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Abstract—Cyber-physical systems (CPS) greatly benefit by us-
ing machine learning components that can handle the uncertainty
and variability of the real-world. Typical components such as
deep neural networks, however, introduce new types of hazards
that may impact system safety. The system behavior depends on
data that are available only during runtime and may be different
than the data used for training. Out-of-distribution data may lead
to a large error and compromise safety. The paper considers the
problem of efficiently detecting out-of-distribution data in CPS
control systems. Detection must be robust and limit the number
of false alarms while being computational efficient for real-time
monitoring. The proposed approach leverages inductive confor-
mal prediction and anomaly detection for developing a method
that has a well-calibrated false alarm rate. We use variational
autoencoders and deep support vector data description to learn
models that can be used efficiently compute the nonconformity
of new inputs relative to the training set and enable real-
time detection of out-of-distribution high-dimensional inputs. We
demonstrate the method using an advanced emergency braking
system and a self-driving end-to-end controller implemented in
an open source simulator for self-driving cars. The simulation
results show very small number of false positives and detection
delay while the execution time is comparable to the execution
time of the original machine learning components.

Keywords-anomaly detection, inductive conformal prediction,
out-of-distribution, self-driving vehicles.

I. INTRODUCTION

Learning-enabled components (LECs) such as neural net-
works are used in many classes of cyber-physical systems
(CPS). Semi-autonomous and autonomous vehicles, in partic-
ular, are CPS examples where LECs can play a significant role
for perception, planning, and control if they are complemented
with methods for analyzing and ensuring safety [1], [2].
However, there are several characteristics of LECs that can
complicate safety analysis. LECs encode knowledge in a
form that is not transparent. Deep neural networks (DNNs),
for example, capture features in a multitude of activation
functions that cannot be inspected to ensure that the LEC
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operates as intended. High levels of autonomy require high-
capacity models that further obscure the system operation.
Even if an LEC is trained and tested extensively, it is typically
characterized by a nonzero error rate. More importantly, the
error rate estimated at design-time may be different than the
true error because of out-of-distribution data.

Since training data sets are necessarily incomplete, safety
assessment at design-time is also incomplete. Design-time
verification and analysis methods must be combined with
runtime monitoring techniques that can be used for safety
assurance. In real-world CPS, the uncertainty and variability
of the environment may result in data that are not similar to the
data used for training. Although models such as DNNs gener-
alize well if the training and testing data are sampled from the
same distribution, out-of-distribution data may lead to large
errors. Further, typical DNNs do not have the capability to
appropriately estimate if an input is in- or out-of-distribution.

An LEC is trained and tested using data available at design-
time but must be deployed in a real system and operate
under possibly different conditions. Testing ensures that the
error is satisfactory for a large number of examples, however,
during the system operation the LEC may still encounter out-
of-distribution inputs. The proposed approach quantifies how
different are the new test data from the training data and
raises an alarm to indicate that the LEC may give a prediction
with large error. Out-of-distribution detection for CPS must
be robust and limit the number of false alarms while being
computational efficient for real-time monitoring. Although the
paper focuses on DNNs, the approach can be used for other
LECs that are designed in a similar fashion.

Detection of out-of-distribution examples in neural networks
has received considerable attention especially in the context
of classification tasks in computer vision [3]-[5]. Such detec-
tion techniques do not take into consideration the dynamical
behavior of CPS, can exhibit large number of false alarms,
and cannot be applied to CPS in a straightforward manner.
Similar techniques based on single input examples are used in
mobile robotics [6], [7] where the need for methods to improve
robustness is identified as an important research direction.

The proposed approach is based on conformal prediction
(CP) [8], [9] and conformal anomaly detection (CAD) [10].
The main idea of these methods is to test if a new input exam-
ple conforms to the training data set by utilizing a nonconfor-
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mity measure which assigns a numerical score indicating how
different the input example is from the training data set. The
next step is to define a p-value as the fraction of observations
that have nonconformity scores greater than or equal to the
nonconformity scores of the training examples which is then
used for estimating the confidence of the prediction for the test
input. In order to use the approach online, Inductive Conformal
Anomaly Detection (ICAD) is introduced in [11] where the
original training set is split into the proper training set and
the calibration set and the p-values are computed relative to
calibration examples. If a p-value is smaller than a predefined
anomaly threshold e, the test example can be classified as an
anomaly. An important property of the approach is that the
rate of detected conformal anomalies is well calibrated, that
is with very high probability it is less or approximately equal
to a predefined threshold € € (0, 1) [11]. The approach is used
for sequential anomaly detection of time trajectories in [10]
and for change-point detection in [5], [12]. Existing methods
rely on nonconformity measures computed using k-Nearest
Neighbors and Kernel Density Estimation and cannot scale to
LECs with high-dimensional inputs used in CPS.

