 2
1

2 (33)

where A and d are constants, which is one of the forms utilized by
Hossain et al. [21].

Fig. 5 shows results for the crack propagation in the strip as pre-
dicted by the proposed phase-field model for the choice of parameters

=V 0.2 mm, = =At* 1.0, 0.15 mm, =d 0.05 mm in the applied de-
formation (32) with (33). The results pertain to the same PDMS elas-
tomer considered above and the same three decreasing values of the
localization length = 3.5, 2.0, and 0.5 µm considered in Fig. 4. Spe-
cifically, Fig. 5(c) reports the evolution of the energy release rate G in
the strip, obtained by calculating the J-integral over the boundary of
the strip, while Fig. 5(d) shows the associated crack length a, both as
functions of the time t parameterizing the applied load. For

Fig. 4. (a) Schematic of the boundary-value problem (thickness 1 mm) used to
illustrate the built-in capability of the phase-field model (6) and (7), with ex-
ternal driving force (22) and coefficients (24), to describe fracture nucleation
from a small pre-existing crack. (b) The critical stress scr predicted by the phase-
field model, for three decreasing values of the localization length , at which the
pre-existing crack starts propagating in the boundary-value problem depicted in
(a). The results are plotted as a function of the size a of the crack and pertain to
the same PDMS elastomer considered in Fig. 3. For direct comparison, the
limiting results for fracture nucleation occurring based on the strength criterion
( =( , ) 01 2 ) and on the critical energy release rate criterion ( =E G/ c)
are also included.

Fig. 3. (a) The value of the coefficient for a PDMS elastomer, plotted as a function of the localization length and determined by matching the prediction of the
phase-field model (6) and (7), with external driving force (22) and coefficients (24), with that of the Griffith criterion (12) for the critical displacement ucr at which
the pre-existing crack in the “pure shear” test schematically depicted in (b) starts propagating.
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completeness, Fig. 5(b) shows contour plots of the phase field z in the
undeformed and deformed configurations at =t 2, when the crack has
grown to a length of =a 0.23 mm, for the simulation with localization
length = 2.0 µm.

The two main observations from Fig. 5(d) are that the pre-existing
crack starts propagating at about = =t t* 1 and that by around =t 1.2
subsequent loading results in its “steady-state” propagation at the
prescribed constant “velocity” =V 0.2 mm, irrespectively of the value
of the localization length . The main observation from Fig. 5(c) is that
the “steady-state” propagation of the crack for >t 1.2 is associated with
a constant value of the energy release rate G that is roughly equal to the
critical energy release rate Gc. More specifically, all three localization
lengths deliver values of G that are within 5% of Gc to which they
appear to converge as decreases, confirming that the phase-field
model (6) and (7) with external driving force (22), coefficients (24),
and a properly calibrated value of - predicts the same crack propa-
gation as that dictated by the Griffith competition between bulk elastic
energy and surface fracture energy, as desired.

5. 3D simulations of rubber bands under tension

In this last section, we showcase the capabilities of the proposed
phase-field model (6) and (7), with external driving force (22) and
coefficients (24), to describe the nucleation and propagation of fracture
in rubber bands subject to tensile loading.

Specifically, as schematically depicted by Fig. 6, we consider rubber
bands of circular cross- with initial diameter =d 20 mm and three
different initial lengths = =l d /35 0.0570 0 mm, = =l d /13.3 0.150 0 mm,
and = × =l d20 400 0 mm. The bands are stretched by bonding their
top and bottom boundaries to rigid plates which are pulled apart by a

prescribed displacement u. The corresponding force required to do so is
denoted by P. For consistency with the experimental literature, the
results below are presented in terms of the “global” stretch and the
“global” nominal stress s, which are defined in terms of u and P by the
relations = + u l1 / 0 and =s P d4 /( )0

2 .
These particular types of geometries and boundary conditions are

selected because they are representative of two famed experiments that
are known to feature very different — and, for the cases of the very
short and the short rubber bands, very complex — types of nucleation
and propagation of fracture. Precisely, the very short ( =l d /350 0 ) and
the short ( =l d /13.30 0 ) rubber bands are representative of thin and
thick specimens used in the so-called poker-chip experiment; see, e.g.,
Busse [6], Gent and Lindley [15], and Lindsey [29]. On the other hand,
the long ( = ×l d200 0) rubber band is representative of specimens used
in measuring tensile strength [41], which in turn, are representative of
the celebrated rubber bands invented by Stephen Perry in the 1840s.

