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Abstract—Memory corruption attacks such as code 
injection, code reuse, and non-control data attacks have 
become widely popular for compromising safety-critical 
Cyber-Physical Systems (CPS). Moving target defense 
(MTD) techniques such as instruction set randomiza­
tion (ISR), address space randomization (ASR), and 
data space randomization (DSR) can be used to protect 
systems against such attacks. CPS often use time- 
triggered architectures to guarantee predictable and re­
liable operation. MTD techniques can cause time delays 
with unpredictable behavior. To protect CPS against 
memory corruption attacks, MTD techniques can be 
implemented in a mixed time and event-triggered archi­
tecture that provides capabilities for maintaining safety 
and availability during an attack. This paper presents 
a mixed time and event-triggered MTD security ap­
proach based on the ARINC 653 architecture that 
provides predictable and reliable operation during nor­
mal operation and rapid detection and reconfiguration 
upon detection of attacks. We leverage a hardware-in- 
the-loop testbed and an advanced emergency braking 
system (AEBS) case study to show the effectiveness of 
our approach.

Index Terms—Moving Target Defense, Time Trig­
gered, Event Triggered, Cyber-Physical Systems

I. Int r oduct ion
Safety-critical CPS often contain memory corruption 

vulnerabilities such as buffer overflows that allow for the 
remote exploitation of software. Cyber-attacks such as 
code injection, code reuse, and non-control data attacks 
allow for adversaries to hijack safety-critical functionality, 
potentially resulting in severe damage to the system and 
the surrounding environment. Memory corruption attacks 
pose a serious threat since they allow adversaries to re­
motely control and alter sensor data or execute unsafe ac­
tuation behavior while making it look like normal behavior 
to monitoring subsystems.

Instruction set randomization (ISR) [17], [36], address 
space randomization (ASR) [35], and data space random­
ization (DSR) [4] are all very effective moving target 
defense techniques (MTD) that mitigate these types of 
attacks [25]. However, when disrupting the attack process, 
these techniques result in the software crashing due to an 
exception such as an invalid instruction, invalid address,

or unsafe data value, thus resulting in a denial of service 
which is not acceptable in CPS.

Safety-critical CPS often utilize time-triggered architec­
tures to ensure predictable and reliable operation [13]. 
However, in the event of an attack, it is necessary to 
respond as fast as possible instead of waiting until the 
following period of the static schedule. As such event 
triggered functionality is necessary to provide rapid de­
tection, and reconfiguration at the point of the attack. By 
combining time triggered and event triggered functionality 
into a mixed approach, the predictability benefits of time 
triggered systems, and the rapid response benefits of event 
triggered systems can be maintained.

This paper presents an approach to protect against 
code injection, code reuse, and non-control data attacks 
by developing a mixed time and event-triggered MTD 
security architecture. Further, we consider how to limit 
the overhead of the approach and we explain how to 
reconfigure the system upon detection of an attack to 
limit the amount of missed deadlines. Our hypothesis is 
that by integrating ISR, ASR, and DSR with the ARINC 
653 standard [31], we can protect against code injection, 
code reuse, and non-control data attacks while rapidly 
performing reconfiguration to maintain system safety. The 
contributions of this paper are as follows:

• We develop and implement a mixed time and event- 
triggered MTD security architecture that provides 
predictable and reliable operation during normal cir­
cumstances as well as rapid detection of attacks and 
reconfiguration to maintain safety. The security ar­
chitecture includes ISR, ASR, and DSR to protect 
against code injection, code reuse, and non-control 
data attacks. Furthermore, we leverage the benefits 
of the ARINC 653 standard such as isolation, static 
schedule creation, and health monitoring for our ar­
chitecture.

• We design and develop a novel reconfiguration scheme 
to maintain CPS safety and static schedule integrity 
during a cyber-attack.

• We implement the architecture using a hardware-in- 
the-loop testbed representative of modern CPS to
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evaluate the approach. Our implementation includes 
detection and recovery capabilities to limit missed 
deadlines and maintain safe and reliable operation.

