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Abstract—Cyber-physical systems (CPS) greatly benefit by us-
ing machine learning components that can handle the uncertainty
and variability of the real-world. Typical components such as
deep neural networks, however, introduce new types of hazards
that may impact system safety. The system behavior depends on
data that are available only during runtime and may be different
than the data used for training. Out-of-distribution data may lead
to a large error and compromise safety. The paper considers the
problem of efficiently detecting out-of-distribution data in CPS
control systems. Detection must be robust and limit the number
of false alarms while being computational efficient for real-time
monitoring. The proposed approach leverages inductive confor-
mal prediction and anomaly detection for developing a method
that has a well-calibrated false alarm rate. We use variational
autoencoders and deep support vector data description to learn
models that can be used efficiently compute the nonconformity
of new inputs relative to the training set and enable real-
time detection of out-of-distribution high-dimensional inputs. We
demonstrate the method using an advanced emergency braking
system and a self-driving end-to-end controller implemented in
an open source simulator for self-driving cars. The simulation
results show very small number of false positives and detection
delay while the execution time is comparable to the execution
time of the original machine learning components.

Keywords-anomaly detection, inductive conformal prediction,
out-of-distribution, self-driving vehicles.

I. INTRODUCTION

Learning-enabled components (LECs) such as neural net-

works are used in many classes of cyber-physical systems

(CPS). Semi-autonomous and autonomous vehicles, in partic-

ular, are CPS examples where LECs can play a significant role

for perception, planning, and control if they are complemented

with methods for analyzing and ensuring safety [1], [2].

However, there are several characteristics of LECs that can

complicate safety analysis. LECs encode knowledge in a

form that is not transparent. Deep neural networks (DNNs),

for example, capture features in a multitude of activation

functions that cannot be inspected to ensure that the LEC
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operates as intended. High levels of autonomy require high-

capacity models that further obscure the system operation.

Even if an LEC is trained and tested extensively, it is typically

characterized by a nonzero error rate. More importantly, the

error rate estimated at design-time may be different than the

true error because of out-of-distribution data.

Since training data sets are necessarily incomplete, safety

assessment at design-time is also incomplete. Design-time

verification and analysis methods must be combined with

runtime monitoring techniques that can be used for safety

assurance. In real-world CPS, the uncertainty and variability

of the environment may result in data that are not similar to the

data used for training. Although models such as DNNs gener-

alize well if the training and testing data are sampled from the

same distribution, out-of-distribution data may lead to large

errors. Further, typical DNNs do not have the capability to

appropriately estimate if an input is in- or out-of-distribution.

An LEC is trained and tested using data available at design-

time but must be deployed in a real system and operate

under possibly different conditions. Testing ensures that the

error is satisfactory for a large number of examples, however,

during the system operation the LEC may still encounter out-

of-distribution inputs. The proposed approach quantifies how

different are the new test data from the training data and

raises an alarm to indicate that the LEC may give a prediction

with large error. Out-of-distribution detection for CPS must

be robust and limit the number of false alarms while being

computational efficient for real-time monitoring. Although the

paper focuses on DNNs, the approach can be used for other

LECs that are designed in a similar fashion.

Detection of out-of-distribution examples in neural networks

has received considerable attention especially in the context

of classification tasks in computer vision [3]–[5]. Such detec-

tion techniques do not take into consideration the dynamical

behavior of CPS, can exhibit large number of false alarms,

and cannot be applied to CPS in a straightforward manner.

Similar techniques based on single input examples are used in

mobile robotics [6], [7] where the need for methods to improve

robustness is identified as an important research direction.

The proposed approach is based on conformal prediction

(CP) [8], [9] and conformal anomaly detection (CAD) [10].

The main idea of these methods is to test if a new input exam-

ple conforms to the training data set by utilizing a nonconfor-
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mity measure which assigns a numerical score indicating how

different the input example is from the training data set. The

next step is to define a p-value as the fraction of observations

that have nonconformity scores greater than or equal to the

nonconformity scores of the training examples which is then

used for estimating the confidence of the prediction for the test

input. In order to use the approach online, Inductive Conformal

Anomaly Detection (ICAD) is introduced in [11] where the

original training set is split into the proper training set and

the calibration set and the p-values are computed relative to

calibration examples. If a p-value is smaller than a predefined

anomaly threshold ε, the test example can be classified as an

anomaly. An important property of the approach is that the

rate of detected conformal anomalies is well calibrated, that

is with very high probability it is less or approximately equal

to a predefined threshold ε ∈ (0, 1) [11]. The approach is used

for sequential anomaly detection of time trajectories in [10]

and for change-point detection in [5], [12]. Existing methods

rely on nonconformity measures computed using k-Nearest

Neighbors and Kernel Density Estimation and cannot scale to

LECs with high-dimensional inputs used in CPS.

The main contribution of the paper is real-time detection

of out-of-distribution inputs. Our approach leverages inductive

conformal prediction and anomaly detection. In order to handle

high-dimensional inputs in real-time, we propose to compute

the nonconformity scores using learned models based on

variational autoencoders (VAEs) [13] and deep support vector

data description (SVDD) [14]. VAEs is a generative model

which allows sampling multiple examples similar to the input

and computing multiple p-values that increase the robustness

of detection. SVDD is a model trained to perform anomaly

detection. In our method, it is combined with a test based on a

sliding window that improves the robustness of the detection.

