
2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC)

Security in Mixed Time and Event Triggered
Cyber-Physical Systems using Moving Target

Defense
Bradley Potteiger, Feiyang Cai,

Abhishek Dubey, Xenofon Koutsoukos
Vanderbilt University

Nashville, TN

Zhenkai Zhang
Texas Tech University

Lubbock, TX

Abstract—Memory corruption attacks such as code
injection, code reuse, and non-control data attacks have
become widely popular for compromising safety-critical
Cyber-Physical Systems (CPS). Moving target defense
(MTD) techniques such as instruction set randomiza­
tion (ISR), address space randomization (ASR), and
data space randomization (DSR) can be used to protect
systems against such attacks. CPS often use time-
triggered architectures to guarantee predictable and re­
liable operation. MTD techniques can cause time delays
with unpredictable behavior. To protect CPS against
memory corruption attacks, MTD techniques can be
implemented in a mixed time and event-triggered archi­
tecture that provides capabilities for maintaining safety
and availability during an attack. This paper presents
a mixed time and event-triggered MTD security ap­
proach based on the ARINC 653 architecture that
provides predictable and reliable operation during nor­
mal operation and rapid detection and reconfiguration
upon detection of attacks. We leverage a hardware-in-
the-loop testbed and an advanced emergency braking
system (AEBS) case study to show the effectiveness of
our approach.

Index Terms—Moving Target Defense, Time Trig­
gered, Event Triggered, Cyber-Physical Systems

I. Int r oduct ion
Safety-critical CPS often contain memory corruption

vulnerabilities such as buffer overflows that allow for the
remote exploitation of software. Cyber-attacks such as
code injection, code reuse, and non-control data attacks
allow for adversaries to hijack safety-critical functionality,
potentially resulting in severe damage to the system and
the surrounding environment. Memory corruption attacks
pose a serious threat since they allow adversaries to re­
motely control and alter sensor data or execute unsafe ac­
tuation behavior while making it look like normal behavior
to monitoring subsystems.

Instruction set randomization (ISR) [17], [36], address
space randomization (ASR) [35], and data space random­
ization (DSR) [4] are all very effective moving target
defense techniques (MTD) that mitigate these types of
attacks [25]. However, when disrupting the attack process,
these techniques result in the software crashing due to an
exception such as an invalid instruction, invalid address,

or unsafe data value, thus resulting in a denial of service
which is not acceptable in CPS.

Safety-critical CPS often utilize time-triggered architec­
tures to ensure predictable and reliable operation [13].
However, in the event of an attack, it is necessary to
respond as fast as possible instead of waiting until the
following period of the static schedule. As such event
triggered functionality is necessary to provide rapid de­
tection, and reconfiguration at the point of the attack. By
combining time triggered and event triggered functionality
into a mixed approach, the predictability benefits of time
triggered systems, and the rapid response benefits of event
triggered systems can be maintained.

This paper presents an approach to protect against
code injection, code reuse, and non-control data attacks
by developing a mixed time and event-triggered MTD
security architecture. Further, we consider how to limit
the overhead of the approach and we explain how to
reconfigure the system upon detection of an attack to
limit the amount of missed deadlines. Our hypothesis is
that by integrating ISR, ASR, and DSR with the ARINC
653 standard [31], we can protect against code injection,
code reuse, and non-control data attacks while rapidly
performing reconfiguration to maintain system safety. The
contributions of this paper are as follows:

• We develop and implement a mixed time and event-
triggered MTD security architecture that provides
predictable and reliable operation during normal cir­
cumstances as well as rapid detection of attacks and
reconfiguration to maintain safety. The security ar­
chitecture includes ISR, ASR, and DSR to protect
against code injection, code reuse, and non-control
data attacks. Furthermore, we leverage the benefits
of the ARINC 653 standard such as isolation, static
schedule creation, and health monitoring for our ar­
chitecture.

• We design and develop a novel reconfiguration scheme
to maintain CPS safety and static schedule integrity
during a cyber-attack.

• We implement the architecture using a hardware-in-
the-loop testbed representative of modern CPS to

2375-5261/20/$3T00 ©2020 IEEE DOI 10.1109/ISQRC49007.2020.00022 89

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

evaluate the approach. Our implementation includes
detection and recovery capabilities to limit missed
deadlines and maintain safe and reliable operation.

• We present an autonomous vehicle case study to
demonstrate the effectiveness in limiting the impact
of attacks in the context of an advanced emergency
braking system (AEBS).

The rest of this paper is outlined as follows: Section II
discusses the key background fundamentals behind our
approach, Section III introduces the threat model uti­
lized as motivation for our paper, Section IV provides an
overview of our security approach and implementation,
Section V illustrates the evaluation of our architecture
through the use of an autonomous vehicle case study,
Section VI discusses related work, and Section VII ends
the paper with concluding remarks.