• We present an autonomous vehicle case study to 
demonstrate the effectiveness in limiting the impact 
of attacks in the context of an advanced emergency 
braking system (AEBS).

The rest of this paper is outlined as follows: Section II 
discusses the key background fundamentals behind our 
approach, Section III introduces the threat model uti­
lized as motivation for our paper, Section IV provides an 
overview of our security approach and implementation, 
Section V illustrates the evaluation of our architecture 
through the use of an autonomous vehicle case study, 
Section VI discusses related work, and Section VII ends 
the paper with concluding remarks.

II. Bac kg r o und

A. ARINC 653

ARINC 653 is a popular standard implemented for 
aerospace and other safety-critical CPS applications aimed 
at maintaining safety and predictability within critical 
components [11]. As this standard forms the foundation 
of the proposed architecture, it is useful to describe the 
basic components. ARINC 653 is comprised of two types of 
components: partitions, and processes. These components 
have various types of attributes, states, and communica­
tion methods that can be configured throughout the design 
process. These components are briefly described below.

Partitions are the highest level of abstraction and in­
clude a shared memory space running tasks. Partitions 
can essentially be considered as a virtual machine in a 
single application environment comprising of data, con­
text, and attributes. In a partition, there can exist mul­
tiple processes that correspond to the actual tasks in an 
application. It is easier to think of the partition in terms 
of a virtual machine, and a process as a specific software 
application running inside of the virtual machine. As such, 
multiple processes can run concurrently and rely on the 
operating system for scheduling.

Communication within ARINC 653 is conducted 
through the use of unidirectional channels, ports, and 
messages. Additionally, communication is possible both 
between partitions (inter-partition) as well as within a 
partition between multiple processes (intra-partition). It is 
important to note that the data transmitted is considered 
an atomic entity meaning that if the whole message is not 
received then no part of the message will be received.

Finally, ARINC 653 contains a health monitor that 
analyzes the behavior of the underlying partitions and pro­
cesses for anomalies. In our approach, the health monitor 
is also responsible for the reconfiguration process of child 
processes when a cyber-attack is detected.

B. Moving Target Defense Techniques
The MTD techniques used in our architecture include 

ISR [17], ASR [3], and DSR [4]. Legacy CPS software 
often contains numerous memory corruption vulnerabili­
ties such as buffer overflows that allow attackers to re­
motely perform code injection, code reuse, and non-control 
data attacks [6]. By randomizing the internal structure 
of software, attacker reconnaissance efforts are ineffective, 
resulting in failed cyber-attack attempts.

In a code injection attack, adversaries leverage a mem­
ory corruption vulnerability to inject and execute code re­
motely on the program stack [26]. To successfully execute 
code, the injected instructions format must be consistent 
with the native system processor format (x86, ARM, etc.). 
By randomizing the representation of native instructions 
at runtime using ISR, attacker injected code will be of an 
invalid representation resulting in an invalid instruction 
exception.

In a code reuse attack, adversaries leverage a memory 
corruption vulnerability to divert control flow to another 
location within the program memory such as a safety- 
critical function [32]. To be successful, attackers must 
know the memory location of their target to divert pro­
gram control flow effectively. By randomizing the address 
layout using ASR, the location of target functions will no 
longer be as expected by the attacker, resulting in divert­
ing control flow to the wrong location. Hence, any code 
reuse attack attempts will result in an invalid memory 
access exception.

In a non-control data attack, adversaries leverage a 
memory corruption vulnerability to overwrite adjacent 
safety-critical variables [29]. To be successful, attackers 
must know the variable format, allowing them to correctly 
alter the variable value. With DSR, the variable represen­
tations will be randomized, and any attacker manipulation 
will result in a value wildly different than expected. This 
increases the ease of detecting any malicious data tam­
pering activity, preventing the attacker from successfully 
overwriting critical variables.
C. Control Reconfiguration
It is not enough to detect and stop cyber-attacks in CPS 