We emphasize that in this first deployment of the model, our goal is
not to confront its predictions directly with experimental data, but to
illustrate that the very different ways in which rubber bands can break
depending on their geometry are all well described by the model. Direct
quantitative comparisons with experiments, including the classical
poker-chip experiments of Gent and Lindley [15] as well as new ex-
periments of our own, will be reported elsewhere.

All three rubber bands are taken to be made of the same PDMS 30:1
Sylgard 184 elastomer considered in Figs. 3 and 4. Accordingly, their
elasticity is characterized by the stored-energy function (8) with ma-
terial parameters =µ 0.031921 MPa, = =b µ1.39107, 0.018571 2 MPa,

=b 1.021032 , and = + =µ µ10 ( ) 50.493
1 2 MPa. Their strength is

taken to be characterized by the surface (20) with parameters (21) for
constant uniaxial tensile strength =s 0.41ts MPa and spatially random

Fig. 5. Propagation of a crack along a straight path in a mode–I “surfing” boundary-value problem as predicted by the phase-field model (6) and (7) with external
driving force (22) and coefficients (24). (a) Schematic of the “surfing” boundary-value problem (thickness 0.02 mm) for the boundary condition (32) and (33) with

=V 0.2 mm, = =t A* 1.0, 0.15 mm, and =d 0.05 mm. (b) Contour plots of the phase field z in the undeformed and deformed configurations at time =t 2 for the
simulation with localization length = 2.0 µm. (c) The energy release rate G as a function of time t for three decreasing values of the localization length . (b) The
corresponding crack length a as a function of time t. The results pertain to the same PDMS elastomer considered in Figs. 3 and 4.
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heterogeneous hydrostatic tensile strength taking values in the set
=s {0.45, 0.50, 0.55}hs MPa; as it will become apparent below, this mild

stochasticity suffices to make contact with one of the key observations
in thin poker-chip experiments. Finally, the critical energy release rates
of all three rubber bands are taken to be given by =G 20c J/m2 and

=k 0; see the Appendix.
The resulting governing Eqs. (6) and (7) for the above-outlined

boundary-value problems are solved by means of the finite-element
scheme introduced in Section 4 of Kumar et al. [23]. All simulations
presented below are generated by making use of a uniform and un-
structured Crouzeix–Raviart non-conforming finite-element discretiza-
tion based on 4-node simplexes featuring an average diameter =h /5
and correspond to parameters = 10W

3 and = =µ( / )10 103 6. For
relative computational frugality, exploiting the inherent symmetries, all
simulations are also carried out over just one quarter of the rubber
bands. Furthermore, the simulations for the very short and the short
rubber bands correspond to a value of the localization length of = 3.0
µm, while the simulation for the long rubber band corresponds to

= 0.1 mm; smaller values of were checked to produce essentially the
same converged results. The associated values of the coefficient are
taken to be constant (see Remark 15) and given by = 1.62 for = 3.0
µm and = 8.1 for = 0.1 mm.

5.1. The very short rubber band: =l d /350 0

Fig. 7 presents results from the simulation for the very short rubber
band. The line plot shows the stress s predicted by the phase-field model
as a function of the applied stretch . On the other hand, the contour
plots show the phase field predicted by the model at three increasing
values of the applied stretch, = 1.028, 1.067, and 1.150. Precisely, for
clearer visualization, three contour plots show the phase field z X( , t)
across the midplane of the band, while the fourth one shows z X( , t)
over an octant of the band at the indicated stretches . As implied by
the spatial argument in the phase field z X( , t), all the contour plots are
shown over the undeformed configuration of the band.

The key observation from the results presented in Fig. 7 is that
fracture occurs exclusively around the midplane of the band, entirely
within its bulk, in a cascading sequence of crack nucleation events that
originates from the center and proceeds radially outward as the applied
stretch increases. Precisely, two cracks are first nucleated around the
center of the band at a stretch of about = 1.028. As increases, more
cracks are sequentially nucleated radially away from the center at
random locations. At the stretch of about = 1.150, cracks are already
present throughout the entire midplane of the band, save for a
boundary layer around its lateral traction-free boundary. In this pro-
cess, it is of note that cracks are nucleated at random locations because
of the assumed stochasticity of the hydrostatic tensile strength shs. Once

a crack is nucleated, it exhibits limited subsequent stable propagation,
instead the nucleation of more cracks is preferred as increases. It is
also of note that the nucleation of cracks and their subsequent propa-
gation result in a stress s that roughly remains plateaued at around

=s 0.3 MPa as the stretch increases.
All the above-outlined theoretical predictions are consistent with

the experimental observations reported in the literature for thin poker-
chip experiments; cf. the results in Figs. 1 and 4 reported in [15] and
Section 3.3 in [27].