II. Bac kg r o und

A. ARINC 653

ARINC 653 is a popular standard implemented for
aerospace and other safety-critical CPS applications aimed
at maintaining safety and predictability within critical
components [11]. As this standard forms the foundation
of the proposed architecture, it is useful to describe the
basic components. ARINC 653 is comprised of two types of
components: partitions, and processes. These components
have various types of attributes, states, and communica­
tion methods that can be configured throughout the design
process. These components are briefly described below.

Partitions are the highest level of abstraction and in­
clude a shared memory space running tasks. Partitions
can essentially be considered as a virtual machine in a
single application environment comprising of data, con­
text, and attributes. In a partition, there can exist mul­
tiple processes that correspond to the actual tasks in an
application. It is easier to think of the partition in terms
of a virtual machine, and a process as a specific software
application running inside of the virtual machine. As such,
multiple processes can run concurrently and rely on the
operating system for scheduling.

Communication within ARINC 653 is conducted
through the use of unidirectional channels, ports, and
messages. Additionally, communication is possible both
between partitions (inter-partition) as well as within a
partition between multiple processes (intra-partition). It is
important to note that the data transmitted is considered
an atomic entity meaning that if the whole message is not
received then no part of the message will be received.

Finally, ARINC 653 contains a health monitor that
analyzes the behavior of the underlying partitions and pro­
cesses for anomalies. In our approach, the health monitor
is also responsible for the reconfiguration process of child
processes when a cyber-attack is detected.

B. Moving Target Defense Techniques
The MTD techniques used in our architecture include

ISR [17], ASR [3], and DSR [4]. Legacy CPS software
often contains numerous memory corruption vulnerabili­
ties such as buffer overflows that allow attackers to re­
motely perform code injection, code reuse, and non-control
data attacks [6]. By randomizing the internal structure
of software, attacker reconnaissance efforts are ineffective,
resulting in failed cyber-attack attempts.

In a code injection attack, adversaries leverage a mem­
ory corruption vulnerability to inject and execute code re­
motely on the program stack [26]. To successfully execute
code, the injected instructions format must be consistent
with the native system processor format (x86, ARM, etc.).
By randomizing the representation of native instructions
at runtime using ISR, attacker injected code will be of an
invalid representation resulting in an invalid instruction
exception.

In a code reuse attack, adversaries leverage a memory
corruption vulnerability to divert control flow to another
location within the program memory such as a safety-
critical function [32]. To be successful, attackers must
know the memory location of their target to divert pro­
gram control flow effectively. By randomizing the address
layout using ASR, the location of target functions will no
longer be as expected by the attacker, resulting in divert­
ing control flow to the wrong location. Hence, any code
reuse attack attempts will result in an invalid memory
access exception.

In a non-control data attack, adversaries leverage a
memory corruption vulnerability to overwrite adjacent
safety-critical variables [29]. To be successful, attackers
must know the variable format, allowing them to correctly
alter the variable value. With DSR, the variable represen­
tations will be randomized, and any attacker manipulation
will result in a value wildly different than expected. This
increases the ease of detecting any malicious data tam­
pering activity, preventing the attacker from successfully
overwriting critical variables.
C. Control Reconfiguration
It is not enough to detect and stop cyber-attacks in CPS

where it is also required to maintain safe operation. Avail­
ability is a key property that can be maintained using re­
configuration. A popular approach to control reconfigura­
tion in safety-critical CPS is the simplex architecture [24].
Simplex contains two controllers: a default controller for
normal execution, and a safety controller that serves as
a backup in case of failure in the default controller. The
default controller is designed to be high performance,
while potentially containing vulnerabilities. The safety
controller, on the other hand, may not provide optimal
performance but guarantees safe, and secure operation.
Additionally, Simplex includes a decision module that
determines when to switch between the two controllers and
perform the execution transitioning process.

920

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

III. Thr eat Model IV. Secur it y Ar chit ect ur e

The threat model considers memory corruption attacks
such as code injection, code reuse, and non-control data
attacks on a vehicle network. An example attack vector
consists of the adversary compromising the telematics
control unit (TCU) through the remote cellular inter­
face and pivoting to hijack the remote function actuator
(RFA). With access to a direct communication channel
with the driving controller, the adversary can craft a mes­
sage payload to take advantage of the memory corruption
vulnerability and alter control. At this point, an attacker
can perform an attack where they can leverage the buffer
overflow to affect safety-critical behavior in the driving
controller.

The following assumptions are made in the proposed
security architecture. First, the sensor and actuator clus­
ters are fully secure. The driving controller electronic
control unit (ECU) contains the buffer overflow vulner­
ability utilized for control hijacking, while the TCU and
RFA contain vulnerabilities allowing for key fob message
spoofing. Second, the attacker knows the relative address
of a safety-critical variable relative to the start of the
input buffer. Finally, the attacker knows the underlying
software architecture of the safety-critical controllers, al­
lowing them to target the most impactful variables and
functions. These assumptions are not impractical given
examples demonstrated in the literature [23].