By using ICAD, for any valid nonconformity measure, the

approach ensures that the rate of detected conformal anomalies

is well calibrated. Further, the VAE and SVDD-based methods

allow the efficient computation of the nonconformity score and

the real-time detection of out-of-distribution high-dimensional

inputs. It should be noted that the VAE and SVDD neural

networks may exhibit an error different for out-of-distribution

inputs that is different than the testing error for in-distribution

inputs. However, the robustness of the detection is improved

considerably by taking into account multiple input examples

and comparing with the calibration nonconformity scores.

Another contribution of the paper is the empirical evaluation

using (1) an advanced emergency braking system (AEBS) and

(2) a self-driving end-to-end controller (SDEC) implemented

in CARLA [15], an open source simulator for self-driving cars.

The AEBS uses a perception LEC to detect the nearest front

obstacle on the road and estimate the distance from the host

vehicle based on camera images. The distance together with

the velocity of the host car are used as inputs to a reinforce-

ment learning controller whose objective is to comfortably

stop the vehicle. Out-of-distribution inputs are generated by

varying a precipitation parameter provided by CARLA which

introduces visual effects that may cause large error in the

distance estimation resulting to a collision. The simulation

results demonstrate a very small number of false positives and

a detection delay less than 1 s. For the SDEC which comes

with CARLA [15], the empirical evaluation shows that the

proposed method can be used to detect a class of physically

realizable attacks in end-to-end autonomous driving presented

in [16] . The attacks are realized by painted lines on the

road to cause the self-driving car to follow a target path. For

both examples, the execution time of the detection method is

comparable to the execution time of the original LECs which

demonstrates that the method can be used in real-time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

CPS use extensively LECs to perform various tasks in

order to increase the level of autonomy. A typical simplified

CPS architecture with LECs (e.g., DNNs) for perception and

control is shown in Fig. 1. A perception component observes

and interprets the environment and provides information to a

controller which, possibly using additional sensors (feedback

from the plant), applies an action to the plant in order to

achieve some task. In response to this action, the state of

the physical plant changes and the environment must be

observed and interpreted again in order to continue the system

operation. An end-to-end control architecture from perception

to actuation can also be used.

Environment

End-to-end control

Perception Control
Physical

Plant

Fig. 1. Simplified CPS control architecture.

An LEC is designed using learning methods such as super-

vised and reinforcement learning. We assume that the LECs

are successfully trained, and further, evaluation of training

and testing errors is satisfactory. However, the training and

testing data sets at design-time are necessarily incomplete and

may under-represent safety critical cases. Out-of-distribution

inputs, in particular, that have not been used for training or

testing may lead to large errors and compromise safety.

The paper considers the problem of efficiently detecting

out-of-distribution inputs in real-time. The objective is to

detect such input examples in order enable decision making

by switching to a different control architecture or human

supervision. During the system operation, the inputs arrive

one by one. After receiving each input, the objective is to

compute a valid measure of the degree to which the assumption

the input example is generated from the same probability

distribution as the training data set is falsified.

Evaluation of an online detection must be based on met-

rics that quantify sensitivity and robustness. Further, out-of-

distribution detection must be performed in real-time which is
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challenging because inputs to perception and end-to-end con-

trol LECs are high-dimensional measurements from sensors

such as cameras, LIDAR, and RADAR. The time and memory

requirements must be similar to the requirements of the LECs

used in the CPS architecture.

III. BACKGROUND

A. Conformal Prediction and Anomaly Detection

The proposed approach is based on conformal prediction

(CP) [8], [9] and conformal anomaly detection (CAD) [10].

Given a training set Z = {z1, . . . , zl}, the method aims to test

if a new test example zl+1 conforms to the training data set.

Essential in the approach is the definition of a nonconformity

measure which is defined by a function A that assigns a

numerical score indicating how different the test example is

from the training data set. A large nonconformity score corre-

sponds to a strange example relative to the training set. There

are many possible functions that can be used [9]. A simple

example is the average distance from zl+1 to the k-nearest

neighbors in Z (k-nearest neighbors nonconformity measure).

The next step is to define the p-value pl+1 for the example zl+1

based on the nonconformity measure. First, the nonconformity

score αi is computed for each example zi relative to the rest

{z1, . . . , zl+1}\zi using A, and then, the p-value is defined

as the fraction of observations that have nonconformity scores

greater than or equal to the nonconformity αl+1

pl+1 =
|{i = 1, . . . , l} |αi ≥ αl+1|

l
.

The approach is inefficient since all computations have to be

repeated for every test example. In order to adapt the approach

for online detection, Inductive Conformal Anomaly Detection

(ICAD) is introduced in [11] based on Inductive Conformal

Prediction (ICP) [9]. The original training set (z1, . . . , zl) is

split into two sets: the proper training set (z1, . . . , zm) and

the calibration set (zm+1, . . . , zl). For each example in the

calibration set, the nonconformity score relative to the proper

training set is precomputed by

αi = A
(

{z1, . . . , zm}, zi

)

, i = m+ 1, . . . , l.