where it is also required to maintain safe operation. Avail­
ability is a key property that can be maintained using re­
configuration. A popular approach to control reconfigura­
tion in safety-critical CPS is the simplex architecture [24]. 
Simplex contains two controllers: a default controller for 
normal execution, and a safety controller that serves as 
a backup in case of failure in the default controller. The 
default controller is designed to be high performance, 
while potentially containing vulnerabilities. The safety 
controller, on the other hand, may not provide optimal 
performance but guarantees safe, and secure operation. 
Additionally, Simplex includes a decision module that 
determines when to switch between the two controllers and 
perform the execution transitioning process.
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III. Thr eat  Model IV. Secur it y Ar chit ect ur e

The threat model considers memory corruption attacks 
such as code injection, code reuse, and non-control data 
attacks on a vehicle network. An example attack vector 
consists of the adversary compromising the telematics 
control unit (TCU) through the remote cellular inter­
face and pivoting to hijack the remote function actuator 
(RFA). With access to a direct communication channel 
with the driving controller, the adversary can craft a mes­
sage payload to take advantage of the memory corruption 
vulnerability and alter control. At this point, an attacker 
can perform an attack where they can leverage the buffer 
overflow to affect safety-critical behavior in the driving 
controller.

The following assumptions are made in the proposed 
security architecture. First, the sensor and actuator clus­
ters are fully secure. The driving controller electronic 
control unit (ECU) contains the buffer overflow vulner­
ability utilized for control hijacking, while the TCU and 
RFA contain vulnerabilities allowing for key fob message 
spoofing. Second, the attacker knows the relative address 
of a safety-critical variable relative to the start of the 
input buffer. Finally, the attacker knows the underlying 
software architecture of the safety-critical controllers, al­
lowing them to target the most impactful variables and 
functions. These assumptions are not impractical given 
examples demonstrated in the literature [23].

It is important to note that our threat model makes 
the assumption that the only vulnerable component is the 
driving controller (CPS controller). Other components in 
our architecture such as partitions and the health monitor 
are assumed to be secure, and only the driving controller 
partition will include MTD defense protections. The first 
assumption is valid because ARINC 653 contains one-way 
communication constraints [11] that make it impossible 
for the attacker to pivot into any other partition from the 
driving controller. With regards to the second assumption, 
CPS software is normally legacy code without modern 
day compiler security protections. To add to this, source 
code is normally unavailable, meaning that it becomes 
very difficult to verify the lack of vulnerabilities within the 
driving controller. In comparison, the health monitor is a 
relatively simple program containing a few hundred lines 
of C++ code. Since the source code is readily available, 
and compiled from source by the designer, security vulner­
abilities can be identified and coding best practices can be 
established before the deployment of the architecture. This 
assumption can be justified by the requirement of highest 
level of certification required for components that monitor 
the health of system [16]. As such, within our architecture 
we can assume that the designer has previously identified 
and patched vulnerabilities within the health monitor, 
making that component secure.

A. Components
The key components in our approach are: (1) CPS 

Controllers which control the physical plant, (2) Dynamic 
Binary Translator (DBT) which uniquely customizes the 
runtime environment for each CPS controller, (3) points 
to analysis graph (PAG) which describes the relationship 
between pointers and variables within a program, and (4) 
Health Monitor which controls the reconfiguration upon 
detection of an attack. The components are described 
below.

1) CPS Controllers: This component is the actual soft­
ware that controls the CPS application. The controller 
receives sensor inputs from the system, performs compu­
tation operations, and outputs actuation commands. Our 
architecture supports a broad array of control techniques 
and applications.

2) Dynamic Binary Translator (DBT): This component 
is responsible for providing a unique randomization back­
end for each spawned CPS controller in the architecture. In 
other words, the DBT is a virtual sandbox layer that serves 
as an intermediary between the executing binary and 
the processor. The DBT intercepts instructions as they 
are fetched and alter program semantics before execution 
by the processor. The open-source instrumentation tool 
Mambo [12] is utilized to support the DBT implementa­
tion.