It is important to note that our threat model makes
the assumption that the only vulnerable component is the
driving controller (CPS controller). Other components in
our architecture such as partitions and the health monitor
are assumed to be secure, and only the driving controller
partition will include MTD defense protections. The first
assumption is valid because ARINC 653 contains one-way
communication constraints [11] that make it impossible
for the attacker to pivot into any other partition from the
driving controller. With regards to the second assumption,
CPS software is normally legacy code without modern
day compiler security protections. To add to this, source
code is normally unavailable, meaning that it becomes
very difficult to verify the lack of vulnerabilities within the
driving controller. In comparison, the health monitor is a
relatively simple program containing a few hundred lines
of C++ code. Since the source code is readily available,
and compiled from source by the designer, security vulner­
abilities can be identified and coding best practices can be
established before the deployment of the architecture. This
assumption can be justified by the requirement of highest
level of certification required for components that monitor
the health of system [16]. As such, within our architecture
we can assume that the designer has previously identified
and patched vulnerabilities within the health monitor,
making that component secure.

A. Components
The key components in our approach are: (1) CPS

Controllers which control the physical plant, (2) Dynamic
Binary Translator (DBT) which uniquely customizes the
runtime environment for each CPS controller, (3) points
to analysis graph (PAG) which describes the relationship
between pointers and variables within a program, and (4)
Health Monitor which controls the reconfiguration upon
detection of an attack. The components are described
below.

1) CPS Controllers: This component is the actual soft­
ware that controls the CPS application. The controller
receives sensor inputs from the system, performs compu­
tation operations, and outputs actuation commands. Our
architecture supports a broad array of control techniques
and applications.

2) Dynamic Binary Translator (DBT): This component
is responsible for providing a unique randomization back­
end for each spawned CPS controller in the architecture. In
other words, the DBT is a virtual sandbox layer that serves
as an intermediary between the executing binary and
the processor. The DBT intercepts instructions as they
are fetched and alter program semantics before execution
by the processor. The open-source instrumentation tool
Mambo [12] is utilized to support the DBT implementa­
tion.

3) Points-To-Analysis: This component is responsible
for using static analysis techniques to identify the variable
relationships within a program. By feeding this infor­
mation into the DSR implementation, we can identify
correct randomization keys to utilize for various memory
locations.

4) Health Monitor: This component is responsible for
detecting an attack and rapidly reconfiguring the system
to spawn backup controllers to take over functionality
and minimize safety-critical component downtime. Addi­
tionally, the Health Monitor is responsible for executing
the static time-triggered schedule. This component is a
requirement specified in the ARINC 653 standards [11].

We assume that the DBT and the Health Monitor are
not susceptible to cyber-attacks. Therefore, the variable
key storage table in each DBT is assumed to be secure
against integrity attacks.

B. Design Time
1) Component Selection: For component selection, it is

important to consider several properties including memory
usage, slack time, and deadlines. The security architec­
ture introduces some overhead in both memory usage
and performance. For safety-critical components that have
strict and tight deadlines, a comprehensive assessment
is required to determine if there is enough flexibility
within the current implementation to support the in­
troduced overhead. Furthermore, the approach provides

91

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

several combinations of MTD security protections allowing
designers to optimize the trade-off between security and
performance.

2) Time-Triggered Design: ARINC 653 allows us to
distribute the application into separate, isolated partitions
executing in sequential order. In our design, we first have
to perform an execution analysis of the relevant system
components identifying the maximum time required for
the processes to complete. After this step, we build in
slack time and assign the required time allotments for
each partition in the system. The assigned time allotment
must be larger than the maximum execution time of
the underlying process. Otherwise, system processes may
not fully finish, and the behavior of the system could
be consequentially affected. For our implementation we
leverage the open source ARINC 653 software emulator [1].

3) Moving Target Defense (MTD): In the ISR imple­
mentation, we randomize instructions with a 32-bit key
dynamically generated at runtime, creating a high degree
of entropy protection. For the ASR implementation, we
shuffle functions and randomize base memory addresses,
significantly decreasing the probability of success of code
reuse and return-oriented programming attacks. Finally,
for the DSR implementation, we XOR stack-based vari­
ables with a 64-bit key, while also utilizing a redundancy
comparison check for determining the presence of a non­
control data attack.

Both ISR and ASR have different degrees of granularity
to optimize the trade-off between security and perfor­
mance. ISR can use different types of randomization based
on XOR or AES 256 encryption. Furthermore, different
memory ranges can be randomized with different keys,
reducing the likelihood of the adversary correctly guess­
ing the randomization key. ASR by default is defined
with coarse-grained granularity meaning that the base
addresses of the program, stack, heap, and shared libraries
are different for every runtime instance. However, fine­
grained granularity is built-in meaning that not only
the base addresses are unique but function locations are
shuffled as well.