Then, given a test example zl+1, the nonconformity score αl+1

is also computed relative to the proper training set and the p-

value is given by

pl+1 =
|{i = m+ 1, . . . , l} |αi ≥ αl+1|

l −m
. (1)

If the p-value is smaller than a predefined anomaly threshold

ε ∈ (0, 1), the test example is classified as a conformal

anomaly. In this case, the test example can be a rare, previously

unseen example from the same probability distribution as the

training data set, an out-of-distribution example, or the training

examples are not independent and identically distributed (IID).

The approach can be viewed as a statistical hypothesis test,

where the null hypothesis that the new example zl+1 and the

training set (z1, . . . , zl) are IID is tested at significance level ε.
If zl+1 and (z1, . . . , zl) are in fact IID, then for any choice of

nonconformity measure, ε is an upper bound of the probability

that zl+1 is classified as a conformal anomaly. An important

property of the approach is that the rate of detected conformal

anomalies is well calibrated, that is with very high probability

it is less or approximately equal to ε [11].

Conformal prediction and anomaly detection can be applied

under the exchangeability assumption which is weaker than the

IID assumption. Consider a sequence {z1, z2, . . . , zN} gener-

ated from a probability distribution that is exchangeable, then

for any permutation π of the set {1, . . . , N}, the distribution

of {zπ(1), zπ(2), . . . , zπ(N)} is the same as the distribution of

the original sequence [9]. Consider {z1, z2, . . . , zN} generated

from the same exchangeable probability distribution as the

proper training set. It is shown in [8] (Theorem 8.2), that

the p-values p1, p2, . . . , pN are independent and uniformly

distributed in [0, 1]. The sequence of p-values can be used to

test online if the observations {z1, z2, . . . , zN} are generated

from the same probability distribution as the proper training

set since the algorithm will generate small p values for unusual

examples.

Testing the hypothesis that p-values are independent and

uniformly distributed can be performed using martingales that

are constructed using the p-values [17]. Given p1, p2, . . . , pN ,

[17] proposes the power martingale defined for some ε as

M ε
N =

N
∏

i=1

εpε−1
i

and the simple mixture martingale defined as

MN =

∫ 1

0

M ε
Ndε. (2)

Such a martingale will grow only if there are many small p-

values in the sequence. If the generated p-values concentrate

in any other part of the unit interval, the martingale is not

expected to grow. Details and other martingales that follow

the same idea can be found in [17].

Application of the approach relies on the nonconformal

measure which must be computed efficiently and score cor-

rectly the strangeness of high-dimensional examples. Typical

nonconformity measures such as the k-Nearest Neighbor (k-

NN) nonconformity measure [11] and the Kernel Density

Estimation (KDE) nonconformity measure [5] cannot scale

efficiently to high-dimensional inputs because they require

either storing the training data set or estimating the density

in a high-dimensional space. One of the main contributions of

the paper is computing the nonconformity measures efficiently

using learned models based on variational autoencoders [13]

and deep support vector data description [14].

B. Variational Autoencoders

Variational Autoencoder (VAE) is a generative model which

learns parameters of a probability distribution to represent the

data [13]. A VAE consists of an encoder, a decoder, and a loss

function. The objective is to model the relationship between
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the observation z and the low-dimensional latent variable x
using the loss function

L(θ, φ; z) = Ex∼qφ(x|z)[log pθ(z|x)]−DKL[qφ(x|z)||p(x)],

where θ and φ are neural network parameters. The first term

is the model fit and the second is the KL divergence between

the approximate posterior and the prior of x. A popular choice

for the prior is Gaussian distribution. VAE-based methods can

utilize the reconstruction error or reconstruction accuracy for

anomaly detection [18]. In our approach, given an input z the

generative model (decoder) is used to sample IID examples

from qφ(x|z) and the reconstruction accuracy is used as a

nonconformity measure.

C. Deep Support Vector Data Description

VAEs and other autoencoder architectures are trained to

perform a task other than anomaly detection assuming that

the reconstruction accuracy will be better for in-distribution

examples. Deep Support Vector Description (SVDD) is an

architecture trained to perform anomaly detection [14]. The

idea is to train a DNN to map the input data into a hypersphere

of minimum volume characterized by center c and radius R.

The input space Z is transformed to a compressed output

space X while minimizing the volume of the hypersphere that

encloses most of the input representations. Given a training

data set {z1, . . . , zn}, the one-class deep SVDD [14] is based

on the loss

min
W

1

n

n
∑

i=1

||φ(zi;W)− c||2 +
λ

2

L
∑

�=1

||W �||2F ,

where φ(· ;W) : Z → X denotes the neural network with

weights W , c ∈ X is the center of the hypersphere, and the last

term is a weight regularizer with hyperparameter λ > 0, where

|| · ||F is the Frobenius norm. One-class deep SVDD learns to

map the data as close to center c as possible by penalizing the

distance from representations to the center. The deep SVDD

neural network must not have bias terms or bounded activation

functions and the center c can be selected as the mean of the

representations from the initial inference on some training data

to avoid trivial solutions that map the input space to a single

point [14]. Given a new test example z, the distance of the

representation φ(z;W∗) to the center c of the hypersphere

reflects how different the test example is from the training

data set and can be used as a nonconformity measure.