5.2. The short rubber band: =l d /13.30 0

Fig. 8 presents results for the short rubber band that are entirely
analogous in format to those presented in Fig. 7 for the very short
rubber band.

Similar to the first nucleation event in the very short rubber band, a
single crack nucleates around the center of the short rubber band, albeit
at the significantly larger stretch of about = 1.083. As the applied
stretch increases, by contrast, no more cracks are nucleated, instead,
the sole crack nucleated near the center of the band propagates first
vertically in the direction of the applied load and then radially outward.
The point at which the crack nucleates shows markedly as a drop in the
stress-stretch response. The subsequent propagation of the crack does
also provide for a sufficiently strong softening mechanism that keeps
the stress s roughly plateaued with further applied stretch .

Much like those presented in Fig. 7, all the theoretical predictions
presented in Fig. 8 are too consistent with the experimental observa-
tions reported in the literature for thick poker-chip experiments; cf. the
results in Figs. 1 and 4 reported in [15] and Section 3.3 in [27].

5.3. The long rubber band: = ×l d200 0

Finally, Fig. 9 reports results from the simulation for the long rubber
band. The line plot shows the predicted stress s as a function of the
applied stretch , while the contour plot shows the predicted phase
field z tX( , ) over the entire specimen at the applied stretch = 4.01.
The latter includes an inset that zooms in the region of the band where a
crack nucleates.

In stark contrast with the two preceding sets of results, as expected
from the experience of playing with rubber bands and consistent with
the experimental observations reported in the literature on the tensile
strength of elastomers [41], the results in Fig. 9 show that the long
rubber band stretches uniformly — save for, of course, the localized
heterogeneous stretching taking place near its top and bottom bound-
aries because of the bonding to rigid plates — until an applied stretch of
about = 4.01, at which point a crack nucleates abruptly across the
band severing it in two pieces.

Fig. 6. (a) Schematic of the initial geometry of the rubber bands and applied boundary conditions. (b) Size comparison to scale of the very short ( = =l d /35 0.0570 0
mm), the short ( = =l d /13.3 0.150 0 mm), and the long ( = × =l d20 400 0 mm) rubber bands.
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It is important to note here that the location where the crack nu-
cleates in the simulations for the long rubber band is controlled by two
factors, both physical: i( ) the localized heterogeneity of the elastic fields
near the top and bottom boundaries and ii( ) the stochasticity of the
strength of the rubber. Regardless of the strength stochasticity, because

of the concentration of the stress fields near the top and bottom
boundaries, the crack always nucleates either near the top or the
bottom boundary. Whether it is the top or the bottom depends on the
strength stochasticity; in the simulation presented in Fig. 9, the crack
happens to nucleate near the bottom boundary.

Fig. 8. 3D simulation of the short ( = =l d /13.3 0.150 0 mm) rubber band under tension. The line plot shows the predicted stress s as a function of the applied stretch .
The contour plots show the predicted phase field z X( , t) across the midplane of the band at three different applied stretches, = =1 1.083, 1.120, 1.150, and over a
quarter of the band at = 1.150.

Fig. 7. 3D simulation of the very short ( = =l d /35 0.0570 0 mm) rubber band under tension. The line plot shows the predicted stress s as a function of the applied
stretch . The contour plots show the predicted phase field z X( , t) across the midplane of the band at three different applied stretches, = 1.028, 1.067, 1.150, and
over an octant of the band at = 1.150.
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Appendix A. The elasticity, strength, and critical energy release rate of PDMS 30:1

In this appendix, we outline the calibration process of the three material inputs — namely, F S( ), ( ), and Gc — that go into the proposed
model for a given elastomer of interest. We do so by way of an example and focus in particular on the PDMS Sylgard 184 elastomer with weight ratio
30:1 of base to curing agent for which the results in Figs. 2–5 and Figs. 7–9 pertain to. As mentioned in the main body of the text, such an elastomer is
one of six different elastomers recently investigated by Poulain et al. [37,38].

We begin by calibrating the stored-energy function F( ) that describes the elasticity of the elastomer. To that end, we choose F( ) to be given
by the Lopez-Pamies stored-energy function (8) and determine its five material parameters µ b µ b, , ,1 1 2 2, and by fitting the stress-stretch (S- )
data reported by Poulain et al. [37] for the quasistatic uniaxial tension of a thin specimen with rectangular cross section. Such a fitting process
renders the values indicated in the main body of the text, that is, =µ 0.031921 MPa, = =b µ1.39107, 0.018571 2 MPa,

= = + =b µ µ1.02103, 10 ( ) 50.492
3

1 2 MPa. Fig. 10(a) compares the stress-stretch relation predicted by model directly with the experimental
data. It is plain that the model is in good agreement with the experiment for the entire range of applied stretches up to the point at which the
specimen breaks; more on this below. We also remark that the obtained fitted parameters render a stored-energy function (8) that is strictly

Fig. 9. 3D simulation of the long ( = × =l d20 400 0 mm) rubber band under tension. The line plot shows the predicted stress s as a function of the applied stretch .
The contour plot shows the predicted phase field z X( , t) over the entire band at = 4.01.