4) Lift Target Binary: For static analysis, it is opti­
mal to convert the binary program into an intermediate
representation (IR) format. The low-level virtual machine
(LLVM) compiler bit code is utilized for this purpose [19].
To convert a native binary to LLVM bit code, we utilize
Binary Ninja for disassembly and control flow recovery [5]
and Mcsema for IR instruction translation [8], [22].

5) Points-To-Analysis: In a program, an object can
either be an instruction or a memory location. Points-To-
Analysis is utilized to produce the associations between
instructions and the memory locations that they access
through load and store instructions. By recording the
associations between memory locations and instructions,
we can create a map corresponding to what randomization
keys to utilize for respective program instructions. The
Points-To-Analysis process produces a Points-To-Analysis

Graph (PAG) as output which allows for identifying the
relationships between instructions and memory locations.
For our implementation we leverage the SVF library [37].
C. Runtime
The runtime environment is integrated into the DBT

component which encapsulates the vulnerable CPS con­
troller as shown in Figure. 1. There are two inputs to the
DBT: the binary executable itself and a text file defining
the instruction and memory associations from the PAG.
Once these inputs are received by the DBT, the binary
will be randomized at load time with the ISR, ASR, and
DSR randomization modules while being derandomized as
instructions are accessed with the runtime module.

Fig. 1: MTD Initialization Process
During the randomization process, a 32-bit key is dy­

namically generated and each instruction in the program
is randomized through an XOR operation. After this step,
the binary is pushed through the ASR module where the
functions are shuffled. Since after this step, the program
instructions have different addresses compared with the
program after DSR, we adjust the DSR table with the up­
dated addresses of the respective load/store instructions.
Finally, we start the execution of the newly randomized
binary. After every instruction is fetched, it is deran-
domized by performing another XOR operation before
being decoded by the pipeline. Anytime there is a store
instruction a randomization instruction is inserted which
XORs the value with the respective associated key from
the lookup table and stores the variable at the appropriate
location on the stack. Additionally, a duplicate copy with
a duplicate randomization key is also stored in an adjacent
location to the newly randomized variable. When a load
instruction is encountered, both copies of the variable are
loaded and derandomized with their respective keys found
from the lookup table. After derandomization, the plain
text values are compared for equivalence. If both values are
equal then the program can proceed as normal. However, if
the values are different, an “Attacked Variable” exception
is generated and the program is terminated (Figure 2).
D. Control Reconfiguration

For reconfiguration, we leverage the Simplex architec­
ture [24]. Our reconfiguration scheme is triggered when
an attacker attempts to perform a code injection, code
reuse, or non-control data attack. Since the attack vector
has been moved due to MTD, any attack attempt results

92

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: MTD Runtime Instruction Pipeline
in an invalid instruction, invalid memory access, or invalid
variable comparison exception respectively. This exception
is then detected from a signal handler within the Health
Monitor component which triggers the reconfiguration
process, transitioning program execution to the backup
controller [10], [21]. Based on our threat model, the only
step where this process can fail is during the execution of
the backup controller. As such, we make the assumption
that there are no bugs in the backup controller.

V. Ev al uat io n

The case study in this paper is based on an Advanced
Emergency Braking System (AEBS) which safely and
comfortably stops a host vehicle to avoid collision with
a lead car. The automotive system contains ECUs that
receive sensor measurements such as camera images, speed
and send actuation commands such as braking, steering,
and throttle. A convolutional neural network is used for
perception to compute an estimated distance to the lead
vehicle. Then a braking controller feed-forward neural
network, and a PID throttle controller are used to compute
the actuation signals. Both the controller and perception
neural networks are created using the Tensorflow Lite
library 1. We consider a scenario where the lead vehicle
brakes at a stoplight, thus requiring the host vehicle's
AEBS system to be activated. The goal is to brake and
avoid a collision. The system is illustrated in Fig. 3.

1https://www,tensorflow.org/lite

A. Attack Scenario
The host vehicle contains several ECUs for the various

components. External interfaces that include cellular com­
munications from the TCU for remote monitoring services
and RFID sync with the vehicle key fob can be used for
deploying cyber-attacks. The driving controller constantly
polls for the key fob signal to determine if the engine
should remain on. Since the TCU is connected remotely
through a cellular interface, this component is at risk of
compromise. The attacker can exploit the TCU, pivot to
the RFA, and then transmit malicious packets to the driv­
ing controller, exploiting a buffer overflow vulnerability in
the input processing function.