IV. OUT-OF-DISTRIBUTION DETECTION

A. Detection Algorithm

The algorithm is based on the ICP and ICAD, and there-

fore, the training data set is split into a proper training set

(z1, . . . , zm) and a calibration set (zm+1, . . . , zl). Practically,

the data set used for training the LEC can be used as the

proper training set, and after the LEC training phase, additional

data can be collected to form the calibration set. For each

example in the calibration set, a function A is used to compute

the nonconformity measure. The nonconformity scores of the

calibration examples are sorted in order to be used at runtime.

Algorithm 1 shows the steps that are performed offline.

Algorithm 1 Offline algorithm for computing the calibration

nonconformity scores

Input: Training set (z1, . . . , zl), number of calibration exam-

ples l −m
Output: Sorted list of calibration nonconformity scores

(αm+1, . . . , αl)

1: Split the training set into the proper training set

(z1, . . . , zm) and calibration set (zm+1, . . . , zl)
2: for j = m+ 1 to l do

3: α′
j = A

(

{z1, . . . , zm}, zj

)

4: end for

5: (αm+1, . . . , αl) = sort(α′
m+1, . . . , α

′
l)

Let us consider an LEC defining a mapping from input z to

output y. The set of input examples used for training is denoted

by (z1, . . . , zl). During the system operation, a sequence of

inputs denoted by (z′1, . . . , z
′
N ) is processed one-by-one. The

task of the algorithm is to quantify how different the input

sequence is from the training data set. If the difference is

large, the algorithm raises an alarm indicating that the LEC

may generate an output y with large error compared to the

testing error obtained at design-time.

At runtime, given a new input z′k, the noncomformity score

α′
k can be computed using the nonconformity function A

relative to the proper training set

α′
k = A

(

{z1, . . . , zm}, z′k

)

.

The computation requires evaluating the strangeness of z′k
relative to {z1, . . . , zm}. The choice of the nonconformity

function A must ensure computing informative nonconformity

scores in real-time. Using, for example, k-NN requires storing

the training data set which is infeasible for real-world CPS.

Instead, we propose to learn an appropriate neural network

architecture which is trained offline using the proper training

set and encodes the required information in its parameters.

This neural network monitors the inputs to the perception or

end-to-end control LEC and is used to compute in real-time

the nonconformity measure.

Given an input z′k, the p-value pk is computed as the frac-

tion of calibration examples that have nonconformity scores

greater than or equal to α′
k using Eq. (1). It should be

noted that the computation of the p-value can be performed

efficiently online since it requires storing only the calibration

nonconformity scores. If pk < ε the example z′k is classified

as an anomaly. Using a single p-value for detecting out-of-

distribution examples can lead to an oversensitive detector with

a large number of false alarms that inhibit the operation of the

CPS. Our objective is to compute a sequence of p-values and

use the martingale-based method presented in Section III to

test if the p-values are independent and uniformly distributed

indicating that the input is generated from the same probability

distribution as the proper training data set or there are many
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small p-values indicating an out-of-distribution input. In the

latter case, the martingale will grow and can be used as an

input to a detector that raises alarms.

In the following, we describe how VAE and SVDD are

used to compute the nonconformity measure and detect out-of

distribution examples. Although the idea is similar, the two

architectures lead to different algorithms for computing the

sequence of p-values and realizing the detector.

B. VAE-based Out-of-distribution Detection

1) Nonconformity measure and p-values: Given an input

example zt at time t, the encoder portion of a VAE is used

to approximate the posterior distribution of the latent space

and sample multiple points xk from the posterior that are

used as input to the decoder portion in order to and generate

new examples z′1, . . . , z
′
N . Typically, the posterior of the latent

space is approximated by a Gaussian distribution. Sampling

from the posterior generates encodings xk so that the decoder

is exposed to a range of variations of the input example and

outputs z′1, . . . , z
′
N which satisfy the exchangeability assump-

tion.

An in-distribution input zt should be reconstructed with

a relatively small reconstruction error. Conversely, an out-

of-distribution input will likely have a larger error. The re-

construction error is a good evaluation of the strangeness of

the input relative to the training set and it is used as the

nonconformity measure. We use the squared error between

the input example zt and each generated output example z′k
as the nonconformity measure defined as

α′
k = AVAE(zt, z

′
k) = ||zt − z′k||

2. (3)

The p-value pk for the input z′k is computed as the fraction

of calibration examples that have nonconformity scores greater

than or equal to α′
k using Eq. (1). Since the examples

z′1, . . . , z
′
N satisfy the exchangeability assumption, the pk

values are independent and uniformly distributed in [0, 1] (see

discussion in Section III) and the martingale method can be

used to test if z′1, . . . , z
′
N , and therefore zt, are generated from

the probability distribution of the training data.

2) Martingale test: At runtime, for every new input exam-

ple zt received by the perception or end-to-end control LEC

at time t we compute the martingale

Mt =

∫ 1

0

M ε
t dε =

∫ 1

0

N
∏

k=1

εpε−1
k dε.

Mt will have a large value if there are many small p-values

in the sequence pk which will indicate an out-of-distribution

input.