The main contribution of the paper is real-time detection
of out-of-distribution inputs. Our approach leverages inductive
conformal prediction and anomaly detection. In order to handle
high-dimensional inputs in real-time, we propose to compute
the nonconformity scores using learned models based on
variational autoencoders (VAEs) [13] and deep support vector
data description (SVDD) [14]. VAEs is a generative model
which allows sampling multiple examples similar to the input
and computing multiple p-values that increase the robustness
of detection. SVDD is a model trained to perform anomaly
detection. In our method, it is combined with a test based on a
sliding window that improves the robustness of the detection.
By using ICAD, for any valid nonconformity measure, the
approach ensures that the rate of detected conformal anomalies
is well calibrated. Further, the VAE and SVDD-based methods
allow the efficient computation of the nonconformity score and
the real-time detection of out-of-distribution high-dimensional
inputs. It should be noted that the VAE and SVDD neural
networks may exhibit an error different for out-of-distribution
inputs that is different than the testing error for in-distribution
inputs. However, the robustness of the detection is improved
considerably by taking into account multiple input examples
and comparing with the calibration nonconformity scores.

Another contribution of the paper is the empirical evaluation
using (1) an advanced emergency braking system (AEBS) and
(2) a self-driving end-to-end controller (SDEC) implemented
in CARLA [15], an open source simulator for self-driving cars.
The AEBS uses a perception LEC to detect the nearest front
obstacle on the road and estimate the distance from the host
vehicle based on camera images. The distance together with
the velocity of the host car are used as inputs to a reinforce-
ment learning controller whose objective is to comfortably
stop the vehicle. Out-of-distribution inputs are generated by
varying a precipitation parameter provided by CARLA which
introduces visual effects that may cause large error in the
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distance estimation resulting to a collision. The simulation
results demonstrate a very small number of false positives and
a detection delay less than 1s. For the SDEC which comes
with CARLA [15], the empirical evaluation shows that the
proposed method can be used to detect a class of physically
realizable attacks in end-to-end autonomous driving presented
in [16] . The attacks are realized by painted lines on the
road to cause the self-driving car to follow a target path. For
both examples, the execution time of the detection method is
comparable to the execution time of the original LECs which
demonstrates that the method can be used in real-time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

CPS use extensively LECs to perform various tasks in
order to increase the level of autonomy. A typical simplified
CPS architecture with LECs (e.g., DNNs) for perception and
control is shown in Fig. 1. A perception component observes
and interprets the environment and provides information to a
controller which, possibly using additional sensors (feedback
from the plant), applies an action to the plant in order to
achieve some task. In response to this action, the state of
the physical plant changes and the environment must be
observed and interpreted again in order to continue the system
operation. An end-to-end control architecture from perception
to actuation can also be used.
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Fig. 1. Simplified CPS control architecture.

An LEC is designed using learning methods such as super-
vised and reinforcement learning. We assume that the LECs
are successfully trained, and further, evaluation of training
and testing errors is satisfactory. However, the training and
testing data sets at design-time are necessarily incomplete and
may under-represent safety critical cases. Out-of-distribution
inputs, in particular, that have not been used for training or
testing may lead to large errors and compromise safety.

The paper considers the problem of efficiently detecting
out-of-distribution inputs in real-time. The objective is to
detect such input examples in order enable decision making
by switching to a different control architecture or human
supervision. During the system operation, the inputs arrive
one by one. After receiving each input, the objective is to
compute a valid measure of the degree to which the assumption
the input example is generated from the same probability
distribution as the training data set is falsified.

Evaluation of an online detection must be based on met-
rics that quantify sensitivity and robustness. Further, out-of-
distribution detection must be performed in real-time which is
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challenging because inputs to perception and end-to-end con-
trol LECs are high-dimensional measurements from sensors
such as cameras, LIDAR, and RADAR. The time and memory
requirements must be similar to the requirements of the LECs
used in the CPS architecture.

III. BACKGROUND
A. Conformal Prediction and Anomaly Detection

The proposed approach is based on conformal prediction
(CP) [8], [9] and conformal anomaly detection (CAD) [10].
Given a training set Z = {z1, ..., 2}, the method aims to test
if a new test example z;4; conforms to the training data set.
Essential in the approach is the definition of a nonconformity
measure which is defined by a function A that assigns a
numerical score indicating how different the test example is
from the training data set. A large nonconformity score corre-
sponds to a strange example relative to the training set. There
are many possible functions that can be used [9]. A simple
example is the average distance from z;4; to the k-nearest
neighbors in Z (k-nearest neighbors nonconformity measure).
The next step is to define the p-value p;; for the example z;4 1
based on the nonconformity measure. First, the nonconformity
score «; is computed for each example z; relative to the rest
{#z1,...,z141}\2; using A, and then, the p-value is defined
as the fraction of observations that have nonconformity scores
greater than or equal to the nonconformity a;41

_ \{izl,...,l}\ai20¢l+1|

The approach is inefficient since all computations have to be
repeated for every test example. In order to adapt the approach
for online detection, Inductive Conformal Anomaly Detection
(ICAD) is introduced in [11] based on Inductive Conformal
Prediction (ICP) [9]. The original training set (z1,...,2;) is
split into two sets: the proper training set (z1,...,%zm) and
the calibration set (241, ...,2). For each example in the
calibration set, the nonconformity score relative to the proper
training set is precomputed by

Pi+1

a,-:A({zl,...,zm},zi),i:m—l—L...,l.