Once the adversary injects malicious input into the
driving controller, we consider 3 attack scenarios. First, a
code injection attack can occur where the attacker injects
a malicious payload to open a remote shell, disabling the
driving controller and starting a malicious controller to
fully accelerate into the lead car. Second, a code reuse
attack can occur where the attacker utilizes the buffer
overflow to divert control flow to a steering function within
the driving controller software, causing the vehicle to turn
left off of the road. Third, a non-control data attack can
occur where the attacker utilizes the buffer overflow to
overwrite an adjacent safety-critical variable (distance to
the lead vehicle). At this point, the AEBS algorithm will
believe that the lead vehicle is further ahead than its real
location, resulting in a collision.

B. Experiment Setup
To evaluate the impact of cyber-attacks, we develop a

hardware-in-the-loop testbed. The testbed includes em­
bedded hardware representing typical CPS infrastructure
and a simulation workstation to represent the vehicle
and the physical environment. The architecture of the
testbed provides the capability to implement real-time
CPS control algorithms to interact with and operate an
autonomous car in a connected simulator.

1) Autonomous Vehicle Simulator:: The autonomous
vehicle simulator used in our testbed is the CARLA
autonomous vehicle simulator [9]. In the testbed, the

93

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

simulator runs on Ubuntu 18.04. Socket-based communi­
cation is provided to access variables in the simulation.
We also use a customized python API interface for easing
variable access from external processes. The simulator
can be customized to output sensor data such as lidar,
speed, images, distance to objects, orientation, and GPS
locations. Actuation input can change variables that affect
steering, acceleration, and braking.

2) CPS Controllers:: The software for the controllers is
executed on an NVIDIA Jetson TX2 board. The board is
configured with the Linux4Tegra 28.2 operating system,
GPU libraries such as CUDA, and machine learning li­
braries such as Tensorflow.

3) Communication:: Communication between the sim­
ulator NVIDIA Jetson TX2 board is implemented via Eth­
ernet and the ZeroMQ (ZMQ) communication library 2.

Simulation Workstation ZeroMQ NVIDIA Jetson TX2

C a r l a Wrapper I Image Controller

I Velocity ' C++

� Accel 1
1 D l._ 1
I oraKe �

1 Steering |

Fig. 4: Testbed Setup

C. ARINC 653
We have 4 partitions comprising the static schedule:

sensor data receipt, perception, computation, and actu­
ation transmission. The sensor partition is responsible
for receiving the updated image, and speed data from
the CARLA simulator. The perception partition which
contains a process that computes an estimated distance
based on the provided images. Then, the processing par­
tition which contains a computation process determines
an optimal throttle and braking value the neural network
and PID controllers. Finally, the output command is fed
to the actuation partition which transmits the requested
command to the CARLA simulator. It is important to
note that the only vulnerable partition in this setup is
the processing partition due to its interaction with the
external facing ECUs within the automotive network. As
such, we harden all processes within this partition with
our MTD security protections.

1) Static Schedule: To accurately establish the static
schedule, we must conduct execution time analysis to
determine the appropriate allocated amount of time for
each partition. Too much allocated time can result in
inefficiency in the approach while too little allocated time
can result in system failure. To identify an upper bound
of the execution time of each process, we record 100,000
iterations under varying conditions. With this data, we
can identify the average, as well as outlier values. After
performing the execution time analysis, we identify the
statistics for each process shown in Table I.

2 https://zeromq.org/

Process Execution Times
Min Avg Max

Sensors 200 us 221 us 256 us
State Estimation 31.2 ms 45.6 ms 52.1 ms
Compute 118 us 138 us 160 us
Compute w/ Rand 182 us 218 us 258 us
Health Monitor Recon. 320 us 467 us 489 us
Fail Safe 30 us 42 us 51 us
Actuation 183 us 209 us 231 us

TABLE I: Execution Time Analysis

Based on the execution analysis, we use the static sched­
ule shown in Figure 5. The superframe period is defined
to be 100ms and will repeat continuously throughout the
system’s lifetime. This period is small enough to support
the functionality of the vehicle but also provides enough
slack time to support various system processes.

Health Monitor

Sensors Perception Processing Actua tion

----- Perception | C Z

; M AM BO;

; m a m b o ;

Throttle

1 Image 1 >| — |
I l | Sleeting |

0 ms 10 ms 70 ms 90 ms 100 ms

Fig. 5: Static Schedule
To verify that our static schedule is correct, we need

to analyze worst-case scenarios by determining if the
aperiodic attack detection and recovery processes executed
by the Health Monitor fit within the critical slots of the
Partition 3 schedule. If this is shown to be true, then
the designed schedule is guaranteed to be fully schedu-
lable [14]. In the designed schedule, the default controller
is in Partition 3 and the recovery processes and fail-safe
controller are triggered by an attack. This means that at
the earliest, the Health Monitor attack detector will be
triggered from the beginning of Partition 3 to the end of
Partition 3. Since the default controller is the only initial
process in Partition 3, the Health Monitor and fail-safe
controller processes will have full access to the CPU for
the remainder of partition 3. However, as a worst-case
scenario, we consider the case of the attack occurring
at the end of the Partition 3 time allotment. In this
case, the fail-safe controller will not complete its execution
until a full period later during the next time allotment of
Partition 3 and during the current period, the previous
actuation value is used.