3) Stateful detector: In order to robustly detect when

Mt becomes consistently large, we use the Cumulative sum

(CUSUM) procedure [19]. CUSUM is a nonparametric stateful

test and can be used to generate alarms for out-of-distribution

inputs by keeping track of the historical information of the

martingale values.

The detector is defined as S1 = 0 and St = max(0, St−1+
Mt−1 − δ), where δ prevents St from increasing consistently

when the inputs are in the same distribution as the training

data. An alarm is raised whenever St is greater than a threshold

St > τ which can be optimized using empirical data [19].

Typically, after an alarm the test is reset with St+1 = 0.

Algorithm 2 describes the VAE-based real-time out-of-

distribution detection. The nonconformity measure can be

computed very efficiently by executing the learned VAE neural

network and generating N new examples. The complexity is

comparable to the complexity of the perception or end-to-end

LEC that is executed in real-time.

Algorithm 2 VAE-based out-distribution detection

Input: Input example zt, calibration nonconformity scores

(αm+1, . . . , αl), number of examples to be sampled N ,

stateful detector threshold τ and parameter δ
Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: for k = 1 to N do

3: Sample z′k using the trained VAE

4: α′
k = AVAE(zt, z

′
k)

5: pk,=
|{i=m+1,...,l} |αi≥α′

k|
l−m

6: end for

7: Mt =
∫ 1

0

∏N

k=1 εp
ε−1
k dε

8: if t = 1 then

9: St = 0
10: else

11: St = max(0, St−1 +Mt−1 − δ)
12: end if

13: Anomt ← St > τ
14: end for

C. SVDD-based out-of-distribution Detection

1) Nonconformity measure and p-values: The SVDD-based

method also uses a learned model to calculate the non-

conformity score. The proper training set is used to train

the deep SVDD model. The center of the hypersphere c

is fixed as the mean of the representations from the initial

pass on the proper training data. After training, the neural

network function φ(zt,W
∗) maps an input example zt to a

representation close to the center c. In-distribution inputs are

likely concentrated in a relatively small area in the output

space while the out-of-distribution inputs will be faraway from

the center. The distance of the representation to the center c of

the hypersphere can be used to evaluate the strangeness of the

test example relative to the proper training set and is defined

as the nonconformity measure

α′
t = ASVDD(zt) = ||φ(zt;W

∗)− c||2.

The p-value is computed as the fraction of calibration exam-

ples that have nonconformity scores greater than or equal to

α′
t (Eq.(1)). However, in contrast to the VAE, SVDD is not a

generative model and cannot be used to generate multiple IID

examples similar to zt.
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2) Martingale test: In order to improve the robustness of

out-of-distribution detection, it is desirable to use a sequence

of inputs. In CPS, the inputs arrive at the perception or

end-to-end LEC one-by-one and they are time-correlated,

and therefore not independent. For a sequence of inputs

zt : t = 1, 2, . . ., the martingale in Eq. (2) will increase

continuously even for in-distribution examples. In order to

adapt the test, we use a sliding window [t−N+1, t], and given

an input sequence (zt−N+1, . . . , zt), we compute the sequence

of p-values (pt−N+1, . . . , pt). Although the p-values are not

guaranteed to be independent and uniformly distributed, out-

of-distribution inputs will still result in small p-values and the

martingale test is used to identify sequences with many small

values. In this case, the martingale is given by

Mt =

∫ 1

0

M ε
t dε =

∫ 1

0

t
∏

i=t−N+1

εpε−1
i dε.

In order to apply this method to CPS, the rate that we

receive observations from the environment must be much

faster than the dynamic evolution of the system and the

main factor that differentiates consecutive observations are

random disturbances and noise. For a short window, it can

be assumed that the input sequence (zt−N+1, . . . , zt) satisfies

the exchangeability assumption and the martingale test can be

used to detect multiple small p-values in a short time interval.

It should be noted that the martingale Mt does not depend

on the order of the input examples (zt−N+1, . . . , zt) . Also,

Mt must be initialized for the first steps using, for example,

random independent and uniformly distributed p-values.
3) Stateless detector: Since we already use a sliding win-

dow to compute Mt, we employ a stateless detector based

on the value Mt and a predefined thershold τ expressed as

Mt > τ .

Algorithm 3 describes the SVDD-based real-time out-of-

distribution detection. Compared with the VAE, the SVDD

based method is more efficient since it does not require

generating multiple examples at each step. The martingale Mt

can be computed recursively by incorporating the p-value for

the new input and omitting the last one in the sliding window.

Algorithm 3 SVDD-based real-time out-distribution detection

Input: Input example zt, calibration nonconformity scores

(αm+1, . . . , αl), sliding window size N , stateless detector

threshold τ
Output: Output boolean variable Anomt

1: for t = 1, 2, . . . do

2: α′
t = ASVDD(zt)

3: pt =
|{i=m+1,...,l} |αi≥α′

t|
l−m

4: Mt =
∫ 1

0

∏t

i=t−N+1 εp
ε−1
i dε

5: Anomt ← Mt > τ
6: end for

V. EVALUATION

We evaluate the proposed approach using (1) an advanced

emergency braking system (AEBS) and (2) a self-driving

end-to-end controller (SDEC). The AEBS and SDEC are

implemented using CARLA [15]. We use CARLA 0.9.5 on

a 16-core i7 desktop with 32GB RAM memory and a single

RTX 2080 GPU with 8GB video memory.