Fig. 10. Calibration of the elasticity and the
strength of PDMS 30:1. (a) Stress-stretch re-
sponse in quasistatic uniaxial tension of PDMS
30:1. The dashed line corresponds to an experi-
ment of Poulain et al. [37], while the solid line
corresponds to its fit with the Lopez-Pamies
model (8). The specimen in the experiment
broke near the grips at an applied stretch of
about = 3.9 and corresponding stress of

=S 0.24 MPa. The intrinsic tensile strength is
estimated to be =s 0.41ts MPa. (b) Snapshots of a
“two-particle” experiment of Poulain et al. [38]
in which the nucleation of a crack in PDMS 30:1
occurs — by design — at a material point subject
to almost purely hydrostatic tensile stress. A full-
field elastic simulation up to the point of nu-
cleation allows to extract from direct comparison
with the experiment that the hydrostatic tensile
strength of PDMS 30:1 is approximately given by

=s 0.50hs MPa. For further direct comparison, the figure reproduces snapshots from Kumar et al. [24] of the simulation of the experiment as predicted by the model
with external driving force (17).
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polyconvex and hence strongly elliptic; see Section 3 in Lopez-Pamies [30].
We proceed by calibrating the function S( ) that describes the strength of the elastomer. To do so, we choose S( ) to be given by the Drucker-

Prager function (20) and determine its two material parameters 1 and 2 in terms of the uniaxial tensile strength sts obtained from the uniaxial
tension experiment of Poulain et al. [37] and of the hydrostatic tensile strength shs obtained from a “two-particle” experiment of Poulain et al. [38];
recall that in terms of sts and shs, the material parameters 1 and 2 are given by relations (21).

Now, as shown by Fig. 10(a), the specimen in the uniaxial tension experiment of Poulain et al. [37] broke at an applied stretch of about = 3.9
and corresponding stress of =S 0.24 MPa. The latter value does not correspond to the actual tensile strength of PDMS 30:1, as the specimen broke
outside the gauge section near the grips because of the concentration of stress there and the likely presence of geometric defects on its surface.
Avoiding fracture taking place outside the gauge section, where the stress fields are not uniform, is a well-known challenge in the characterization of
the tensile strength of elastomers since the pioneering work of Smith [41]; a possible solution may be the use of ring specimens with circular cross
section. At any rate, the maximum value =S 0.24 MPa of the stress reached in the experiment serves to establish that >s 0.24ts MPa for PDMS 30:1.
In this work, for definiteness, we choose =s 0.41ts MPa. As shown by Fig. 10(a), according to the model utilized to describe its elasticity, this value
entails that PDMS 30:1 can be stretched up to = 5.3 in uniaxial tension, which is in the ballpark of standard elastomers [41].

Fig. 10(b) shows three snapshots of the “two-particle” experiment on PDMS 30:1 reported by Poulain et al. [38]; see Fig. 2 in that reference for an
entire sequence of snapshots. It shows the region of the transparent PDMS 30:1 elastomer in between two firmly embedded glass particles: (i) in the
undeformed configuration, (ii) at the point during the applied loading at which a crack first nucleates (indicated by an arrow), and (iii) right after the
nucleation event, when the crack has propagated a few microns. By design, the stress fields in the elastomer near the glass particles are almost purely
hydrostatic (in tension) prior to the nucleation of a crack. A full-field elastic simulation of the experiment — assuming that the PDMS 30:1 elastomer
is characterized by the stored-energy function (8) calibrated above — confirms that is indeed the case and, more importantly, allows to deduce by
direct comparison with the experiment that the hydrostatic tensile strength of PDMS 30:1 is given approximately by =s 0.50hs MPa.

Finally, we turn to calibrating the critical energy release rateGc of the elastomer. Poulain et al. [38] carried out a plurality of mechanical tests on
PDMS 30:1 that established that this material does not exhibit any significant Mullins effect or viscous dissipation and hence that it can be considered
as purely elastic for all practical purposes. However, they did not carry out tests to measure its toughness. From the classical work of Lake and
Thomas [26], notwithstanding, one can estimate that the critical energy release rate of PDMS 30:1 is between 10 and 100 J/m2. In this work, for
definiteness, we choose =G 20c J/m2.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tafmec.2020.102550.
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