D. Results
1) Static Analysis: For the case study a 3 layer Neural

Network is used for the AEBS controller and a PID compo­
nent is responsible for speed and steering control. However,
these two components are negligible in size so will focus
our efforts mainly on the neural network performance. In

94

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

a: Code Injection Attack/no MTD b: Code Reuse Attack/no MTD c: Non-control Data Attack/no MTD
AEBS Code Reuse W ith MTD

-Distance
-Steering Angle |

Time(s)

d: Code Injection Attack/with MTD e: Code Reuse Attack/with MTD f: Non-Control Data Attack/with MTD

the implementation, there are 1025 variables with a file
size of approximately 220 Kilobytes. Additionally, there
are two shared libraries that we need to secure: Tensorflow
Lite, and libm.

The first stage in the static analysis pipeline is binary
lifting, averaging approximately 17 milliseconds of execu­
tion time for 1000 executions. The second stage is points-
to-analysis. To evaluate the scalability of the points-to-
analysis implementation, we run 100 iterations of gener­
ating PAGs, averaging execution times of approximately
250ms.

Fig. 7: Controller Execution Times
2) Runtime Performance: In our scenarios, we have

three combinations enabled including one with only ISR, a
second with ISR and ASR, and a final combination with all

three MTD techniques enabled. The results are illustrated.
in Figure 3. With only ISR enabled, there is an overhead
of approximately 28% while with ISR and ASR there is
a little higher overhead at approximately 31%. However,
with the significant increase in overhead created by DSR,
the final combination with all three techniques enables
results in overhead at approximately 59%. Although this
performance overhead can be acceptable, in cases where
significant overhead is unacceptable, performing a risk
assessment is necessary to determine the optimal combi­
nation of MTD techniques. With the introduced overhead
and complexity, it is important to ensure that the system
model is adjusted and verified at design time to maintain
safety and functionality of the system. Furthermore, the
designer has to ensure that there is enough slack time
allocated to handle the reconfiguration necessary during
a cyber-attack.

During a code injection attack, a malicious payload
is injected to spawn a remotely accessible root shell
within the vehicle operating system. The attacker will then
terminate the default controller and spawn a malicious
controller that will fully accelerate the vehicle in a straight
path. At this point, as can be observed in Figure 6a, the
vehicle speeds up and crashes into the back of the lead
vehicle. However, with ISR enabled, the instructions of
the controller are randomized resulting in an inaccurate
instruction format in the payload that will cause an invalid
instruction execution exception. After that, the system

95

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

switches to a backup controller which fully brakes the
vehicle. Figure 6d shows that the system can successfully
recover to the backup failsafe controller in time to brake
the vehicle before crashing into the lead car.

During a code reuse attack, the attacker leverages a
buffer overflow vulnerability to redirect control-flow to an
existing turn left function implemented using the steering
controller. At this point, control flow executes a left turn
resulting in the vehicle turning left (Figure 6b). However,
with ASR enabled, the memory layout of the control
software is different, resulting in the function no longer
exist in the target memory address, and consequently
leading in an invalid memory access exception. At this
point, recovery transitions execution to the backup failsafe
controller where the car brakes before unsafe behavior
(Figure 6e).

During the case of a non-control data attack, the adver­
sary can manipulate the controller operation by altering
the perceived distance to the lead vehicle. With this
adjustment, the new distance value is set to 100m causing
the host vehicle to maintain its speed and crash into the
lead car as illustrated in Figure 6c. However, with DSR
and variable integrity checking enabled, the attempt by
the attacker to overwrite the distance variable will result
in an incorrect variable comparison consequently flagging
the attack. At this point, a failsafe controller takes over
execution and fully brakes the vehicle. As a result, safety
is preserved and the host vehicle avoids a collision as shown
in Figure 6f.

3) Attacks Prevented: MTD techniques, in general, are
designed to limit the ability of adversaries to collect accu­
rate reconnaissance knowledge on a system, consequently
failing to craft a valid exploit. The security approach is
designed specifically to protect against any stack-based
remote injection attack. The architecture protects against
buffer overflow based exploits, including code injection,
code reuse, and non-control data attacks. However, our
approach also has the potential to protect against other
vulnerabilities such as heap overflows, integer overflows,
and dangling pointers. There are limiting factors for the
applicability. For example, when the attacker has direct
access to system program execution, denial of service
attacks will result in constant reconfiguration.