Then, given a test example z;. 1, the nonconformity score ;41

is also computed relative to the proper training set and the p-

value is given by

{i=m+1,... 0} = iy
I—m '

ey

Pi+1 =

If the p-value is smaller than a predefined anomaly threshold
e € (0,1), the test example is classified as a conformal
anomaly. In this case, the test example can be a rare, previously
unseen example from the same probability distribution as the
training data set, an out-of-distribution example, or the training
examples are not independent and identically distributed (IID).
The approach can be viewed as a statistical hypothesis test,
where the null hypothesis that the new example z;4, and the
training set (21, ..., 2;) are IID is tested at significance level e.
If 2,47 and (21, ..., %) are in fact IID, then for any choice of
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nonconformity measure, € is an upper bound of the probability
that 2,1 is classified as a conformal anomaly. An important
property of the approach is that the rate of detected conformal
anomalies is well calibrated, that is with very high probability
it is less or approximately equal to € [11].

Conformal prediction and anomaly detection can be applied
under the exchangeability assumption which is weaker than the
IID assumption. Consider a sequence {z1, 22, ..., 2N} gener-
ated from a probability distribution that is exchangeable, then
for any permutation 7 of the set {1,..., N}, the distribution
of {2x(1), Zr(2)s -+ -+ Zn(n)} is the same as the distribution of
the original sequence [9]. Consider {z1, 22, ..., 2y } generated
from the same exchangeable probability distribution as the
proper training set. It is shown in [8] (Theorem 8.2), that
the p-values pi,ps,...,pn are independent and uniformly
distributed in [0, 1]. The sequence of p-values can be used to
test online if the observations {z1, z2,..., 2N} are generated
from the same probability distribution as the proper training
set since the algorithm will generate small p values for unusual
examples.

Testing the hypothesis that p-values are independent and
uniformly distributed can be performed using martingales that
are constructed using the p-values [17]. Given p1,pa, ..., PN,
[17] proposes the power martingale defined for some ¢ as

N
My = [Jer;™
i=1
and the simple mixture martingale defined as

1
My = / My de. 2)
0

Such a martingale will grow only if there are many small p-
values in the sequence. If the generated p-values concentrate
in any other part of the unit interval, the martingale is not
expected to grow. Details and other martingales that follow
the same idea can be found in [17].

Application of the approach relies on the nonconformal
measure which must be computed efficiently and score cor-
rectly the strangeness of high-dimensional examples. Typical
nonconformity measures such as the k-Nearest Neighbor (k-
NN) nonconformity measure [11] and the Kernel Density
Estimation (KDE) nonconformity measure [5] cannot scale
efficiently to high-dimensional inputs because they require
either storing the training data set or estimating the density
in a high-dimensional space. One of the main contributions of
the paper is computing the nonconformity measures efficiently
using learned models based on variational autoencoders [13]
and deep support vector data description [14].

B. Variational Autoencoders

Variational Autoencoder (VAE) is a generative model which
learns parameters of a probability distribution to represent the
data [13]. A VAE consists of an encoder, a decoder, and a loss
function. The objective is to model the relationship between
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the observation z and the low-dimensional latent variable x
using the loss function

L(0,8; 2) = Egpgy (o] [l0g po(2|2)] — Dxilge(x]2)||p(2)],

where 6 and ¢ are neural network parameters. The first term
is the model fit and the second is the KL divergence between
the approximate posterior and the prior of x. A popular choice
for the prior is Gaussian distribution. VAE-based methods can
utilize the reconstruction error or reconstruction accuracy for
anomaly detection [18]. In our approach, given an input z the
generative model (decoder) is used to sample IID examples
from g¢4(z|z) and the reconstruction accuracy is used as a
nonconformity measure.

C. Deep Support Vector Data Description

VAEs and other autoencoder architectures are trained to
perform a task other than anomaly detection assuming that
the reconstruction accuracy will be better for in-distribution
examples. Deep Support Vector Description (SVDD) is an
architecture trained to perform anomaly detection [14]. The
idea is to train a DNN to map the input data into a hypersphere
of minimum volume characterized by center ¢ and radius R.
The input space Z is transformed to a compressed output
space X while minimizing the volume of the hypersphere that
encloses most of the input representations. Given a training
data set {z1,...,2n}, the one-class deep SVDD [14] is based
on the loss

n L
o1 A
min > llo(aW) — el + 5 > W3
i=1 =1

where ¢(-; W) : £ — X denotes the neural network with
weights W, ¢ € X is the center of the hypersphere, and the last
term is a weight regularizer with hyperparameter A > 0, where
|| || is the Frobenius norm. One-class deep SVDD learns to
map the data as close to center c as possible by penalizing the
distance from representations to the center. The deep SVDD
neural network must not have bias terms or bounded activation
functions and the center ¢ can be selected as the mean of the
representations from the initial inference on some training data
to avoid trivial solutions that map the input space to a single
point [14]. Given a new test example z, the distance of the
representation ¢(z; W*) to the center ¢ of the hypersphere
reflects how different the test example is from the training
data set and can be used as a nonconformity measure.