A. Advanced Emergency Braking System

1) Experimental Setup: The architecture of the AEBS is

shown in Fig. 2. A perception LEC is used to detect the

nearest front obstacle on the road and estimate the distance.

The distance together with the velocity of the host car are

used as inputs to a reinforcement learning controller whose

objective is to generate the appropriate braking force in order

to safely and comfortably stop the vehicle.

Perception
RL

Control
Vehicle

Camera Distance Brake

Velocity

Fig. 2. Advanced emergency braking system architecture.

The desirable behavior is illustrated in Fig. 3. The AEBS

detects a stopped lead car and applies the brake to decelerate

and avoid the potential collision. The initial velocity of the

host vehicle is v0 and the initial distance between the host

car and the obstacle is d0. The goal of the controller is to

stop the car between Lmin and Lmax. The sampling period

used in the simulation is ∆t = 1/20 s. In order to simulate

realistic scenarios, we introduce uncertainty into the system.

The initial velocity v0 is uniformly sampled between 90 km/h
and 100 km/h, and the initial distance d0 is approximately

100m. CARLA allows controlling the precipitation in the

simulation using a parameter which takes values in [0, 100].
For training the perception LEC, and also the VAE and

SVDD used for out-of-distribution detection, the precipitation

parameter is randomly sampled from the interval [0, 20]. The

uncertainty introduced affects the error of the perception LEC.

It should be noted that this is just a visual effect and it does

not affect the physical behavior of the car.

d0 LminLmax 0

v0

Fig. 3. Illustration of advanced emergency braking system.

The perception LEC is implemented using a convolutional

neural network (CNN) which is trained using supervised learn-

ing with a training data set consisting of 8160 images obtained

by varying the simulation parameters described above. The

perception LEC has three layers of 24/36/48 × (5 × 5)
filters with ReLU activations and 2 × 2 strides, two layers

of 64/64 × (3 × 3) filters with ReLU activations and 1 × 1
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strides, three fully connected layers of 100/50/10 units with

ReLU activations and an output layer of size 1 with Sigmoid

activation. After 100-epoch training, the mean absolute errors

for training and testing are 0.54m and 0.56m respectively and

are used to select Lmin and ensure safety. The reinforcement

learning controller is trained using the DDPG algorithm [20]

with 1000 episodes and reward function which aims to stop the

vehicle between Lmin = 1m and Lmax = 3m. A simulation

run is shown in Fig. 4. Initially, the distance between the host

and the lead car is 97.56m, and the velocity of the host car

is 96.84 km/h (= 26.90m/s). After 140 steps or 7.00 s, the

host vehicle stops at 1.98m from the lead car.

2) VAE and SVDD training: The data set with the 8160
images used for training the perception LEC is used as

the proper training data set. In addition, using simulations

with the same random parameters, we collect 2040 images

for the calibration set. We use a VAE with four layers of

32/64/128/256 × (5 × 5) filters with exponential linear unit

(ELU) activations and 2×2 max-pooling, one fully connected

layer of size 1568 with ELU activation, 1024 latent space,

and a symmetric deconvolutional decoder. A simple two-phase

learning schedule is employed with initial searching learning

rate η = 10−4 for 250 epochs, and subsequently fine-tuning

η = 10−5 for 100 epochs.

The Deep SVDD is similar with four convolutional layers

of 32/64/128/256 × (5 × 5) filters with ELU activations

and 2 × 2 max-pooling, followed by one fully connected

layer of 1568 units. As suggested in [14], we first train a

deep convolutional autoencoder (DCAE) to initialize the deep

SVDD. After 250 (η = 10−4) + 100 (η = 10−5) epochs of

DCAE training, we copy the weights to the SVDD and set

the hypersphere center c to the mean of the reduced space

of the initial forward inference. The one-class deep SVDD

objective is used as the loss and the neural network is trained

for additional 150 (η = 10−4) + 100 (η = 10−5) epochs.

3) Results: To characterize the performance of the out-

of-distribution detection, we use multiple simulation episodes

that include in- and out-of-distribution examples. Each episode

starts with a random initial velocity v0 of the host car. The

AEBS is activated upon detection of the lead car by the

camera as implemented in CARLA. We vary the precipitation

parameter r as

r =

⎧

⎨

⎩

r0 for t < t0
r0 + β(t− t0) for t0 ≤ t ≤ t1
r0 + β(t1 − t0) for t > t1

where r0 is the initial precipitation uniformly sampled from

[0, 10]; t0 ∈ {10, 11, . . . , 30} is selected randomly as the time

step the precipitation starts to increase; t1 ∈ {90, 91, . . . , 110}
is selected randomly as the time step the precipitation stops

increasing; and β ∈ [0.1, 0.5] is a randomly selected slope. In

some episodes r is always below 20 (in-distribution) while in

other episodes r exceeds 20 and it is assumed that the per-

ception LEC receives out-of-distribution inputs. We simulate

200 episodes and 108 of them are in-distribution while 92 of

them contain out-of-distribution inputs.