VI. Rel at ed Wo r k

Moving target defense implementations have tradition­
ally been independent with ISR including both hard­
ware [27] and software versions [17], ASR including coarse
grained [20] and fine grained versions [7], and DSR includ­
ing source code [4] and IR implementations [29]. Addition­
ally, control reconfiguration algorithms such as Simplex
have normally focused on the aspect of fault tolerance
with regard to maintaining the safety of CPS [33]. Our
work over the last couple of years has built upon these
two principles by showing the viability of MTD integration
with control reconfiguration to support security while

ensuring the reliable operation of the respective safety-
critical CPS [28], [30].

With regards to time triggered implementations within
the literature, work has focused on the obfuscation of
the static schedule, randomizing the order of tasks to
prevent reconnaissance against application secrets [18],
[41]. Additionally, software defined networking techniques
such as Openflow [15] have become popular to mitigate
against the interception of communication and targeting
of hosts. We propose that all of these techniques are
complementary, integrating defenses at different layers of
abstraction to provide comprehensive protection against
a maximal amount of attacks. Our approach complements
this work by providing protections at the application layer,
mitigating against software related exploits that can lead
to the hijacking of safety-critical controllers.

Simplex, which is the primary motivator of our security
architecture, has been a widely utilized fault tolerant
architecture [34]. Several previous simplex based imple­
mentations include Secure System Simplex [24], Net Sim­
plex [39], and L1 Simplex [38]. Furthermore, simplex archi­
tectures have been popular in safety-critical applications
such as flight control systems [33], medical devices [2], and
unmanned aerial vehicles [40].

VII. Co nc l us io n

In this paper, we have shown how ISR, ASR, and DSR
can be integrated to support protections against code
injection, code reuse, and non-control data attacks in the
context of safety-critical CPS applications. The MTD ar­
chitecture was successfully used in a mixed time-triggered
and event-triggered architecture to support predictable
operation during normal circumstances while maintaining
rapid detection and reconfiguration during a cyber-attack.
Finally, by developing a hardware-in-the-loop testbed, we
can demonstrate the approach in a realistic setting. Exper­
imentation produced positive security protections against
all three classes of attacks considered. Also, we were able
to recover to failsafe control rapidly. In conclusion, the
proposed MTD approach can be used for CPS runtime
environments that are resilient to buffer overflow based
cyber-attacks.

VIII. Ac kno w l edg emen t s

This work is supported in part by the National Security
Agency (H98230-18-D-0010), the National Science Foun­
dation (CNS-1739328), and by NIST (70NANB18H198).
Any opinions, findings, and conclusions or recommenda­
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of NSA, NSF, or
NIST.

Ref er enc es

[1] adubeyl4/arinc653emulator: This code base contains a linux
emulator for the arinc-653 operating system services. https:
//github.com/adubey14/arinc653emulator. (Accessed on
07/07/2019).

986

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

[2] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo,
and L. Sha. The system-level simplex architecture for improved
real-time embedded system safety. In Real-Time and Embedded
Technology and Applications Symposium, 2009. RTAS 2009.
15th IEEE, pages 99-107. IEEE, 2009.

[3] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. In USENIX Security Symposium, volume 12, pages
291-301, 2003.

[4] S. Bhatkar and R. Sekar. Data space randomization. In Inter
national Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 1—22. Springer, 2008.

[5] M. Capelletti. Unlinker: an approach to identify original com­
pilation units in stripped binaries. POLITesi, 2017.

[6] R. N. Charette. This car runs on code. IEEE spectrum, 46(3):3,
2009.

[7] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen,
P. Larsen, C. Liebchen, M. Perry, and A.-R. Sadeghi. Selfrando:
Securing the tor browser against de-anonymization exploits.
Proceedings on Privacy Enhancing Technologies, 2016(4):454-
469, 2016.

[8] A. Dinaburg and A. Ruef. Mcsema: Static translation of x86
instructions to llvm. In ReCon 2014 Conference, Montreal,
Canada, 2014.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun.
Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

[10] A. Dubey, W. Emfinger, A. Gokhale, P. Kumar, D. McDer-
met, T. Bapty, and G. Karsai. Enabling strong isolation for
distributed real-time applications in edge computing scenarios.
IEEE Aerospace and Electronic Systems Magazine, 34(7):32—45,
2019.

[11] A. Dubey, G. Karsai, and N. Mahadevan. A component model
for hard real-time systems: Ccm with arinc-653. Software:
Practice and Experience, 41(12):1517-1550, 2011.

[12] C. Gorgovan, A. D’antras, and M. Lujan. Mambo: a low-
overhead dynamic binary modification tool for arm. ACM
Transactions on Architecture and Code Optimization (TACO),
13(1):14, 2016.

[13] G. Heiner and T. Thurner. Time-triggered architecture for
safety-related distributed real-time systems in transportation
systems. In Digest of Papers. Twenty-Eighth Annual Inter
national Symposium on Fault-Tolerant Computing (Cat. No.
98CB36224), pages 402—407. IEEE, 1998.