IV. OUT-OF-DISTRIBUTION DETECTION
A. Detection Algorithm

The algorithm is based on the ICP and ICAD, and there-
fore, the training data set is split into a proper training set
(21,...,2m) and a calibration set (2p,+1,..., 21). Practically,
the data set used for training the LEC can be used as the
proper training set, and after the LEC training phase, additional
data can be collected to form the calibration set. For each
example in the calibration set, a function A is used to compute
the nonconformity measure. The nonconformity scores of the
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calibration examples are sorted in order to be used at runtime.
Algorithm 1 shows the steps that are performed offline.

Algorithm 1 Offline algorithm for computing the calibration
nonconformity scores

Input: Training set (21, ..., 2;), number of calibration exam-

ples | —m
Output: Sorted list of calibration nonconformity scores
(a’m+17 ey al)

1: Split the training set into the proper training set

(21,...,2m) and calibration set (2,41, .., 21)
2: for j=m+1tol do
3: a;- :A({zl,...,zm},zj
4: end for
5t (Qmg1y -+ 0) =800, 1, - - -5 0)

Let us consider an LEC defining a mapping from input 2 to
output y. The set of input examples used for training is denoted
by (z1,...,2). During the system operation, a sequence of
inputs denoted by (z1,..., z}) is processed one-by-one. The
task of the algorithm is to quantify how different the input
sequence is from the training data set. If the difference is
large, the algorithm raises an alarm indicating that the LEC
may generate an output y with large error compared to the
testing error obtained at design-time.

At runtime, given a new input z;, the noncomformity score
«a, can be computed using the nonconformity function A
relative to the proper training set

ap, = A({zl7 . .7zm},z;c).

The computation requires evaluating the strangeness of zj,
relative to {z1,...,2p,}. The choice of the nonconformity
function A must ensure computing informative nonconformity
scores in real-time. Using, for example, k-NN requires storing
the training data set which is infeasible for real-world CPS.
Instead, we propose to learn an appropriate neural network
architecture which is trained offline using the proper training
set and encodes the required information in its parameters.
This neural network monitors the inputs to the perception or
end-to-end control LEC and is used to compute in real-time
the nonconformity measure.

Given an input zj, the p-value p;, is computed as the frac-
tion of calibration examples that have nonconformity scores
greater than or equal to «j using Eq. (1). It should be
noted that the computation of the p-value can be performed
efficiently online since it requires storing only the calibration
nonconformity scores. If p, < € the example z;, is classified
as an anomaly. Using a single p-value for detecting out-of-
distribution examples can lead to an oversensitive detector with
a large number of false alarms that inhibit the operation of the
CPS. Our objective is to compute a sequence of p-values and
use the martingale-based method presented in Section III to
test if the p-values are independent and uniformly distributed
indicating that the input is generated from the same probability
distribution as the proper training data set or there are many

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 25,2020 at 21:33:16 UTC from IEEE Xplore. Restrictions apply.



small p-values indicating an out-of-distribution input. In the
latter case, the martingale will grow and can be used as an
input to a detector that raises alarms.

In the following, we describe how VAE and SVDD are
used to compute the nonconformity measure and detect out-of
distribution examples. Although the idea is similar, the two
architectures lead to different algorithms for computing the
sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input
example z; at time ¢, the encoder portion of a VAE is used
to approximate the posterior distribution of the latent space
and sample multiple points z; from the posterior that are
used as input to the decoder portion in order to and generate
new examples 21, ..., zy. Typically, the posterior of the latent
space is approximated by a Gaussian distribution. Sampling
from the posterior generates encodings zy, so that the decoder
is exposed to a range of variations of the input example and
outputs 21, ..., zjy which satisfy the exchangeability assump-
tion.

An in-distribution input z; should be reconstructed with
a relatively small reconstruction error. Conversely, an out-
of-distribution input will likely have a larger error. The re-
construction error is a good evaluation of the strangeness of
the input relative to the training set and it is used as the
nonconformity measure. We use the squared error between
the input example z; and each generated output example zj,
as the nonconformity measure defined as

3

The p-value py, for the input z; is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to o) using Eq. (1). Since the examples
2{,...,2y satisfy the exchangeability assumption, the pj
values are independent and uniformly distributed in [0, 1] (see
discussion in Section III) and the martingale method can be
used to test if 2{,. .., zj\,, and therefore z;, are generated from
the probability distribution of the training data.

2) Martingale test: At runtime, for every new input exam-
ple z; received by the perception or end-to-end control LEC
at time ¢t we compute the martingale

1 1 N
Mt:/ M;de:/ TT v de.
0 0 k=1

M, will have a large value if there are many small p-values
in the sequence pi which will indicate an out-of-distribution
input.