3) Points-To-Analysis: This component is responsible 
for using static analysis techniques to identify the variable 
relationships within a program. By feeding this infor­
mation into the DSR implementation, we can identify 
correct randomization keys to utilize for various memory 
locations.

4) Health Monitor: This component is responsible for 
detecting an attack and rapidly reconfiguring the system 
to spawn backup controllers to take over functionality 
and minimize safety-critical component downtime. Addi­
tionally, the Health Monitor is responsible for executing 
the static time-triggered schedule. This component is a 
requirement specified in the ARINC 653 standards [11].

We assume that the DBT and the Health Monitor are 
not susceptible to cyber-attacks. Therefore, the variable 
key storage table in each DBT is assumed to be secure 
against integrity attacks.

B. Design Time
1) Component Selection: For component selection, it is 

important to consider several properties including memory 
usage, slack time, and deadlines. The security architec­
ture introduces some overhead in both memory usage 
and performance. For safety-critical components that have 
strict and tight deadlines, a comprehensive assessment 
is required to determine if there is enough flexibility 
within the current implementation to support the in­
troduced overhead. Furthermore, the approach provides
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several combinations of MTD security protections allowing 
designers to optimize the trade-off between security and 
performance.

2) Time-Triggered Design: ARINC 653 allows us to 
distribute the application into separate, isolated partitions 
executing in sequential order. In our design, we first have 
to perform an execution analysis of the relevant system 
components identifying the maximum time required for 
the processes to complete. After this step, we build in 
slack time and assign the required time allotments for 
each partition in the system. The assigned time allotment 
must be larger than the maximum execution time of 
the underlying process. Otherwise, system processes may 
not fully finish, and the behavior of the system could 
be consequentially affected. For our implementation we 
leverage the open source ARINC 653 software emulator [1].

3) Moving Target Defense (MTD): In the ISR imple­
mentation, we randomize instructions with a 32-bit key 
dynamically generated at runtime, creating a high degree 
of entropy protection. For the ASR implementation, we 
shuffle functions and randomize base memory addresses, 
significantly decreasing the probability of success of code 
reuse and return-oriented programming attacks. Finally, 
for the DSR implementation, we XOR stack-based vari­
ables with a 64-bit key, while also utilizing a redundancy 
comparison check for determining the presence of a non­
control data attack.

Both ISR and ASR have different degrees of granularity 
to optimize the trade-off between security and perfor­
mance. ISR can use different types of randomization based 
on XOR or AES 256 encryption. Furthermore, different 
memory ranges can be randomized with different keys, 
reducing the likelihood of the adversary correctly guess­
ing the randomization key. ASR by default is defined 
with coarse-grained granularity meaning that the base 
addresses of the program, stack, heap, and shared libraries 
are different for every runtime instance. However, fine­
grained granularity is built-in meaning that not only 
the base addresses are unique but function locations are 
shuffled as well.

4) Lift Target Binary: For static analysis, it is opti­
mal to convert the binary program into an intermediate 
representation (IR) format. The low-level virtual machine 
(LLVM) compiler bit code is utilized for this purpose [19]. 
To convert a native binary to LLVM bit code, we utilize 
Binary Ninja for disassembly and control flow recovery [5] 
and Mcsema for IR instruction translation [8], [22].

5) Points-To-Analysis: In a program, an object can 
either be an instruction or a memory location. Points-To- 
Analysis is utilized to produce the associations between 
instructions and the memory locations that they access 
through load and store instructions. By recording the 
associations between memory locations and instructions, 
we can create a map corresponding to what randomization 
keys to utilize for respective program instructions. The 
Points-To-Analysis process produces a Points-To-Analysis

Graph (PAG) as output which allows for identifying the 
relationships between instructions and memory locations. 
For our implementation we leverage the SVF library [37].
C. Runtime
The runtime environment is integrated into the DBT 

component which encapsulates the vulnerable CPS con­
troller as shown in Figure. 1. There are two inputs to the 
DBT: the binary executable itself and a text file defining 
the instruction and memory associations from the PAG. 
Once these inputs are received by the DBT, the binary 
will be randomized at load time with the ISR, ASR, and 
DSR randomization modules while being derandomized as 
instructions are accessed with the runtime module.