[14] D. Isovic and G. Fohler. Handling sporadic tasks in off-line
scheduled distributed real-time systems. In Proceedings of
11th Euromicro Conference on Real-Time Systems. Euromicro
RTS’99, pages 60—67. IEEE, 1999.

[15] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random
host mutation: transparent moving target defense using software
defined networking. In Proceedings of the first workshop on Hot
topics in software defined networks, pages 127—132, 2012.

[16] L. A. Johnson et al. Do-178b, software considerations in air­
borne systems and equipment certification. Crosstalk, October,
199, 1998.

[17] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and
communications security, pages 272—280, 2003.

[18] K. Krüger, G. Fohler, and M. Volp. Improving security for
time-triggered real-time systems against timing inference based
attacks by schedule obfuscation. 2017.

[19] C. Lattner et al. The llvm compiler infrastructure. URL
http://llvm. org, 2010.

[20] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. Aslr-
guard: Stopping address space leakage for code reuse attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 280—291, 2015.

[21] N. Mahadevan, A. Dubey, and G. Karsai. Application of soft­
ware health management techniques. In Proceedings of the 6th
international symposium on software engineering for adaptive
and self-managing systems, pages 1—10. ACM, 2011.

[22] F. Markl. Case study on llvm as suitable intermediate language
for binary analysis. ret, 32:0.

[23] C. Miller and C. Valasek. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA, 2015, 2015.

[24] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo.
S3a: Secure system simplex architecture for enhanced security
and robustness of cyber-physical systems. In Proceedings of
the 2nd ACM international conference on High confidence net
worked systems, pages 65—74. ACM, 2013.

[25] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson,
D. Bigelow, and W. Streilein. Survey of cyber moving target
techniques. Technical report, MASSACHUSETTS INST OF
TECH LEXINGTON LINCOLN LAB, 2013.

[26] A. One. Smashing the stack for fun and profit (1996). See
http://www. phrack. org/show. php, 2007.

[27] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioan-
nidis. Asist: architectural support for instruction set random­
ization. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 981—992, 2013.

[28] B. Potteiger, Z. Zhang, and X. Koutsoukos. Integrated instruc­
tion set randomization and control reconfiguration for securing
cyber-physical systems. In Proceedings of the 5th Annual Sym
posium and Bootcamp on Hot Topics in the Science of Security,
page 5. ACM, 2018.

[29] B. Potteiger, Z. Zhang, and X. Koutsoukos. Integrated data
space randomization and control reconfiguration for securing
cyber-physical systems. In Proceedings of the 6th Annual Sym
posium on Hot Topics in the Science of Security, page 3. ACM,
2019.

[30] B. D. Potteiger. A Moving Target Defense Approach Towards
Security and Resilience in Cyber-Physical Systems. PhD thesis,
2019.

[31] P. J. Prisaznuk. Arinc 653 role in integrated modular avionics
(ima). In 2008 IEEE/AIAA 27th Digital Avionics Systems
Conference, pages 1—E. IEEE, 2008.

[32] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in cH—H applications.
In Security and Privacy (SP), 2015 IEEE Symposium on, pages
745—762. IEEE, 2015.

[33] D. Seto, E. Ferreira, and T. F. Marz. Case study: Devel­
opment of a baseline controller for automatic landing of an
f-16 aircraft using linear matrix inequalities (lmis). Techni­
cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 2000.

[34] L. Sha. Using simplicity to control complexity. IEEE Software,
18(4):20—28, 2001.

[35] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In 2013
IEEE Symposium on Security and Privacy, pages 574—588.
IEEE, 2013.

[36] A. N. Sovarel, D. Evans, and N. Paul. Where’s the feeb?
the effectiveness of instruction set randomization. In USENIX
Security Symposium, volume 10, 2005.

[37] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis
in llvm. In Proceedings of the 25th International Conference on
Compiler Construction, pages 265—266. ACM, 2016.

[38] X. Wang, N. Hovakimyan, and L. Sha. L1simplex: fault-
tolerant control of cyber-physical systems. In Proceedings of
the ACM/IEEE 4th International Conference on Cyber-Physical
Systems, pages 41—50. ACM, 2013.

[39] J. Yao, X. Liu, G. Zhu, and L. Sha. Netsimplex: Controller
fault tolerance architecture in networked control systems. IEEE
Transactions on Industrial Informatics, 9(1):346—356, 2013.

[40] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha. Virtual-
drone: virtual sensing, actuation, and communication for attack-
resilient unmanned aerial systems. In Proceedings of the 8th In
ternational Conference on Cyber-Physical Systems, pages 143—
154. ACM, 2017.

[41] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha. Taskshuffler: A
schedule randomization protocol for obfuscation against timing
inference attacks in real-time systems. In 2016 IEEE Real
Time and Embedded Technology and Applications Symposium
(RTAS), pages 1—12. IEEE, 2016.

97

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 26,2020 at 20:25:10 UTC from IEEE Xplore. Restrictions apply.