3) Stateful detector: In order to robustly detect when
M; becomes consistently large, we use the Cumulative sum
(CUSUM) procedure [19]. CUSUM is a nonparametric stateful
test and can be used to generate alarms for out-of-distribution
inputs by keeping track of the historical information of the
martingale values.

The detector is defined as S; = 0 and S; = max(0,S;_1 +
M;_1 — ), where § prevents S; from increasing consistently

ay, = Avae(zi, 21,) = Iz — 211
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when the inputs are in the same distribution as the training
data. An alarm is raised whenever S is greater than a threshold
St > 7 which can be optimized using empirical data [19].
Typically, after an alarm the test is reset with S;11 = 0.

Algorithm 2 describes the VAE-based real-time out-of-
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learned VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end-to-end
LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection
Input: Input example z;, calibration nonconformity scores
(am+1, - - -, p), number of examples to be sampled N,
stateful detector threshold 7 and parameter §
Output: Output boolean variable Anom;
1: fort =1,2,... do

2. for k=1to N do

3: Sample zj, using the trained VAE
4: O[;C = AYAE(zta ZIIC) ,

5 Dy = \{1:m+1,l:;fq}|oz,,ﬂ,zak|

6: end for

7. M, = fol ch\;l epzflde

8: if t =1 then

9: St =0

10:  else

11: Sy = maX(O, Si_1+ Mi_1 — (S)
12:  end if

13- Anomy < Sy > 1

14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based
method also uses a learned model to calculate the non-
conformity score. The proper training set is used to train
the deep SVDD model. The center of the hypersphere ¢
is fixed as the mean of the representations from the initial
pass on the proper training data. After training, the neural
network function ¢(z;, WW*) maps an input example z; to a
representation close to the center c. In-distribution inputs are
likely concentrated in a relatively small area in the output
space while the out-of-distribution inputs will be faraway from
the center. The distance of the representation to the center ¢ of
the hypersphere can be used to evaluate the strangeness of the
test example relative to the proper training set and is defined
as the nonconformity measure

oy = Asvon(21) = [[¢(z2; W) — e .

The p-value is computed as the fraction of calibration exam-
ples that have nonconformity scores greater than or equal to
a4 (Eq.(1)). However, in contrast to the VAE, SVDD is not a
generative model and cannot be used to generate multiple IID
examples similar to z;.
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2) Martingale test: In order to improve the robustness of
out-of-distribution detection, it is desirable to use a sequence
of inputs. In CPS, the inputs arrive at the perception or
end-to-end LEC one-by-one and they are time-correlated,
and therefore not independent. For a sequence of inputs
z ot 1,2,..., the martingale in Eq. (2) will increase
continuously even for in-distribution examples. In order to
adapt the test, we use a sliding window [t— N +1, ¢], and given
an input sequence (zt, NeAls«-- zt), we compute the sequence
of p-values (p—N+41,--.,p:). Although the p-values are not
guaranteed to be independent and uniformly distributed, out-
of-distribution inputs will still result in small p-values and the
martingale test is used to identify sequences with many small
values. In this case, the martingale is given by

1 1 t
Mt:/ Mfde:/ [T e lde
0 0

i=t—N+1

In order to apply this method to CPS, the rate that we
receive observations from the environment must be much
faster than the dynamic evolution of the system and the
main factor that differentiates consecutive observations are
random disturbances and noise. For a short window, it can
be assumed that the input sequence (z;— N1, ..., 2¢) satisfies
the exchangeability assumption and the martingale test can be
used to detect multiple small p-values in a short time interval.
It should be noted that the martingale M; does not depend
on the order of the input examples (z;_ny1,...,2) . Also,
M, must be initialized for the first steps using, for example,
random independent and uniformly distributed p-values.

3) Stateless detector: Since we already use a sliding win-
dow to compute M;, we employ a stateless detector based
on the value M; and a predefined thershold 7 expressed as
]\/ft > T.

Algorithm 3 describes the SVDD-based real-time out-of-
distribution detection. Compared with the VAE, the SVDD
based method is more efficient since it does not require
generating multiple examples at each step. The martingale M,
can be computed recursively by incorporating the p-value for
the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection
Input: Input example z;, calibration nonconformity scores
(am+1,--.,0p), sliding window size N, stateless detector
threshold 7
Output: Output boolean variable Anom,
1: fort=1,2,... do
CYQ = Asvpp(2t)
_ Hi=mA41,. 00} | >
bt = l—m
1 t —1
M; = fo [lici N1 i de
Anomy < My > 1
end for

2
3
4:
5
6:

V. EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS) and (2) a self-driving
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end-to-end controller (SDEC). The AEBS and SDEC are
implemented using CARLA [15]. We use CARLA 0.9.5 on
a 16-core i7 desktop with 32 GB RAM memory and a single
RTX 2080 GPU with 8 GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is
shown in Fig. 2. A perception LEC is used to detect the
nearest front obstacle on the road and estimate the distance.
The distance together with the velocity of the host car are
used as inputs to a reinforcement learning controller whose
objective is to generate the appropriate braking force in order
to safely and comfortably stop the vehicle.