We illustrate the approach using two episodes and we plot

the ground truth and the predicted distance to the lead car,

the velocity of the host car, the p-value and stateful detector

S-value computed using the logarithm of Mt and δ = 6, the

p-value of the SVDD-based method, and the logarithm of the

SVDD-based martingale. Since Mt takes very large values,

logMt is used. We use N = 10 for the number of examples

generated by the VAE and the size of sliding window in the

SVDD-based approach. Fig. 4 shows simulation results for

the in-distribution case. The p-values are randomly distributed

between 0 to 1, and the martingale for both approaches is

small. The VAE-based method is more sensitive than the

SVDD as indicated by the larger value around 5 s. The p-

values may become small if the camera observations are

different than the training data. In this case, there is a speed

limit traffic sign that is not accurately reconstructed. After

the car passes the traffic sign, the p-values increase and the

martingale goes back to very small value. The effect in the

SVDD method is smaller, since we use a sliding window. Even

if the training data set is augmented, there will be always

novelties that can lead to variation but a robust detection

method can limit the number of false alarms.

An episode with out-of-distribution inputs is shown in

Fig. 5. The parameter r exceeds 20 at time step 40 (2.0 s).
The error of the perception LEC starts increasing and reaches

almost 11m. The controller is misled by the perception LEC,

and does not stop the car which collides with the lead car

(velocity is greater than 0 when ground truth distance comes

to 0). Both VAE-based and SVDD-based martingale grow as

the p-values become smaller.

We evaluate the approach for the 200 episodes generated by

considering different values of N . We run each episode and if

an alarm is raised, we stop the simulation, and we check if the

alarm is false. We compute the detection delay as the number

of frames from the time r exceed 20. We select the detector

parameters τ and δ using a simple search for achieving average

detection delay less than 25 frames. Tables I and II shows the

results for the VAE and SVDD-based methods respectively.

The number of false alarms is very small and the delay for

detection is smaller than 20 frames or 1 s .

TABLE I
VAE-BASED DETECTION.

Parameters
(N, δ, τ)

False positive False negative
Average delay

(frames)

5, 5, 42 2/108 0/92 17.91
5, 5, 49 0/108 0/92 19.84

10, 6, 156 0/108 0/92 18.65
10, 10, 106 0/108 0/92 19.30
20, 16, 250 2/108 0/92 17.63
20, 18, 240 0/108 0/92 18.46

B. Self-driving End-to-end Control

1) Experimental Setup: The CARLA simulator comes with

a self-driving end-to-end controller trained using imitation

learning. The SDEC uses camera images as inputs and

computes steering, acceleration, and brake actuation signals
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Fig. 4. Episode with in-distribution inputs.

TABLE II
SVDD-BASED DETECTION.

Parameters
(N, τ)

False positive False negative
Average delay

(frames)

5, 8 2/108 0/92 15.12
5, 9 1/108 0/92 20.85

10, 12 1/108 0/92 14.38
10, 14 0/108 0/92 17.78
20, 16 1/108 0/92 12.02
20, 17 0/108 0/92 13.29

applied to the car. The SDEC is implemented using a CNN

trained by conditional imitation learning with 14 hours of

driving data recorded by human drivers [15]. The sampling

period used here is ∆t = 1/10 s. For this example, our

objective is to evaluate if the method can be used to detect

a class of adversarial attacks. An approach for designing

physically realizable attacks in end-to-end autonomous driving

is presented in [16] and a novel class of hijacking attacks is

introduced where painted lines on the road cause the self-
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Fig. 5. Episode with out-of-distribution inputs.

driving car to follow a target path. Fig. 6b shows an image

with the painted pattern on the road.

(a) Original image (b) Attacked image

Fig. 6. Comparison of original image and image with attack [16].

In order to train the VAE and SVDD, we collect training

data using episodes without attacks. We generate 633 images

in two different weather patterns (clear noon and cloudy noon)

and three different scenarios (turning right, turning left, and

going straight). We randomly split the training data into 506
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images for the proper training data set and 127 images for the

calibration set. We use the same VAE and SVDD architectures

and hyperparameters as in the AEBS.

The evaluation focuses on the Right Corner Driving case

which is reported as more vulnerable [16]. We run 105
simulation episodes described in [16] with different attacks

such as positions and rotations of the two black lines which

are chosen to cause traffic infractions. In 69 out of the 105
episodes the attack is successful causing a vehicle crash. Our

approach detects the attacks in all 105 episodes. Distinguishing

between attacks that cause a crash or not using only the input

images is an interesting question for further research. Also, it is

important to investigate how to design attacks that hijack both

the end-to-end control and the out-of-distribution detection.

We plot the p-values and stateful detector S-value of the

VAE-based method, the p-values and the logarithm of the

SVDD-based martingale in Fig. 7 (N = 10 and δ = 1). In

this episode, there are two black lines painted on the road as

shown in Fig. 6b and the vehicle is misled leading to a crash.

The p-values are almost 0 and the martingales grow very large

indicating the input images are out-of-distribution.
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Fig. 7. Episode with attacked inputs.