Fig. 1: MTD Initialization Process
During the randomization process, a 32-bit key is dy­

namically generated and each instruction in the program 
is randomized through an XOR operation. After this step, 
the binary is pushed through the ASR module where the 
functions are shuffled. Since after this step, the program 
instructions have different addresses compared with the 
program after DSR, we adjust the DSR table with the up­
dated addresses of the respective load/store instructions. 
Finally, we start the execution of the newly randomized 
binary. After every instruction is fetched, it is deran- 
domized by performing another XOR operation before 
being decoded by the pipeline. Anytime there is a store 
instruction a randomization instruction is inserted which 
XORs the value with the respective associated key from 
the lookup table and stores the variable at the appropriate 
location on the stack. Additionally, a duplicate copy with 
a duplicate randomization key is also stored in an adjacent 
location to the newly randomized variable. When a load 
instruction is encountered, both copies of the variable are 
loaded and derandomized with their respective keys found 
from the lookup table. After derandomization, the plain 
text values are compared for equivalence. If both values are 
equal then the program can proceed as normal. However, if 
the values are different, an “Attacked Variable” exception 
is generated and the program is terminated (Figure 2).
D. Control Reconfiguration

For reconfiguration, we leverage the Simplex architec­
ture [24]. Our reconfiguration scheme is triggered when 
an attacker attempts to perform a code injection, code 
reuse, or non-control data attack. Since the attack vector 
has been moved due to MTD, any attack attempt results
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Fig. 2: MTD Runtime Instruction Pipeline
in an invalid instruction, invalid memory access, or invalid 
variable comparison exception respectively. This exception 
is then detected from a signal handler within the Health 
Monitor component which triggers the reconfiguration 
process, transitioning program execution to the backup 
controller [10], [21]. Based on our threat model, the only 
step where this process can fail is during the execution of 
the backup controller. As such, we make the assumption 
that there are no bugs in the backup controller.

V. Ev al uat io n

The case study in this paper is based on an Advanced 
Emergency Braking System (AEBS) which safely and 
comfortably stops a host vehicle to avoid collision with 
a lead car. The automotive system contains ECUs that 
receive sensor measurements such as camera images, speed 
and send actuation commands such as braking, steering, 
and throttle. A convolutional neural network is used for 
perception to compute an estimated distance to the lead 
vehicle. Then a braking controller feed-forward neural 
network, and a PID throttle controller are used to compute 
the actuation signals. Both the controller and perception 
neural networks are created using the Tensorflow Lite 
library 1. We consider a scenario where the lead vehicle 
brakes at a stoplight, thus requiring the host vehicle's 
AEBS system to be activated. The goal is to brake and 
avoid a collision. The system is illustrated in Fig. 3.

1https://www,tensorflow.org/lite

A. Attack Scenario
The host vehicle contains several ECUs for the various 

components. External interfaces that include cellular com­
munications from the TCU for remote monitoring services 
and RFID sync with the vehicle key fob can be used for 
deploying cyber-attacks. The driving controller constantly 
polls for the key fob signal to determine if the engine 
should remain on. Since the TCU is connected remotely 
through a cellular interface, this component is at risk of 
compromise. The attacker can exploit the TCU, pivot to 
the RFA, and then transmit malicious packets to the driv­
ing controller, exploiting a buffer overflow vulnerability in 
the input processing function.

Once the adversary injects malicious input into the 
driving controller, we consider 3 attack scenarios. First, a 
code injection attack can occur where the attacker injects 
a malicious payload to open a remote shell, disabling the 
driving controller and starting a malicious controller to 
fully accelerate into the lead car. Second, a code reuse 
attack can occur where the attacker utilizes the buffer 
overflow to divert control flow to a steering function within 
the driving controller software, causing the vehicle to turn 
left off of the road. Third, a non-control data attack can 
occur where the attacker utilizes the buffer overflow to 
overwrite an adjacent safety-critical variable (distance to 
the lead vehicle). At this point, the AEBS algorithm will 
believe that the lead vehicle is further ahead than its real 
location, resulting in a collision.