Camera Distance RL Brake
—_— >

Control

1
1
Velocity :
1

Perception

Y

Vehicle |- -

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS
detects a stopped lead car and applies the brake to decelerate
and avoid the potential collision. The initial velocity of the
host vehicle is vy and the initial distance between the host
car and the obstacle is dy. The goal of the controller is to
stop the car between L, and Ly.x. The sampling period
used in the simulation is A¢ = 1/20s. In order to simulate
realistic scenarios, we introduce uncertainty into the system.
The initial velocity vg is uniformly sampled between 90 km /h
and 100km/h, and the initial distance dy is approximately
100m. CARLA allows controlling the precipitation in the
simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and
SVDD used for out-of-distribution detection, the precipitation
parameter is randomly sampled from the interval [0, 20]. The
uncertainty introduced affects the error of the perception LEC.
It should be noted that this is just a visual effect and it does
not affect the physical behavior of the car.

do L ax

mq
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1
1
1
1
1
1
1
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Vo
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Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional
neural network (CNN) which is trained using supervised learn-
ing with a training data set consisting of 8160 images obtained
by varying the simulation parameters described above. The
perception LEC has three layers of 24/36/48 x (5 x 5)
filters with ReLU activations and 2 x 2 strides, two layers
of 64/64 x (3 x 3) filters with ReLU activations and 1 x 1
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strides, three fully connected layers of 100/50/10 units with
ReLU activations and an output layer of size 1 with Sigmoid
activation. After 100-epoch training, the mean absolute errors
for training and testing are 0.54 m and 0.56 m respectively and
are used to select L, and ensure safety. The reinforcement
learning controller is trained using the DDPG algorithm [20]
with 1000 episodes and reward function which aims to stop the
vehicle between L,;, = 1m and Ly, = 3m. A simulation
run is shown in Fig. 4. Initially, the distance between the host
and the lead car is 97.56 m, and the velocity of the host car
is 96.84km/h (= 26.90m/s). After 140 steps or 7.00s, the
host vehicle stops at 1.98 m from the lead car.

2) VAE and SVDD training: The data set with the 8160
images used for training the perception LEC is used as
the proper training data set. In addition, using simulations
with the same random parameters, we collect 2040 images
for the calibration set. We use a VAE with four layers of
32/64/128/256 x (5 x 5) filters with exponential linear unit
(ELU) activations and 2 X 2 max-pooling, one fully connected
layer of size 1568 with ELU activation, 1024 latent space,
and a symmetric deconvolutional decoder. A simple two-phase
learning schedule is employed with initial searching learning
rate n = 10~% for 250 epochs, and subsequently fine-tuning
n = 107> for 100 epochs.

The Deep SVDD is similar with four convolutional layers
of 32/64/128/256 x (5 x 5) filters with ELU activations
and 2 x 2 max-pooling, followed by one fully connected
layer of 1568 units. As suggested in [14], we first train a
deep convolutional autoencoder (DCAE) to initialize the deep
SVDD. After 250 (n = 107*) + 100 (n = 10~°) epochs of
DCAE training, we copy the weights to the SVDD and set
the hypersphere center ¢ to the mean of the reduced space
of the initial forward inference. The one-class deep SVDD
objective is used as the loss and the neural network is trained
for additional 150 (n = 10=%) + 100 (n = 10~?) epochs.

3) Results: To characterize the performance of the out-
of-distribution detection, we use multiple simulation episodes
that include in- and out-of-distribution examples. Each episode
starts with a random initial velocity vy of the host car. The
AEBS is activated upon detection of the lead car by the
camera as implemented in CARLA. We vary the precipitation
parameter r as

o for t <ty
r = To-‘r-ﬁ(t—to) for toStStl
ro + ﬁ(tl — to) for t>1

where 7 is the initial precipitation uniformly sampled from
[0,10]; to € {10,11,...,30} is selected randomly as the time
step the precipitation starts to increase; ¢1 € {90,91,...,110}
is selected randomly as the time step the precipitation stops
increasing; and 5 € [0.1,0.5] is a randomly selected slope. In
some episodes 7 is always below 20 (in-distribution) while in
other episodes 7 exceeds 20 and it is assumed that the per-
ception LEC receives out-of-distribution inputs. We simulate
200 episodes and 108 of them are in-distribution while 92 of
them contain out-of-distribution inputs.
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We illustrate the approach using two episodes and we plot
the ground truth and the predicted distance to the lead car,
the velocity of the host car, the p-value and stateful detector
S-value computed using the logarithm of M, and § = 6, the
p-value of the SVDD-based method, and the logarithm of the
SVDD-based martingale. Since M; takes very large values,
log M; is used. We use N = 10 for the number of examples
generated by the VAE and the size of sliding window in the
SVDD-based approach. Fig. 4 shows simulation results for
the in-distribution case. The p-values are randomly distributed
between 0 to 1, and the martingale for both approaches is
small. The VAE-based method is more sensitive than the
SVDD as indicated by the larger value around 5s. The p-
values may become small if the camera observations are
different than the training data. In this case, there is a speed
limit traffic sign that is not accurately reconstructed. After
the car passes the traffic sign, the p-values increase and the
martingale goes back to very small value. The effect in the
SVDD method is smaller, since we use a sliding window. Even
if the training data set is augmented, there will be always
novelties that can lead to variation but a robust detection
method can limit the number of false alarms.