C. Computational Efficiency

The VAE-based and SVDD-based methods can compute

the nonconformity scores in real-time without storing training

data. Table III reports the minimum (min), first quartile (Q1),
second quartile or median (Q2), third quartile (Q3), and

maximum (max) of (1) the execution times of the LECs

in AEBS and SDEC and (2) the execution times of the

VAE-based and SVDD-based detectors for different values of

N . Since the VAE-based method uses N examples in each

time step to compute the nonconformity scores, the execution

time is larger than the execution time of the SVDD-based

method. The execution time of SVDD-based detection method

is independent of the window size N since the martingale

can be computed recursively for the sliding window. The

execution times are similar to the execution times of the

perception and end-to-end control LECs and much smaller

than the corresponding sampling time (50ms in AEBS and

100ms in SDEC), and thus, the methods can be used for real-

time out-of-distribution detection.

TABLE III
EXECUTION TIMES.

N
min
(ms)

Q1

(ms)
Q2

(ms)
Q3

(ms)
max
(ms)

AEBS N/A 3.48 3.85 3.91 3.96 4.20

SDEC N/A 2.20 2.37 2.45 2.56 3.31

VAE
5 18.64 18.68 18.71 18.73 18.81

10 37.26 37.38 37.41 37.45 38.11
20 75.12 75.19 75.22 75.68 78.83

SVDD
5 2.18 2.19 2.19 2.2 2.26

10 2.17 2.19 2.19 2.2 2.29
20 2.17 2.22 2.23 2.23 2.37

VI. RELATED WORK

Verification and assurance of CPS with machine learning

components is considered in [21] in a broader context of

verified artificial intelligence. The challenges discussed in [21]

include the integration of design-time and runtime methods

to address the undecidability of verification in complex sys-

tems and environment modeling. Out-of-distribution detection

can be used with recovery and reconfiguration techniques to

complement design-time verification. Focusing on design-time

techniques, an approach to identify regions of the input space

that lack training data and potentially larger errors is presented

in [22]. The approach could be adapted to predict at runtime

if new inputs are from regions covered during training or

not. Compositional falsification of CPS with machine learning

components is introduced in [2] and demonstrated with a

simulated AEBS. The approach is applied at design-time for

identifying executions that falsify temporal logic specifications

and also identifies regions of uncertainty where additional

analysis and runtime monitoring is required. A related ap-

proach for simulation-based adversarial test generation for

autonomous vehicles with machine learning components is

presented in [1]. The technique is also used at design-time

to increase the reliability of autonomous CPS and can provide

additional training data for out-of-distribution detection.

Detection of out-of-distribution examples in neural networks

has received considerable attention especially in the context of

classification tasks in computer vision [3]. Correctly classified

examples tend to have greater maximum softmax probabilities

than erroneously classified and out-of-distribution examples.

An approach for improving detection by training anomaly

detectors is proposed in [4]. An approach for reducing the

number of false alarms of out-of-distribution image detection

by adding small perturbations to the input is presented in [23].

The idea is similar to randomly sampling from the latent
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space of the VAE that can also improve the reliability of

the detection. Such detection techniques do not take into

consideration the dynamical behavior of CPS and can exhibit

large number of false alarms.

An approach which aims to detect novelties based on the

reconstruction error of an autoencoder for a single input is

presented in [6]. The approach is used for safe visual and

LIDAR-based navigation of mobile robots. A similar approach

using VAEs is proposed in [7] to estimate the uncertainty for

a collision prediction task for a robot car. As discussed in [6],

[7], out-of-distribution detection and, in general, uncertainty

estimation is an important research direction for providing a

more robust detection. In our approach, we leverage inductive

conformal prediction and anomaly detection for developing

a detection algorithm that has well-calibrated false alarm

rate [11] and we compute the nonconformity scores in real-

time using VAE and SVDD neural networks.

Conformal anomaly detection is used for sequential

anomaly detection of time trajectories in [10]. A nonconfor-

mity measure based on nearest neighbors and Hausdorff dis-

tance provides good performance and robustness but it cannot

be used for high-dimensional trajectories at runtime. Inductive

techniques have been used for change-point detection in [5],

[12] but do not consider high-dimensional inputs and real-

time detection. A deep k-NN method based on conformal

prediction that uses a nonconformity measure computed using

the representation learned by each layer of the DNN classifier

is presented in [24]. The method computes confidence metrics

for evaluating the robustness of the DNN classifier and out-of-

distribution detection. Estimating the confidence and the un-

certainty of neural network prediction is an important problem.

In addition to conformal prediction, the problem is addressed

using various techniques for computing a confidence or trust

score [25], [26]. A promising research direction is to combine

these with conformal prediction for improving the robustness

and reliability of neural networks.

VII. CONCLUSIONS

In this work, we demonstrated a method for out-of-

distribution detection in learning-enabled CPS. The method

is based on inductive conformal prediction and anomaly de-

tection but uses VAEs and SVDD to learn models to efficiently

compute the nonconformity of new inputs relative to the

training set and enable real-time detection of high-dimensional

out-of-distribution inputs. Our evaluation is based on an AEBS

and an SDEC implemented in an open source simulator for

self-driving cars. The results demonstrate very small number

of false positives and detection delay while the execution time

is comparable to the execution time of the original LECs.

Detection of out-of-distribution inputs does not necessarily

imply large errors. An important question is whether it is

possible to identify inputs that result in large errors. Evaluation

with real-world data sets is also part of our future work.
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