B. Experiment Setup
To evaluate the impact of cyber-attacks, we develop a 

hardware-in-the-loop testbed. The testbed includes em­
bedded hardware representing typical CPS infrastructure 
and a simulation workstation to represent the vehicle 
and the physical environment. The architecture of the 
testbed provides the capability to implement real-time 
CPS control algorithms to interact with and operate an 
autonomous car in a connected simulator.

1) Autonomous Vehicle Simulator:: The autonomous 
vehicle simulator used in our testbed is the CARLA 
autonomous vehicle simulator [9]. In the testbed, the
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simulator runs on Ubuntu 18.04. Socket-based communi­
cation is provided to access variables in the simulation. 
We also use a customized python API interface for easing 
variable access from external processes. The simulator 
can be customized to output sensor data such as lidar, 
speed, images, distance to objects, orientation, and GPS 
locations. Actuation input can change variables that affect 
steering, acceleration, and braking.

2) CPS Controllers:: The software for the controllers is 
executed on an NVIDIA Jetson TX2 board. The board is 
configured with the Linux4Tegra 28.2 operating system, 
GPU libraries such as CUDA, and machine learning li­
braries such as Tensorflow.

3) Communication:: Communication between the sim­
ulator NVIDIA Jetson TX2 board is implemented via Eth­
ernet and the ZeroMQ (ZMQ) communication library 2.

Simulation Workstation ZeroMQ NVIDIA Jetson TX2

C a r l a  Wrapper I Image Controller

I Velocity ' C++

� Accel 1
1 D l._ 1
I  oraKe � 

1 Steering |

Fig. 4: Testbed Setup

C. ARINC 653
We have 4 partitions comprising the static schedule: 

sensor data receipt, perception, computation, and actu­
ation transmission. The sensor partition is responsible 
for receiving the updated image, and speed data from 
the CARLA simulator. The perception partition which 
contains a process that computes an estimated distance 
based on the provided images. Then, the processing par­
tition which contains a computation process determines 
an optimal throttle and braking value the neural network 
and PID controllers. Finally, the output command is fed 
to the actuation partition which transmits the requested 
command to the CARLA simulator. It is important to 
note that the only vulnerable partition in this setup is 
the processing partition due to its interaction with the 
external facing ECUs within the automotive network. As 
such, we harden all processes within this partition with 
our MTD security protections.

1) Static Schedule: To accurately establish the static 
schedule, we must conduct execution time analysis to 
determine the appropriate allocated amount of time for 
each partition. Too much allocated time can result in 
inefficiency in the approach while too little allocated time 
can result in system failure. To identify an upper bound 
of the execution time of each process, we record 100,000 
iterations under varying conditions. With this data, we 
can identify the average, as well as outlier values. After 
performing the execution time analysis, we identify the 
statistics for each process shown in Table I.

2 https://zeromq.org/

Process Execution Times
Min Avg Max

Sensors 200 us 221 us 256 us
State Estimation 31.2 ms 45.6 ms 52.1 ms
Compute 118 us 138 us 160 us
Compute w/ Rand 182 us 218 us 258 us
Health Monitor Recon. 320 us 467 us 489 us
Fail Safe 30 us 42 us 51 us
Actuation 183 us 209 us 231 us

TABLE I: Execution Time Analysis

Based on the execution analysis, we use the static sched­
ule shown in Figure 5. The superframe period is defined 
to be 100ms and will repeat continuously throughout the 
system’s lifetime. This period is small enough to support 
the functionality of the vehicle but also provides enough 
slack time to support various system processes.