An episode with out-of-distribution inputs is shown in
Fig. 5. The parameter r exceeds 20 at time step 40 (2.0s).
The error of the perception LEC starts increasing and reaches
almost 11 m. The controller is misled by the perception LEC,
and does not stop the car which collides with the lead car
(velocity is greater than 0 when ground truth distance comes
to 0). Both VAE-based and SVDD-based martingale grow as
the p-values become smaller.

We evaluate the approach for the 200 episodes generated by
considering different values of N. We run each episode and if
an alarm is raised, we stop the simulation, and we check if the
alarm is false. We compute the detection delay as the number
of frames from the time r exceed 20. We select the detector
parameters 7 and 0 using a simple search for achieving average
detection delay less than 25 frames. Tables I and II shows the
results for the VAE and SVDD-based methods respectively.
The number of false alarms is very small and the delay for
detection is smaller than 20 frames or 1s .

TABLE I
VAE-BASED DETECTION.

P(a]r@jr(l;ff False positive False negative szzrlagriii]ay
5,5,42 2/108 0/92 17.91
5,5,49 0/108 0/92 19.84

10, 6,156 0/108 0/92 18.65

10, 10, 106 0/108 0/92 19.30

20, 16, 250 2/108 0/92 17.63

20, 18,240 0/108 0/92 18.46

B. Self-driving End-to-end Control

1) Experimental Setup: The CARLA simulator comes with
a self-driving end-to-end controller trained using imitation
learning. The SDEC uses camera images as inputs and
computes steering, acceleration, and brake actuation signals
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Fig. 4. Episode with in-distribution inputs.

TABLE II
SVDD-BASED DETECTION.

Average delay
(frames)

5,8 2/108 0/92 15.12
5,9 1/108 0/92 20.85

10,12 1/108 0/92 14.38

10, 14 0/108 0/92 17.78

20,16 1/108 0/92 12.02

0/108 0/92 13.29

Parameters

(N, ) False positive

False negative

applied to the car. The SDEC is implemented using a CNN
trained by conditional imitation learning with 14 hours of
driving data recorded by human drivers [15]. The sampling
period used here is At = 1/10s. For this example, our
objective is to evaluate if the method can be used to detect
a class of adversarial attacks. An approach for designing
physically realizable attacks in end-to-end autonomous driving
is presented in [16] and a novel class of hijacking attacks is
introduced where painted lines on the road cause the self-

Simulation step

0 20 40 60 80 100 120
100 T I :
g —— Ground truth distance ||
Y‘E - - - Predicted distance H
g |
a |

Error(m)

Velocity(m/s)

p value
(VAE)

Time (s)

Fig. 5. Episode with out-of-distribution inputs.

driving car to follow a target path. Fig. 6b shows an image
with the painted pattern on the road.

(b) Attacked image

(a) Original image

Fig. 6. Comparison of original image and image with attack [16].

In order to train the VAE and SVDD, we collect training
data using episodes without attacks. We generate 633 images
in two different weather patterns (clear noon and cloudy noon)
and three different scenarios (turning right, turning left, and
going straight). We randomly split the training data into 506
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images for the proper training data set and 127 images for the
calibration set. We use the same VAE and SVDD architectures
and hyperparameters as in the AEBS.

The evaluation focuses on the Right Corner Driving case
which is reported as more vulnerable [16]. We run 105
simulation episodes described in [16] with different attacks
such as positions and rotations of the two black lines which
are chosen to cause traffic infractions. In 69 out of the 105
episodes the attack is successful causing a vehicle crash. Our
approach detects the attacks in all 105 episodes. Distinguishing
between attacks that cause a crash or not using only the input
images is an interesting question for further research. Also, it is
important to investigate how to design attacks that hijack both
the end-to-end control and the out-of-distribution detection.

We plot the p-values and stateful detector S-value of the
VAE-based method, the p-values and the logarithm of the
SVDD-based martingale in Fig. 7 (N = 10 and § = 1). In
this episode, there are two black lines painted on the road as
shown in Fig. 6b and the vehicle is misled leading to a crash.
The p-values are almost 0 and the martingales grow very large
indicating the input images are out-of-distribution.

Simulation step
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Fig. 7. Episode with attacked inputs.