Health Monitor

Sensors Perception Processing Actua tion

----- Perception | C Z

; M AM BO;

; m a m b o ;

Throttle

1 Image 1 >| —  |
I l | Sleeting |

0 ms 10 ms 70 ms 90 ms 100 ms

Fig. 5: Static Schedule
To verify that our static schedule is correct, we need 

to analyze worst-case scenarios by determining if the 
aperiodic attack detection and recovery processes executed 
by the Health Monitor fit within the critical slots of the 
Partition 3 schedule. If this is shown to be true, then 
the designed schedule is guaranteed to be fully schedu- 
lable [14]. In the designed schedule, the default controller 
is in Partition 3 and the recovery processes and fail-safe 
controller are triggered by an attack. This means that at 
the earliest, the Health Monitor attack detector will be 
triggered from the beginning of Partition 3 to the end of 
Partition 3. Since the default controller is the only initial 
process in Partition 3, the Health Monitor and fail-safe 
controller processes will have full access to the CPU for 
the remainder of partition 3. However, as a worst-case 
scenario, we consider the case of the attack occurring 
at the end of the Partition 3 time allotment. In this 
case, the fail-safe controller will not complete its execution 
until a full period later during the next time allotment of 
Partition 3 and during the current period, the previous 
actuation value is used.

D. Results
1) Static Analysis: For the case study a 3 layer Neural 

Network is used for the AEBS controller and a PID compo­
nent is responsible for speed and steering control. However, 
these two components are negligible in size so will focus 
our efforts mainly on the neural network performance. In
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a: Code Injection Attack/no MTD b: Code Reuse Attack/no MTD c: Non-control Data Attack/no MTD
AEBS Code Reuse W ith MTD

-Distance 
-Steering Angle |

Time(s)

d: Code Injection Attack/with MTD e: Code Reuse Attack/with MTD f: Non-Control Data Attack/with MTD

the implementation, there are 1025 variables with a file 
size of approximately 220 Kilobytes. Additionally, there 
are two shared libraries that we need to secure: Tensorflow 
Lite, and libm.

The first stage in the static analysis pipeline is binary 
lifting, averaging approximately 17 milliseconds of execu­
tion time for 1000 executions. The second stage is points- 
to-analysis. To evaluate the scalability of the points-to- 
analysis implementation, we run 100 iterations of gener­
ating PAGs, averaging execution times of approximately 
250ms.

Fig. 7: Controller Execution Times 
2) Runtime Performance: In our scenarios, we have 

three combinations enabled including one with only ISR, a 
second with ISR and ASR, and a final combination with all

three MTD techniques enabled. The results are illustrated. 
in Figure 3. With only ISR enabled, there is an overhead 
of approximately 28% while with ISR and ASR there is 
a little higher overhead at approximately 31%. However, 
with the significant increase in overhead created by DSR, 
the final combination with all three techniques enables 
results in overhead at approximately 59%. Although this 
performance overhead can be acceptable, in cases where 
significant overhead is unacceptable, performing a risk 
assessment is necessary to determine the optimal combi­
nation of MTD techniques. With the introduced overhead 
and complexity, it is important to ensure that the system 
model is adjusted and verified at design time to maintain 
safety and functionality of the system. Furthermore, the 
designer has to ensure that there is enough slack time 
allocated to handle the reconfiguration necessary during 
a cyber-attack.

During a code injection attack, a malicious payload 
is injected to spawn a remotely accessible root shell 
within the vehicle operating system. The attacker will then 
terminate the default controller and spawn a malicious 
controller that will fully accelerate the vehicle in a straight 
path. At this point, as can be observed in Figure 6a, the 
vehicle speeds up and crashes into the back of the lead 
vehicle. However, with ISR enabled, the instructions of 
the controller are randomized resulting in an inaccurate 
instruction format in the payload that will cause an invalid 
instruction execution exception. After that, the system
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switches to a backup controller which fully brakes the 
vehicle. Figure 6d shows that the system can successfully 
recover to the backup failsafe controller in time to brake 
the vehicle before crashing into the lead car.