C. Computational Efficiency

The VAE-based and SVDD-based methods can compute
the nonconformity scores in real-time without storing training
data. Table III reports the minimum (min), first quartile (Q1),
second quartile or median (Q2), third quartile (Qs3), and
maximum (max) of (1) the execution times of the LECs
in AEBS and SDEC and (2) the execution times of the
VAE-based and SVDD-based detectors for different values of
N. Since the VAE-based method uses N examples in each
time step to compute the nonconformity scores, the execution

182

time is larger than the execution time of the SVDD-based
method. The execution time of SVDD-based detection method
is independent of the window size N since the martingale
can be computed recursively for the sliding window. The
execution times are similar to the execution times of the
perception and end-to-end control LECs and much smaller
than the corresponding sampling time (50 ms in AEBS and
100 ms in SDEC), and thus, the methods can be used for real-
time out-of-distribution detection.

TABLE III
EXECUTION TIMES.

N min Q1 Q2 Q3 max

(ms) (ms) (ms) (ms) (ms)

AEBS N/A 348 3.85 391 3.96 420
SDEC N/A 220 237 245 256 331
5 18.64 18.68 1871 1873 1881

VAE 10 3726 3738 3741 3745 38.11
20 7512 7519 7522 7568  78.83

5 218 2.19 2.19 22 226

SVDD 10 2.17 2.19 2.19 22 2.29
20 2.17 222 223 223 237

VI. RELATED WORK

Verification and assurance of CPS with machine learning
components is considered in [21] in a broader context of
verified artificial intelligence. The challenges discussed in [21]
include the integration of design-time and runtime methods
to address the undecidability of verification in complex sys-
tems and environment modeling. Out-of-distribution detection
can be used with recovery and reconfiguration techniques to
complement design-time verification. Focusing on design-time
techniques, an approach to identify regions of the input space
that lack training data and potentially larger errors is presented
in [22]. The approach could be adapted to predict at runtime
if new inputs are from regions covered during training or
not. Compositional falsification of CPS with machine learning
components is introduced in [2] and demonstrated with a
simulated AEBS. The approach is applied at design-time for
identifying executions that falsify temporal logic specifications
and also identifies regions of uncertainty where additional
analysis and runtime monitoring is required. A related ap-
proach for simulation-based adversarial test generation for
autonomous vehicles with machine learning components is
presented in [1]. The technique is also used at design-time
to increase the reliability of autonomous CPS and can provide
additional training data for out-of-distribution detection.

Detection of out-of-distribution examples in neural networks
has received considerable attention especially in the context of
classification tasks in computer vision [3]. Correctly classified
examples tend to have greater maximum softmax probabilities
than erroneously classified and out-of-distribution examples.
An approach for improving detection by training anomaly
detectors is proposed in [4]. An approach for reducing the
number of false alarms of out-of-distribution image detection
by adding small perturbations to the input is presented in [23].
The idea is similar to randomly sampling from the latent
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space of the VAE that can also improve the reliability of
the detection. Such detection techniques do not take into
consideration the dynamical behavior of CPS and can exhibit
large number of false alarms.

An approach which aims to detect novelties based on the
reconstruction error of an autoencoder for a single input is
presented in [6]. The approach is used for safe visual and
LIDAR-based navigation of mobile robots. A similar approach
using VAEs is proposed in [7] to estimate the uncertainty for
a collision prediction task for a robot car. As discussed in [6],
[7], out-of-distribution detection and, in general, uncertainty
estimation is an important research direction for providing a
more robust detection. In our approach, we leverage inductive
conformal prediction and anomaly detection for developing
a detection algorithm that has well-calibrated false alarm
rate [11] and we compute the nonconformity scores in real-
time using VAE and SVDD neural networks.

Conformal anomaly detection is used for sequential
anomaly detection of time trajectories in [10]. A nonconfor-
mity measure based on nearest neighbors and Hausdorff dis-
tance provides good performance and robustness but it cannot
be used for high-dimensional trajectories at runtime. Inductive
techniques have been used for change-point detection in [5],
[12] but do not consider high-dimensional inputs and real-
time detection. A deep k-NN method based on conformal
prediction that uses a nonconformity measure computed using
the representation learned by each layer of the DNN classifier
is presented in [24]. The method computes confidence metrics
for evaluating the robustness of the DNN classifier and out-of-
distribution detection. Estimating the confidence and the un-
certainty of neural network prediction is an important problem.
In addition to conformal prediction, the problem is addressed
using various techniques for computing a confidence or trust
score [25], [26]. A promising research direction is to combine
these with conformal prediction for improving the robustness
and reliability of neural networks.

VII. CONCLUSIONS

In this work, we demonstrated a method for out-of-
distribution detection in learning-enabled CPS. The method
is based on inductive conformal prediction and anomaly de-
tection but uses VAEs and SVDD to learn models to efficiently
compute the nonconformity of new inputs relative to the
training set and enable real-time detection of high-dimensional
out-of-distribution inputs. Our evaluation is based on an AEBS
and an SDEC implemented in an open source simulator for
self-driving cars. The results demonstrate very small number
of false positives and detection delay while the execution time
is comparable to the execution time of the original LECs.
Detection of out-of-distribution inputs does not necessarily
imply large errors. An important question is whether it is
possible to identify inputs that result in large errors. Evaluation
with real-world data sets is also part of our future work.
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