During a code reuse attack, the attacker leverages a 
buffer overflow vulnerability to redirect control-flow to an 
existing turn left function implemented using the steering 
controller. At this point, control flow executes a left turn 
resulting in the vehicle turning left (Figure 6b). However, 
with ASR enabled, the memory layout of the control 
software is different, resulting in the function no longer 
exist in the target memory address, and consequently 
leading in an invalid memory access exception. At this 
point, recovery transitions execution to the backup failsafe 
controller where the car brakes before unsafe behavior 
(Figure 6e).

During the case of a non-control data attack, the adver­
sary can manipulate the controller operation by altering 
the perceived distance to the lead vehicle. With this 
adjustment, the new distance value is set to 100m causing 
the host vehicle to maintain its speed and crash into the 
lead car as illustrated in Figure 6c. However, with DSR 
and variable integrity checking enabled, the attempt by 
the attacker to overwrite the distance variable will result 
in an incorrect variable comparison consequently flagging 
the attack. At this point, a failsafe controller takes over 
execution and fully brakes the vehicle. As a result, safety 
is preserved and the host vehicle avoids a collision as shown 
in Figure 6f.

3) Attacks Prevented: MTD techniques, in general, are 
designed to limit the ability of adversaries to collect accu­
rate reconnaissance knowledge on a system, consequently 
failing to craft a valid exploit. The security approach is 
designed specifically to protect against any stack-based 
remote injection attack. The architecture protects against 
buffer overflow based exploits, including code injection, 
code reuse, and non-control data attacks. However, our 
approach also has the potential to protect against other 
vulnerabilities such as heap overflows, integer overflows, 
and dangling pointers. There are limiting factors for the 
applicability. For example, when the attacker has direct 
access to system program execution, denial of service 
attacks will result in constant reconfiguration.

VI. Rel at ed  Wo r k

Moving target defense implementations have tradition­
ally been independent with ISR including both hard­
ware [27] and software versions [17], ASR including coarse 
grained [20] and fine grained versions [7], and DSR includ­
ing source code [4] and IR implementations [29]. Addition­
ally, control reconfiguration algorithms such as Simplex 
have normally focused on the aspect of fault tolerance 
with regard to maintaining the safety of CPS [33]. Our 
work over the last couple of years has built upon these 
two principles by showing the viability of MTD integration 
with control reconfiguration to support security while

ensuring the reliable operation of the respective safety- 
critical CPS [28], [30].

With regards to time triggered implementations within 
the literature, work has focused on the obfuscation of 
the static schedule, randomizing the order of tasks to 
prevent reconnaissance against application secrets [18], 
[41]. Additionally, software defined networking techniques 
such as Openflow [15] have become popular to mitigate 
against the interception of communication and targeting 
of hosts. We propose that all of these techniques are 
complementary, integrating defenses at different layers of 
abstraction to provide comprehensive protection against 
a maximal amount of attacks. Our approach complements 
this work by providing protections at the application layer, 
mitigating against software related exploits that can lead 
to the hijacking of safety-critical controllers.

Simplex, which is the primary motivator of our security 
architecture, has been a widely utilized fault tolerant 
architecture [34]. Several previous simplex based imple­
mentations include Secure System Simplex [24], Net Sim­
plex [39], and L1 Simplex [38]. Furthermore, simplex archi­
tectures have been popular in safety-critical applications 
such as flight control systems [33], medical devices [2], and 
unmanned aerial vehicles [40].

VII. Co nc l us io n

In this paper, we have shown how ISR, ASR, and DSR 
can be integrated to support protections against code 
injection, code reuse, and non-control data attacks in the 
context of safety-critical CPS applications. The MTD ar­
chitecture was successfully used in a mixed time-triggered 
and event-triggered architecture to support predictable 
operation during normal circumstances while maintaining 
rapid detection and reconfiguration during a cyber-attack. 
Finally, by developing a hardware-in-the-loop testbed, we 
can demonstrate the approach in a realistic setting. Exper­
imentation produced positive security protections against 
all three classes of attacks considered. Also, we were able 
to recover to failsafe control rapidly. In conclusion, the 
proposed MTD approach can be used for CPS runtime 
environments that are resilient to buffer overflow based 
cyber-attacks.
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